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EXTENDING OBSTRUCTIONS TO

NONCOMMUTATIVE FUNCTORIAL SPECTRA

BENNO VAN DEN BERG AND CHRIS HEUNEN

Abstract. Any functor from the category of C*-algebras to the category of
locales that assigns to each commutative C*-algebra its Gelfand spectrum
must be trivial on algebras of n-by-n matrices for n ≥ 3. This obstruction also
applies to other spectra such as those named after Zariski, Stone, and Pierce.
We extend these no-go results to functors with values in (ringed) topological
spaces, (ringed) toposes, schemes, and quantales. The possibility of spectra in
other categories is discussed.

1. Introduction

The spectrum of a commutative ring is a leading tool of commutative algebra
and algebraic geometry. For example, a commutative ring can be reconstructed
using (among other ingredients) its Zariski spectrum, a coherent topological space.
Spectra are also of central importance to functional analysis and operator algebra.
For example, there is a dual equivalence between the category of commutative
C*-algebras and compact Hausdorff topological spaces, due to Gelfand.1

A natural question is whether such spectra can be extended to the noncommu-
tative setting. Indeed, many candidates have been proposed for noncommutative
spectra. In a recent article [23], M. L. Reyes observed that none of the proposed
spectra behave functorially, and proved that indeed they cannot, on pain of trivial-
izing on the prototypical noncommutative rings Mn(C) of n-by-n matrices with
complex entries. To be precise: any functor F : Ring

op → Set that satisfies
F (C) = Spec(C) for commutative rings C, must also satisfy F (Mn(C)) = ∅ for
n ≥ 3. 2 This result shows in a strong way why the traditional notion of topolog-
ical space is inadequate to host a good notion of noncommutative spectrum. Its
somewhat elaborate proof is based on the Kochen–Specker Theorem [17]. It is re-
markable that a theorem from mathematical physics would have something to say
about all possible rings.

One could hope that less orthodox notions of space are less susceptible to this
obstruction. In particular, there are notions of space, such as that of a locale or
a topos, in which the notion of point plays a subordinate role. In fact, one of the
messages of locale theory and topos theory is that one can have spaces with a rich
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2 BENNO VAN DEN BERG AND CHRIS HEUNEN

topological structure, but without any points whatsoever. Indeed, many of the
proposed candidate spectra for noncommutative C*-algebras have been, or could
be, phrased in such terms.

The main result of this article is that the obstruction cannot be circumvented
in this way. We will rule out many candidates for categories of noncommutative
Gelfand spectra by deriving various no-go theorems for locales, toposes, ringed
toposes, and even quantales. Additionally, we prove similar limitative results for
Zariski, Stone and Pierce spectra. These results will all follow from two basic
ingredients. The first is the Kochen–Specker Theorem, as in [23]. The second is
a general extension theorem, prompted by our work in [6], that allows us both to
significantly simplify and extend Reyes’ argument.

The basic obstruction is given by the Kochen–Specker Theorem. It relates
Boolean algebras to a certain noncommutative notion of Boolean algebra. More
precisely, it can be rephrased to say that any morphism of so-called partial Boolean
algebras, from the projections in Mn(C) to a Boolean algebra, must trivialize when
n ≥ 3.

The general extension theorem, as its name suggests, uses some simple category
theory to extend this basic obstruction to far more general situations. To see how
it works, consider the following commuting diagram of functors and categories.

C
S

//
� _

��

S

?

��

R
?

// ?

Here, R consists of a kind of rings, C is the full subcategory of commutative ones,
the functor S takes the spectrum, and S consists of the spectral spaces. The goal is
to extend S to the noncommutative setting. The extension theorem will state that,
as long as the functor on the right-hand side preserves limits, the bottom functor
must degenerate. Regarded this way, one could say that what the Kochen–Specker
Theorem obstructs, is transporting S along functors whose images have the same
limit behaviour.

The paper is structured as follows. First, Section 2 motivates why it is a priori not
unreasonable to look to pointless topology for noncommutative spectra. Section 3
recalls the Kochen–Specker Theorem and several variations. Section 4 then sets the
stage with the abstract results. After that, Sections 5–7 draw corollaries of interest
from these main theorems. This host of impossibility results does not mean that
it is hopeless to search for a good notion of noncommutative spectrum. We end
the paper on a positive note by discussing ways of circumventing the obstruction
in Section 8, that will hopefully serve as a guide towards the ‘right’ generalization
of the notion of space.

2. Pointfree topology

The idea of a form of topology in which the notion of an open (or a region in
space) is primary and the notion of a point plays a subordinate role dates back at
least to Whitehead [25, 26]. For a long time these ideas remained quite philosophical
in nature and belonged to the periphery of mathematics. But this changed with the
work of Grothendieck [3]. The notion of a topos, which he seems to have regarded
as his most profound idea, is really a pointfree concept of a space. By now it is clear
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that a mathematically viable theory of pointfree spaces is possible and with topos
theory this has reached a considerable degree of maturity and sophistication [16, 20].

Within the category of toposes the localic toposes play an important role. Here
they will be important because toposes that arise as spectra are localic. We will
define these toposes in Definition 2.8 below; we will have no need to consider toposes
that are not localic. To define these localic toposes, the crucial observation is that
in the construction of the category of sheaves over a topological spaces, the points of
the space play no role. Indeed, all that matters is the structure of the lattice of opens
of the space. So, to define a category of sheaves, one only needs a suitable lattice-
theoretic structure. The precise structure required is formalized by the concept of
a locale, which is an important notion of pointfree space in its own right [14, 15].

Definition 2.1. A complete lattice is a partially ordered set of which arbitrary
subsets have a least upper bound. In a complete lattice every subset also has a
greatest lower bound. A locale is a complete lattice that satisfies the following
infinitary distributive law:

∨
(x ∧ yi) = x ∧

∨
yi.

The elements of a locale are called opens. A morphism K → L of locales is a
function f : L → K that satisfies f(x ∧ y) = f(x) ∧ f(y) and f(

∨
xi) =

∨
f(xi).

(Note the change in direction!) This forms a category Loc.

The primary example of a locale is the collection of open subsets of a topological
space. Moreover, a continuous function between topological spaces induces a mor-
phism between the corresponding locales (in the same direction). Thus we have a
functor Top → Loc.

As it happens, this functor has a right adjoint. To construct it, define a point of
a locale L as a morphism p : 1 → L. Here, 1 is the terminal object in the category
of locales, which coincides with the set of open sets of a singleton topological space.
The set of points of L may be topologized in a natural way, by declaring its open
sets to be those of the form {p | p−1(U) = 1} for opens U in L. This defines the
right adjoint Loc → Top.

As usual, this adjunction becomes an equivalence if we restrict to the full subcat-
egories of those locales and spaces for which the unit and counit are isomorphisms.
These are called the spatial locales and sober spaces, respectively. For topological
spaces, sobriety is really a weak separation property (for example, any Hausdorff
topological space is sober). Thus, locales and topological spaces are closely related.

There are, however, a few subtle differences. One of the most important is that
in the category of locales, limits are computed differently than in the category of
topological spaces. This is one of the reasons why one might suspect that a good
pointfree notion of spectrum may be possible. In fact, the following considerations
may lead one to hope that a suitable notion of a pointfree space could avoid the
obstruction observed by Reyes:

(1) Many notions of spectrum lend themselves quite naturally to a pointfree
formulation [14].

(2) In many cases points correspond to maximal ideals. It is well-known that
these behave very poorly functorially.

(3) Limits play an important role in Reyes’ result, and here as well. But limits
are computed differently in topological spaces and locales. (In fact, this
aspect of locales is emphasized in [15].)
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But, as we will see below, the obstruction to nonfunctorial spectra is so fundamental
that it precludes suitable notions of spectra in locales and toposes as well.

The problem is with point (3). Although limits in Loc and Top are computed
differently in general, this is not what happens with limits of locales and topological
spaces that arise as spectra. There, the constructions move perfectly in tandem.
This follows from the fact that locales that arise as spectra are (i) closed under
limits and (ii) spatial. In fact, (i) alone already precludes the existence of suitable
spectra in the category of locales, as Section 4 below will make clear. For this
reason, we will only explain (i) in some detail here.

Remark 2.2. Proving that locales that arise as spectra are spatial relies on non-
constructive principles, such as the Prime Ideal Theorem (a consequence of the
axiom of choice). In fact, the arguments in this paper are mostly constructive:
only the proofs in Section 6 rely on results that might not be valid constructively.
(That the locale-theoretic analogues of nonconstructive results in topology often
are constructively valid is another aspect of locale theory emphasized in [15].)

For example, Gelfand duality concerns compact Hausdorff spaces. Being Haus-
dorff is something which is rather hard to express in localic terms: but, fortunately,
for compact spaces being Hausdorff is equivalent to being regular, and regularity is
more readily expressed in localic terms [14, page 80].

Definition 2.3. A locale L is called compact if any subset S ⊆ L whose least upper
bound is the top element has a finite subset whose least upper bound is also the
top element.

If a and b are two elements of a locale L, then a is well inside b if c ∧ a = 0 and
c∨ b = 1 for some c ∈ L. A locale L is called regular if any a ∈ L is the least upper
bound of the elements well inside it.

Lemma 2.4. Compact regular locales are closed under limits in Loc.

Proof. This follows from the fact that the the inclusion of the full subcategory
KRLoc of compact regular locales inside the category of locales has a left adjoint
(namely the Stone-Čech compactification, see [14, page 130 and page 88]). �

Stone duality is a duality between Boolean algebras and Stone spaces. To define
the localic version of Stone spaces, observe that if D is a distributive lattice, then
the collection Idl(D) of ideals on D (ordered by inclusion) is a locale. In fact, this
construction is part of a functor

Idl : DLatop → Loc

sending ideals to the down closure of their direct images along maps of distributive
lattices. This functor is faithful, but not full.

Definition 2.5. A coherent locale is one equivalent to one of the form Idl(D). Any
coherent locale is compact; if it is also regular, we call it a Stone locale. A map
between coherent locales that is isomorphic to one in the image of the functor Idl
is called coherent.

Lemma 2.6. If a diagram in Loc consists of coherent locales and coherent mor-
phisms between them, then its limit is again a coherent locale.

Proof. This follows from the fact that Idl : DLatop → Loc is faithful and right
adjoint to the forgetful functor [14, page 59]. �



EXTENDING OBSTRUCTIONS TO NONCOMMUTATIVE FUNCTORIAL SPECTRA 5

Lemma 2.7. Stone locales are closed under limits in Loc.

Proof. This follows from Lemmas 2.4 and 2.6, together with the fact that every
map between Stone locales is coherent [14, page 71]. �

As mentioned before, these results will preclude the existence of functorial spec-
tra in the category of locales. They will also preclude the existence of functorial
spectra in the category of toposes. Before we can explain that, let us first indicate
how one can define a category of sheaves on a locale.

Definition 2.8. A presheaf on a locale L is a functor X : Lop → Sets. More
concretely, a presheaf consists of a family of sets (X(p))p∈L together with for any
q ≤ p a restriction operation

(−) ↾ q : X(p) → X(q)

satisfying some natural compatibility conditions.
A presheaf X is a sheaf when for any family of elements {pi ∈ L | i ∈ I} and

{xi ∈ X(pi) | i ∈ I} with xi ↾ pi ∧ pj = xj ↾ pi ∧ pj for all i, j ∈ I there is a unique
element x ∈ X(

∨
pi) with x ↾ pi = xi for every i ∈ I.

For any locale L the sheaves on L, with natural transformations between them,
form a topos Sh(L). A topos which is equivalent to one of this form is called localic.

The construction of taking sheaves on a locale is functorial. The crucial result
that will preclude noncommutative spectra valued in toposes is the following.

Lemma 2.9. There is a full and faithful functor Sh: Loc → Topos that assigns
to every locale the category of sheaves over that locale. It preserves limits.

Proof. For the first statement, see [20, Proposition IX.5.2]. For the second, [16,
C.1.4.8]. �

3. The Kochen–Specker Theorem

The Kochen–Specker Theorem is a famous and important result from the foun-
dations of quantum mechanics. Its original intention was to preclude the possibility
of hidden variable theories, but there are interpretational debates about whether
this conclusion is valid. Its mathematical content is important to us as an example
of an obstruction, as will be defined in the next section. It was originally stated in
terms of partial algebras, which also form a convenient starting point for us.

The idea behind partial algebras is to break an algebra into parts; each part
itself is a (sub)algebra with particularly nice properties, but the cohesion between
the parts is lost. This lets us, for example, think about a (noncommutative) ring in
terms of its commutative parts. In general, of course, the partial algebra contains
less information, precisely because the whole algebra does have cohesion between
the parts. The Kochen–Specker theorem, and our results based on it, concern
partial algebras; they do not analyse how much “more cohesive” an algebra is than
the sum of its parts.

A partial Boolean algebra consists of a set B with:

• a reflexive and symmetric binary (commeasurability) relation ⊙ ⊆ B ×B;
• elements 0, 1 ∈ B;
• a (total) unary operation ¬ : B → B;
• (partial) binary operations ∧,∨ : ⊙ → B;
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such that every set S ⊆ B of pairwise commeasurable elements is contained in a
set T ⊆ B, whose elements are also pairwise commeasurable, and on which the
above operations determine a Boolean algebra structure. A morphism of partial
Boolean algebras is a function that preserves commeasurability and all the algebraic
structure, whenever defined. More precisely, we have:

• f(a)⊙ f(b) whenever a⊙ b;
• f(0) = 0 and f(1) = 1;
• f(a ∨ b) = f(a) ∨ f(b) and f(a ∧ b) = f(a) ∧ f(b) whenever a⊙ b;
• f(¬a) = ¬f(a) for a ∈ B.

Examples of partial Boolean algebras are ordinary Boolean algebras, where the
commeasurability relation is total (we will also call these total Boolean algebras for
that reason), and projection lattices of Hilbert spaces. In fact, the collection of
projections

Proj(A) = {p ∈ A | p∗p = p}

carries the structure of a partial Boolean algebra for every C*-algebra A (where we
say that two projections are commeasurable when they commute). The Kochen–
Specker Theorem now reads as follows.

Theorem 3.1 (Kochen–Specker Theorem). Let f : Proj(Mn(C)) → B be a mor-
phism of partial Boolean algebras for n ≥ 3. If B is a (total) Boolean algebra, then
it must be the terminal one (in which 0 = 1).

Proof. See [17, 22]. �

If B is a partial Boolean algebra and we write C(B) for the diagram of its
total subalgebras and inclusions between them, then we can rephrase the previous
theorem as follows (see also [4]).

Corollary 3.2. If n ≥ 3, then the colimit of C(Proj(Mn(C))) in the category of
Boolean algebras is the terminal Boolean algebra.

Proof. Suppose we have a cocone from C(Proj(Mn(C))) to B in the category of
Boolean algebras. Clearly, it can also be considered as a cocone in the category
of partial Boolean algebras. But because the colimit of C(Proj(Mn(C))) in the
category of partial Boolean algebras exists and is precisely Proj(Mn(C)) (see [6]),
it follows from Theorem 3.1 that B is trivial. �

We will also need a variation for C*-algebras. First, we define the appropriate
partial notion. A partial C*-algebra is a set A with:

• a reflexive and symmetric binary (commeasurability) relation ⊙ ⊆ A×A;
• elements 0, 1 ∈ A;
• (partial) binary operations +, · : ⊙ → A;
• a (total) involution ∗ : A → A;
• a (total) function · : C×A → A;
• a (total) function ||−|| : A → R;

such that every set S ⊆ A of pairwise commeasurable elements is contained in a set
T ⊆ A, whose elements are also pairwise commeasurable, and on which the above
operations determine the structure of a commutative C*-algebra. A morphism
of partial C*-algebras is a morphism f : A → B preserving the commeasurability
relation and all the algebraic structure, whenever defined. More precisely, we have:

• f(0) = 0 and f(1) = 1;
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• f(a)⊙ f(b), f(a+ b) = f(a) + f(b) and f(ab) = f(a)f(b) whenever a⊙ b;
• f(a)∗ = f(a∗) for a ∈ A;
• f(za) = zf(a) for z ∈ C and a ∈ A.

Any commutative C*-algebra is an example of a partial C*-algebra, on which the
commeasurability relation is total. Moreover, for any C*-algebra A, the normal
elements

N(A) = {a ∈ A | aa∗ = a∗a}

carry the structure of a partial C*-algebra (where commeasurability means com-
mutativity). Again, we write C(A) for the diagram of total subalgebras of a partial
C*-algebra A and inclusions between them.

Corollary 3.3. If n ≥ 3, then the colimit of C(Mn(C)) in the category of commu-
tative C*-algebras is the terminal C*-algebra (in which 0 = 1).

Proof. Suppose we have a cocone from C(Mn(C)) to A in the category of com-
mutative C*-algebras. Again, we consider this as a diagram in the category of
partial C*-algebras, where the colimit of C(Mn(C)) is precisely N(Mn(C)) (see [6]).
So we obtain a map f : N(Mn(C)) → A of partial C*-algebras. By restricting f

to the projections we obtain a map Proj(f) : Proj(Mn(C)) → Proj(A) to which
Theorem 3.1 applies. Therefore A must be the terminal C*-algebra. �

4. Obstructions

This section develops a completely general way to extend obstructions like that
of the previous section. We start with the general extension theorem, and then
formalize obstructions in suitable abstract terms.

Proposition 4.1. Suppose given a commuting diagram of categories and functors

A
F

//

H

��

B

K

��

C
G

// D

where B is complete, and K preserves limits. If

• A is a diagram in A,
• there is a cone from X to HA in C,
• Y = limFA,

then there exists a morphism G(X) → K(Y ) in D.

Proof. Because K preserves limits, K(Y ) = K(limFA) = limKFA. The square
above commutes, therefore K(Y ) = limGHA. By assumption, there is a cone from
X to HA in C. Hence, there is a cone from GX to GHA in D. But we already
saw that K(Y ) is the target of the universal such cone. Hence there exists a unique
mediating morphism G(X) → K(Y ). �

Notice that the assumptions of the previous proposition were stronger than nec-
essary: B need not be complete, we only really need limFA to exist in B. Here is
an illustration of the situation (that will turn out not to be obstructed).
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Example 4.2. This illustration works best with colimits instead of limits, so we will
work in the opposite setting of the previous proposition. Let A be the category
of finite sets and injective functions, included in the category C of all sets and
injections. Take D to be the ordered class of cardinal numbers, regarded as a
category, and let B be its subcategory of at most countable cardinals, and K the
inclusion. Finally, set F and G to be the functors that take cardinality. Then B is
cocomplete, and K preserves colimits.

Clearly, every set X is the colimit in C of the directed diagram A in A of its
finite subsets and inclusions amongst them. If X is finite, then Y = colimFA =
supA∈A card(A) = card(X), giving a morphism K(Y ) → G(X) in D. If X is
infinite, then Y = supA∈A card(A) is at most countable, and therefore there still is
a morphism Y ≤ card(X) in D.

We can think of the previous proposition as saying that the existence of (uni-
versal) cones to diagrams in A can be transported along the functors F and G.
Next, we turn to formalizing obstructions to such extensions in the language of
the previous proposition. (We are using obstruction here in the normal colloquial
sense; no analogy with algebraic topology is intended.)

Definition 4.3. In the situation of Proposition 4.1, an obstruction to an object
X in C is a diagram A in A together with a cone from X to HA in C such that
limFA is initial in B. The object X is called obstructed if an obstruction to it
exists.

As a final abstract result, we now consider what happens when we try to ex-
tend obstructed objects using Proposition 4.1. An initial object is strict when any
morphism into it is an isomorphism.

Theorem 4.4. In the situation of Proposition 4.1: if K preserves initial objects,
and initial objects in D are strict, then G maps obstructed objects to initial objects.

Proof. Let X be an obstructed object in C. Then there are a diagram A in A and
a cone from X to HA in C such that Y = limFA is initial. Proposition 4.1 now
provides a morphism G(X) → K(Y ) in D. But since K preserves initial objects,
K(Y ) is initial in D, and in fact strictly so. Hence the morphism G(X) → K(Y )
must be an isomorphism, making G(X) into a (strict) initial object. �

The previous theorem provides an intuition behind Definition 4.3: whereas X

supports a cone to HA, this cone trivialises when transported along G.

5. Gelfand spectrum

This section is the first of several deriving no-go results. It shows that there can
be no nondegenerate functor extending Gelfand duality that takes values in locales,
topological spaces, toposes, or quantales.

For us, Gelfand duality is best considered as a duality between the category
cCstar of commutative C*-algebras and the category KRLoc of compact regular
locales. This duality exhibits every commutative C*-algebra A as isomorphic to
one of the form {f : X → C : f continuous} for some compact regular locale X ;
the opens of the locale X can be chosen to be the closed ideals of the commutative
C*-algebra A, ordered by inclusion.
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Combining the extension of Section 4 with the obstruction of Section 3, we now
immediately find that there can be no nondegenerate functor from C*-algebras to
locales that extends the Gelfand spectrum.

Corollary 5.1. Any functor G : Cstarop → Loc that assigns to each commutative
C*-algebra its Gelfand spectrum trivializes on Mn(C) for n ≥ 3.

Proof. We instantiate the setting of Proposition 4.1 by

cCstarop
Spec

//
��

��

KRLoc
��

K

��

Cstarop
G

// Loc.

By Lemma 2.4, KRLoc is complete and K preserves limits. Considering X =
Mn(C) in CStar and C(Mn(C)) in cCStar, it follows from the fact that Spec is
part of a duality, and hence preserves limits, in combination with Corollary 3.3
that X is obstructed when n ≥ 3. Since the initial object in KRLoc and Loc is
the locale of opens of the empty topological space, which is a strict initial object
in both categories, the statement follows from Theorem 4.4. �

Remark 5.2. In fact, any functor as in the previous corollary must trivialize on
many more objects than just Mn(C) for n ≥ 3. For example, one easily derives that
any C*-algebra A allowing a morphism Mn(C) → A for n ≥ 3 is also obstructed.
These are precisely those C*-algebras of the form Mn(B) for n ≥ 3 and any C*-
algebra B [19, Corollary 17.7]. Therefore, more generally, direct sums

⊕
iMni

(Bi)
are also ruled out when ni ≥ 3 for each i. Any von Neumann algebra without direct
summands C or M2(C) is obstructed, too [8]. This remark holds for all corollaries
to follow.

Because of the aforementioned equivalence between the categories of compact
Hausdorff spaces and compact regular locales, the previous corollary holds equally
well for topological spaces.

Corollary 5.3. Any functor G : Cstarop → Top that assigns to each commutative
C*-algebra its Gelfand spectrum trivializes on Mn(C) for n ≥ 3. �

Since Mn(C) and all its sub-C*-algebras are von Neumann algebras, the previous
two results also holds for von Neumann algebras:

Corollary 5.4. Any functor G : Neumannop → Loc or G : Neumannop → Top

that assigns to each commutative von Neumann algebra its Gelfand spectrum trivi-
alizes on Mn(C) for n ≥ 3. �

Because a locale is a reasonably elementary geometric notion, one might hold out
hope for nondegenerate functorial extensions valued in categories of more involved
geometric objects. However, we can use Corollary 5.1 as a stepping stone to derive
no-go results for the more involved geometric notions of toposes and quantales.

Corollary 5.5. Any functor G : Cstarop → Topos that assigns to each commu-
tative C*-algebra its Gelfand spectrum trivializes on Mn(C) for n ≥ 3.
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Proof. Since both the inclusion KRLoc → Loc and Sh: Loc → Topos preserve
limits (see Lemmas 2.4 and 2.9, respectively), their composition does as well. There-
fore, the proof of Corollary 5.1 applies when we put Topos in the bottom right
corner. �

The previous corollary might not have come as a surprise after Corollary 5.1.
After all, if locales are ‘not noncommutative enough’ to accommodate a good notion
of noncommutative Gelfand spectrum, then why would the ‘equally not noncommu-
tative’ toposes do so? We will now consider quantales, which were intended to be
noncommutative versions of locales. In fact, quite some effort has gone into study-
ing them as candidates for Gelfand spectra of noncommutative C*-algebras [21, 18].
The proof of the previous corollary shows that there is no nondegenerate extension
of the Gelfand spectrum with values in any category of which compact regular lo-
cales are a subcategory that is closed under limits. We can use the same idea in
the following.

A quantale is a partially ordered set Q that has least upper bounds of arbitrary
subsets, and is equipped with an element e ∈ Q and an associative multiplication
Q×Q → Q satisfying the following equations:

∨
(xyi) = x(

∨
yi),

∨
(yix) = (

∨
yi)x, ex = x = xe.

A morphism Q → Q′ of quantales is a function f : Q′ → Q satisfying f(e) = e′,
f(
∨
xi) =

∨
f(xi), and f(xy) = f(x)f(y). Any locale is a quantale when we

take meet as multiplication and the top element as unit. Hence we can regard the
Gelfand spectrum as a functor cCstarop → Quantaleop.

Lemma 5.6. Compact regular locales are closed under limits in Quantaleop.

Proof. See [18, Corollary 4.4]. �

Corollary 5.7. Any functor G : Cstarop → Quantaleop that assigns to each com-
mutative C*-algebra its Gelfand spectrum trivializes on Mn(C) for n ≥ 3.

Proof. Using Lemma 5.6 instead of Lemma 2.4, the proof of Corollary 5.1 establishes
the statement. �

At first sight the previous corollary might seem to contradict results of [18]:
one can reconstruct the original C*-algebra from its maximal spectrum, and the
assignment which sends a C*-algebra to its maximal spectrum is functorial. How-
ever, this functor does not send a commutative C*-algebra to its Gelfand spectrum,
but to something from which it may be reconstructed (its so-called spatialization).
Therefore the maximal spectrum does not satisfy our specification square of Propo-
sition 4.1.

6. Zariski spectrum

In this section we turn to the Zariski spectrum. This construction underlies alge-
braic geometry by connecting commutative rings to coherent spaces via the prime
ideals of the ring [9, 14]; more precisely, the Zariski spectrum of a commutative
ring A is the locale whose opens are the radical ideals of A. Before we go on to
extending obstructions to noncommutative generalizations of this duality, we first
consider the basic no-go result. The abstract machinery from Sections 3 and 4 does
not apply directly, because the Zariski spectrum functor cRing

op → Loc famously
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does not preserve (products and hence) limits. Fortunately, it suffices to restrict
to finite-dimensional complex algebras, where the Zariski spectrum functor does
preserve limits, and where our obstructed objects Mn(C) for n ≥ 3 live.

Corollary 6.1. Any functor G : Ringop → Loc that assigns to each commutative
ring its Zariski spectrum trivializes on Mn(C) for n ≥ 3.

Proof. When a commutative algebra A over C is finite-dimensional, it is Artinian
as a ring, and therefore any prime ideal is maximal [9, Theorem 2.14]. In particular,
every point in Spec(A) is closed. In turn, maximal ideals correspond bijectively, and
functorially, to algebra homomorphisms: a character f : A → C corresponds to its
kernel f−1(0). Thus, when restricted to finite-dimensional commutative complex
algebras, the Zariski spectrum functor is naturally isomorphic to a representable
functor: Spec ∼= cRing(−,C) : fcAlg

op
C

→ Set. Moreover, in this case there are
only finitely many maximal ideals [9, Theorem 2.14], so Spec(A) must be discrete.
Clearly discrete locales are closed under limits in Loc (see also Lemma 2.6), so this
restricted functor preserves finite limits, and just as in Corollary 5.1, we see that
any functor fAlg

op
C

→ Loc that assigns to each commutative algebra its Zariski
spectrum must trivialize on Mn(C) for n ≥ 3. Precomposing with the inclusion
fAlgC →֒ Ring finishes the proof. �

Reyes’ result [23] now follows directly from the previous, constructive, corollary.
This basic no-go result can be extended to values in categories of which coherent

locales are a subcategory that is closed under limits, as in Section 5. For example,
we get the following corollary.

Corollary 6.2. Any functor G : Ringop → Topos that assigns to each commuta-
tive ring its Zariski spectrum trivializes on Mn(C) for n ≥ 3. �

In Section 5 we used closure under limits to extend the basic no-go result. An-
other way is by postcomposing with functors that reflect initial objects, as in the
rest of this section. Incidentally, these limitations also apply to functorial extensions
of Gelfand duality discussed in Section 5.

Another generalized notion of space is that of a ringed topological space or ringed
locale [11]. These are topological spaces/locales together with a sheaf of commuta-
tive rings over them, and are important in algebraic geometry. Every topological
space/locale X can be regarded as a ringed space by letting the structure sheaf
be the sheaf of continuous functions on opens of X . One can also consider the
notion of a ringed topos : a topos together with a commutative ring object in it.
This notion generalizes those of ringed topological spaces and ringed locales, be-
cause the category of sheaves over a ringed space is a ringed topos almost by
definition. The import lies in the fact that every commutative ring is isomorphic
to the ring of global sections of a sheaf of local rings. Thus we can regard the
Zariski spectrum as a functor cRingop → RingedTop, cRingop → RingedLoc,
or cRingop → RingedTopos.

Corollary 6.3. Any functor G : Ringop → RingedTopos that assigns to each
commutative ring its Zariski spectrum trivializes on Mn(C) for n ≥ 3. The same
holds when we replace RingedTopos by RingedTop or RingedLoc.

Proof. The forgetful functor U : RingedTopos → Topos reflects initial objects.
Since UG is a functor satisfying the hypotheses of Corollary 6.2, UG(Mn(C)) is
initial when n ≥ 3. But that means that G(Mn(C)) is initial. �
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Actually, the main notion of interest in algebraic geometry is that of a scheme
(see [11]). A locally ringed space is a ringed space where each stalk of the structure
sheaf is not just a ring but a local ring. An affine scheme is a locally ringed
space isomorphic to the Zariski spectrum of some commutative ring. A scheme
is a locally ringed space admitting an open cover, such that the restriction of the
structure sheaf to each covering open is an affine scheme.

Corollary 6.4. Any functor G : Ringop → Scheme that assigns to each commu-
tative ring its Zariski spectrum trivializes on Mn(C) for n ≥ 3.

Proof. The forgetful functor from the category of schemes to Top reflects initial
objects, so the proof of the previous corollary applies. �

7. Stone and Pierce spectra

In this section we will have a further look at some dualities related to the Stone
spectrum, where the Kochen–Specker Theorem also provides an obstruction to
further extending them to suitably noncommutative structures.

First we consider the Stone spectrum, that provides a duality between Boolean
algebras and Stone locales: given a Boolean algebra, the associated Stone locale
has as opens the ultrafilters on B; and given a Stone locale L, the original Boolean
algebra can be reconstructed by taking the complemented elements in L.

Corollary 7.1. Any functor F : PBooleanop → Loc that assigns to each Boolean
algebra its Stone spectrum trivializes on Proj(Mn(C)) for n ≥ 3. �

Proof. If one considers the diagram

Booleanop //

��

Stone

��

PBooleanop

F
// Loc

and the object Proj(Mn(C)) in PBoolean (together with its diagram of commu-
tative subalgebras in Boolean), we see that they are obstructed for every n ≥ 3.
Therefore they will be sent to the initial object by F . �

Traditional quantum logic, by which we mean the approach dating back to
Birkhoff and von Neumann [7], considers orthomodular lattices. A lattice L is
called orthocomplemented, if it comes equipped with a map ⊥ : L → L satisfying:

• a ≤ b ⇒ b⊥ ≤ a⊥;
• (a⊥)⊥ = a;
• a ∧ a⊥ = 0 and a ∨ a⊥ = 1.

We call a⊥ the orthocomplement of a, and say that a is commeasurable with b (and
write a⊙ b), if

a = (a ∧ b) ∨ (a ∧ b⊥).

This relation is clearly reflexive, but need not be symmetric; if it is, we will call the
lattice orthomodular.3 With lattice homomorphisms preserving orthocomplements
as morphisms, orthomodular lattices form a category OrthoLat.

3This is equivalent to the usual statement of the orthomodular law a ≤ b ⇒ b = a ∨ (b ∧ a⊥)
by [5, Theorem II.3.4].
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The previous no-go result extends to orthomodular lattices. This is due to
several facts. First of all, every Boolean algebra is an orthomodular lattice. In
fact, these are precisely the orthomodular lattices in which every two elements are
commeasurable [5, Corollary II.4.6]. Furthermore, projections Proj(Mn(C)) in n-
dimensional complex Hilbert space can be identified with the subspace of Cn they
project onto, and therefore form an orthomodular lattice [5, Section III.4]: the
order comes from subspace inclusion, and ⊥ comes from orthocomplement. Now,
the relation ⊙ gives every orthomodular lattice the structure of a partial Boolean
algebra [5, Theorem II.4.5]. Projection lattices thus obtain partial Boolean algebra
structure: projections p and q commute if and only if the subspaces p(Cn) and
q(Cn) they project onto are commeasurable in the orthomodular lattice of linear
subspaces [5, Exercise III.18]. Therefore also the two different notions of total (or
commeasurable) subalgebra agree.

Corollary 7.2. Any functor OrthoLatop → Loc that assigns to each Boolean
algebra its Stone spectrum trivializes on Proj(Mn(C)) for n ≥ 3. �

Proof. Proved in the same way as the previous corollary, where this time we put
OrthoLatop in the bottom left corner. �

Next, we turn to the Pierce spectrum, which assigns to a commutative ring the
Stone space of its Boolean algebra of idempotents.

Corollary 7.3. Any functor Ringop → Loc that assigns to each commutative ring
its Pierce spectrum trivializes on all Mn(C) for n ≥ 3.

Proof. Let F : Ringop → Loc be as in the statement. Let C(Mn(C)) be the
diagram of commutative self-adjoint subalgebras of Mn(C). As usual, we will ar-
gue that limFC(Mn(C)) in Loc is initial. Consider the restriction F of F to
cNeumann, and denote G for the functor that sends a commutative von Neu-
mann algebra to its Gelfand spectrum. Since every projection is an idempotent,
and the Gelfand spectrum of a commutative von Neumann algebra is given by
the Stone space on its projections, there is a natural transformation F ⇒ G. So
if limGC(Mn(C)) is the (strict) initial object in Loc, the same must be true for
limFC(Mn(C)) = limFC(Mn(C)). �

8. Circumventing obstructions

It might be tempting to conclude from the above impossibility results that it is
hopeless to look for a good notion of spectrum for noncommutative structures. But
we strongly believe that this is the wrong conclusion to draw. What our results
show is merely that a category of noncommutative spectra must have different limit
behaviour from the known categories of commutative spectra. One of the central
messages of category theory is that objects should be regarded as determined by
their behaviour rather than by any internal structure. In other words, it is not
the internal structure of objects that dictates what morphisms should preserve.
It is the other way around: it is the morphisms connecting an object to others
that determine that object’s characteristics. Ideally, of course, both viewpoints
coincide. But the latter viewpoint is better precisely when it is unclear what the
objects should be. Historically, noncommutative spectra have almost always been
pursued by generalizing the internal structure of commutative spaces (as objects).
We believe the right, and optimistic, message to distill from our results is that one
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should let the search for noncommutative spectra be guided by morphisms instead.
Indeed, the few proposals for noncommutative spectra that escape our obstructions
have non-standard morphisms between them:

• There is a notion of noncommutative spectrum due to Akemann, Giles and
Kummer [1, 10, 2]. It allows one to reconstruct the original C*-algebra, but
the correspondence is only functorial for certain morphisms of C*-algebras.

• The so-called process of Bohrification gives a functor from the category of
C*-algebras to localed toposes [12]. It involves some loss of information,
however: one can only reconstruct the partial C*-algebra structure of the
original C*-algebra [6]. Indeed the natural morphisms in this setting are
partial *-homomorphisms.

• It is possible to construct a functor from the category of C*-algebras to
the category of so-called quantum frames [24]. These structures only take
into account the Jordan structure of the original C*-algebra, and this is
reflected in the choice of morphisms. Indeed, there is no nondegenerate
functor between the categories of quantum frames and that of quantales,
so there is no contradiction with our results.

• A recent paper by Heunen and Reyes proposes a new notion of spectrum
for arbitrary AW*-algebras [13]. It involves an action of the unitary group
on the projection lattice, and therefore the natural morphisms are quite
unlike those of topological spaces.
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