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THE ELEPHANT IN THE GROUND: 

MANAGING OIL AND SOVEREIGN WEALTH 

 

Ton van den Bremer, Frederick van der Ploeg and Samuel Wills* 

 

Abstract 

One of the most important developments in international finance and resource 

economics in the past twenty years is the rapid and widespread emergence of the $6 

trillion sovereign wealth fund industry. Oil exporters typically ignore below-ground 

assets when allocating these funds, and ignore above-ground assets when extracting oil. 

We present a unified stylized framework for considering both. Subsoil oil should alter a 

fund’s portfolio through additional leverage and hedging. First-best spending should be 

a share of total wealth, and any unhedgeable volatility must be managed by 

precautionary savings. If oil prices are pro-cyclical, oil should be extracted faster than 

the Hotelling rule to generate a risk premium on oil wealth. Finally, we discuss how our 

analysis could improve the management of Norway’s fund in practice.  

Keywords: oil revenue, portfolio allocation, sovereign wealth fund, leverage, hedging, 

optimal extraction, prudence, risk aversion 
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1. Introduction 

Since 1994 the number of sovereign wealth funds has nearly quadrupled to 73 (SWF 

institute, 2013). These funds hold some of the largest portfolios in the world and globally 

account for over $6 trillion in assets (ibid.). Two thirds of the sovereign wealth fund 

industry (by size) has been funded by selling below-ground assets such as oil, natural 

gas, copper and diamonds (“oil” for short). These funds often comprise a large part of 

commodity exporters’ wealth. Azerbaijan’s US$ 34 billion fund accounts for almost half 

its GDP, Qatar’s US$ 170 billion fund accounts for almost two thirds of GDP, Saudi 

Arabia’s US$ 740 billion funds are approximately four-fifths of GDP, Norway’s US$ 

840 billion fund is nearly one and a half times GDP, and the United Arab Emirates’ US$ 

1 trillion funds are over two and a half times its GDP (SWF Institute, 2013; IMF, 2013). 

The purpose of these funds is to smooth consumption of oil income: across generations 

because oil reserves are finite, and between periods because oil and asset prices are 

volatile. While such funds are professionally managed and often allocate their assets 

using modern portfolio theory, we argue that their investment strategies do not take due 

account of oil price volatility and subsoil reserves. Similarly, existing theories of optimal 

oil extraction do not take into account volatile financial markets. These are important 

issues for resource exporters, since commodity prices are notoriously volatile and 

below-ground assets can be worth much more than the above-ground fund. 

Our aim is therefore to answer four questions about how below-ground resources should 

influence above-ground portfolios, and vice-versa. Firstly, how should one allocate 

above-ground assets given a volatile stock of below-ground assets? Secondly, how 

quickly should financial and oil wealth be consumed? Thirdly, how does this change if 

financial markets are incomplete, so that oil shocks cannot be completely hedged in the 

portfolio? Finally, how should the optimal extraction rate of below-ground assets be 

affected by risky above-ground assets? 

We will show that policy-makers should adjust their above-ground portfolios to 

accommodate the volatility and erosion of below-ground oil stocks (hedging and 
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leverage effects respectively); consume a fixed share of total wealth; manage shocks that 

cannot be hedged with precautionary savings; and, if the marginal rent from extracting 

an additional barrel of oil, namely the oil price minus marginal extraction costs, co-

varies positively with average equity market returns, then oil should be extracted faster. 

Our analysis combines three large and previously unrelated strands of literature. Firstly, 

the allocation of financial assets is described by CAPM equations modified for subsoil 

oil wealth. This extends the continuous-time analysis of optimal consumption-saving 

and portfolio choice (Merton, 1990).1 Secondly, consumption is described by a 

stochastic Euler equation,2 extending the literature on prudence and precautionary 

savings to the case when both financial assets and oil extraction can be chosen.3 Thirdly, 

the optimal rate of oil extraction is described by a stochastic Hotelling rule modified if 

the proceeds of extraction of below-ground wealth are invested in a risky above-ground 

financial portfolio.4 Our intended contribution is to introduce a stylized framework that 

combines canonical insights from all three of these fields. These insights would be 

modified by including transaction costs and illiquidity premiums, which would help to 

explain why in practice fund managers do not adjust their portfolios too frequently by 

introducing some mean reversion into the portfolio decisions (Constantinides, 1986; 

Acharya and Pedersen, 2005; Garleanu and Pedersen, 2013; Jong and Driessen, 2015).  

                                                           
1 This builds on classic portfolio theory (Tobin, 1958) and mean-variance theory (Markowitz, 1952; 1959). 

If investors have equal information and markets are complete, they hold the market portfolio as used in 

the CAPM (Sharpe, 1964). Our extension to allow for oil income is akin to those dealing with a non-

tradable stream of income in the context of university endowments (Merton, 1993; Brown and Tiu, 2012), 

labor income including endogenous effort (Bodie et al., 1992; Wang et al., 2013), non-tradable and 

uninsurable income (Svensson and Werner, 1993; Koo, 1998) and non-financial stores of wealth such as 

housing (Flavin and Yamashita, 2002; Sinai and Souleles, 2005; Case et al., 2005). 
2  See Leland (1968), Sandmo (1970), Zeldes (1986), Kimball (1990), Carroll and Kimball (2008). 
3 This extends earlier work on precautionary saving in safe assets to cope with oil price volatility (Bems 

and de Carvalho Filho, 2011; van den Bremer and van der Ploeg, 2013). 
4 We require marginal extraction costs to be positive and increasing in the amount extracted but, unlike 

Pindyck (1980, 1981), we do not require them to be convex, which would create extractive prudence. 

Others treat extraction with stochastic oil prices, growth and capital, but abstract from above-ground 

financial assets (Gaudet and Khadr, 1991; Atewamba and Gaudet, 1992). Recent empirical evidence 

suggests that the Hotelling rule holds at the extensive margin of number of wells drilled, but not at the 

intensive margin (Anderson et al., 2014; Venables, 2014).  
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This paper is laid out as follows. Section 2 introduces our model for portfolio choice, 

saving and oil revenues. Section 3 shows how to allow for below-ground oil wealth with 

a predetermined path for oil production when the oil price is completely spanned by 

returns in asset markets. Section 4 deals with the case of investment restrictions which 

prevent the oil price being fully spanned. Section 5 derives the optimal path for oil 

extraction. Section 6 discusses the implications of our results and compares these with 

the policies adopted by the Norwegian fund. Finally, section 7 concludes and qualifies 

our results. 

 

2. The model 

Adopting Geometric Brownian motion processes for the oil price and asset returns, the 

problem is to choose the rate of public consumption C and portfolio asset weights wi, i 

= 1,.., n, to maximize the expected present value of utility with discount rate  > 0: 

   ( )

,
( , , ) max ( ) ,

i

s t

O t
tC w

J F P t E U C s e ds


  
     (1) 

subject to the budget constraint: 

 
1 1

( ) ( ) ,
m m

i i O i i i

i i

dF w r Fdt rF P O C dt w F dZ 
 

         (2) 

where the value function )( ,, OJ F P t  depends on the size of the fund F, the oil price OP  

and time t.5 The rate of oil extracted at time t, ( ),O t  either declines exponentially at the 

rate κ with zero extraction costs (sections 3 and 4)6 or is chosen optimally with convex 

costs (section 5). The fund has m risky assets, i = 1,.., m, with drift i and volatility i  

and one safe asset, i = m+1, with return r and volatility m+1 =0. There are thus n  m +1 

assets. The fund holds Ni shares of assets, i = 1,.., n, each with price Pi, so 
1

.
n

i ii
F PN




                                                           
5 This abstracts from all other public assets (e.g., future tax revenues) and liabilities (e.g., pensions). 
6 The results can readily be extended for the case of a constant windfall of finite duration.  
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The share of each asset in the fund is / ,i i iw PN F so 
1

.
n

ii
F w F


  The stochastic 

processes for the risky assets are: 

 , 1,.., ,i i i i i idP Pdt PdZ i m      (3) 

where dZi is a Wiener process with cov(dZi dZj) = [ij] for i = 1,.., m. The returns of risky 

assets have covariance matrix [ ] [ ]ij ij i j      . We abstract from mean reversion and 

stochastic volatility in asset prices, and ignore transaction costs (discussed in section 6). 

We thus assume that the coefficients in (3) are constant. The weight of the safe asset in 

the fund, 
1

1 ,
m

n ii
w w


   is positive or negative if the weight of the risky portfolio is 

smaller or larger than one, which corresponds to a long position (wn > 0) or short position 

(wn < 0) in the safe asset. Total holdings of risky assets is called the “portfolio”, 

1
(1 ) ,

m

n ii
w F w F


   and its share in the fund is 1 .nw w   

Preferences exhibit constant relative risk aversion, 
1 1/( ) / (1 1/ ), 1U C C      and 

( ) ln( ), 1,U C C   where  is the coefficient of intertemporal substitution, 1/  the 

coefficient of relative risk aversion or the degree of intergenerational inequality 

aversion, and 1 + 1/  the coefficient of relative prudence. These are a member of the 

class of hyperbolic absolute risk aversion preferences and thus permit an analytical 

solution to the asset allocation problem (Merton, 1971). Section 3 also explores Epstein-

Zin preferences, which allows one to disentangle risk aversion and intertemporal 

substitution (Epstein and Zin, 1989; Duffie and Epstein, 1992).7 

The country is a small oil exporter that does not affect the oil price. The world oil price 

also follows a Geometric Brownian Motion process: 

 ,O O O O O OdP P dt P dZ     (4) 

                                                           
7 These have been used in empirical studies (e.g., Attanasio and Weber, 1989; Wang et al., 2013).  
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where the drift in the oil price is not too large, .O r  8 Again, we abstract from mean 

reversion, stochastic volatility and transaction costs. Risky assets are driven by a 

common set of shocks (e.g., to demand, supply, technology or the weather), du  i.i.d. 

N(0, dt). The correlation of each asset depends on how it is affected by these shocks, 

,dZ du   where ij      is an invertible m m matrix and  1,.., 'mdZ dZ dZ  is the 

vector of Wiener processes driving the returns on risky assets. The Wiener process 

driving oil returns is expressed as: 

 ,O Oh h O hOhdZ ddu duu MdZ      (5) 

where 
1

OM    . The vector O = [O1, .., Om] determines how the oil price responds 

to the vector of underlying shocks, du, and ,ov( ) .c O dZZ Md   9 

With complete markets, the fund has unrestricted access to all assets and the 

instantaneous return on oil can be perfectly replicated (“spanned”) by a bundle of traded 

securities. Without loss of generality these securities represent equities and bonds rather 

than derivatives.10 The unhedgeable component of oil prices is zero, 0Oh   (see sections 

3 and 5). With incomplete markets, there is an unhedgeable component of the oil price 

with weight 
1

1
1 0

m

Oh Oii
 




   and  1 1,.., ,O O Om     where hdu  is a residual 

oil-specific shock that is uncorrelated with the asset market shocks, du (see appendix 

A.1 and section 4). 

3. Complete markets and a given path of oil extraction 

With complete markets, oil wealth can be treated as tradable by replicating its properties 

with a synthetic bundle of traded financial assets. Accordingly, an arbitrage argument 

                                                           
8 This is a sufficient condition for the present discounted value of a permanent oil windfall to be finite, 

and is consistent with empirical estimates (e.g., van den Bremer and van der Ploeg, 2013). 
9 Oil prices depend in general equilibrium on more fundamental shocks (Bodenstein et al., 2012). 
10 For large oil exporters, liquidity constraints make derivative hedging of oil prices impractical. Therefore 

we focus on long/short, equity/bond hedging strategies. 
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can be employed to derive the value of the stream of oil revenues (see appendix A.1. for 

a derivation): 

 
1

( , ) ( ) ( ) / , ( ),
m

O O O i ii
V P t P t O t r r   


        (6) 

where 
1[ ]O

ii O i




    and 

1[ ]i O iM    . Total wealth, ,W F V   then satisfies: 

 
1 1

( ) ( ) ,
m m

i i i i i

i i

dW wW r dt rW C dt wWdZ 
 

        (7) 

where ( ) / ( ), 1,..,i i iw w F V F V i m    .  

The replicating bundle linearly combines exposures i  to many financial assets, which 

depend on the correlation of each risky asset with the oil price and its uniqueness 

amongst other financial assets. This bundle matches the variance of oil revenues and the 

amount of the safe asset is chosen to match the drift. Oil wealth is current oil revenues 

divided by the effective discount rate ψ, where ψ is the safe return r plus the rate of 

decline of oil production  minus the drift in the oil price O  plus the adjustment to 

compensate risk-averse investors for bearing oil price risk.11 Oil wealth reacts to the 

current oil price only, as (5) implies oil price shocks are permanent under our 

assumptions. 

3.1. Asset allocation: leverage and hedging demands 

If claims to oil can be securitized, the proceeds can be invested in a diversified portfolio 

and the problem reduces to that in Merton (1990). In practice, doing so may be difficult 

due to political and practical constraints12. Nevertheless, with the replicating bundle the 

problem reduces to choosing the net weight of each risky asset, iw  for i = 1,.., m, in total 

                                                           
11 The value of an uncertain stream of income follows from discounting at the risk-free rate if the 

probability space is adjusted to a risk-neutral measure using a theorem due to Girsanov (1960). 
12 Politicians do not like the prospect of having sold oil for an ex-post low price, and risk-averse firms are 

unwilling to take on all price and production risk 
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above- and below-ground wealth, W = F + V. Evidently, the net weight of each risky 

asset in total wealth is constant: 

 
1

1
, 1 , ( ),

m

i i i ij j

j

i v r
v

w w m  


      (8) 

and the net weight of all risky assets in total wealth is: 

 
1 1 1

, ( ),
m m m

ij j

i

i

i j

v v rw w 
  

      (9) 

where 
1 ,ij ij

      and the share of safe assets in the total portfolio is 1 .w   

The weight of each risky asset in the above-ground fund is (see appendix A.2): 

 

leverage demand hedging demand

, , 1,.., .O

i ii i i i i M
V V

w w w i m
F F




 

   
        

   
  (10) 

Sovereign wealth funds should thus be structured so that net exposure to each asset in 

total wealth is constant. The optimal portfolio of risky assets (8) is independent of 

preferences and the level of wealth, but depends as usual on the drift and covariance of 

asset returns. The optimal part of total wealth allocated to risky assets (9) is proportional 

to the overall risk-adjusted return of the portfolio v and the willingness to take risk θ (the 

inverse of the coefficient of relative risk aversion).13 

To ensure that net exposure to each financial asset is a constant share of total wealth (8)

, one requires offsetting leverage and hedging demands for each risky asset as a share of 

the above-ground fund (10). The allocation of the fund approaches its non-oil level, iw , 

                                                           

13 If there is only one risky asset, (9) reduces to the Sharpe ratio, 
2

1 1( ) / ,rw     so the portfolio is 

proportional to the excess return of the risky asset over the safe asset, and the willingness to take risk, 

and inversely proportional to the variance of the return on the risky asset. With multiple risky assets the 

overall risk-adjusted return is lower if assets are positively correlated, so there is less scope for 

fluctuations to offset each other and to hedge oil. 

Formatted: Font: 10 pt

Deleted: (9)
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as oil is depleted.14 Leverage demand involves holding more of each risky asset in the 

above-ground fund. For example, if oil wealth matches the size of the fund and is 

uncorrelated with assets ( 0,i i   ,  2W F V F   ), the fund holds twice as much 

of each risky asset and can do so only by holding less or borrowing more of the risk-free 

asset. If there is only one risky asset, leverage demand is given by the Sharpe ratio, 

1 1

2)( ( / )r V F    15, clearly illustrating that, as oil is depleted, leverage demand 

vanishes by reallocating from risky to safe assets. 

Furthermore, hedging demand offsets exposure to oil price risk. If oil is correlated with 

only one asset, O Ok kZ Zd d , hedging demand is the oil-asset beta16 multiplied by the 

leverage ratio, / ( / )Ok O k V F   . If oil price risk is positively correlated with the 

financial asset ( 0Ok  ), hedging demand is negative. If the two are negatively 

correlated ( 0),Ok  the fund should hold more of the risky asset to hedge oil price risk. 

Again, as oil is extracted and the exposure to price risk falls, hedging demand vanishes. 

Equation (10) generalizes this insight to multiple risky financial assets. If all financial 

asset returns are independent ( is diagonal), oil should be hedged by investing more in 

assets that are negatively correlated (e.g., assets that use oil as an input such as 

manufacturing and consumer goods industries) and less in assets that are positively 

correlated (e.g., oil and gas stocks or substitutes like renewable energy), especially if oil 

reserves are large. One should then also leverage up all demands for risky assets that 

prevail in the absence of oil. If financial asset returns are correlated, hedging of oil must 

consider the covariance of each risky asset. It is then possible that the fund should invest 

less in assets that are negatively correlated with oil.17 In practice one can implement this 

                                                           
14 This assumes that withdrawals from the fund are not so rapacious (i.e.,  is not too high, cf. (8)) that 

fund assets fall quicker than oil is extracted and V/F rises over time. 
15 Mean-variance analysis gives a similar expression (Gintschel and Scherer, 2008; Scherer, 2009). 
16 The slope coefficient of a regression of demeaned asset returns versus demeaned oil returns. 
17 For example, consider a shock duG which affects oil and asset A but not others, OG, AG > 0 and iG = 

0, for all i ≠ A. The other shocks duj affect oil and asset A in opposite ways, Oj > 0 and Aj < 0, j = 1,.., 
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with a mix of the “market index”, iw , and an “oil hedging index”, βi, constructed to 

replicate movements in the oil price. Over time the mix shifts from the second to the 

first index as oil is extracted from the ground (see (10)). Net demand may be negative 

for both risky assets (short positions) and riskless assets (leverage), which may not be 

practical for many SWFs.  Section 4 addresses this by considering investment 

restrictions. 

3.2. Consumption rules and precautionary saving 

Oil wealth also affects precautionary saving and optimal consumption from the fund, as 

illustrated by the Euler equation governing the expected growth of consumption: 

 
  2

1

1
2

1
(

1
(1 1/ ) ,

2
) .

m mt

W i j ij

dt

W i j

E dC
w

C
r       

 
        (11) 

With complete markets, a closed-form solution for optimal consumption exists (Merton, 

1990): 

  
2

1

1
, 1 , ,(

2
)

mW
i ii

W

W

r
C MPC W MP rC r


      

 

 
      


 


  (12) 

where the drift and the volatility of total wealth are W  and W  and total wealth also 

follows a Geometric Brownian Motion process: 

 
* *, ( ) .W W W W WdW Wdt wWdZ r w r MPC           (13) 

The aggregate volatility of total wealth when portfolio weights are optimised is a 

weighted average of the volatility of each asset, 1

1WW i i i

m

i
dZ dZ 


  , and (13) has a 

solution  * 2 2( ) (0)exp 2 ( )W W W WW t W w t wZ t     
  .  

                                                           

m. It is then possible that oil and asset A are negatively correlated, 
1

0
m

Oj Ajj
 


 , but the fund should 

nevertheless invest less in asset A to offset the exposure to shock G. The allocation of all other assets will 

have to adjust to hedge the effects of the remaining shocks, duj for j  g. 
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Aggregate risk is managed by depressing consumption today to build a precautionary 

buffer of assets, as seen from the upward tilt of the expected consumption path in the 

final term of (11). The degree of tilt increases with the coefficient of relative prudence 

(1 + 1/), the riskiness of the portfolio 2

W , and the size of the risky portfolio in total 

wealth, .w  The buffer compensates future periods for bearing additional risk,  but does 

not temporarily support consumption when asset prices are low, as here asset price 

shocks are random walks and thus persistent. 

The optimal spending path can be achieved with a rule that consumes a fixed proportion 

of below and above-ground wealth, (12). The proportion is affected by a higher return 

on the safe asset through the intertemporal substitution effect (negative as future 

consumption has become cheaper) and the income effect (positive as lifetime wealth has 

gone up). The former dominates the latter if the elasticity of intertemporal substitution, 

, exceeds one. From (12) we see that the marginal propensity to consume, MPC, 

decreases with the return on the safe asset, r, and the average excess return on risky 

assets, 
W r  ; and increases with relative risk aversion, 1/, and fund volatility, 

W . The 

proportion of total wealth consumed each period, MPC, should be less than its expected 

return (1 )e Wr rw w   , so that both consumption and wealth rise over time.18 The 

amount depends on prudence, as    2 21/ 2 1 1/e WMPC r w     , where 1 1/  is 

the coefficient of relative prudence and we have set r  . This precautionary savings 

builds up a buffer of assets against future risk (Kimball, 1990) with absolute risk 

aversion, /C, falling as consumption rises. 

                                                           
18 Optimal consumption is a fixed share of total wealth, but also incorporates precautionary saving. Oil is 

valued at a heavy discount rate but after extraction is replaced with less discounted financial assets, so the 

value of total wealth and consumption rises over time. Norway takes this to the limit, infinitely discounting 

future oil revenues and consuming only a fixed share of financial assets (see section 6). 
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With uncertain oil and asset prices and r = , we observe from (13) how total above- 

and below-ground wealth evolves over time.19 It rises due to the premium earned on 

risky assets, 
W r  . It falls (rises) if the intertemporal substitution effect is dominated 

by the income effect in consumption20 with the extent depending on the risk/return trade-

off of total wealth,   
2

(1 2) /W Wr     . 

3.3. Intergenerational equity and risk aversion: Epstein-Zin preferences 

To capture intergenerational concerns relevant for the long investment horizons of 

sovereign wealth funds, it is important to separate the coefficient of relative risk 

aversion, CRRA, and the elasticity of intertemporal substitution, EIS or the coefficient 

of relative intergenerational inequality aversion, IIA = 1/EIS (Epstein and Zin, 1989). 

Restricting attention to one risky and one safe financial asset, we can show that the share 

of risky assets in total wealth and consumption are    2  w r CRRA    and 

  2 2(1 ) ( ) 2  C EIS EIS r r CRRA W        
 

 (see appendix A.4). These 

expressions extend (8) and (12) by departing from EIS = 1/CRRA = 1/IIA= . If EIS = 1, 

the intertemporal substitution and income effects cancel out, so that the propensity to 

consume is independent of r, / .C F   If EIS > 1 or IIA < 1, intertemporal substitution 

dominates and the risk-adjusted return in square brackets negatively impacts the 

propensity to consume. If EIS < 1, the income effect dominates and the risk-adjusted 

return increases the propensity to consume. The Euler equation becomes 

      2 21 2 ,tdt EIS r EIS CRRA CRP wE dC C           where the coefficient of 

relative prudence equals CRP = 1 + 1/EIS = 1 + IIA for these preferences. 

4. Investment restrictions and a given path of oil extraction 

                                                           
19 Without oil or asset price uncertainty and r = , any drop in below-ground wealth must be exactly 

compensated for by an increase in above-ground wealth to fully smooth consumption (Hartwick, 1977). 
20 That is, if the elasticity of intertemporal substitution  is less (greater) than unity 
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4.1. Additional precautionary saving 

Many funds restrict investment in certain asset classes for social and political reasons.21 

This is a form of incomplete markets which prevents the oil price being replicated by a 

bundle of traded financial securities. To illustrate this, assume that the fund cannot invest 

in a particular asset, so 0Oh   in (5) and the oil price is not fully spanned. In that case, 

there must be additional precautionary saving to cope with residual volatility.22 With 

investment restrictions, the Euler equation can be approximated by (see appendix A.3): 

 
  2

22 2
1

21
(1 1( / )

2
) ,

t

OW h O

dt r w
E dC V

C W
    

  
     

   

   (14) 

where w  is given in (9) and W  in (11). Total wealth evolves according to: 

 
 1

1

1

1

) ( )(

.

i i h h

m

i i O Oh

i

O

m

M i

d w r rW W

Wd

rW C

Z

dt

w Vdu

  

  







  







 


  (15) 

Hence, investment restrictions have both a precautionary and a wealth effect on 

consumption. The former arises as unspanned risk cannot be hedged optimally, whereas 

the latter because investment in a specific asset yielding high or low returns is not 

possible, as such an asset simply does not exist or investment in it is prohibited. Asset 

weights adjust to find the closest replicating bundle leaving only uncorrelated residual 

risk (see also appendix A.1.). The precautionary effect describes the additional savings 

needed because some oil price risk remains unhedged as in (14). The first term on the 

right-hand side is the usual slope of optimal consumption. The second term captures 

precautionary saving and is proportional to the coefficient of relative prudence, CRP = 

(1 + 1/).  The term 
2 2

W w  inside the square brackets arises from the precautionary 

saving needed under complete markets when all oil price volatility is fully diversified. 

                                                           
21 For example, Norway’s fund does not invest in tobacco, military or coal assets amongst others.  
22 Earlier work ignored risky financial assets, an extreme case of incomplete markets (van den Bremer 

and van der Ploeg, 2013). Here we have risky assets too, but still allow for incomplete markets. 
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It is proportional to the variance of the portfolio of risky assets and the share of risky 

assets in the fund squared. The new term  
22 2 /Oh O V W   arises from the precautionary 

saving that is required if not all oil price volatility can be fully hedged. Less spanning of 

the oil price (a higher Oh ) implies that more precautionary saving is required, especially 

if oil wealth is volatile and comprises a large share of total wealth. Evidently, this effect 

diminishes as oil reserves are depleted and the ratio of V and W diminishes.  

The wealth effect describes the change in the expected return on total wealth from not 

investing in a particular asset (see (15)). If an asset cannot be held by the fund (cf. asset 

h in (15)), there is still some exposure to it embodied in the oil price. With complete 

markets this exposure is offset inside the fund, so the net exposure is a constant share of 

total wealth. With incomplete markets this net exposure cannot be fully offset and will 

earn a rate of return, changing the expected return on total wealth. Its importance will 

diminish as oil reserves are depleted. 

4.2. Stylized illustration of oil-CAPM model 

We now illustrate how a sovereign wealth fund is affected by the presence of subsoil 

oil, depending on whether or not it has access to hedging assets. We suppose that there 

is a risk-free asset, r, and two risky assets: 1 uncorrelated with the oil price (the market 

asset) and 2 perfectly negatively correlated with the oil price (the hedging asset).23 To 

ensure the latter asset is used for hedging only, we assume it has a zero excess return. 

This focuses our attention on the precautionary effect (and sets the wealth effect to zero). 

Figure 1 first gives the declining expected paths of oil revenues and oil wealth and their 

95% confidence bounds. 

Figure 1: Exogenous oil rents and the value of oil 

(a) Oil revenues (b) Value of oil wealth 

                                                           
23 We set F(0)=100, r=ρ=0.03, θ = 0.5 (or θ = 0.2 when indicated)  , Pi(0) = 1, σi = 0.02, ρij =0 for 

i,j=[A,B]; α1 = 0.07, α2 =0.03, S(0)=100, O(0) = 10, κ= 0.1, αO = 0 and σO = 0.25.  
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Complete markets 

With complete markets there is leverage demand for both risky assets and a hedging 

demand for asset 2 that is negatively correlated with the oil price, as illustrated by the 

continuous lines in figure 2. These demands for each risky asset begin large but fall as 

oil reserves are depleted (cf. /iwV F ) and exposure to oil prices diminishes.  

 

Figure 2: Portfolio allocation without investment restrictions (solid) and with a ban 

on investing in the hedging asset 2 (dashed) 

(a) Low prudence (CRP=3, CRRA=2) (b) High prudence (CRP=6, CRRA=5) 

  

 

To buy enough of risky asset 2 to fully hedge the oil price, the fund needs to borrow 

(“short”) the risk-free asset. Without oil half of the fund is invested in the risky market 

asset and the other half in the risk-free asset: 1 20.5,   0.50, rw w w  .  Increasing the 

coefficient of risk aversion will only reduce the demand for the market asset, leaving the 
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hedging demand unchanged, from equation (10) and as can be seen from comparing 

panels (a) and (b). 

Figure 3: Optimal consumption and wealth with complete markets  

(a) Consumption (b) Wealth  

   
Figure 3 indicates that the consumption path is smoothed in face of declining and volatile 

oil revenues and grows in line with total above- and below-ground wealth to reflect 

precautionary saving. As oil wealth is run down (red dotted line in panel (b)), the fund 

is built up (blue dotted line) reflecting the basic insight that total wealth should grow at 

the same constant rate, if the oil price is completely spanned. 

Investment restrictions: incomplete markets 

Now consider the situation where the fund is prevented from investing in the risky 

hedging asset 2 or, equivalently, going short in an asset that correlates positively with 

the oil price. The dashed lines in figure 2 describe the case with investment restrictions, 

and indicate that the portfolio weight of the uncorrelated asset 1 is unaffected by 

restrictions on investing in the hedging asset (see (8)). The difference arises merely from 

the change in the drift of the fund F due to the precautionary effect discussed below. By 

restricting investment in the hedging asset (or, equivalently, preventing short positions 

in an asset that is positively correlated with the oil price), there is less need to borrow 

the safe asset (assuming pure hedging assets with zero excess return as in the numerical 

illustration, thus avoiding wealth effects). Residual volatility will then be managed by 

additional precautionary savings.  
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Figure 4: Optimal consumption without investment restrictions (solid), with a ban 

on investing in the hedging asset 2 (dashed)  

(a) Consumption (b) Consumption share  

   
 

The effect of incomplete markets on consumption is illustrated by figure 4 for the case 

CRP =3 (CRRA = 2). Although not having access to the hedging asset (with zero excess 

return) does not have a direct effect on the expected evolution of total wealth, it leaves 

the consumer subject to additional now unhedgeable risk calling for additional 

precautionary savings. It is clear from panel (a) that initial consumption has to drop in 

favor of consumption at later times. This effect is larger for larger degrees of prudence, 

from equation (14). Panel (b) shows optimal consumption as a share of total wealth. If 

oil price risk cannot be hedged due to incomplete markets or investment prohibitions, 

the share of consumption in total wealth is no longer constant. 

 

5. Portfolio allocation and spending with endogenous oil extraction 

The optimal speed of extracting oil may be understood using the Hotelling rule. This 

states that the expected capital gains from keeping an additional barrel of oil in the 

ground must equal the return from extracting, selling and earning interest on it 

(Hotelling, 1931). We now extend this rule for volatile oil and financial asset prices.  
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5.1. Optimal rates of oil extraction 

Since the data suggest that the oil price is positively correlated with financial assets, we 

proceed under this assumption.24 Without loss of generality we assume that the oil price 

can be perfectly hedged with a single financial asset k, O kdZ dZ . The policy maker 

chooses the consumption rate C, the rate of oil extraction O, and asset weights wi, i =1, 

.., m to maximize expected welfare, 

   ( )

, ,
( , , , ) max ( )

i

s t

O t
sC w O

J F P S t E U C s e ds


  
   , (16) 

subject to the budget constraint: 

  
1 1

( ) ( , ) ,
m m

i i O i i i

i i

dF w r Fdt rF P O C dt w F dZ 
 

        (17) 

the Geometric Brownian Motion processes for asset prices (3) and oil prices (4), and the 

reserve depletion equation 

 ( ),
dS

O t
dt

    (18) 

where oil rents are revenues minus extraction costs, ( , ) ( ),O OP O P O G O    and total 

extraction costs are increasing in the extraction rate ( '( ) 0G O  ) and convex to ensure a 

solution ( ''( ) 0G O  ) (cf., Pindyck, 1984) exists. Practically, the assumption of 

convexity corresponds to costs of extraction for a decision maker at a national level 

increasing more than proportionally when the rate of extraction is increased. 25  From 

the depletion equation (18), cumulative oil extraction cannot exceed initial reserves, 

                                                           
24 Empirically the extent of this correlation varies over time, as is expected when the source of the oil 

price shock matters (Kilian, 2009). We abstract from this complication here. 
25 In practice, oil fields evolve stochastically as new fields are discovered and existing fields become 

economical (e.g., Pindyck, 1978). Extraction costs might be better captured by high upfront investment 

and small marginal costs. Reserves are also endogenous to exploration effort, but we abstract from these 

complications here. 
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0
0

( ) .O t dt S


  It can be shown (see appendix A.5) that the optimal path for the expected 

rate of oil extraction satisfies the modified Hotelling rule: 

  
 1

1 .
( , , , )

F O

O O

F O

dt

dt

E dJ d
E d r

J F P S t

 
     

 
  (19) 

In the particular case of quadratic extraction costs, 
2( ) / 2, 0,G O O    the stochastic 

path for oil extraction can be approximated by (for 0O  ): 

     1 1 1
2 2

( ) ( ) .O O

k kk k O OOdO r r P r r O dt dZO
 

  
            (20) 

The stochastic Hotelling rule (19) states that the expected change in marginal oil rents 

must equal the return on safe assets plus a risk premium. Since we assume that oil and 

financial asset returns co-move positively, this premium is positive. High oil prices drive 

high marginal oil rents, which are associated with high fund values, F, and low marginal 

utility from an extra dollar in the fund  1( Fdt OE dJ d < 0). The higher return 

compensates for the risk of holding oil in the ground (equal to 1 [ ] / (J )t F O F Odt
E dJ d  

). If oil and asset markets are uncorrelated  1 0( Fdt OE dJ d  ), all oil price risk can be 

diversified and no risk premium is needed. The more correlated oil and asset markets 

are, the less oil price shocks can be diversified and the higher the risk premium. Figure 

5 shows that oil price volatility implies that it is optimal to extract oil initially more 

quickly. As the rate of extraction drops, extraction costs fall non-linearly boosting the 

marginal return on oil extraction. 

Equation (20) indicates that the optimal rate of oil extraction is positively correlated with 

the oil price, so that a sudden jump in the oil price requires a jump in the extraction rate 

to make the most of it. Oil price shocks affect the rate of extraction most when reserves 

(and in turn O) are highest, since this is when the majority of oil remains exposed to 

volatile prices. As the date of exhaustion approaches, the rate of oil extraction gets closer 
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to what it would be without volatile oil and asset prices. Note that the size of the fund 

does not matter for the optimal rate of oil extraction, only the properties of the assets in 

the background. 

Figure 5: Endogenous oil extraction  

a. Optimal rate of oil extraction b. Subsoil oil reserves 

  
 

Our finding that stochastic oil prices increase the oil extraction rate is consistent with 

earlier studies, but uses a different mechanism. Earlier work ignored financial assets and 

relied on “extractive prudence” driven by sufficiently convex marginal extraction costs, 

'''( ) 0G O   (Pindyck, 1981).26 This means it is better to extract oil quickly because, 

once it is above ground and sold, it is no longer exposed to risk. By restricting our 

attention to quadratic extraction costs ( '''( ) 0G O  ), we deliberately rule out this type 

of prudence. In our framework oil rents are still exposed to risk above the ground as they 

must be invested. Hence, oil should be treated as just another part of the total portfolio. 

The effect of risk on extraction is driven by “extractive risk aversion”             ( ''( )G O ) 

rather than by extractive prudence ( '''( )G O ) and so poses less onerous restrictions on 

extraction costs. Recent literature separates extraction and drilling decisions (e.g. 

Anderson et al., 2014). These models also display concavity in either or both choice 

                                                           
26 Aggressive oil extraction also occurs with convex marginal utility arising from market power (van der 

Ploeg, 2010). 
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variable, so risk from above-ground financial markets will still speed up the optimal rate 

of extraction.27  

 

5.2. Sovereign wealth funds with endogenous rates of oil extraction 

With complete markets and without investment restrictions oil rents can be fully hedged 

by the fund, regardless of the path of oil extraction. This involves continuously adjusting 

the asset allocation so that the net exposure to risk remains a constant share of total 

above- and below-ground wealth. With complete markets oil wealth can be replicated 

with a bundle comprising the perfectly correlated asset k and the safe asset n, and the 

value of this bundle evolves according to (see appendix A.6 for a proof): 

  ( ) ( ) ( ) ( ) ( , ) ( ) ( , ) ( ) ( ),k k k k kdV t t dt rV t r O t V t dt O t V t dZ t          (21) 

where ( , ) /k k kO t N P V  is the continuously adjusted share of asset k in the replicating 

bundle. Total wealth evolves according to: 

 
1 1

( ) ( ) ,
m m

i i i i i

i i

dW r wW rW C dt wWdZ 
 

        (22) 

where 

      ( ) / ( ) , ( ) ( ) / ( ) ( , ) ( ) / ( ) .i i k k kw w F t W t i k w w t F t W t O t V t W t      (23) 

Oil rents are no longer a Geometric Brownian Motion as in section 3, but driven by the 

drift ( , , )OP S t dt  and volatility ( , , )O OP S t dZ :  

 ( , , ) ( , , ) .O O Od P S t dt P S t dZ      (24) 

                                                           
27 Other work estimates oil price volatility from options data and finds that it delays investment in Texas 

oil wells (Kellogg, 2014). However, this relies on a real options argument, whereas we focus on risk 

aversion and hedging. 
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The drift and volatility of oil rents are replicated by continuously reallocating the bundle 

of the perfectly correlated risky asset and the safe asset as PO and S change. Holdings of 

asset k in the bundle are adjusted so that the change in oil rents, ( , , )O OP S t dZ , is 

matched by that in the bundle, ( , ) ( )k k kO t X t dZ  . The share of the safe asset is chosen 

so that the instantaneous drifts also match. As before, the fund is managed to ensure that 

net exposure to each financial asset is a constant share of total wealth: , 1,..,i i iw w i m 

. Any exposure to asset k embodied in oil, ( , )k O t , is offset by the asset’s weight in the 

fund, ( )kw t , so that the net weight in total wealth is constant. By rearranging (23) 

holdings of each asset in the fund can, as before, be split up into a leveraged and a 

hedging component for the perfectly correlated asset k: 

 

leveraged demand hedging demand

, , ( ) ( , ) .i i k k k k

F V V V
w w i k w t w w O t

F F F


       
           

      
  (25) 

As the asset allocation and consumption problems can be expressed in terms of total 

wealth (22), propositions 2 and 3 apply. Judicious management of the fund allows 

consumption to be smoothed in line with the permanent income hypothesis and to buffer 

consumption from oil price volatility by hedging it with traded financial assets. 

 

 6. Policy implications: Norway’s Government Pension Fund Global 

The policies of Norway’s Government Pension Fund Global (GPFG) 28 closely follow 

standard CAPM recommendations ignoring oil wealth. Firstly, the GPFG uses the FTSE 

Global All Cap Index as the equity benchmark (with around 7,400 individual stocks, a 

                                                           
28 At US$840 billion the GPFG is the largest single fund in existence, which was established in 1990 to 

smooth expenditure financed from oil after a period of fiscal volatility in the 1970s and 1980s. Evaluating 

governance, accountability and transparency, structure and behavior, the GPFG ranked first on the first 

two criteria and second overall, behind Alaska’s US$45 billion permanent fund (Truman, 2008), and 

received the highest rating on the Linaburg-Maduell Transparency Index (SWF Institute, 2013). It has 

been called a “model” for sovereign wealth funds (Chambers, et al., 2012; Larsen, 2005). 
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close approximation of the market).29 This is consistent with holding the optimal risky 

(or market) portfolio in (8) if W = F instead of W = F + V. Secondly, the Ministry of 

Finance chooses the equity/bond mix, and in 2007 moved from 40/60% to 60/40%, as it 

was willing to accept more risk for a higher return. This is consistent with choosing the 

size of the risky portfolio based on preferences and the overall risk and return of the 

market, as in (9) with W = F. Thirdly, a fixed share of the fund (4% according to 

Norway’s handlingsregelen) is consumed each year, as in (12) with W=F.  

GPFG’s management mandate does not mention oil wealth at all (NBIM, 2013), thus 

leaving Norway exposed to its large and volatile stock of oil wealth: the “elephant in the 

ground”.30 Norway, and other oil-rich countries with similar funds, would benefit by 

letting the asset allocation and the consumption rule in the GPFG vary over time. 

Norway’s asset allocation should vary over time to hedge as much of the volatility of 

remaining subsoil oil as possible.31 In the first-best case described in section 3 this would 

involve taking large long positions in some industries, and large short positions in others 

(that may exceed the size of the fund), and reversing these positions as oil is extracted. 

Such highly leveraged positions expose the country to substantial risk if there are 

systematic shocks (Das and Uppal, 2004). They may also become illiquid, which 

invalidates the assumption of exogenous prices. Furthermore, the short positions assume 

that the covariance matrix is stable over time. In practice correlations between oil and 

each sector vary depending on the type of shock hitting the world economy (Kilian, 

2009). As these correlations can only be estimated using past data and the size of the 

hedging positions are so large, there is the potential for large basis risk between oil and 

                                                           
29 The benchmark is 60% equities, tracking the FTSE Global All Cap Index; up to 5% real estate, tracking 

the Investment Property Databank’s Global Property Benchmark; and up to 40% bonds, of which 70% 

government and 30% corporate bonds, both tracking Barclays indices. 
30 Norway has proven reserves of nearly 9 billion barrels of oil and 73 trillion cubic feet of natural gas 

(BP, 2014). At 2013 prices these are worth US$ 945 billion and US$ 777 billion, respectively. 
31 Empirical simulations using the correlation of oil prices with financial assets indicate that Norway’s 

exposure to aggregate oil price volatility is halved if oil wealth is hedged in the sovereign wealth fund 

(Gintschel and Scherer, 2008) and that the fund invests less aggressively in risky assets as it ages (Scherer, 

2009; Balding and Yao, 2011). These studies focus on asset allocation but abstract from optimal 

consumption-saving decisions or oil extraction. 
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the hedging portfolio. Finally, as oil is extracted the highly leveraged positions must be 

reversed which will incur substantial transaction costs for a large fund.32 Therefore the 

target index should not be rebalanced too frequently and portfolios should only be 

adjusted gradually. 

A more pragmatic, second-best approach to asset allocation might be to only vary the 

equity/bonds mix.33 This would be transparent and easy to explain to investors and the 

public. It would also notrequire short positions, have lower transaction costs, and would 

not rely on a large, time-varying correlation matrix covering all market assets. In this 

approach, the only risky asset is the overall equity market (e.g., the FTSE Global All 

Cap Index). If oil is sufficiently positively correlated with this market, the hedging 

demand to offset oil risk will exceed the leverage demand.34 In this case, the GPFG 

should hedge the exposure of subsoil reserves to oil price risk by holding fewer equities 

and more safe assets while there is oil in the ground. Over time the oil reserves will be 

depleted and the exposure to equities embodied in subsoil oil will fall. This allows the 

above ground fund’s equity exposure to rise, so that equities make up a greater share of 

the portfolio as oil is extracted. 

The consumption rule should be a constant share of total assets, and thus should fall as 

a share of the fund as oil is extracted. If oil price risk is perfectly hedged as described in 

section 3, this rule should hold exactly. If hedging is imperfect, as would happen by only 

varying the equity/bond mix, slightly more precautionary savings would be needed. 

More precautionary saving is also needed if the fund faces a short-sales constraint. 

Recently, the fund has stopped investing in coal and oil stocks. If the aim is to hedge 

subsoil oil, it should go further by taking short positions in oil, gas and other stocks that 

                                                           
32 See a recent report to the Norwegian Storting (Parliament) (Ministry of Finance, 2014a). 
33 Gintschel and Scherer (2008) impose short-sale constraints. This does not address the transactions costs 

that funds face by continuously rebalancing or potentially unstable correlations between assets. 
34 The correlation between the oil price and the overall equity market will also vary over time, though it 

will be more stable than a covariance matrix covering all 7,400 assets in the FTSE Global All Cap Index. 

Varying correlations will alter how quickly the equity share in the fund rises. Future work could account 

for this using regime-switching (cf. Ang and Bekaert, 2002). 
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are positively correlated with oil prices. If the aim is to protect the environment, 

spending should be curtailed to build up a buffer against less diversified risks. In general 

though, spending as a share of the fund should fall over time as above-ground assets 

account for an increasing share of total wealth. 

These recommendations are relevant for the current debate in Norway. The fund 

excludes investments in certain assets for social and political reasons, such as tobacco 

and defense firms, and early 2015 also in assets affected by climate change and other 

environmental concerns such as coal, oil sands, cement and gold mining. In late 2014 

Norway also established a government commission to assess its 4% spending rule due 

to concerns about excessive fiscal stimulus (Ministry of Finance 2014b). This follows 

declining spending as a share of GPFG assets, from nearly 6% in 2010 to below 3% in 

2014, and there have been calls to limit spending to 3% in the future (Olsen, 2014). 

 

7. Concluding remarks 

Commodity exporters have two major types of national assets: natural resources below 

the ground and a sovereign wealth fund above it. Although some attempts to hedge 

commodity price volatility have been made, from long-term forward agreements in iron 

ore until 2010 to the purchase of oil options by Mexico in 2008, there is no evidence of 

systematic coordination of below- and above-ground assets. We have made the case for 

coordinating the management of these two types of asset by integrating the theories of 

portfolio allocation, precautionary saving, and optimal oil extraction under oil and asset 

price volatility. 

Our main findings are as follows. Firstly, commodity exporters should change the 

allocation of their sovereign wealth fund by leveraging all risky assets and hedging 

subsoil oil risk. These effects are proportional to the ratio of oil and fund wealth, so 

unwind as resource reserves are depleted. Secondly, consumption should be a constant 

share of total oil and fund wealth. This stabilizes the mean and variance of spending as 

total wealth evolves steadily whilst oil reserves are replaced by financial assets, but 
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relies on the degree to which the oil price can be hedged by components of the above-

ground portfolio. Thirdly, if oil wealth cannot be adequately hedged, less should be 

consumed initially in the interests of precautionary savings in the face of the additional 

unhedgeable risk that remains. Fourthly, the rate of oil extraction should be faster than 

predicted by the standard Hotelling rule if oil prices are volatile and positively correlated 

with financial markets. This generates a risk premium on subsoil oil, as convex 

extraction costs will fall faster than the rate of extraction. The size of the premium will 

depend on oil’s correlation with the market, and disappears to zero if their returns are 

independent.  

Our analysis attempts to offer a first step towards an integrated approach to managing 

sovereign wealth funds and natural resources under uncertainty. To do this we combine 

canonical models of asset allocation, precautionary savings and oil extraction. These 

models, while widely used and theoretically appealing, have received empirical criticism 

(Griffin, 1985; Jones, 1990; Fama and French, 2004; Anderson at al., 2014). Future work 

can address this along three dimensions. The first is to analyze the effect of financial 

assets on natural resources in more detail, allowing for the exploration and discovery of 

new reserves35, and extraction decisions at the discrete well level (Kellogg, 2014; 

Anderson, et al., 2014; Venables, 2014). The second is to extend the analysis to include 

other non-financial assets such as domestic non-traded capital, human capital and 

pension liabilities, absorption constraints, general equilibrium effects of spending 

resource revenues,36 and the benefits from structural reform to make the economy less 

vulnerable to commodity price volatility. Finally, there is scope for modelling oil and 

asset prices in more detail. In practice prices exhibit mean reversion (Wachter, 2002), 

stochastic volatility (Chacko and Viceira, 2005; Fouque et al., 2013), large jumps 

(Ngwira and Gerrard, 2007) and time-varying correlations (Bollerslev et al., 1988; 

Longin and Solnik, 1995). Although these extensions allow a better empirical testing of 

                                                           
35 This would extend Pindyck (1978) to a setting with financial assets in order to understand how 

hedging oil price exposure affects exploration effort. 
36 Gaudet and Khadr (1991) and Atewemba and Gaudet (2012) allow for assets and capital scarcity. 
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our results, we conjecture that the qualitative nature of our policy insights will be 

unaffected. 
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Appendix A: Derivations 

A.1. Valuing oil with exogenous oil extraction 

Asset returns are assumed to be normally distributed and can be expressed as a linear 

combination of m independent shocks, dZ = Λ* du* where du* is an m x 1 vector. If the 

oil price is completely spanned by the market, it can be expressed as a linear combination 

of these m shocks: dZO = ΛO* du*. Now, in order to study incomplete markets, remove 

one asset from the investment set. The returns on the remaining m1 assets can now be 

expressed as a linear combination of m1 (different) independent shocks, dZ = Λ du 

where du is an (m1) x 1 vector. If oil returns are expressed in terms of these shocks, 

there is a residual part that is uncorrelated with the market, dZO =λOh duh + ΛO du, as in 

(5). Although the asset that is removed from the investment set may be correlated with 

other assets, the unhedgeable component of the oil price is not. Here we are concerned 

with valuing subsoil oil and so ignore investment restrictions. Any asset that is outside 

http://www.swfinstitute.org/
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the investment set can still be observed and can be used to value oil wealth. The value 

thus derived is a market value. Taking equation (5) with 0Oh  , we can express the oil 

price as: 

 
1

( )
( ) (0)exp( ) ,

(0)

i
m

i
O O

i
i

P t
P t P t

P






 
    

 
  (A1) 

with 
2

0

1 1 1

1 1

2 2

m m m

i i i i j ij

i i j

       
  

 
     

 
  and 

1/ ,i O i i i O
i

M M         ,  

which can be readily verified using Ito’s lemma and comparing coefficients with (4). 

Lemma A1: With complete markets, the capitalized value of oil income is: 
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Derivation: Firstly, we construct a portfolio with value V (P1, .., Pm, t) which consists 

of assets 1, .., n  that is identical to the capitalized value of oil and distributes an amount 

of cash equal to ( ) ( )O tP O t  per unit time. This value evolves according to: 

 ( ) .V O V VdV V P O dt VdZ      (A3) 

With the aid of Ito’s lemma the dynamics of the portfolio can be written as: 

1 1 1 1 1 1 1

1 1
,

2 2

m m m m m m m

i i t ij i j i i i t ij ij i j i i i

i i j i i j i

idV V dP V dt V dPdP V P V V PP dt V PdZ  
      

 
       

  
      

  (A4) 

where /i iVV P    and .ij i j ij     Comparing coefficients with (A3) gives: 
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Finally, let V VdZ du  . This implies: 
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Secondly, we create another portfolio with value X(t) that consists of oil wealth V(t), the 

risky assets and the safe asset. This portfolio is dynamically constructed, so short 

positions offset long positions, there is no net risk, and the net value of the portfolio is 
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always zero. Hence, the weight of the safe asset in total wealth is 
1

,
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where Vw  is the weight of oil in total wealth. The return to this portfolio is: 
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where the second equality follows from (A3), the third equality from (A6) and 

1 1[ ,.., ]'.m mw w    Suppose that the weights in this new portfolio are dynamically 

constructed so that there is no risk: ' 0Vw du du     and the last two terms in the 

last equality of (A7) vanish. The weights that would achieve this are 

( / ) , 1,.., .i i i Vw V V Pw i m    Arbitrage dictates that such a constructed portfolio must 

have a zero expected excess return over the risk-free rate:  
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Combining (A8) with (A5) gives the following optimality condition: 

 
1 1 1

1
0.

2

m m m

i j ij i i t O

i

i

j

j

i

PPV rPV rV V P O
  

        (A9) 

Thirdly, the proposed capitalized value of oil income and associated partials,  
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satisfy (A9) by substitution. Lemma A1 thus gives capitalized oil income.  

Lemma A1 establishes (6). The instantaneous rate of change in the value of oil income 

is found by applying Ito’s lemma to this equation to give: 
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The result in (7) follows from substituting (A11), (2), and (5) with , 0O h   into the 

expression for total wealth, dW = dF + dV. With an investment restriction on asset m, 

the derivation for the value of the windfall is analogous and (A1) still holds. Asset m is 

then replaced by the unspanned component of the oil price h and  h O h Oh    .  

A.2. Asset allocation with exogenous oil extraction 

Here we derive the optimal portfolio weights in a sovereign wealth fund in the presence 

of oil, with and without investment restrictions based on Merton (1990). We begin by 

restricting investment in asset h, so 0Oh   and the fund holds m1 securities. The 

unspanned component of the oil price is uncorrelated with other assets: 

 ,h h h h h hdP P dt P du    (A12) 

Note that m was a traded asset that was correlated with all other assets. Above-ground 

wealth is accumulated according to (2). We obtain: 
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The Hamilton-Jacobi-Bellman (HJB) equation is: 
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The first-order conditions with respect to C and wi  are: 
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t tU C e J J U C e         (A16) 

  
1 1

2

1 1

0.i ij FV i

m m

F FF j j

j j

jJ F J Fr Jw FV   
 

 

      (A17) 
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Equation (A17) gives the optimal weights in the fund: 

 

 

 

1

1

1

1

.

F FV

FF FF

m

i ij j i

j

m

ij j i

j

J J V
w

FJ J F

C F C V V

C F C F
r

F

r  

   









  

 








  





  (A18) 

If markets are complete, / / /C F C V C W MPC          from (12). If markets are 

incomplete, instead of solving the arising partial differential equations numerically, we 

approximate these partials from the complete markets case or, alternatively, assume that 

consumption is a linear function of total wealth. With and without investment 

restrictions we then obtain: 

  
1

1

.
m

i ij j i

j

W V
rw

F F
  





    (A19) 

Defining i i iwW w F V  , rearranging (A19) gives (8) and (10).  

A.3. Optimal consumption with exogenous oil extraction 

If markets are complete we can find a closed-form solution for the value function 

( , , ) ( , )J F V t J W F V t   from Merton (1990). Substituting the first-order conditions 

(A16) and (A17) into the HJB equation (A14) gives: 

 

2 2
11

1 2

( )
exp .0 ( ) J

2

WW
W

WW

t W

W

J rWJ
J

J r
t 











  


   (A20) 

The closed-form solution to this stochastic partial differential equation is: 

  
1/ ( 1)/ 2 2

1
( exp( ) ( 1) ( ) / 2, ) , .W WJ W t t W r r

  


       
 


       (A21) 

(12) follows from substituting (A21) into (A16). Applying Ito’s lemma to (A16): 

 

21 1 1[ ] ''( ) [ ] 1 '''( ) [ ]
.

( ) 2 ( )

dt dt dtt F t t

F

E dJ C C E dC CU C E dC

U C U CJ C C
  

 
  (A22) 

Using Ito’s lemma we obtain: 

 

21
2

21
2

( , , )

.

F FF FV Ft FFF

FVV FFV

dJ F V t J dF

dV

dF J dV J dt J

J J dFdV



 

  
  (A23) 

In addition the derivative of (A14) with respect to F is: 
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   

   

1 1

1 1

1

1

1 1 1 1 1 1
2

1 1 1 1 1 1

2

0

1

2

1

2

m m

tF FF i O i

i i

m

VF i h O

i

m m m m m m

FFF i j FF i j VF i j

i j i j i j

VV

i F i

i h

ij ij

i

j

F j

i

J J w F rF P O C J w r

J r V

r r

r r P O

J F w w J F w w J V w

J V

 

   

   

 

 

 





     

     

   
         

   

  
     

  

  





 



 



  

1 1

1

2
1

1

2
1

1 1

.
m m m m

VFij O Oh F i j

i j i j

ijJ VF w    
   

   

 
 

 
 

  (A24) 

Substituting (A17) and  (A23) into (A24) gives: 

  10 .F Fdt tE dJ J r    (A25) 

We also have: 

        
2

1 1 1
22 1

2 2 2 ,t F t Vdt t V Ft dt dt td
E dC C E dF C E dV C C E dVdF       
     

  (A26) 

 

   

 

1 1 1 1
2 2

1 1 1 1

1 1
2 2

1

2 21

1

1

1

,,

.

ij ijdt dt

ij O Ohd

m m m m

t i j t i j

i j i j

m m

t i j

i j

t

E dF F w w E dVdF VF w

E dV V

  

    

   

   

 

 

   
 

  


 
 

 


 



  (A27) 

Combining (A26) and (A27), we obtain: 

 

 

1 1
2 2 2 2 2

1 1

1 1
2 2 2 2 2 2 2 2 2 2 2 2

1 1

1
[ ] ( )( )

,

m m

t W i i j j ij Oh O

i j

m m

W ij Oh O W Ohi O

i j

j W

E dC C w F V w

w w

F V V
dt

C W WwV C V

    

     

 

 

 

 

 
    

  

 
    

 
 





  (A28) 

where we use /WC C W , FW VC C C  . The stochastic Euler equations (11) and (14) 

follow from substituting (A25) and (A28) into (A22). Equation (11) assumes complete 

markets, so 0Oh   and /WC C W  from (12). The result is exact. Equation (14) 

assumes incomplete markets, so 0Oh   and we use /WC C W in order to obtain an 

approximate solution in the absence of a closed-form one. 

A.4. Complete markets and exogenous oil paths: Epstein-Zin preferences 

The results in section 3.3 follow from solving the HJB equation in the undiscounted 

value function J(F) modified for Epstein-Zin preferences (Duffie and Epstein, 1992): 
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 

 

 

1 1/
1 1/

1

1/
,

1

2 2 2

(1 ) ( )
0 Max ...

1 1 /
(1 ) ( )

1
'( ) ( ) "( ) .

2

EIS
EIS

CRRA

CRRA EIS
w C

CRRA

C CRRA J F

EIS
CRRA J F

J F rF C w r F J F w F



 











 

 
 


     



  (A29) 

It can be verified that (A29) has the solution: 

  
11

2 2 11
( )

( ) , ( ) 2 (1 ) .
1

EISCRRA

EISEIS
F

J F EIS r r CRRA EIS
CRRA

   





        


     (A30) 

A.5. Endogenous oil extraction 

The HJB equation for the problem in (16), (17), (3), (4) and (18) is: 

 

  

 

1

1

, ,

1

2 2 2

1 1 1

0 max ( ) ( , , , ) ,

( , , , ) ( ) ( )

1 1
.

2 2

i

t
t O

C w O

m

t O F i i O P O O

i

m m m

S t FF i j ij PP O O FP O O i i iO

dt

dt

i j i

U C e E dJ F P S t

E dJ F P S t J w r F rF C P O G O J P

J O J J F w w J P J P F w



 

    





  

 

 
       

 

    



 

  (A31) 

The first-order conditions are: 

 '( ) ,t
FU C e J    (A32) 

 
2

1

( ) ,0
m

F i FF j ij FP i O iO O

j

J F r J F w J F P i    


      (A33) 

  '( ) 0.F O SJ P G O J     (A34) 

Differentiating (A31) with respect to the states invoking the envelope theorem 

  
1 1

1

1 1

( ) 0,

m m m m

F F i i FF i j ij FP O O i i idt O

i i j i

E dJ J r w r J F w w J P w    
   

     
 
 
 
     (A35) 

  1 0,
dt SE dJ    (A36) 

  
1

1 2 0.
m

P F P O PP O O FP i i O iO

i

dt
E dJ J O J J P J F w    



       (A37) 

Upon substitution of (A33) into (A35), we obtain: 

  1 .F Fdt
E dJ rJ    (A38) 

Applying Ito’s lemma to (A32) and combining the result with (A38) gives: 
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   11 2

2

'( ) "'( )
( ) .

"( ) "( )

dtd tt tE dCE dC U C CU C
r

C CU C U C C


           
   

  (A39) 

Applying Ito’s lemma to (A34) gives: 

 , '( ).S O F OF
O O

S F O F O

dJ d dJ ddJ
P G O

J J J

 
     

 
  (A40) 

Combining (A36), (A38) and (A40) yields (19). Ito’s lemma yields: 

 
1

,
m

F F FF i i i FP O O

i

OdJ rJ dt J F w dZ J P dZ 


      (A41) 

 
1

( , , , ) ,
m

O O F i i i P O O O

i

dO F P S t dt O F w dZ O P dZ  


     (A42) 

where use (A38) and    ( , , , ) 1O O tF P S t dt E dO  is the to be determined expected rate 

of growth of the rate of oil extraction. Applying Ito’s lemma to 

'( )O O OP G O P O      gives: 

 

 

2

1

1
"( ) "'( )

2

( , , , ) (1 ) ,

O O

m

O O O O F i i i P O O O

i

d dP G O dO G O dO

P F P S t dt O F w dZ O P dZ     


   

    
  (A43) 

with '"( ) 0G O   for quadratic costs. Multiplying (A41) and (A43) gives: 

 
1 1

1

(1 )
.

m m

F O F
i i FP O O iO FF j j ij

F O F O i j

m

P O O
FP O O FF i i iO

F O i

dJ d O F
w J P J F w dt

J J

O P
J P J F w dt

J


    

 
  

 



    
    

      

 
  

  

 



  (A44) 

Substituting (A33) for all assets (the first term on the right-hand side) and for the 

perfectly correlated asset k ( 1kO  , the second term) gives: 

 
1

1
( ) (1 ) .

m
F O k

F i i P O O

F O O ki

dJ d r
O F w r O P dt

J


   




   
     

    
   (A45) 

Substituting (A43) and (A45) into (19) gives: 
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    
1

( ) (1 ) ( ) .
m

O
O O F i i i i P k k O O

ki

d r dt O r dt dZ w F O r dt dZ P


     


           

 (A46) 

Result: If all prices are deterministic, O Or   . If the oil price is also without drift, 

0O  , the date of exhaustion is 1 ln( (0) / (0))Or
O PT    and the optimal rate of oil 

extraction () is to leading-order approximation: 

 2 ( () .( ) )r
OS t PO t t


   (A47) 

Derivation: Using O OP O    in the deterministic Hotelling rule, we get 

1 ( ) (0) Ot

O OO rO r P e



    which can be solved to give: 

  1( ) (0 ) .() 0 Otrt rt

OO t O e eP e


    (A48) 

We exclude O r   as price growth would delay extraction indefinitely. Provided 

(0) 0O   and, O r  , the extraction rate remains finite. The optimal initial extraction 

rate satisfies, ( ( ))
T

t
S t O d   , and the date of exhaustion T must satisfy O(T) = 0. The 

date of exhaustion only has an explicit solution if 0O  : 

 1 ln(1 ),
r

RT      (A49) 

  1 (0)(0) ln(1 ) ,Or
S RP R      (A50) 

where (0) /0 (0) 1OO PR     is small. As (A50) only defines the initial rate of 

extraction, (0) ( (0), )(0)OO f S P , we use asymptotic methods to find a series-solution 

and get the leading-order effect. Since 1

1
ln(1 ) n

nn
R R




    we obtain 

 
2

(0)
.

(0)

n

nO

r S R

P n

 



   (A51) 

This can be inverted to give: 

 
32 1

135

1 2 4

5

2 1
3 49 2 20

( ) ( ) ( ) ( ) ( ) ( )) ( )( 2[ ],t t tO t S t ot t          (A52) 

where ( ) ( ) / ( )Ot r t tS P   and the coefficients stem from the series inversion and 

are independent of parameters. The leading order yields (A47). Lemma A2 gives: 
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 / 0, / / ) / .)(2 (2O O OO F O P O P rS P         (A53) 

Assuming the effect of uncertainty is modest, we use these partial derivatives in the 

analogous problem (analogous to taking the leading-order terms in a perturbation 

expansion in the volatility of the oil price). Substituting these partials into (A46) gives: 

  1
2

( ) ( ) .O
O O k kO O

k

d r dt P O r dt dZ


  


         (A54) 

Combining (A43) and (A54) and setting αO = 0 as in (A46) gives: 

    1 1 1
2

( )[ ] ( ( ), ., , ) O O

k kOd kOkOt
E dO F P S r r P r r Ot

 

  
          (A55) 

Equation (20) is found by substituting (A55) into (A42) and solving the initial value 

problem subject to the exhaustion condition ( ) ( ) 0O t T S t T    . To obtain the 

results in figure 5, we use the full series solution in (A51), which becomes exact in the 

limit of an infinite number of terms. 

A.6. Asset allocation with endogenous oil extraction 

Endogenous oil rents can be replicated with a bundle of Nk shares of asset k and Nr shares 

of the safe asset, X  Nk Pk + Nr Pr. This replicating bundle can be constructed as follows. 

To finance the dividend, the price must increase or shares must be sold: 

 
, i i i ii k r

dt dN dP dN P


    (A56) 

Equation (21) combines this expression for the dividends with the path for the replicating 

bundle. By Ito’s lemma the replicating bundle must satisfy: 

 

 

 

,

,

( ) .

i i i i i i

i k r

i i k k k k k

i k r

dX dt N dP dN dP dN P dt

N dP X r dt rXdt X dZ   





    

    




  (A57) 

where ( ) ( ) ( ) / ( )k k kt N t P t X t  . The weights k(t) are updated continuously to match the 

stochastic path of oil rents (A46). As oil wealth and the replicating bundle have the same 

properties they must also have the same value, X = V, giving (21). We have focused on 

dV(t) + (t)dt. V(t) is found using contingent claims (Merton, 1990) if oil rents follow 

the Ito process ( ) (.) (.) Od t a dt s dZ      and a(.) and s(.) are not constants. The value 

of oil rents must be that of the replicating bundle, V(t) = X(t). Equation (22) states that 

the problem can be summarized in terms of W(t) = F(t) + V(t). Combining (17) and 

(A57) gives (22). The weight of asset k in the fund adjusts continuously so that the net 
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weight of oil in total wealth is constant. The weight of all other assets in the fund remains 

constant, as in (23). 


