

Edinburgh Research Explorer

Inexact Coordinate Descent: Complexity and Preconditioning

Citation for published version:
Tappenden, R, Richtarik, P & Gondzio, J 2016, 'Inexact Coordinate Descent: Complexity and
Preconditioning' Journal of Optimization Theory and Applications, vol. 170, no. 1, pp. 144-176. DOI:
10.1007/s10957-016-0867-4

Digital Object Identifier (DOI):
10.1007/s10957-016-0867-4

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Journal of Optimization Theory and Applications

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43717562?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/s10957-016-0867-4
https://www.research.ed.ac.uk/portal/en/publications/inexact-coordinate-descent-complexity-and-preconditioning(0493a60f-5d98-42f9-a00e-0a86ce8122b1).html

J Optim Theory Appl
DOI 10.1007/s10957-016-0867-4

Inexact Coordinate Descent: Complexity and
Preconditioning

Rachael Tappenden1 · Peter Richtárik1 ·
Jacek Gondzio1

Received: 5 January 2015 / Accepted: 4 January 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract One of the key steps at each iteration of a randomized block coordinate
descent method consists in determining the update to a block of variables. Existing
algorithms assume that in order to compute the update, a particular subproblem is
solved exactly. In this work, we relax this requirement and allow for the subproblem
to be solved inexactly, leading to an inexact block coordinate descent method. Our
approach incorporates the best known results for exact updates as a special case.
Moreover, these theoretical guarantees are complemented by practical considerations:
the use of iterative techniques to determine the update and the use of preconditioning
for further acceleration.

Keywords Inexact methods · Block coordinate descent · Convex optimization ·
Iteration complexity · Preconditioning · Conjugate gradients

Mathematics Subject Classification 65F08 · 65F10 · 65F15 · 65Y20 · 68Q25 ·
90C25

B Rachael Tappenden
r.tappenden@ed.ac.uk

Peter Richtárik
peter.richtarik@ed.ac.uk

Jacek Gondzio
j.gondzio@ed.ac.uk

1 School of Mathematics, The University of Edinburgh, Edinburgh EH9 3JZ, Scotland, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-016-0867-4&domain=pdf

J Optim Theory Appl

1 Introduction

Due to a dramatic increase in the size of optimization problems being encountered,
first-ordermethods are becoming increasingly popular. These large-scale problems are
often highly structured, and it is important for any optimization method to take advan-
tage of the underlying structure. Applications where such problems arise, and where
first-order methods have proved successful, include machine learning [1,2], compres-
sive sensing [3,4], group lasso [5,6], matrix completion [7,8], and truss topology
design [9].

Block Coordinate Descent (CD) methods seem a natural choice for these very
large-scale problems due to their low memory requirements and low per-iteration
computational cost. Furthermore, they are often designed to take advantage of the
underlying structure of the optimization problem [10,11], and many of these algo-
rithms are supported by high probability iteration complexity results [9,12–15].

More generally, as problem sizes increase, first-order methods are benefiting from
revived interest. However, on very large problems, the computation of a single gradi-
ent step is expensive, and methods are needed that are able to make progress before
a standard gradient algorithm takes a single step. For instance, a randomized vari-
ant of the Kaczmarz method for solving linear systems has recently been studied,
equipped with iteration complexity bounds [16–18], and found to be surprisingly
efficient. This method can be seen as a special case of a more general class of decom-
position algorithms, block CD methods, which have recently gained much popularity
[12–14,19–22]. One of the main differences between various (serial) CD schemes
is the way in which the coordinate is chosen at each iteration. Traditionally, cyclic
schemes [23] and greedy schemes [9] were studied. More recently, a popular alterna-
tive is to select coordinates randomly, because the coordinate can be selected cheaply,
and useful iteration complexity results can be obtained [14,20,21,24].

Another current trend in this area is to consider methods that incorporate some
kind of ‘inexactness,’ perhaps using approximate gradients, or using inexact updates.
The notion of an ‘inexact oracle’ was introduced in [25], and complexity estimates
for primal, dual, and fast gradient methods applied to smooth convex functions with
that inexact oracle are obtained. Further to this work, the same authors describe an
intermediate gradient method that uses an inexact oracle [26]. That work is extended
in [27] to handle the case of composite functions, where a stochastic inexact oracle is
also introduced. A method based on inexact dual gradient information is introduced in
[28], while [2] considers theminimization of an unconstrained, convex, and composite
function, where error is present in the gradient of the smooth term or in the proximity
operator for the non-smooth term. Other works study first-order methods that use
inexact updates when the objective function is convex, smooth and unconstrained
[29], smooth and constrained [30] or for �1-regularized quadratic least squares problem
[31]. Finally, work in [32] considers an Inexact Coordinate Descentmethod for smooth
functions, with simple constraints on the blocks of variables.

To the best of our knowledge, at present there are no randomized CD methods sup-
ported by high probability iteration complexity results that both (1) incorporate inexact
updates and (2) can be applied to a general convex composite problem formulation.
The purpose of this work is to bridge this gap.

123

J Optim Theory Appl

The first part of this paper focuses on the theoretical aspects of ICD. The problem
and our contributions are stated in Sect. 2. In Sect. 3, the assumptions and notation
are laid out, and in Sect. 4, the ICD method is presented. In Sect. 5, iteration com-
plexity results for ICD applied to (1) are presented in both the convex and strongly
convex cases. Specialized complexity results covering the smooth case are presented
in Sect. 6. The second part of the paper considers the practicality of an inexact update.
Section 7 provides several examples of how to derive the formulation for the update
step subproblem, as well as giving suggestions for algorithms that can be used to
solve the subproblem inexactly. Numerical experiments are presented in Sect. 8, and
we conclude in Sect. 9.

2 Problem and Contributions

If the block size is larger than one, then determining the update to use at a particular
iteration in a block CDmethod can be computationally expensive. The purpose of this
work is to reduce the cost of this step. To achieve this goal, we extend the work in [14]
to include the case of an inexact update.

In this work, we study randomized block CD methods applied to the problem of
minimizing a composite objective function. That is, a function formed as the sum of
a smooth convex and a simple non-smooth convex term:

min
x∈RN

{F(x) := f (x) + Ψ (x)}. (1)

We assume that (1) has a minimum (F∗ > −∞), f has (block) coordinate Lipschitz
gradient, andΨ is a (block) separable, proper, closed and convex extended real-valued
function (all these concepts are defined precisely in Sect. 3).

Our algorithm—Inexact Coordinate Descent (ICD)—is supported by high proba-
bility iteration complexity results: For confidence level 0 < ρ < 1 and error tolerance
ε > 0, we give an explicit expression for the number of iterations k, that guarantee that
the ICDmethod produces a random iterate xk for which P(F(xk)− F∗ ≤ ε) ≥ 1−ρ.

Wewill show that in the inexact case that it is not always possible to achieve a solution
with small error and/or high confidence.

Our theoretical guarantees are complemented by practical considerations. In
Sect. 4.3, we explain our inexactness condition in detail, and in Sect. 4.4 we give
examples to show when the inexactness condition is implementable. Furthermore, in
Sect. 7 we give several examples, derive the update subproblems, and suggest algo-
rithms that could be used to solve the subproblems inexactly, and some encouraging
computational results are presented in Sect. 8. Now, we summarize the main contri-
butions of this work.

2.1 A New Algorithm: Inexact Coordinate Descent (ICD)

In this paper, we propose a new randomized CDmethod for solving very large convex
and composite optimization problems of the form (1), namely the Inexact Coordinate

123

J Optim Theory Appl

Descent (ICD) method. ICD extends the work of Richtárik and Takáč in [14] (hence-
forth we refer to their method as Exact CD) in the following way. At each iteration
of Exact CD, a block of coordinates i is chosen, and then, a certain subproblem is
solved exactly to obtain the (exact) update to apply to the i th block of variables. On
the other hand, at each iteration of ICD, that same subproblem is solved to obtain the
update to apply to the i th block of variables, but for ICD we allow the subproblem to
be solved approximately, leading to an inexact update. There are many reasons why
incorporating inexactness is important; we list several now.

• It may be impossible or impractical to compute an exact update. In particular,
sometimes the subproblems encountered within Exact CD do not have a closed-
form solution, so it is impossible to exactly solve the subproblem/determine an
exact update. Moreover, even if a closed-form solution exists, it can sometimes be
computationally inefficient to form the exact solution. Therefore, allowing inexact
updates extends the range of problems that can be solved using a CD method.

• Iterative methods can be used to compute the update. When a subproblem does
have a closed-form solution, Exact CD requires a ‘direct method’ to form the
update. For ICD, the update is allowed to be inexact, so iterative methods can be
employed. This can be particularly important when the subproblems are linear
systems. Indeed, while direct methods require expensive factorizations, for ICD
one can employ iterative solvers such as the conjugate gradientsmethod.Therefore,
inexact updates, and iterative methods, give the user greater flexibility in how they
solve the problem they are facing. (See Sects. 7 and 8 for further details.)

• Inexact updates can decrease the overall runtime. Usually, an inexact solution to a
subproblem can be obtained in a shorter amount of time than an exact one. Using
ICD, it is possible to determine the solution to (1) in a much shorter amount of
time than for Exact CD.

• Inexact updates allow us to study how error propagates through the algorithm.
Studying inexact updates is an interesting exercise from a theoretical perspec-
tive, because inexact updates allow us to study how error propagates through the
algorithm as iterates progress.

2.2 High Probability Iteration Complexity Results

In this work, we also establish iteration complexity results to show that, with high
probability (and also in expectation), ICD converges to an ε-accurate solution of (1).
In Table 1, we summarize some of the main new complexity results obtained in this
paper for an inexact update and compare our new results with the complexity results
for an exact update presented in [14]. The following notation is used in the table:
By μφ , we denote the strong convexity parameter of function φ (with respect to a
certain norm specified later), μ = (μ f + μΨ)/(1+ μΨ) andRw(x0) can be roughly
considered to be the distance from x0 to a solution of (1), measured in a specific
weighted normparameterized by the vectorw (definedprecisely in (10)). The constants
are c1 = 2n max{R2

w(x0), F(x0) − F∗}, ĉ1 = 2R2
w(x0), and c2 = 2nR2

w(x0)/ε, and
n is the number of blocks. Parameters α, β ≥ 0 control the level of inexactness (to be

123

J Optim Theory Appl

defined precisely in Sect. 4.2), and u and û are constants depending on α, β and c1,
and α, β and ĉ1, respectively.

Table 1 shows that for fixed ε and ρ, an inexact method may require slightly more
iterations than an exact one.However, it is expected that in certain situations, an inexact
update will be significantly cheaper to compute than an exact update, leading to better
overall running time.

2.3 Generalization of Existing Results

The ICD method developed in this paper extends the Exact CD method presented in
[14], by allowing inexact updates to be utilized. Moreover, the new complexity results
obtained in this paper for ICD generalize those for the exact method. Specifically,
ICD allows inexact updates, corresponding to nonnegative inexactness parameters
α, β ≥ 0. However, if we set the inexactness parameters to zero (α = β = 0),
then ICD enforces exact updates, and we recover the Exact CD method presented
in [14] and its corresponding complexity results. This can be verified by inspecting
Table 1. If we substitute α = β = 0 (taking limits where appropriate, which also
results in u = û = 0) into our complexity results (the third column), then we recover
the complexity results established in [14] (shown in the second column of Table 1).
Furthermore, if β = 0 and α > 0, then the ‘log term’ for ICD is the same as for Exact
CD, but the constant is different. On the other hand, in the strongly convex case, if
α = 0 and β > 0, then the constants are the same for ICD and for Exact CD, but the
‘log terms’ are different.

3 Assumptions and Notation

In this section, we introduce the notation and definitions that are used throughout the
paper. We follow the standard setup and notation used for block coordinate descent
methods, as presented, for example, in [13] and [14].

Block structure of RN . The problem under consideration is assumed to have block
structure, and this is modeled by decomposing the space R

N into n subspaces as
follows. Let U ∈ R

N×N be a column permutation of the N × N identity matrix and
further let U = [U1, U2, . . . , Un] be a decomposition of U into n submatrices, where
Ui is N × Ni and

∑n
i=1 Ni = N . Clearly (e.g., see [20] for a brief proof) any vector

x ∈ R
N can be written uniquely as

x =
n∑

i=1
Ui x (i), where x (i) := U T

i x ∈ R
Ni . (2)

For simplicity, we will sometimes write x = (x (1), x (2), . . . , x (n)) instead of (2).
Let 〈·, ·〉 denote the standard Euclidean dot product. We equip R

Ni with a pair of
conjugate norms, induced by a quadratic form involving a symmetric, positive definite

123

J Optim Theory Appl

Ta
bl

e
1

C
om

pa
ri
so
n
of

th
e
ite

ra
tio

n
co
m
pl
ex
ity

re
su
lts

fo
r
C
D
m
et
ho

ds
us
in
g
an

ex
ac
to

r
an

in
ex
ac
tu

pd
at
e

F
E
xa
ct
M
et
ho
d
[1
4]

In
ex
ac
tM

et
ho

d
[t
hi
s
pa
pe
r]

T
he
or
em

C
-N

c 1 ε

(

1
+

lo
g
1 ρ

)

+
2

c 1
ε

−
u

+
c 1

ε
−

α
c 1

lo
g

⎛ ⎝
ε

−
β

c 1
ε
−α

c 1

ερ
−

β
c 1

ε
−α

c 1

⎞ ⎠
+

2
5.
1(
i)

C
-N

c 2
lo
g

(
F

(x
0
)
−

F
∗

ερ

)
c 2

1
−

α
c 2

lo
g

⎛ ⎝
F

(x
0
)
−

F
∗ −

β
c 2

1−
α

c 2

ερ
−

β
c 2

1−
α

c 2

⎞ ⎠
5.
1(
ii)

SC
-N

n μ
lo
g

(
F

(x
0
)
−

F
∗

ερ

)
n

μ
−

α
n
lo
g

⎛ ⎝
F

(x
0
)
−

F
∗ −

β
n

μ
−α

n

ερ
−

β
n

μ
−α

n

⎞ ⎠
5.
2

C
-S

ĉ 1 ε

(

1
+

lo
g
1 ρ

)

+
2

ĉ 1
ε

−
û

+
ĉ 1

ε
−

α
ĉ 1

lo
g

⎛ ⎝
ε

−
β

ĉ 1
ε
−α

ĉ 1

ερ
−

β
ĉ 1

ε
−α

ĉ 1

⎞ ⎠
+

2
6.
1

SC
-S

1 μ
f
lo
g

(
f(

x 0
)
−

f∗
ερ

)
1

μ
f

−
α
lo
g

⎛ ⎝
f(

x 0
)
−

f∗
−

β
μ

f
−α

ερ
−

β
μ

f
−α

⎞ ⎠
6.
2

C
co
nv
ex
,S

C
st
ro
ng

ly
co
nv
ex
,N

no
n-
sm

oo
th
,S

sm
oo

th
)

123

J Optim Theory Appl

matrix Bi :

‖t‖(i) := 〈Bi t, t〉 1
2 , ‖t‖∗

(i) = 〈B−1
i t, t〉 1

2 , t ∈ R
Ni . (3)

Smoothness of f . We assume that the gradient of f is block Lipschitz, uniformly in
x , with positive constants l1, . . . , ln . So, for all x ∈ R

N , t ∈ R
Ni and i ∈ {1, . . . , n},

we have ‖∇i f (x +Ui t)−∇i f (x)‖∗
(i) ≤ li‖t‖(i),where∇i f (x) := U T

i ∇ f (x) ∈ R
Ni

(see (2)). An important consequence of this Lipschitz continuity assumption is the
following standard inequality [33, p. 57]:

f (x + Ui t) ≤ f (x) + 〈∇i f (x), t〉 + li
2 ‖t‖2(i). (4)

Block separability of Ψ . The function Ψ : RN → R ∪ {+∞} is assumed to be
block separable. That is, for closed and convex functions Ψi : RNi → R∪ {+∞}, we
assume that Ψ can be decomposed as:

Ψ (x) =
n∑

i=1
Ψi (x (i)). (5)

Norms onRN . For fixed positive scalarsw1, . . . , wn , letw = (w1, . . . , wn) and define
a pair of conjugate norms in RN by

‖x‖2w :=
n∑

i=1
wi‖x (i)‖2(i), (‖y‖∗

w)2 :=
n∑

i=1
w−1

i (‖y(i)‖∗
(i))

2. (6)

In our analysis, we often use w = l (for Ψ
= 0) and/or w = lp−1 (for Ψ = 0),
where l = (l1, . . . , ln) and p = (p1, . . . , pn) denote vectors of Lipschitz constants
and positive probabilities, respectively, and lp−1 ≡ (l1/p1, . . . , ln/pn).

Strong convexity of F . A function φ : RN → R ∪ {+∞} is strongly convex w.r.t.
‖ · ‖w with convexity parameter μφ(w) > 0, if, for all x, y ∈ dom φ,

φ(y) ≥ φ(x) + 〈φ′(x), y − x〉 + μφ(w)

2 ‖y − x‖2w, (7)

where φ′ is any subgradient of φ at x . The case with μφ(w) = 0 reduces to convexity.
We will also make use of the following characterization of strong convexity. For all
x, y ∈ dom φ and λ ∈ [0, 1],

φ
(
λx + (1 − λ)y

) ≤ λφ(x) + (1 − λ)φ(y) − μφ(w)λ(1−λ)

2 ‖x − y‖2w. (8)

In some of the results presented in this work, we assume that F is strongly convex.
Strong convexity of F may come from f or Ψ or both, and we will write μ f (w)

(respectively, μΨ (w)) for the strong convexity parameter of f (resp. Ψ), with respect
to ‖ · ‖w. Following from (4) and (7), we have

μF (w) ≥ μ f (w) + μΨ (w), μ f (l) ≤ 1, and μ f (lp
−1) ≤ 1. (9)

123

J Optim Theory Appl

Algorithm 1 ICD: Inexact Coordinate Descent

1: Input: Initial point x0 ∈ R
N , inexactness parameters δk = (δ

(1)
k , . . . , δ

(n)
k) ∈ R

n+, and probabilities
p1, . . . , pn > 0.

2: for k = 0, 1, 2, . . . do
3: Choose δk = (δ

(1)
k , . . . , δ

(n)
k) ∈ R

n+ according to (14)
4: Choose block i ∈ {1, 2, . . . , n} with probability pi

5: Compute the inexact update T (i)
δk

(xk) to block i of xk

6: Update block i of xk : xk+1 = xk + Ui T (i)
δk

(xk)

7: end for

Level set radius. The set of optimal solutions of (1) is denoted by X∗, and x∗ is any
element of that set. We define

Rw(x) := max
y

max
x∗∈X∗{‖y − x∗‖w : F(y) ≤ F(x)}, (10)

which is a measure of the size of the level set of F given by x . We assume thatRw(x0)
is finite for the initial iterate x0.

4 The Algorithm

Let us start by presenting the algorithm; a detailed description will follow. In the
algorithm description,Rn+ denotes a vector inRn with nonnegative entries. The vector

δk = (δ
(1)
k , . . . , δ

(n)
k) ∈ R

n+, relates to/controls the inexactness in the computed update
(Step 3); this will be defined precisely in Sect. 4.2.

Remark 4.1 We make the following remarks regarding ICD (Algorithm 1).

1. In Step 4 of Algorithm 1, block i ∈ {1, . . . , n} is selected with probability pi > 0.
For convex composite functions (i.e., ψ(x)
= 0 in (1)), the probabilities must be
uniform (p1 = · · · = pn = 1

n), while for smooth functions (i.e., ψ(x) = 0 in (1))
the probability distributions can be more general.

2. Conditions on all the parameters of Algorithm 1 aremade explicit in the theoretical
results presented throughout the remainder of this paper.

4.1 Generic Description

Given iterate xk ∈ R
N , Algorithm 1 picks block i ∈ {1, . . . , n} with probability pi ,

computes the update vector T (i)
δk

(xk) ∈ R
Ni (we describe how this is computed later)

and then adds it to the i th block of xk , producing the new iterate xk+1. The iterates
{xk} are random vectors, and the values {F(xk)} are random variables. The update
vector depends on xk , the current iterate, and on δk , a vector of parameters controlling
the ‘level of inexactness’ with which T (i)

δk
(xk) is computed. The rest of this section is

devoted to giving a precise definition of T (i)
δk

(xk). From (1) and (4) we have, for all

123

J Optim Theory Appl

x ∈ R
N , i ∈ {1, . . . , n} and t ∈ R

Ni the following upper bound on F(x + Ui t):

F(x + Ui t) = f (x + Ui t) + Ψ (x + Ui t) ≤ f (x) + Vi (x, t) + Ψ−i (x), (11)

where Ψ−i (x) := ∑
j
=i Ψ j (x (j)) and

Vi (x, t) := 〈∇i f (x), t〉 + li
2 ‖t‖2(i) + Ψi (x (i) + t). (12)

The inexact update computed in Step 5 of Algorithm 1 is the inexact minimizer
of the upper bound (11) on F(xk + Ui t) (to be defined precisely below). However,
since only the second term of this bound depends on t , the update is computed by
minimizing, inexactly, Vi (x, t) in t .

4.2 Inexact Update

The approach of this paper best applies to situations in which it is much easier to
approximately minimize t �→ Vi (x, t) than to either (1) approximately minimize
t �→ F(x + Ui t) and/or (2) exactly minimize t �→ Vi (x, t). For x ∈ R

N and δ =
(δ(1), . . . , δ(n)) ≥ 0, we define Tδ(x) := (T (1)

δ (x), . . . , T (n)
δ (x)) ∈ R

N , to be any
vector satisfying

Vi (x, T (i)
δ (x)) ≤ min

{

Vi (x, 0), δ(i) + min
t∈RNi

Vi (x, t)

}

, i = 1, . . . , n. (13)

(Here we allow for an abuse of notation — δ(i) is a scalar, rather than a vector in RNi

as x (i) for x ∈ R
N—because we wish to emphasize that the scalar δ(i) is associated

with the i th block.) That is, we require that the inexact update T (i)
δ (x) to the i th block

of x is (1) no worse than a vacuous update and that it is (2) close to the optimal
update T (i)

0 (x) = argmint Vi (x, t), where the degree of suboptimality/inexactness is
bounded by δ(i).

The next lemma shows that (13) leads to a monotonic algorithm.

Lemma 4.1 For all x ∈ R
N , δ ∈ R

n+ and i ∈ {1, . . . , n}, we have that F(x +
Ui T

(i)
δ (x)) ≤ F(x).

Proof By (11), F(x + Ui T
(i)
δ (x)) ≤ f (x) + Vi (x, T (i)

δ (x)) + Ψ−i (x). It remains to
apply (13) and (12). ��

Furthermore, in this work we provide iteration complexity results for ICD, where
δk = (δ

(1)
k , . . . , δ

(n)
k) is chosen in such a way that the expected suboptimality is

bounded above by a linear function of the residual F(xk) − F∗. That is, we have the
following assumption.

123

J Optim Theory Appl

Assumption 4.1 For constants α, β ≥ 0, and positive probabilities p1, . . . , pn , δk =
(δ

(1)
k , . . . , δ

(n)
k) satisfies

δ̄k :=
n∑

i=1
piδ

(i)
k ≤ α(F(xk) − F∗) + β. (14)

Notice that, for instance, Assumption 4.1 holds if we require that, for all blocks i and
iterations k, δ(i)

k ≤ α(F(xk) − F∗) + β.
The motivation for allowing inexact updates of the form (13) is that calculating

exact updates is impossible in some cases (e.g., not all problems have a closed-form
solution) and computationally intractable in others. Moreover, iterative methods can
be used to solve for an inexact update T (i)

δ (x), thus significantly expanding the range
of problems that can be successfully tackled by CD. In this case, there is an outer CD
loop, and an inner iterative loop to determine the update. Assumption 4.1 shows that
the stopping tolerance on the inner loop must be bounded above via (14).

CD methods provide a mechanism to break up very large-/huge-scale problem into
smaller pieces, which are a fraction of the total dimension. Moreover, often the sub-
problems that arise to solve for the update have a similar/the same form as the original
huge-scale problem. (See the numerical experiments in Sect. 8, and the examples given
in Sect. 7.) There are many iterative methods that cannot scale up to the original huge
dimensional problem, but are excellent at solving the medium-scale update subprob-
lems. ICD allows these algorithms to solve for the update at each iteration, and if the
updates are solved efficiently, then the overall ICD algorithm running time is kept low.

4.3 The Role of α and β in ICD

The condition (13) shows that the updates in ICD are inexact, while Assump-
tion 4.1 gives the level of inexactness that is allowed in the computed update.
Moreover, Assumption 4.1 allows us to provide a unified analysis; formulating the
error/inexactness expression in this general way (14) gives insight into the role of both
multiplicative and additive error, and how this error propagates through the algorithm
as iterates progress.

Formulation (14) is interesting from a theoretical perspective because it allows us
to present a sensitivity analysis for ICD, which is interesting in its own right. However,
we stress that (13), coupled with Assumption 4.1, is much more than just a technical
tool;α andβ are actually parameters of ICD (Algorithm 1) that can be assigned explicit
numerical values in many cases.

We now explain (13), Assumption 4.1 and the role of parameters α and β in slightly
more detail. (Note that α and β must be chosen sufficiently small to guarantee con-
vergence of the ICD algorithm. However, we postpone discussion of the magnitude
of α and β until Sect. 4.5.) There are four cases.

1. Case I: α = β = 0. This corresponds to the exact case where no error is allowed
in the computed update.

2. Case II: α = 0, β > 0. This case corresponds to additive error only, where the
error level β > 0 is fixed at the start of Algorithm 1. In this case, (13) and (14)

123

J Optim Theory Appl

show that the error allowed in the inexact update T (i)
δ (xk) is on average β. For

example, one can set δ
(i)
k = β for all blocks i and all iterations k, so that (14)

becomes δ̄k = ∑
i piβ = β. The tolerance allowable on each block need not be

the same; if one sets δ
(i)
k ≤ β for all blocks i and iterates k, then δ̄k ≤ β, so

(14) holds true. Moreover, one need not set δ
(i)
k > 0 for all i , so that the update

vector T (i)
δ (xk) could be exact for some blocks (δ(i)

k = 0) and inexact for others

(δ(j)
k > 0). (Thismay be sensible, for example,whenΨi (x (i))
= Ψ j (x (j)) for some

i
= j and that (12) has a closed-form solution for T (i)(xk) but not for T (j)(xk).)
Furthermore, consider the extreme case where only one block update is inexact
T (i)

δ (xk), (T
(j)
0 (xk) for all j
= i). If the coordinates are selected with uniform

probability, then the inexactness level on block i can be as large as δ
(i)
k = nβ and

Assumption 4.1 holds.
3. Case III: α > 0, β = 0. In this case, only multiplicative error is allowed in the

computed update T (i)
δ (xk), where the error allowed in the update at iteration k is

related to the error in the function value (F(xk) − F∗). The multiplicative error
level α is fixed at the start of Algorithm 1, and α(F(xk)− F∗) is an upper bound on
the average error in the update T (i)

δ (xk) over all blocks i at iteration k. In particular,

setting δ
(i)
k ≤ α(F(xk) − F∗) for all i and k satisfies Assumption 4.1. As for Case

II, one may set δ(i)
k = 0 for some block(s) i , or set δ(i)

k > α(F(xk)− F∗) for some
blocks i and iterations k as long as Assumption 4.1 is satisfied.

4. Case IV: α, β > 0. This is the most general case, corresponding to the inclusion of
bothmultiplicative (α) and additive (β) error. Assumption 4.1 is satisfiedwhenever
δ
(i)
k obeys δ

(i)
k ≤ α(F(xk) − F∗) + β. Moreover, as for Cases II and III, one may

set δ
(i)
k = 0 for some block(s) i , or set δ

(i)
k > α(F(xk) − F∗) for some blocks i

and iterations k as long as Assumption 4.1 is satisfied. As iterations progress, the
multiplicative error may become dominated by the additive error, in the sense that
α(F(xk) − F∗) → 0 as k → ∞, so the upper bound on δ̄k tends to β.

Cases I–IV above show that the parameters α and β directly relate to the stopping
criterion used in the algorithm employed to solve for the update T (i)

δ (xk) at each
iteration of ICD. The following section gives examples of algorithms that can be used
within ICD, where α and β can be given explicit numerical values and the stopping
tolerances are verifiable.

4.4 Computing the Inexact Update

Here, we focus on the computation of the inexact update (Step 5 of Algorithm 1). We
discuss several cases where Assumption 4.1 can be verified and thus provide specific
instances to show that ICD is indeed implementable.

1. A primal–dual algorithm: Assume that we utilize a primal–dual algorithm to min-
imize Vi (xk, t). There are many such methods (e.g., stochastic dual coordinate
ascent), and the structure/size of the subproblem dictates what choices are suitable.
In such a case, the level of inexactness can be directly controlled by monitoring

123

J Optim Theory Appl

the duality gap. Hence, (13) is easy to satisfy for any choice of δ
(i)
k . Indeed, we

simply accept T (i)
δk

, for which

Vi (xk, T (i)
δk

)) − Vi (xk, T (i)
0) ≤ Vi (xk, T (i)

δk
)) − VDUAL

i (xk, T (i)
δk

)) ≤ δ
(i)
k , (15)

where VDUAL
i (xk, T (i)

δk
)) is the value of the dual at the point T (i)

δk
. Moreover, if we

set α = 0 and β = ∑
i piδ

(i)
k , then Assumption 4.1 is satisfied.

2. F∗ is known: There are many problem instances when F∗ is known a priori, so the
bound F(xk)−F∗ is computable at every iteration, and subsequentlymultiplicative
error can be incorporated into ICD (i.e, α > 0). This is the case, for example, when
solving a consistent system of equations (solving a least squares problem that is
known to have optimal value 0), where F∗ = 0, so that F(xk) − F∗ = F(xk).

3. A heuristic when F∗ is unknown: If F∗ is unknown, one can use a heuristic argu-
ment to incorporate multiplicative error into ICD. Suppose we have a point xk and
we wish to compute xk+1 via an inexact update. Clearly, F(xk+1) ≥ F∗ for any
xk+1, so F(xk) − F(xk+1) ≤ F(xk) − F∗. Obviously, we do not know F(xk+1)

until xk+1 has been computed. Rather, in practice one could simply not set δk , but
compute some trial point x ′

k+1 using an inexact update anyway. Then, by com-
puting the difference F(xk) − F(x ′

k+1), we can check whether, in hindsight, the
assumption was satisfied for the trial point x ′

k+1 for some α > 0. We remark that,
even though computing function values explicitly can be expensive, computing
the difference of function values (i.e., F(xk) − F(xk+1)) need not be. (See Sect. 7
for further details.)

4.5 Technical Result

The following result plays a key role in the complexity analysis of ICD. Indeed, the
theorem adapts Theorem 1 in [14] to the setting of inexactness, and the proof follows
similar arguments to those used in [14].

Theorem 4.1 Fix x0 ∈ R
N and let {xk}k≥0 be a sequence of random vectors in R

N

with xk+1 depending on xk only. Let ϕ : RN → R be a nonnegative function, define
ξk := ϕ(xk) and assume that {ξk}k≥0 is non-increasing. Furthermore, let 0 < ρ < 1,
ε > 0 and α, β ≥ 0 be such that one of the following two conditions holds:

(i) E[ξk+1 | xk] ≤ (1 + α)ξk − ξ2k
c1

+ β, for all k ≥ 0, where c1 > 0,
c1
2

(
α +

√
α2 + 4β

c1ρ

)
< ε < min{(1 + α)c1, ξ0} and σ :=

√
α2 + 4β

c1
< 1;

(ii) E[ξk+1 | xk] ≤
(
1 + α − 1

c2

)
ξk + β, for all k ≥ 0 for which ξk ≥ ε, where

αc2 < 1 ≤ (1 + α)c2, and βc2
ρ(1−αc2)

< ε < ξ0.

If (i) holds and we define u := c1
2 (α + σ) and v := c1

ε−αc1
and choose

K ≥ v log
(

ε−βv
ερ−βv

)
+ min

{
1
σ
log
(

ξ0−u
ε−u

)
, c1

ε−u − c1
ξ0−u

}
+ 2, (16)

123

J Optim Theory Appl

(where the second term in the minimum is chosen if σ = 0), or if (i i) holds and we
choose

K ≥ c2
1−αc2

log

(
ξ0− βc2

1−αc2

ερ− βc2
1−αc2

)

, (17)

then P(ξK ≤ ε) ≥ 1 − ρ.

Proof First, notice that the thresholded sequence {ξε
k }k≥0, defined by

ξε
k :=

{
0, if ξk < ε,

ξk, otherwise,
(18)

satisfies ξε
k > ε ⇔ ξk > ε. Therefore, P(ξk ≥ ε) = P(ξ ε

k ≥ ε) ≤ E[ξε
k]

ε
by Markov’s

inequality. Thus, letting θk := E[ξε
k], it suffices to show that

θK ≤ ερ. (19)

(The rationale behind this ‘thresholding trick’ is that the sequence E[ξε
k] decreases

faster than E[ξk] and hence will reach ερ sooner.) Assume now that (i) holds. It can
be shown (e.g., Theorem 1 of [14] with α = β = 0) that

E[ξε
k+1 | xk] ≤ (1+ α)ξε

k − (ξε
k)2

c1
+ β, E[ξε

k+1 | xk] ≤
(
1 + α − ε

c1

)
ξε

k + β. (20)

By taking expectations in (20) and using Jensen’s inequality, we obtain

θk+1 ≤ (1 + α)θk − θ2k
c1

+ β, k ≥ 0, (21)

θk+1 ≤
(
1 + α − ε

c1

)
θk + β, k ≥ 0. (22)

Notice that (21) is better than (22) precisely when θk > ε. It is easy to see that

(1 + α)θk − θ2k
c1

+ β ≤ θk holds if and only if θk ≥ u. In other words, (21) leads to
θk+1, that is better than θk only for θk ≥ u. We will now compute k = k1, for which
u < θk ≤ ε. Inequality (21) can be equivalently written as

θk+1 − u ≤ (1 − σ)(θk − u) − (θk−u)2

c1
, k ≥ 0, (23)

where σ < 1. Writing (21) in the form (23) eliminates the constant term β, which
allows us to provide a simple analysis. (Moreover, this ‘shifted’ form leads to a bet-
ter result; see the remarks after the Theorem for details.) Letting θ̂k := θk − u, by
monotonicity we have θ̂k+1θ̂k ≤ θ̂2k , whence

1−σ

θ̂k+1
− 1

θ̂k
= (1−σ)θ̂k−θ̂k+1

θ̂k+1θ̂k
≥ (1−σ)θ̂k−θ̂k+1

θ̂2k

(23)≥ 1
c1

. (24)

123

J Optim Theory Appl

If we choose r ∈ {1, 1
1−σ

}, then

1
θ̂k

(24)≥
(

r
θ̂k−1

+ r
c1

)
≥ rk

θ̂0
+ 1

c1

k∑

j=1

r j =
{

rk
(

1
ξ0−u + 1

c1σ

)
− 1

c1σ
, r = 1

1−σ

1
ξ0−u + k

c1
, r = 1.

In particular, using the above estimate with r = 1 and r = 1
1−σ

gives

θ̂k1 ≤ ε − u (and hence θk1 ≤ ε) (25)

for

k1 := min

{⌈

log

(1
ε−u + 1

c1σ
1

ξ0−u + 1
c1σ

)

/ log

(
1

1 − σ

)⌉

,

⌈
c1

ε − u
− c1

ξ0 − u

⌉}

, (26)

where the left term in (26) applies when σ > 0 only.
Applying the inequalities (i) �t� ≤ 1 + t ; (ii) log(1

1−t) ≥ t (which holds for
0 < t < 1; we use the inverse version, which is surprisingly tight for small t); and
(iii) the fact that t �→ C+t

D+t is decreasing on [0,∞[if C ≥ D > 0, we obtain

k1 ≥ 1 + min
{
1
σ
log
(

ξ0−u
ε−u

)
, c1

ε−u − c1
ξ0−u

}
. (27)

Letting γ := 1 − ε−αc1
c1

(notice that 0 < γ < 1), for any k2 ≥ 0 we have

θk1+k2

(22)≤ γ θk1+k2−1 + β ≤ γ k2θk1 + β(γ k2−1 + γ k2−2 + · · · + 1)
(25)≤ γ k2ε + β

1−γ k2

1−γ
= γ k2

(
ε − β

1−γ

)
+ β

1−γ
. (28)

In (28), the second to last term can be made as small as we like (by taking k2 large),
but we can never force θk1+k2 ≤ β

1−γ
. Therefore, in order to establish (19), we need to

ensure that βc1
ε−αc1

< ερ. Rearranging this gives the condition c1
2 (α+

√
α2 + 4β

c1ρ
) < ε,

which holds by assumption. Now we can find k2, for which the right-hand side in (28)
is at most ερ:

k2 :=
⌈

log

(
ε − β

1−γ

ερ − β
1−γ

)

/ log

(
1

γ

)⌉

≤ 1 + c1
ε − αc1

log

(
ε − βc1

ε−αc1

ερ − βc1
ε−αc1

)

. (29)

In view of (19), it is enough to take K = k1 + k2 iterations. The expression in (16)
is obtained by adding the upper bounds on k1 and k2 in (27) and (29).

123

J Optim Theory Appl

Now assume that property (ii) holds. By a similar argument as that leading to (20),
we obtain

θK ≤
(
1 − 1−αc2

c2

)
θK−1 + β ≤

(
1 − 1−αc2

c2

)K
θ0 + β

K−1∑

j=0

(
1 − 1−αc2

c2

) j

≤
(
1 − 1−αc2

c2

)K (
θ0 − βc2

1−αc2

)
+ βc2

1−αc2

(17)≤ ερ.

The proof follows by taking K given by (17). ��

Let us now comment on several aspects of the above result:

1. Usage. We will use Theorem 4.1 to finish the proofs of the complexity results
in Sect. 5, with ξk = ϕ(xk) := F(xk) − F∗, where {xk} is the random process
generated by ICD.

2. Monotonicity and Non-negativity. The monotonicity assumption in Theorem 4.1
is, for the choice of xk andϕ described in 1, satisfied byLemma 4.1. Non-negativity
is satisfied automatically since F(xk) ≥ F∗ for all xk .

3. Best of two. In (26), we see that the first term applies when σ > 0 only. If σ = 0,
then u = 0, and subsequently the second term in (26) applies, which corresponds
to the exact case. If σ > 0 is very small (so u
= 0), the iteration complexity result
still may be better if the second term is used.

4. Generalization. For α = β = 0, (16) recovers c1
ε
(1+ log 1

ρ
)+2− c1

ξ0
, which is the

result proved inTheorem1(i) in [14],while (17) recovers c2 log((F(x0)−F∗)/ερ),
which is the result proved in Theorem 1(ii) in [14]. Since the last term in (16) is
negative, the theorem holds also if we ignore it. This is what we have done, for
simplicity, in Table 1.

5. Two lower bounds on ε. The inequality ε > c1
2

(
α +

√
α2 + 4β

ρc1

)
(see Theo-

rem 4.1(i)) is equivalent to ε >
βc1

ρ(ε−αc1)
. Note the similarity of the last expression

and the lower bound on ε in part (ii) of the theorem. We can see that the lower
bound on ε is smaller (and hence, is less restrictive) in (ii) than in (i), provided
that c1 = c2.

6. Two analyses. Analyzing the ‘shifted’ form (23) leads to a better result than ana-
lyzing (21) directly, even when β = 0. Consider the case β = 0, so σ = α and
u = αc1. From (24) θk+1 ≤ A := αc1+(1−α)/(1

θk−αc1
+ 1

c1
),whereas analyzing

(21) directly yields θk+1 ≤ B := (1+ α)/(1
θk

+ 1
c1

). It can be shown that A ≤ B,
with equality if α = 0.

7. High accuracy with high probability. In the exact case, the iteration complexity
results hold for any error tolerance ε > 0 and confidence 0 < ρ < 1. However, in
the inexact case, there are restrictions on the choice of ρ and ε, for which we can
guarantee the result P(F(xk) − F∗ ≤ ε) ≥ 1 − ρ.

123

J Optim Theory Appl

5 Complexity Analysis: Convex Composite Objective

The following function plays a central role in our analysis:

H(x, T) := f (x) + 〈∇ f (x), T 〉 + 1
2‖T ‖2l + Ψ (x + T)

(2)+(5)+(6)= f (x) +
n∑

i=1
Vi (x, T (i)). (30)

It will be useful to establish inequalities relating H evaluated at the vector of exact
updates T0(x), and H evaluated at the vector of inexact updates Tδ(x).

Lemma 5.1 For all x ∈ R
N and δ ∈ R

n+, we have the inequalities H(x, T0(x)) ≤
H(x, Tδ(x)) ≤ H(x, T0(x)) +∑n

i=1 δ(i).

Proof We first observe that

H(x, T0(x))
(30)= f (x) +

n∑

i=1
Vi (x, T (i)

0 (x))
(13)= f (x) +∑n

i=1 mint∈RNi Vi (x, t)

≤ f (x) +
n∑

i=1
Vi (x, T (i)

δ (x))
(30)= H(x, Tδ(x)).

The rest follows by applying (13) and, subsequently, (30). ��
The following Lemma is a restatement of Lemma 2 in [14], which provides an

upper bound on the expected distance between the current and optimal objective value
in terms of the function H .

Lemma 5.2 (Lemma 2 in [14]) For x, T ∈ R
N , let x+(x, T) be the random vec-

tor equal to x + Ui T (i) with probability 1
n for each i ∈ {1, 2, . . . , n}. Then,

E[F(x+(x, T)) − F∗ | x] ≤ 1
n (H(x, T) − F∗) + n−1

n (F(x) − F∗).

Note that, if x = xk and T = Tδ(xk), then x+(x, T) = xk+1, as produced by
Algorithm 1. The following lemma, which provides an upper bound on H , will be
used repeatedly throughout the remainder of this paper.

Lemma 5.3 For all x ∈ dom F and δ ∈ R
n+ (letting Δ = ∑

i δ(i)), we have

H(x, Tδ(x)) ≤ Δ + miny∈RN

{
F(y) + 1−μ f (l)

2 ‖y − x‖2l
}

.

We note that this result and its proof are similar in style to that of Lemma 3 in [14]. In
fact, the latter result is obtained from ours by setting Δ ≡ 0.

5.1 Convex Case

Nowwe need to estimate H(x, Tδ(x))− F∗ from above in terms of F(x)− F∗. Again,
this Lemma and its proof are similar in style to that of Lemma 4 in [14].

123

J Optim Theory Appl

Lemma 5.4 Fix x∗ ∈ X∗, x ∈ dom F, δ ∈ R
n+ and let R = ‖x − x∗‖l and Δ =

∑
i δ(i). Then,

H(x, Tδ(x)) − F∗ ≤ Δ +
{

(1 − F(x)−F∗
2R2)(F(x) − F∗), if F(x) − F∗ ≤ R2,

1
2 R2 < 1

2 (F(x) − F∗), otherwise.

Proof Strong convexity is not assumed, so μ f (l) = 0. By Lemma 5.3,

H(x, Tδ(x)) ≤ Δ + min
y∈RN

{F(y) + 1
2‖y − x‖2l }

≤ Δ + min
λ∈[0,1]

{
F(λx∗ + (1 − λ)x) + λ2

2 ‖x − x∗‖2l
}

≤ Δ + min
λ∈[0,1]

{
F(x) − λ(F(x) − F∗) + λ2

2 R2
}

.

Minimizing in λ gives λ∗ = min{1, F(x)−F∗
R2 } and the result follows. ��

Remark 5.1 Lemmas 5.3 and 5.4 generalize the results in [14]. In particular, setting
δ(i) = 0 for all i = 1, . . . , n in Lemmas 5.3 and 5.4 recovers Lemmas 3 and 4 in [14].

We now state the main complexity result of this section, which bounds the number of
iterations sufficient for ICD, used with uniform probabilities, to decrease the value of
the objective to within ε of the optimal value, with probability at least 1 − ρ.

Theorem 5.1 Choose an initial point x0 ∈ R
N , and let {xk}k≥0 be the random iterates

generated by ICD applied to problem (1), using uniform probabilities pi = 1
n , and

inexactness parameters δ
(1)
k , . . . , δ

(n)
k ≥ 0, that satisfy (14) for α, β ≥ 0. Let c1 =

2n max{R2
l (x0), F(x0) − F∗}, and c2 = 2nR2

l (x0)/ε. Choose target confidence 0 <

ρ < 1, and error tolerance ε > 0, so that one of the following two conditions hold:

(i) c1
2 (α +

√
α2 + 4β

c1ρ
) < ε < F(x0) − F∗ and α2 + 4β

c1
< 1

(ii) βc2
ρ(1−αc2)

< ε < min{R2
l (x0), F(x0) − F∗}, where αc2 < 1.

If (i) holds and we choose K as in (16), or if (ii) holds and we choose K as in (17),
then P(F(xK) − F∗ ≤ ε) ≥ 1 − ρ.

Proof By Lemma 4.1, F(xk) ≤ F(x0) for all k, so ‖xk − x∗‖l ≤ Rl(x0) for all k and
x∗ ∈ X∗. Let ξk := F(xk) − F∗. Using Lemmas 5.2 and 5.4, we have

E[ξk+1 | xk] ≤ δ̄k + 1
n max

{

1 − ξk

2‖xk−x∗‖2l
, 1
2

}

ξk + n−1
n ξk

= δ̄k + max

{

1 − ξk

2n‖xk−x∗‖2l
, 1 − 1

2n

}

ξk (31)

≤ δ̄k + max

{

1 − ξk

2nR2
l (x0)

, 1 − 1
2n

}

ξk . (32)

123

J Optim Theory Appl

(i): E[ξk+1 | xk] ≤ δ̄k + (1 − ξk/c1) ξk ≤ (1 + α)ξk − ξ2k /c1 + β follows from
(32)+(14), and the result follows by applying Theorem 4.1(i). (ii): If ξk ≥ ε, then

E[ξk+1 | xk] ≤ δ̄k + max

{

1 − ε

2nR2
l (x0)

, 1 − 1
2n

}

ξk ≤ (1 + α − 1/c2) ξk + β in

view of (32)+ (14). The result follows by applying Theorem 4.1(ii). ��

5.2 Strongly Convex Case

Let us start with an auxiliary result.

Lemma 5.5 Let F be strongly convex w.r.t ‖ · ‖l with μ f (l) + μΨ (l) > 0. Then,
for all x ∈ dom F and δ ∈ R

n+, with Δ = ∑
i δ(i), we have H(x, Tδ(x)) − F∗ ≤

Δ +
(
1−μ f (l)
1+μΨ (l)

)
(F(x) − F∗).

Proof Let μ f = μ f (l), μΨ = μΨ (l) and λ∗ = (μ f + μΨ)/(1 + μΨ) ≤ 1. Then,

H(x, Tδ(x))
(Lemma 5.3)≤ Δ + min

y∈RN

{
F(y) + 1−μ f

2 ‖y − x‖2l
}

≤ Δ + min
λ∈[0,1]

{
F(λx∗ + (1 − λ)x) + (1−μ f)λ

2

2 ‖x − x∗‖2l
}

(9)+(8)≤ Δ + min
λ∈[0,1]

{
λF∗ + (1 − λ)F(x) + ξ

2‖x − x∗‖2l
}

≤ Δ + F(x) − λ∗(F(x) − F∗),

where ξ = (1 − μ f)λ
2 − (μ f + μΨ)λ(1 − λ). The last inequality follows from the

fact that (μ f + μΨ)(1− λ∗) − (1− μ f)λ
∗ = 0. It remains to subtract F∗ from both

sides of the final inequality. ��
We can now estimate the number of iterations needed to decrease a strongly convex

objective F within ε of the optimal value with high probability.

Theorem 5.2 Let F be strongly convex with respect to the norm ‖ · ‖l with μ f (l) +
μΨ (l) > 0 and let μ := μ f (l)+μΨ (l)

1+μΨ (l) . Choose an initial point x0 ∈ R
N and let {xk}k≥0

be the random iterates generated by ICD applied to problem (1), used with uniform
probabilities pi = 1

n for i = 1, 2, . . . , n and inexactness parameters δ
(1)
k , . . . , δ

(n)
k ≥

0 satisfying (14), for 0 ≤ α <
μ
n and β ≥ 0. Choose confidence level 0 < ρ < 1 and

error tolerance ε satisfying βn
ρ(μ−αn)

< ε and ε < F(x0) − F∗. Then, for K given by
(17), we have P(F(xK) − F∗ ≤ ε) ≥ 1 − ρ.

Proof Letting ξk = F(xk) − F∗, we have

E[ξk+1 | xk]
(Lemma 5.2)≤ 1

n (H(xk, Tδk (xk)) − F∗) + n−1
n ξk

(Lemma 5.5)≤ δ̄k + 1
n

(
1−μ f (l)
1+μΨ (l) ξk

)
+ n−1

n ξk
(14)≤ (

1 + α − μ
n

)
ξk + β.

By (9), μ ≤ 1, and the result follows from Theorem 4.1(ii) with c2 = n
μ
. ��

123

J Optim Theory Appl

6 Complexity Analysis: Smooth Objective

In this section, we provide simplified iteration complexity results when the objective
function is smooth (Ψ ≡ 0 so F ≡ f). Furthermore, we provide complexity results
for arbitrary (rather than uniform) probabilities pi > 0.

6.1 Convex Case

For smooth functions, we have a closed-form expression for the update:

T (i)
0 (x)

(12)+(13)= arg min
t∈RNi

{〈∇i f (x), t〉 + li
2 ‖t‖2(i)} = − 1

li
B−1

i ∇i f (x). (33)

Substituting this into Vi (x, ·) yields

Vi (x, T (i)
0 (x)) = 〈∇i f (x), T (i)

0 (x)〉 + li
2 ‖T (i)

0 (x)‖2(i) = − 1
2li

(‖∇i f (x)‖∗
(i))

2. (34)

We can now estimate the decrease in f during one iteration of ICD:

f (x + Ui T
(i)
δ (x)) − f (x)

(4)≤ 〈∇i f (x), T (i)
δ (x)〉 + li

2 ‖T (i)
δ (x)‖2(i) (12)= Vi (x, T (i)

δ (x))

(13)≤ min{0, δ(i) + Vi (x, T (i)
0 (x))} (34)= min{0, δ(i) − 1

2li

(‖∇i f (x)‖∗
(i)

)2}.
(35)

The main iteration complexity result of this section can now be established.

Theorem 6.1 Choose an initial point x0 ∈ R
N and let {xk}k≥0 be the random iterates

generated by ICD applied to the problem of minimizing f , used with probabilities
p1, . . . , pn > 0 and inexactness parameters δ

(1)
k , . . . , δ

(n)
k ≥ 0 satisfying (14) for

α, β ≥ 0, where α2 + 4β
c1

< 1 and c1 = 2R2
lp−1(x0). Choose confidence level 0 <

ρ < 1, error tolerance ε satisfying c1
2 (α +

√
α2 + 4β

c1ρ
) < ε and ε < f (x0) − f ∗,

and let the iteration counter K be given by (16). Then, P(f (xK) − f ∗ ≤ ε) ≥ 1− ρ.

Proof We first estimate the expected decrease of the objective function during one
iteration of the method:

E[f (xk+1) | xk] = f (xk) +∑n
i=1 pi [f (xk + Ui T

(i)
δk

(xk)) − f (xk)]
(35)≤ f (xk) +∑n

i=1 pi

(
δ
(i)
k − 1

2li

(‖∇i f (xk)‖∗
(i)

)2
)

(6)= f (xk) − 1
2

(‖∇ f (xk)‖∗
lp−1

)2 +∑n
i=1 piδ

(i)
k

≤ f (xk) − 1
2

(‖∇ f (xk)‖∗
lp−1

)2 + α(f (xk) − f ∗) + β. (36)

123

J Optim Theory Appl

Note that f (xk) − f ∗ ≤ maxx∗∈X∗〈∇ f (xk), xk − x∗〉 ≤ ‖∇ f (xk)‖∗
lp−1Rlp−1(x0)

because f (xk) ≤ f (x0)∀k. Substituting the previous into (36),we obtainE[f (xk+1)−
f ∗ | xk] ≤ f (xk) − f ∗ − 1

2

(
f (xk)− f ∗
Rlp−1 (x0)

)2

+ α(f (xk) − f ∗) + β. It remains to apply

Theorem 4.1(i). ��

6.2 Strongly Convex Case

In this section, we assume that f is strongly convex with respect to ‖ · ‖lp−1 with
convexity parameter μ f (lp−1). Using (7) with x = xk and y = x∗, and letting

h = x∗ −xk , we obtain f ∗ − f (xk) ≥ 〈∇ f (xk), h〉+ μ f (lp−1)

2 ‖h‖2
lp−1 .Byminimizing

the right-hand side in h, we get

f (xk) − f ∗ ≤ 1
2μ f (lp−1)

(‖∇ f (xk)‖∗
lp−1)

2. (37)

We can now give an efficiency estimate for strongly convex objectives.

Theorem 6.2 Let f be strongly convex with respect to the norm ‖·‖lp−1 , with convexity
parameter μ f (lp−1) > 0. Choose an initial point x0 ∈ R

N , and let {xk}k≥0 be the
random iterates generated by ICD, applied to the problem of minimizing f , used with
probabilities p1, . . . , pn > 0, and inexactness parameters δ

(1)
k , . . . , δ

(n)
k ≥ 0, that

satisfy (14) for 0 ≤ α < μ f (lp−1) and β ≥ 0. Choose the confidence level 0 < ρ < 1,
let the error tolerance ε satisfy β

ρ(μ f (lp−1)−α)
< ε < f (x0)− f ∗, let c2 = 1/μ f (lp−1),

and let iteration counter K be as in (17). Then, P(f (xK) − f ∗ ≤ ε) ≥ 1 − ρ.

Proof The expected decrease of the objective function during one iteration of the
method can be estimated as follows:

E[f (xk+1) − f ∗|xk]
(36)≤ (1 + α)(f (xk) − f ∗) − 1

2 (‖∇ f (xk)‖∗
lp−1)

2 + β

(37)≤ (1 + α − μ f (lp
−1))(f (xk) − f ∗) + β.

It remains to apply Theorem 4.1(ii) with ϕ(xk) = f (xk) − f ∗. ��

7 Practical Aspects of an Inexact Update

In this section, the goal is to demonstrate the practical importance of employing an
inexact update in the (block) CD method.

First, we remind the reader that, unless the block size is Ni = 1, a closed-form
expression for the update subproblem may not exist, so inexact updates provide a
mechanism for overcoming this exact solvability issue. Furthermore, even if closed-
form solutions do exist, such as for standard least squares or ridge-regression problems,
it is not always computationally efficient to solve the subproblems exactly via a direct

123

J Optim Theory Appl

method. (See our computational experiments in Sect. 8.) We have also remarked that
inexact updates allow iterative methods to be used to solve the update subproblem, so
ICD extends the range of tools that can be used to tackle problems of the form (1).

Moreover, if the block size is Ni = 1, then only the diagonal of the Hessian (of
f) is taken into account, via the Lipschitz constants Li (and Bi is a scalar.) However,
if the Hessian is not well approximated by a diagonal matrix (i.e., if the problem is
ill-conditioned), then coordinate descent methods can struggle and converge slowly.
Therefore, if the block size is Ni > 1, blocks of the Hessian can be incorporated via the
matrix Bi , and even this small amount of curvature information can be very beneficial
for ill-conditioned problems.

7.1 Solving Smooth Problems via ICD

Here, we assume that Ψ = 0, so the function F(x) = f (x) is smooth and convex.
Then, the overapproximation is

f (xk + Ui t)
(4)+(3)≤ f (xk) + 〈∇i f (xk), t〉 + li

2 〈Bi t, t〉 ≡ f (xk) + Vi (xk, t). (38)

By minimizing the right-hand side in (38) in t , we see that determining the update to
block i at iteration k is equivalent to solving the system of equations

Bi t = − 1
li
∇i f (xk). (39)

Clearly, solving systems of equations is central to the block coordinate descent method
in the smooth case.

Exact CD [9] requires the exact update (39), which depends on the inverse of an
Ni × Ni matrix. A standard approach to solving for t = T (i)

0 (xk) in (39) is to form
the Cholesky factors of Bi , followed by two triangular solves. This can be extremely
expensive for medium Ni , or dense Bi .

Because Bi is positive definite, a natural choice is to solve (38) using conjugate gra-
dients (CG) [34]. (This is the method we adopt in the numerical experiments presented
in Sect. 8.) It is widely accepted that using an iterative technique has many advantages
over a direct method for solving systems of equations, so we expect that an inexact
update can be determined quickly, and subsequently the overall ICD algorithm run-
ning time reduces. Moreover, applying a preconditioner to (38) can enable even faster
convergence of CG. Finding good preconditioners is an active area of research; see,
e.g., [35–37].

Quadratic. Consider now unconstrained quadratic minimization

min
x∈RN

f (x) = 1
2‖Ax − b‖22, (40)

where A ∈ R
M×N , and b ∈ R

M . In this case, (4) becomes

f (x + Ui t) = 1
2‖A(x + Ui t) − b‖22 = f (x) + 〈∇i f (x), t〉 + 1

2 〈AT
i Ai t, t〉, (41)

123

J Optim Theory Appl

where Ai = Ui A. Comparing (41) with (38), we see that in the quadratic case, (41)
is an exact upper bound on f (x + Ui t) if we choose li = 1 and Bi = AT

i Ai for
all blocks i . The matrix Bi must be positive definite, so Ai is assumed to have full
(column) rank.1 Substituting li = 1 and Bi = AT

i Ai into (39) gives

AT
i Ai t = −AT

i (Ax − b). (42)

Therefore, when ICD is applied to a problem of the form (40), the update is found by
inexactly solving (42).

7.2 Solving Non-smooth Problems via ICD

The non-smooth case is not as simple as the smooth case, because the update subprob-
lem will have a different form for each non-smooth term Ψ . However, we will see
that in many cases, the subproblem will have the same, or similar, form to the original
objective function. We demonstrate this through the use of the following concrete
examples.

Group Lasso. A widely studied optimization problem arising in statistical learning
is the group lasso problem, which has the form

minx∈RN
1
2‖Ax − b‖22 + λ

n∑

i=1

√
di‖x (i)‖2, (43)

where λ > 0 is a regularization parameter and di , for all i , is a weighting parameter
that depends on the size of the i th block. Formulation (43) fits the structure (1) with
f (x) = 1

2‖Ax − b‖22 and Ψ (x) = ∑n
i=1 λ

√
di‖x (i)‖2. If we choose Bi = AT

i Ai

(assuming AT
i Ai � 0), then li = 1 for all i . Letting rk = b − Axk , we have

Vi (xk, t) = 〈∇i f (xk), t〉 + 1
2 〈Bi t, t〉 + λ

√
di‖x (i) + t‖2

= 1
2‖Ai t − rk‖22 − 1

2‖rk‖22 + λ
√

di‖x (i) + t‖2.

Note that

T (i)
0 = arg min

t∈RNi
Vi (xk, t) = argmin

t
1
2‖Ai t − rk‖22 + λ

√
di‖x (i)

k + t‖2. (44)

We see that (44) has the same form as the original problem (43), but is of a smaller
dimension (Ni as opposed to N). One can apply any algorithm to approximately
minimize (44).Our theorywould hold if themethod uses one of the stopping conditions
described in Sect. 4.4.

1 If a block Ai does not have full column rank, then we simply adjust our choice of li and Bi accordingly,
although this means that we have an overapproximation to f (x + Ui t), rather than equality as in (41).

123

J Optim Theory Appl

8 Numerical Experiments

In this section, we present numerical results to demonstrate the practical performance
of Inexact CoordinateDescent and compare the resultswith Exact CoordinateDescent.
We note that a thorough practical investigation of Exact CD is given in [14], where its
usefulness on huge-scale problems is evidenced. We do not intend to reproduce such
results for ICD; rather, we investigate the affect of inexact updates compared with
exact updates, which should be apparent on medium-scale problems. We do this the
full knowledge that, if Exact CD scales well to very large sizes (shown in [14]), then
so too will ICD.

Each experiment presented in this section was implemented in Matlab and run
(under Linux) on a desktop computerwith aQuadCore i5-3470CPU, 3.20GHz proces-
sor with 24GB of RAM.

8.1 Problem Description for a Smooth Objective

In this numerical experiment, we assume that the function F = f is quadratic (40)
and Ψ = 0. Furthermore, as ICD can work with blocks of data, we impose block
structure on the system matrix. In particular, we assume that the matrix A has block
angular structure. Matrices with this structure frequently arise in optimization, from
optimal control, scheduling and planning problems to stochastic optimization prob-
lems, and exploiting this structure is an active area of research [38–40]. To this end,
we define

A :=
[

C
D

]

, C =
⎡

⎢
⎣

C1
. . .

Cn

⎤

⎥
⎦ , D := [

D1 . . . Dn
]
, and Ai :=

⎡

⎢
⎢
⎣

Ci

Di

⎤

⎥
⎥
⎦ , (45)

where A ∈ R
M×N , C ∈ R

m×N , D ∈ R
�×N , and Ai ∈ R

M×Ni . Moreover, we
assume that each block Ci ∈ R

Mi ×Ni , and the linking blocks Di ∈ R
�×Ni . We assume

that � � N and that there are n blocks with m = ∑n
i=1 Mi , so M = m + �, and

N = ∑n
i=1 Ni .

If D = 0, where 0 is the �× N zero matrix, then problem (40) is completely (block)
separable, so it can be solved easily. The linking constraints D make problem (40)
non-separable, so it is non-trivial to solve.

The system of equations (42) must be solved at each iteration of ICD (where Bi =
AT

i Ai = CT
i Ci +DT

i Di) because it determines the update to apply to the i th block.We
solve this system inexactly using an iterative method. In particular,weuse the conjugate
gradient method (CG) in the numerical experiments presented in this section.

It is well known that the performance of CG is improved by the use of an appropriate
preconditioner. To this end, we compare ICD using CGwith ICD using preconditioned
CG (PCG). If Mi ≥ Ni and rank(Ci) = Ni , then the block CT

i Ci is positive definite,

123

J Optim Theory Appl

so we propose the preconditioner

Pi := CT
i Ci (46)

(for the i th system). If Mi < Ni then Pi is rank deficient and is therefore singular. In
such a case, we perturb (46) by adding a multiple of the identity matrix and propose
the non-singular preconditioner (with ρ > 0)

P̂i = Pi + ρ I = CT
i Ci + ρ I. (47)

Applying the preconditioners (46) for Mi ≥ Ni , and (47) for Mi < Ni , to (42),
should result in the system having better spectral properties than the original, leading
to faster convergence of the CG method.

Remark 8.1 The preconditioners (46) and (47) are likely to be significantly more
sparse than Bi , and consequently we expect that these preconditioners will be cost-
effective to apply in practice. To see this, note that the blocks Ci are generally much
sparser than the linking blocks Di so that Pi = CT

i Ci is much sparser than CT
i Ci +

DT
i Di .

Experimental Parameters and Results. We now study the use of an iterative tech-
nique (CG or PCG) to determine the update used at each iteration of ICD and compare
this approach with Exact CD. For Exact CD, the system (42) was solved by forming
the Cholesky decomposition of Bi for each i and then performing two triangular solves
to find the exact update.2

In the first two experiments, simulated data were used to generate A and the solution
vector x∗. For eachmatrix A, each blockCi has approximately 20nonzeros per column,
and the density of the linking constraints Di is approximately 0.1 � Ni . The data vector
b was generated from b = Ax∗, so the optimal value is known in advance: F∗ = 0.
The stopping condition and tolerance ε for ICD are: F(xK) − F∗ = 1

2‖AxK − b‖22 <

ε = 0.1.
The inexactness parameters are set to α = 0 and β = 0.1. Moreover, each block

was chosen with uniform probability 1
n in all experiments in this section.

In the first experiment, the blocks Ci are tall, so the preconditioner Pi was used.
In the second experiment, the blocks Ci are wide, so the perturbed preconditioner
P̂i = Pi + ρ I (with ρ = 0.5) was used.3 For both preconditioners, the incomplete
Cholesky decomposition was found using Matlab’s ‘ichol’ function with a drop
tolerance set to 0.1. The results are given in Table 3, and all results are averaged over
20 runs.4

The terminology used in the tables is as follows. ‘Time’ represents the total CPU
time in seconds from, and including, algorithm initialization, until algorithm termina-
tion. (For Exact CD, this includes the time needed to compute the Cholesky factors of

2 For each block i , the Cholesky decomposition of Bi was computed once, before the algorithm begins,
and was reused at each iteration.
3 To ensure that Ci has full rank, a multiple of the identity Imi is added to the first mi columns of Ci .
4 The number of block updates and CG/PCG iterations has been rounded to the nearest whole number,
while the time is displayed to 2 s.f.

123

J Optim Theory Appl

Table 2 Problem parameters
used in the experiments, whose
results are given in Table 3

n Mi Ni �

1 100 104 103 1

2 100 104 103 10

3 100 104 103 100

4 10 105 104 1

5 10 105 104 10

6 10 105 104 100

7 100 105 104 1

8 100 105 104 10

9 100 105 104 100

10 10 9999 104 1

11 10 9990 104 10

12 10 9000 104 103

13 100 9999 104 1

14 100 9900 104 102

15 100 9000 104 103

Bi once for each i = 1, . . . , n. For the inexact versions, this includes the time needed
to form the preconditioners.) Furthermore, the term ‘block updates’ refers to the total
number of block updates computed throughout the algorithm; dividing this number
by n gives the number of ‘epochs,’ which is (approximately) equivalent to the total
number of full-dimensional matrix–vector products required by the algorithm. The
abbreviation ‘o.o.m.’ is the out of memory token.

In Table 2, we present a list of the parameters used in the numerical experiments.
The results of the numerical experiments are presented in Table 3.

The results presented in Table 3 show that ICD with either CG or PCG outperforms
Exact CD in terms of CPU time. When the blocks are of size Mi × Ni = 104 × 103,
ICD is approximately 3 times faster than Exact CD. The results are even more striking
as the block size increases. ICD was able to solve problems of all sizes, whereas Exact
CD ran out of memory on the problems of size 107 × 106. Furthermore, PCG is faster
than CG in terms of CPU time, demonstrating the benefits of preconditioning. These
results strongly support the ICD method. For problems with wide blocks (10–15),
ICD is able to solve all problem instances, whereas Exact CD gives the out of memory
token on the large problems. When � is small, ICD with PCG has an advantage over
ICD with CG. However, when � is large, the preconditioner P̂i is not as good an
approximation to AT

i Ai , and so ICD with CG is preferable.

Remark 8.2 Here, we remark on the numerical experiments.

1. For problems 7–9 and 13–15, Exact CDwas out of memory. Exact CD requires the
matrices Bi = CT

i Ci + DT
i Di for all i to be formed explicitly, and the Cholesky

factors to be found and stored. Even if Ai is sparse, Bi need not be, and the

123

J Optim Theory Appl

Ta
bl

e
3

R
es
ul
ts
of

E
xa
ct
C
D
,a
nd

IC
D
w
ith

C
G
or

PC
G
ap
pl
ie
d
to

(4
0)

w
ith

st
ru
ct
ur
e
(4
5)

us
in
g
si
m
ul
at
ed

da
ta

E
xa
ct
C
D

IC
D
w
ith

C
G

IC
D
w
ith

PC
G

B
lo
ck

up
da
te
s

T
im

e
B
lo
ck

up
da
te
s

C
G
ite

ra
tio

ns
T
im

e
B
lo
ck

up
da
te
s

PC
G
ite

ra
tio

ns
T
im

e

1
48

20
37

.4
2

47
26

15
,1
26

13
.9
5

52
31

11
,3
79

12
.5
9

2
70

57
53

.9
4

71
81

14
,4
80

17
.8
8

68
64

13
,5
16

15
.9
5

3
19

,1
29

15
1.
97

19
,4
11

37
,8
41

46
.3
2

19
,4
46

41
,3
44

51
.1
2

4
31

29
24

88
.2
1

33
08

53
16

64
.3
9

32
47

42
01

62
.7
1

5
45

88
37

38
.6
0

47
54

99
08

10
9.
79

46
55

76
47

10
4.
65

6
12

,4
31

15
,3
02

.1
1

15
,9
38

35
,9
43

44
6.
81

15
,4
17

29
,2
72

39
1.
12

7
o.
o.
m
.

o.
o.
m
.

44
,7
99

59
,3
40

82
1.
64

43
,4
27

49
,8
01

78
3.
11

8
o.
o.
m
.

o.
o.
m
.

63
,6
54

10
1,
16

3
13

02
.0
0

59
,3
51

82
,0
97

12
67

.3
0

9
o.
o.
m
.

o.
o.
m
.

20
7,
31

4
32

9,
27

6
49

82
.8
0

20
4,
07

0
30

2,
30

8
48

06
.1
0

10
34

19
0.
62

82
1

19
57

12
.5
5

47
1

15
97

9.
29

11
31

19
1.
96

15
00

47
93

45
.8
1

86
8

36
12

24
.5
5

12
26

28
7.
79

70
3

40
53

58
.3
1

43
9

43
09

46
.7
4

13
o.
o.
m
.

o.
o.
m
.

13
,0
77

27
,3
21

18
5.
31

82
80

25
,7
15

14
3.
63

14
o.
o.
m
.

o.
o.
m
.

12
,9
79

50
,6
85

39
7.
47

61
59

47
,0
34

24
5.
89

15
o.
o.
m
.

o.
o.
m
.

69
74

39
,5
35

45
3.
18

47
97

52
,6
65

49
6.
35

Fo
r
pr
ob

le
m
s
1–

9,
th
e
bl
oc
ks

C
i
ar
e
ta
ll,

an
d
(4
6)

is
us
ed

fo
r
IC
D
w
ith

PC
G
.(
T
he

si
ze

of
A
ra
ng

es
fr
om

10
6

×
10

5
to

10
7

×
10

6
.)
Fo

r
pr
ob

le
m
s
10

–1
5,

th
e
bl
oc
ks

C
i
ar
e

w
id
e,
an
d
(4
7)

w
ith

ρ
=

0.
5
is
us
ed

fo
r
IC
D
w
ith

PC
G
.(
T
he

si
ze

of
A
ra
ng

es
fr
om

10
5

×
10

5
to

10
6

×
10

6
.)
A
ll
re
su
lts

ar
e
av
er
ag
ed

ov
er

20
ru
ns

123

J Optim Theory Appl

Table 4 Block angular matrices
from the Florida Sparse Matrix
Collection [41]

cep1 neos neos1 neos2 neos3

M 4769 515,905 133,473 134,128 518,832

N 1521 479,119 131,528 132,568 512,209

� 3248 36,786 1945 1560 6623

Cholesky factor could be dense, making it very expensive to work with. Moreover,
this problem does not arise for ICDwith CG (and arises to a much lesser extent for
PCG) because Bi is never explicitly formed. Instead, only sparse matrix–vector
products of the form Bi x ≡ CT

i (Ci x) + DT
i (Di x) are required. This is why ICD

performs extremely well, even when the blocks are very large.
2. We note that, to avoid the o.o.m. token for Exact CD, instead of forming and

storing all the Cholesky factors when initializing the algorithm, one could simply
compute the Cholesky factor for each block as needed on the fly and then discard
it. (However, this comes with a much increased computational cost).

Experiments with Real-World Data. Here, we test ICD on a quadratic objective
(40) with the structure (45), where the matrices arise from real-world applications. In
particular, we have taken several matrices from the Florida Sparse Matrix Collection
[41] that have block angular structure (see Table 4). We have taken the transpose of
the original matrix to ensure that the matrix is tall. Furthermore, in each case the upper
block (recall (45)) is diagonal, so we have scaled each of the matrices so that C = I .
Note that, in this case, Pi = I so there is no need for preconditioning. We compare
Exact CD with ICD using CG. All the stopping conditions and algorithm parameters
are as described earlier in this section.

The results for these matrices are given in Table 5. To determine n and Ni , we have
simply taken the prime factorization of N . ICD with CG performs extremely well on
these test problems. In most cases, ICD with CG needs more iterations than Exact
CD to converge, yet ICD requires only a fraction of the CPU time needed by Exact
CD.

8.2 A Numerical Experiment for a Non-smooth Objective

Here, we consider the l1-regularized least squares problem

min
x∈RN

1
2‖Ax − b‖22 + λ‖x‖1, (48)

where A ∈ R
M×N , b ∈ R

M and λ > 0. Problem (48) fits into the framework (1) with
f (x) = 1

2‖Ax − b‖22 and Ψ (x) = λ‖x‖1 = λ
∑n

i=1 ‖x (i)‖1. The matrix A is sparse,
with approximately 20 nonzeros per column. (We also ensure that each Ai has full rank
by adding an identity matrix padded with zeros to each block Ai .) We set Bi = AT

i Ai

and li = 1 ∀i . (By construction Bi is positive definite and it can be shown that this
choice of Bi and li satisfies the overapproximation (4).) Further, for this experiment
we use uniform probabilities, pi = 1

n for all i , and we set α = 0 and β > 0. The

123

J Optim Theory Appl

Ta
bl

e
5

E
xa
ct
C
D
an
d
IC

D
w
ith

C
G
ap
pl
ie
d
to

a
qu

ad
ra
tic

fu
nc
tio

n
w
ith

th
e
bl
oc
k
an
gu

la
r
m
at
ri
ce
s
de
sc
ri
be
d
in

Ta
bl
e
4

E
xa
ct
C
D

IC
D
w
ith

C
G

n
N

i
B
lo
ck

up
da
te
s

T
im

e
B
lo
ck

up
da
te
s

C
G
ite

ra
tio

ns
T
im

e

c
e
p
1

9
16

9
44

6
0.
18

44
8

82
8

0.
61

3
50

7
37

6
0.
29

34
2

67
8

0.
52

n
e
o
s

28
3

16
93

62
2,
65

9
32

58
.8
0

86
9,
92

4
3,
91

9,
17

2
27

34
.6
5

n
e
o
s
1

41
32

08
14

8,
22

8
87

59
.0
6

14
3,
15

6
59

2,
07

0
77

3.
70

8
16

,4
41

25
,5
03

52
,1
13

.0
0

25
,8
53

11
6,
46

8
44

6.
26

n
e
o
s
2

73
18

16
32

9,
74

9
46

69
.1
1

43
9,
29

6
1,
82

5,
83

5
99

7.
04

8
16

,5
71

82
,7
84

11
,5
18

.5
4

55
,4
14

25
5,
12

9
97

2.
27

n
e
o
s
3

10
7

47
87

81
,9
56

90
32

.1
2

82
,6
29

43
3,
35

4
70

0.
82

Fo
r
th
e
sm

al
lp

ro
bl
em

c
e
p
1
,E

xa
ct
C
D
is
th
e
be
st
al
go
ri
th
m
.O

th
er
w
is
e,
IC
D
w
ith

C
G
is
si
gn
ifi
ca
nt
ly

be
tte
r
th
an

E
xa
ct
C
D
in

te
rm

s
of

th
e
C
PU

tim
e

123

J Optim Theory Appl

algorithm stopping condition is F(xk) − F∗ < ε = 10−4 (the data were constructed
so that F∗ is known), and the regularization parameter was set to λ = 0.01.

The exact update for the i th block is computed via

T (i)
0

(12)= argmin
t

−〈AT
i rk, t〉 + 1

2 t T AT
i Ai t + λ‖x (i)

k + t‖1
= argmin

t
1
2‖Ai t − rk‖22 − 1

2‖rk‖22 + λ‖x (i)
k + t‖1, (49)

where rk := b − Axk and ∇i f (x) = −AT
i rk . As long as Ni > 1, (49) does not have

a closed-form solution, which means that only an inexact update can be used in this
case. Recall that the inexact update must satisfy (13), and for (49), we do not know
the optimal value Vi (xk, T (i)

0). So, to ensure that (13) is satisfied, we simply find the
inexact update using any algorithm that terminates on the duality gap. In particular,
we use the BCGP algorithm [42] to solve for the update at each iteration of ICD. The
BCGP algorithm is a gradient-based method that solves problems of the form (49) and
terminates on the duality gap. (Condition (19) in [43] is used to compute the duality
gap.) That is, we accept T (i)

δk
using a stopping condition of the same form as that given

by (15).
We conduct two numerical experiments. In the first experiment, A is of size 0.5N ×

N , where N = 105. In this case (48) is convex (but not strongly convex.) This means
that the complexity result of Theorem 5.1 applies. In the second experiment, A is of
size 2N × N , where N = 105. In this case (48) is strongly convex, and Theorem 5.2
applies.

The purpose of these experiments is to investigate the effect of different levels of
inexactness (different values of β) on the algorithm runtime. In particular, we used
three different values: β ∈ {10−4, 10−6, 10−8}. To make this a fair test, for each
problem instance, the block ordering was fixed in advance. (i.e., before the algorithm
begins, we form and store a vector whose kth element is a index between 1 and n that
has been chosen with uniform probability, corresponding to the block to be updated
at iteration k of ICD.) Then, ICD was run three times using this block ordering, once
for each value of β ∈ {10−4, 10−6, 10−8}. In all cases we use δ

(i)
k = β for all i and k.

Figure 1 shows the results of experiments 1 (M < N) and 2 (M > N), respectively.
The experiments were performed many times on simulated data, and the plots shown
are a particular instance, which is representative of the typical behavior observed
using ICD on this problem description. We see that when the same block ordering is
used, all algorithms essentially require the same number of iterations until termination
regardless of the parameter β, which is to be expected. The curves overlap in the first
and third plots, showing that changing that value of β does not affect the number of
iterations needed by the algorithm. On the other hand, clearly, using a smaller value of
β, corresponding to more ‘inexactness’ in the computed update, leads to a reduction
in the algorithm running time, without affecting the ultimate convergence of ICD.
This shows that using an inexact update (an iterative method) has significant practical
advantages.

123

J Optim Theory Appl

0
10

0
20

0
30

0
40

0
50

0

10
−4

10
−2

10
0

10
2

F(
x k)−

F*
 v

s I
te

ra
tio

ns

Ite
ra

tio
ns

F(xk)−F*

be
ta

 =
 1

0−4

be
ta

 =
 1

0−6

be
ta

 =
 1

0−8

0
20

40
60

80
10

0

10
−4

10
−2

10
0

10
2

F(
x k)−

F*
 v

s C
pu

tim
e

C
pu

tim
e

F(xk)−F*

be
ta

 =
 1

0−4

be
ta

 =
 1

0−6

be
ta

 =
 1

0−8

0
50

10
0

15
0

10
−4

10
−2

10
0

10
2

F(
x k)−

F*
 v

s I
te

ra
tio

ns

Ite
ra

tio
ns

F(xk)−F*

be
ta

 =
 1

0−4

be
ta

 =
 1

0−6

be
ta

 =
 1

0−8
0

10
20

30

10
−4

10
−2

10
0

10
2

F(
x k)−

F*
 v

s C
pu

tim
e

C
pu

tim
e

F(xk)−F*

be
ta

 =
 1

0−4

be
ta

 =
 1

0−6

be
ta

 =
 1

0−8

F
ig

.1
Pl
ot
s
of

th
e
ob

je
ct
iv
e
fu
nc
tio

n
va
lu
e
vs

th
e
nu

m
be
r
of

ite
ra
tio

ns
an
d
cp
ut
im

e
fo
r
pr
ob

le
m

(4
8)
.L

ef
t2

pl
ot
s:

A
is
0.
5

N
×

N
.R

ig
ht

2
pl
ot
s:

A
is
2

N
×

N
.I
n
al
lc
as
es

N
=

10
5
,n

=
10

an
d

N
i
=

10
4
fo
r
al
li

=
1,

..
.,

n

123

J Optim Theory Appl

9 Conclusions

In this paper, we have presented a new randomized coordinate descent method, which
can be applied to convex composite problems of the form (1), which allows the update
subproblems to be solved inexactly. We call this algorithm, the Inexact Coordinate
Descent (ICD) method. We have analyzed ICD and have developed a complete con-
vergence theory for it. In particular, we have presented iteration complexity results,
which give the number of iterations needed by ICD to obtain an ε-accurate solution,
with high probability. Some of the benefits of inexact updates include: (1) a wider
range of problems can be solved using inexact updates (because not all problems have
a closed-form solution); (2) the user has greater flexibility in solving the subproblems,
because iterative methods can be used; and (3) inexact updates are often cheaper and
faster to obtain than exact updates, so the overall algorithm running time is reduced.
Moreover, we have presented several numerical experiments to demonstrate the prac-
tical advantages of employing inexact updates.

Acknowledgments The first version of this paper appeared on arXiv in April 2013: arXiv:1304.5530v1.
This work was supported by the EPSRC Grant EP/I017127/1 ‘Mathematics for vast digital resources.’ P.R.
was also supported by the Centre for Numerical Algorithms and Intelligent Software (funded by EPSRC
Grant EP/G036136/1 and the Scottish Funding Council) and by the EPSRC Grant EP/K02325X/1.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Machart, P., Anthoine, S., Baldassarre, L.: Optimal computational trade-off of inexact proximal meth-
ods. Technical report HAL-00771722 (2012)

2. Schmidt, M., Roux, N.L., Bach, F.R.: Convergence rates of inexact proximal-gradient methods for
convex optimization. Adv. Neural Inf. Process. Syst. 24, 1458–1466 (2011)

3. Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)
4. Wright, S.J., Nowak, R.D., Figueiredo, M.A.T.: Sparse reconstruction by separable approximation.

IEEE Trans. Signal Process. 57, 2479–2493 (2009)
5. Qin, Z., Scheinberg, K., Goldfarb, D.: Efficient block-coordinate descent algorithms for the group

lasso. Math. Program. Comput. 5(2), 143–169 (2013)
6. Simon, N., Tibshirani, R.: Standardization and the group lasso penalty. Stat. Sin. 22(3), 983–1002

(2012)
7. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6),

717–772 (2009)
8. Recht, B., Ré, C.: Parallel stochastic gradient algorithms for large-scale matrix completion. Math.

Program. Comput. 5(2), 201–226 (2013)
9. Richtárik, P., Takáč, M.: Efficient serial and parallel coordinate descent methods for huge-scale truss

topology design. Oper. Res. Proc. 2011, 27–32 (2012)
10. Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separableminimization.Math.

Program. 117(1), 387–423 (2009)
11. Wright, S.J.: Accelerated block-coordinate relaxation for regularized optimization. SIAM J. Optim.

22(1), 159–186 (2012)
12. Nesterov, Y.: Gradient methods for minimizing composite functions. Math. Program. 140(1), 125–161

(2012)

123

http://arxiv.org/abs/1304.5530v1
http://creativecommons.org/licenses/by/4.0/

J Optim Theory Appl

13. Nesterov, Y.: Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
J. Optim. 22(2), 341–362 (2012)

14. Richtárik, P., Takáč, M.: Iteration complexity of randomized block-coordinate descent methods for
minimizing a composite function. Math. Program. 144(1), 1–38 (2014)

15. Takáč, M., Bijral, A., Richtárik, P., Srebro, N.: Mini-batch primal and dual methods for SVMs. JMLR
W&CP 28(3), 1022–1030 (2013)

16. Needell, D., Tropp, J.: Paved with good intentions: analysis of a randomized Kaczmarz method. Linear
Algebra Appl. 441, 199–221 (2014)

17. Leventhal, D., Lewis, A.S.: Randomized methods for linear constraints: convergence rates and condi-
tioning. Math. Oper. Res. 35(3), 641–654 (2010)

18. Strohmer, T., Vershynin, R.: A randomized Kaczmarz algorithm with exponential convergence. J.
Fourier Anal. Appl. 15, 262–278 (2009)

19. Necoara, I., Patrascu, A.: A random coordinate descent algorithm for optimization problems with
composite objective function and linear coupled constraints. Comput. Optim. Appl. 57(2), 307–337
(2014)

20. Richtárik, P., Takáč, M.: Parallel coordinate descent methods for big data optimization.Math. Program.
156(1), 433–484 (2016)

21. Richtárik, P., Takáč, M.: Efficiency of randomized coordinate descent methods on minimization prob-
lems with a composite objective function. In: 4thWorkshop on Signal Processing with Adaptive Sparse
Structured Representations (2011)

22. Tseng, P.: Convergence of block coordinate descent method for nondifferentiable minimization. J.
Optim. Theory Appl. 109, 475–494 (2001)

23. Saha, A., Tewari, A.: On the nonasymptotic convergence of cyclic coordinate descent methods. SIAM
J. Optim. 23(1), 576–601 (2013)

24. Shalev-Schwartz, S., Zhang, T.: Stochastic dual coordinate ascent methods for regularized loss mini-
mization. J. Mach. Learn. Res. 14, 567–599 (2013)

25. Devolder, O., Glineur, F., Nesterov, Y.: First-ordermethods of smooth convex optimizationwith inexact
oracle. Math. Program. 146(1), 37–75 (2014)

26. Devolder, O., Glineur, F., Nesterov, Y.: Intermediate gradient methods for smooth convex problems
with inexact oracle. Technical report 2013017, Université catholique de Louvain, Center for Operations
Research and Econometrics (CORE) (2013)

27. Dvurechensky, P., Gasnikov, A.: Stochastic intermediate gradient method for convex problems with
inexact stochastic oracle. Technical report, Moscow Institute of Physics and Technology (2014).
ArXiv:1411.2876v1 [math.OC]

28. Necoara, I., Nedelcu, V.: Rate analysis of inexact dual first order methods: application to distrib-
uted MPC for network systems. Technical report, Politehnica University of Bucharest, Polytechnic
University of Bucharest, Romania (2013). ArXiv:1302.3129v1 [math.OC]

29. Bento, G.C., Neto, J.X.D.C., Oliveira, P.R., Soubeyran, A.: The self regulation problem as an inexact
steepest descent method for multicriteria optimization. Eur. J. Oper. Res. 235(3), 494–502 (2014)

30. Bonettini, S.: Inexact block coordinate descent methods with application to non-negative matrix fac-
torization. IMA J. Numer. Anal. 31, 1431–1452 (2011)

31. Hua, X., Yamashita, N.: An inexact coordinate descent method for the weighted l1-regularized convex
optimization problem. Technical report, School of Mathematics and Physics, Kyoto University, Kyoto
606–8501, Japan (2012)

32. Cassioli, A., Lorenzo, D.D., Sciandrone, M.: On the convergence of inexact block coordinate descent
methods for constrained optimization. Eur. J. Oper. Res. 231(2), 274–281 (2013)

33. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course. Applied Optimization.
Kluwer Academic Publishers, Berlin (2004)

34. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl.
Bur. Stand. 49, 409–436 (1952)

35. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14,
1–137 (2005)

36. Golub, G.H., Ye, Q.: Inexact preconditioned conjugate gradient method with inner–outer iteration.
SIAM J. Sci. Comput. 21(4), 1305–1320 (1999)

37. Gratton, S., Sartenaer, A., Tshimanga, J.: On a class of limited memory preconditioners for large scale
linear systems with multiple right-hand sides. SIAM J. Optim. 21(3), 912–935 (2011)

123

http://arxiv.org/abs/1411.2876v1
http://arxiv.org/abs/1302.3129v1

J Optim Theory Appl

38. Castro, J., Cuesta, J.: Quadratic regularization in an interior-point method for primal block-angular
problems. Math. Program. 130(2), 415–445 (2011)

39. Gondzio, J., Sarkissian, R.: Parallel interior-point solver for structured linear programs.Math. Program.
96(3), 561–584 (2003)

40. Schultz, G.L., Meyer, R.R.: An interior point method for block angular optimization. SIAM J. Optim.
1(4), 583–602 (1991)

41. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Softw.
38(1), 1–25 (2011)

42. Broughton, R., Coope, I., Renaud, P., Tappenden, R.: A box-constrained gradient projection algorithm
for compressed sensing. Signal Process. 91(8), 1985–1992 (2011)

43. Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: applica-
tion to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1(4), 586–597
(2007)

123

	Inexact Coordinate Descent: Complexity and Preconditioning
	Abstract
	1 Introduction
	2 Problem and Contributions
	2.1 A New Algorithm: Inexact Coordinate Descent (ICD)
	2.2 High Probability Iteration Complexity Results
	2.3 Generalization of Existing Results

	3 Assumptions and Notation
	4 The Algorithm
	4.1 Generic Description
	4.2 Inexact Update
	4.3 The Role of α and β in ICD
	4.4 Computing the Inexact Update
	4.5 Technical Result

	5 Complexity Analysis: Convex Composite Objective
	5.1 Convex Case
	5.2 Strongly Convex Case

	6 Complexity Analysis: Smooth Objective
	6.1 Convex Case
	6.2 Strongly Convex Case

	7 Practical Aspects of an Inexact Update
	7.1 Solving Smooth Problems via ICD
	7.2 Solving Non-smooth Problems via ICD

	8 Numerical Experiments
	8.1 Problem Description for a Smooth Objective
	8.2 A Numerical Experiment for a Non-smooth Objective

	9 Conclusions
	Acknowledgments
	References

