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Cortisol regulates the paracrine action of
macrophages by inducing vasoactive gene
expression in endometrial cells
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ABSTRACT

The human endometrium undergoes inflammation and
tissue repair during menstruation. We hypothesized that
the local availability of bioactive glucocorticoids plays an
important role in immune cell-vascular cell interactions in
endometrium during tissue repair at menstruation, acting
either directly or indirectly via tissue resident macro-
phages. We sought to determine whether endometrial
macrophages are direct targets for glucocorticoids;
whether cortisol-treated macrophages have a paracrine
effect on angiogenic gene expression by endometrial
endothelial cells; and whether endometrial macrophages
express angiogenic factors. Human endometrium (n = 41)
was collected with ethical approval and subject consent.
Donor peripheral blood monocyte-derived macrophages
were treated with estradiol, progesterone, or cortisol. The
effect of peripheral blood monocyte-derived macrophage
secretory products on the expression of angiogenic RNAs
by endothelial cells was examined. Immunofluorescence
was used to examine localization in macrophages and
other endometrial cell types across the menstrual cycle.
Endometrial macrophages express the glucocorticoid
receptor. In vitro culture with supernatants from cortisol-
treated peripheral blood monocyte-derived macrophages
resulted in altered endometrial endothelial cell expression
of the angiogenic genes, CXCL2, CXCL8, CTGF, and
VEGFC. These data highlight the importance of local
cortisol in regulating paracrine actions of macrophages in
the endometrium. CXCL2 and CXCL8 were detected in
endometrial macrophages in situ. The expression of these
factors was highest in the endometrium during the
menstrual phase, consistent with these factors having a
role in endometrial repair. Our data have indicated that
activation of macrophages with glucocorticoids might
have paracrine effects by increasing angiogenic factor

Abbreviations: CD = cluster of differentiation, CTGF = connective tissue
growth factor, GR = glucocorticoid receptor, HEEC = human endometrial
endothelial cel, HESC = human endometrial stromal cell, HSD = hydroxy-
steroid dehydrogenase, MMP = matrix metalloproteinase, MR = mineralo-
corticold receptor, REC = Research Ethics Committee
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expression by endometrial endothelial cells. This might
reflect possible roles for macrophages in endometrial
repair of the vascular bed after menstruation.

J. Leukoc. Biol. 99: 000-000; 2016.

Introduction

The endometrium is a complex multicellular steroid-target
tissue that is repaired each month after menses without residual
scarring or loss of function. Therefore, it provides an accessible
in vivo human model of inflammation and efficient tissue
repair. Tissue repair involves resolution of inflammation,
angiogenesis, tissue remodeling, and formation of new tissue.
Constituent cell types in the endometrium include stromal,
epithelial, vascular, and immune cells. Dynamic cell-to-cell
dialogue is essential to execute efficient endometrial shedding
and subsequent re-epithelialization and stromal expansion,
processes that are steroid regulated.

The ovarian steroid hormones estradiol and progesterone are
well established as regulators of human endometrial function.
The withdrawal of circulating estradiol and progesterone in the
late secretory phase is associated with a striking influx of
leukocytes, notably neutrophils and macrophages [1-3]. Macro-
phages are known to have a critical role in tissue repair in many
tissues, including adult skin [4] and liver [5]. More than 15 yr
ago, data were reported that provided evidence in support of a
key role for endometrial macrophages in limiting the inflam-
matory response during endometrial shedding [6]. We recently
reviewed the evidence that macrophages secrete factors that can
influence endometrial repair [2]. Reciprocally, macrophage
function can be influenced via endometrial cells, releasing
factors such as M-CSF and GM-CSF [7, 8]. MMP-9, MMP-12, and
MMP-14 and plasminogen activator instigate the breakdown of
the endometrium at menstruation and are produced by
endometrial macrophages premenstrually [9-11]. A recent study
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LB
has also reported that an additional metalloproteinase, MMP-27,
is expressed in CD45"/CD206"/CD163" macrophages and that
these cells were most abundant before menstruation [12]. Taken
together, these results suggest that endometrial macrophages

might play a role in both stimulating and restricting the
inflammatory response during endometrial shedding. The role

of macrophages during the resolution of menstruation has not
been delineated.

In addition to ovarian-derived estradiol and progesterone,
recent evidence has suggested that locally generated steroids,
including estrogens [13] and glucocorticoids, might also play a
significant role in endometrial function [14]. Locally pro-
duced glucocorticoids have been shown to limit inflammation
in other tissue sites [15], mediated by the binding of cortisol
to the nuclear GR and MR to exert its effects. In the
endometrium, we have previously immunolocalized GRs to
stromal, endothelial, and uterine NK cells [16]. The MR has
been identified in glandular epithelial cells [17]. Previous
studies have shown glucocorticoids to inhibit angiogenesis
both in vitro and in vivo [18-21]. The enzyme 113-HSD1
produces cortisol by the enzymatic reduction of cortisone; the
reverse reaction is catalyzed by 113-HSD2. Endometrial
expression of the enzyme 113-HSD1 has been reported to be
upregulated at the time of menses, coincident with the
maximal concentrations of GR mRNA in endometrial tissue
homogenates [17]. Enhanced local inactivation of cortisol by
11B-HSD2 might be present in the endometrium of women
with heavy menses [22], because the level of HSD11B2 mRNA
is 2.5-fold higher in these women than in healthy controls,
predicting for substantially lower local endometrial cortisol
concentrations. Tissue-resident human endometrial macro-
phages have been shown to express the B-isoform of the
estrogen receptor [23]; however, to our knowledge, specific
GR immunoreactivity in this immune cell type in the human
endometrium has not been previously described.

We hypothesized that the local availability of bioactive
glucocorticoids plays an important role in immune cell-vascular
cell interactions in the human endometrium during tissue
repair at menstruation. We demonstrate that endometrial
macrophages express GRs and report a novel, macrophage-
derived cortisol-dependent role in the regulation of angiogen-
esis within the endometrium.

MATERIALS AND METHODS

Patients and endometrial tissue samples

Endometrial biopsies (n = 41) were collected from women after written
informed consent and local REC approval (REC approval code, LREC/07/
S1103/29). Samples were collected from the uterine cavity using an endometrial
suction curette (Pipelle, Laboratorie CCD, Paris, France) from women of
reproductive age attending gynecologic outpatient departments across the
National Health Service, Lothian, Scotland, United Kingdom. All women
reported regular menstrual cycles (25-35 d) and no exogenous hormone
exposure for 3 mo before biopsy. Women with known endometriosis and
submucosal fibroids were excluded. The tissue was divided, fixed in neutral-
buffered formalin for wax embedding, and placed in RNA-stabilizing reagent for
PCR analysis. The biopsies were classified into phases of the menstrual cycle
according to histologic dating [24], the reported last menstrual period, and the
serum progesterone and estradiol concentrations at time of biopsy as measured
by radioimmunoassay (Table 1).
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TABLE 1. Details of endometrial biopsies used, including the day
of the menstrual cycle and mean values for circulating estrogen
and progesterone

Day of cycle Mean E2 Mean P4
Variable of biopsy (pmol/1) (nmol/1)
Proliferative 3-17 339.8 3.2
Early secretory 10-21 462.6 54.6
Mid secretory 20-26 527.3 73.3
Late secretory 22-29 276.3 45.3
Menstrual 1-6 196.5 29

E2, estrogen; P4, progesterone.

Dual immunofluorescence

Endometrial sections and positive control tissue sections (placenta, kidney, colon;
3-pum thick) were processed, as previously described [25]. In brief, the sections
were exposed to xylene and rehydrated. Antigen retrieval (30 min, with increases
to 126°C; 10 min, decreasing to 90°C, followed by a gradual cool down) was
performed using sodium citrate (pH 6). Endogenous peroxidase activity was
blocked with 3% HyO,. Normal goat serum was used as a protein block, and the
sections were incubated with mouse monoclonal anti-CD68 (a pan-macrophage
antigen; Dako, Glostrup, Denmark) at a 1:1000 dilution overnight at 4°C. Mouse
IgG isotype was used as a negative control. Goat anti-mouse peroxidase secondary
antibody (Abcam, Cambridge, United Kingdom) at a 1:500 dilution was applied
for 30 min, followed by incubation with the TSA Cyanine 3 Tyramide System
(Perkin Elmer, Waltham, MA, USA) for 10 min. The sections were microwaved
with antigen retrieval buffer for 2 min (when subsequent antibodies raised in
mouse were used) and incubated with appropriate normal serum (Supplemental
Table 1) for 10 min, followed by the second primary antibody (Supplemental
Table 1) overnight at 4°C. The sections were incubated with appropriate
secondary antibodies (Supplemental Table 1) for 30 min, streptavidin Alexa
Fluor 488 for 1 hr, followed by DAPI (Sigma-Aldrich, Dorset, United Kingdom)
for 10 min. The sections were mounted with Permafluor (Thermo Scientific,
Waltham, MA, USA) and analyzed using a Zeiss LSM710 confocal microscope
system (Carl Zeiss, Jena, Germany).

In vitro maturation of macrophage subtypes and
generation of macrophage-conditioned media

Peripheral blood was obtained from consenting women taking the combined oral
contraceptive pill (n =9), hereafter described as donors, with local REC approval
(REC approval no. 08/S1103/38). The blood was collected in 3.8% sodium
citrate, and peripheral mononuclear blood cells were then isolated using a
Percoll gradient. Monocytes were further separated by negative magnetic bead
separation selecting for CD3-, CD7-, CD16-, CD19-, CD56-, CD123-, and
glycophorin A-positive (Miltenyi Biotec, Cologne, Germany) cells, allowing
elution of monocytes. The monocytes were cultured in RPMI 1640 medium
(Sigma-Aldrich, St. Louis, MO, USA) with the addition of M-CSF (216.21 nM) for
4 d to differentiate the cells into macrophages. Macrophages were then treated
with RPMI containing M-CSF alone (216.21 nM; MO0) or with the addition of GM-
CSF (285.71 nM) and IFN-y (59.17 mM; M1), cortisol (1 wM), estradiol (10 nM),
or progesterone (10 nM; M2) for an additional 48 h (Supplemental Table 2).
Treatments to induce polarization of macrophages followed established
protocols; macrophages stimulated with glucocorticoids and other steroids are
grouped into the M2 or “nonclassic” phenotypic classification [26]. By stimulating
macrophages with different steroids, we aimed to simulate the endocrine
environment of the menstrual cycle. Thereafter, the cells were washed twice (to
remove excess ligand) and resuspended in serum-free RPMI for 24 h, after which
the supernatant was stored as conditioned media (see HEECs section).

HEECs

The HEECs were a gift from Dr. Graciela Krikun (Yale University School
of Medicine); the isolation of these cells has been previously described
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[27, 28]. HEECs were grown without serum for 48 h, and then treated with
conditioned media from macrophage cultures (see above) for 24 h.
Controls were treated with RPMI alone to determine the basal expression
of angiogenic genes in HEEGs.

Angiogenesis array

Total RNA was extracted from HEECs treated with peripheral blood
monocyte-derived macrophage-conditioned media (n = 3 donors) using an
RNeasy Mini Kit (Qiagen Ltd, Sussex, United Kingdom) according to the
manufacturer’s instructions. Samples were treated for DNA contamination via
DNA digestion during RNA purification. After extraction, RNA was quantified
using a spectrophotometer (NanoDrop 1000, version 3.7; Thermo Scientific,
Wilmington, DE). RNA samples were reverse transcribed using a cDNA
synthesis kit (SuperScript VILO c¢DNA synthesis Kit and Master Mix;
Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions.
The thermal cycling conditions were 20 s at 25°C, 60 s at 42°C, and 5 s at 95°C.
A TagMan Low Density Human Angiogenesis Array (Applied Biosystems,
Foster City, CA, USA) was used to analyze 94 genes involved in angiogenesis
according to the manufacturer’s instructions and run on a TagMan Low-
Density Array 396 well block.

Quantitative RT-PCR

To validate the array and to determine the angiogenic gene levels within the
human endometrium, we performed complementary single-gene TagMan
quantitative RT-PCR analysis. In brief, a reaction mix was prepared containing
TaqMan Supermix (5.5 mM MgCly, 200 M dATP, 200 uM dCTP,

200 uM dGTP, and 400 uM dUTP), ribosomal 18S primers/probe (Life
Technologies, Carlsbad, CA, USA), and reaction-specific forward and reverse
primers and probes (Universal Probe Library (Roche, Indianapolis, IN, USA)
for CXCL2, CXCLS, CTGF, and VEGIFC (Supplemental Table 3). A no-template
control (with water instead of cDNA) was included on each plate. PCR was
performed using an Applied Biosystems Prism 7900 instrument, and the
results were analyzed in triplicate using Sequence Detector, version 2.3, and
the 2AACt method [29]. Expression of target mRNA was normalized to RNA
loading for each sample using 18S ribosomal RNA as an internal standard.

Statistical analysis

For cell culture, mRNA results are expressed as the xfold increase, where
relative expression of mRNA after treatment was divided by the relative
expression after vehicle treatment. Data are presented as box and whisker
plots, the median is indicated, and the whiskers represent the minimum and
maximum values. Significant differences among raw data (2AACt values) were
determined using the Kruskal-Wallis nonparametric test with Dunn’s multiple
comparison post-test (Prism, version 4.02; GraphPad Software, Inc., San
Diego, CA, USA). A value of P < 0.05 was considered significant.

Proliferative
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-
St '
=

.’-T
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RESULTS
Endometrial macrophages contain GRs

We performed immunohistochemical analysis to determine
whether endometrial macrophages express GRs and MRs.
Double immunofluorescence for CD68 and GRs revealed
nuclear localization of GRs in CD68" macrophages in both
the secretory and the menstrual phases but not during the
proliferative phase (Fig. 1A-D). The expression of MRs was
detected in some endometrial cell types and in the positive
control tissue (colon) but was not colocalized with CD68
macrophages (Fig. 1IE-H), suggesting that the local increase
in cortisol observed at menstruation has the potential to
affect macrophage function via activation of GRs but

not MRs.

Cortisol-treated macrophages alter the angiogenic
profile of HEECs

Peripheral blood monocytes were treated with M-CSF in
order to stimulate maturation into macrophages. These
macrophages were further treated with either M-CSF alone
or media containing M-CSF and GM-CSF/IFN-y, estradiol,
progesterone, or cortisol for 48 h (Supplemental Table 2)
using established protocols [30, 31]. They were then
cultured for another 24 h with serum-free media to generate
conditioned media, which was used to treat HEECs. Control
HEECs were exposed to RPMI medium that had not been
used to culture macrophages. Complementary DNA reverse
transcribed from HEEC mRNA was used on a TaqMan Low-
Density Array angiogenesis-specific array, which highlighted
69 genes that were altered by conditioned media from
different macrophage subpopulations (Supplemental Fig. 1).
Notably, stimulation by macrophage-conditioned media was
lacking for many of the genes on the targeted array, with the
exception of CXCL2 and CXCLS8 (IL-8). We validated the
expression of these 69 genes using individual gene specific
assays and found that the concentrations of mRNAs encoded
by VEGFC, CTGF, CXCL2, and CXCLS8 were all significantly
altered by media from cortisol-treated macrophages

(Fig. 2A-D), with no evidence of estradiol or progesterone
eliciting a similar response to that of cortisol.

Figure 1. Endometrial macrophages contain GRs.
Dual staining immunofluorescence revealed GRs
(green) are present in endometrial macrophages
(CD68", red) during the secretory (B; n=9) and
menstrual (C; » = 3) phases but not in the
proliferative phase (A; n = 5). Dual staining
immunofluorescence revealed MRs (green) were
not present in macrophages (CD68, red) in
endometrium during the proliferative (E), secre-
tory (F), and menstrual (G) phases. Tonsil (D)
and colon (H) were used as positive control
tissues. (Inset) Negative control. Arrows highlight
endometrial macrophages expressing GRs. Scale
bars, 50 pwm.

Tonsil
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Vascular remodeling factors are expressed by
endometrial macrophages

Expression of CXCL2 has not been previously characterized in
the human endometrium. We, therefore, extended our in vitro
studies to examine its expression in our human endometrial
tissue data set. Analysis of total RNA concentrations in
endometrial tissue homogenates revealed maximal expression
during the menstrual phase (Fig. 3A). Immunohistochemistry
identified CXCL2 in the cytoplasm of glandular epithelial cells
and endothelial cells (Fig. 3B-M), further supporting our gene
expression data. Immunostaining for CXCL2 appeared most
intense during the late secretory (Fig. 3H and I) and
menstrual (Fig. 3] and K) phases compared with that in the
tissues obtained during the proliferative (Fig. 3B and C), early
secretory (Fig. 3D and E), and mid-secretory (Fig. 3F and G)
phases. Double fluorescent immunohistochemistry demon-
strated that both CXCL2 and CXCLS8 are localized to
endometrial macrophages at all stages of the menstrual cycle,
underlining the potential for these cells to act as the source of
these angiogenic factors (Fig. 4A-]).

DISCUSSION

In the present study, we have shown that endometrial macro-
phages express the GR and display a phenotype consistent with a
role in the regulation of endometrial angiogenesis. We found
that culture supernatants from cortisol-treated macrophages
stimulated changes in the concentrations of mRNA encoding
angiogenic genes in endothelial cells. Our data provide new
insights into the expression and regulation of the angiogenic
factor CXCL2, revealing that its mRNA concentration was

>

highest at menses. Also, the protein was present in multiple cell
types, including endometrial endothelial cells and macrophages.
Incubation of macrophages with cortisol resulted in the secretion
of factors that stimulated increased expression of CXCL2 by
endothelial cells, highlighting the potential for cortisol to act
indirectly to change the gene expression of key angiogenic
factors in the vasculature of the endometrium.

Progesterone withdrawal is the stimulus for menstruation;
however, the progesterone receptor has not been identified in
macrophages [32]. Therefore, macrophage function is con-
sidered to be only indirectly regulated by progesterone. We
have demonstrated that endometrial macrophages express
the GR. Cortisol acts via the GR and has numerous well-
documented anti-inflammatory effects [33]. Within individual
tissues, the glucocorticoid concentrations are regulated by the
expression of the 113-HSD enzymes, with 113-HSD1 increasing
local tissue availability of cortisol and 113-HSD2 decreasing
local tissue availability of this GR ligand. We have previously
shown that endometrial HSD11B1 mRNA levels are signifi-
cantly increased in endometrial tissue during menstruation,
consistent with a role in the resolution and limitation of
menstrual inflammation [17]. Because of the presence of GRs
in endometrial macrophages, it is plausible that increased
local cortisol levels have a direct effect on the function of
macrophages, the numbers of which are increased during this
phase of the menstrual cycle [2]. In vitro experiments treating
peripheral blood monocyte-derived macrophages with syn-
thetic glucocorticoids have shown the promotion of phagocy-
tosis of apoptotic cells by macrophages [34].

Our gene expression studies involved in vitro treatment of
donor peripheral blood-derived monocytes with cortisol, en-
abling us to model the menstrual events occurring in vivo. We
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acknowledge that these cells do not have an identical phenotype
to endometrial tissue resident cells, but they were invaluable for
our in vitro studies. We found that conditioned media from
cortisol-exposed macrophages regulates the angiogenic profile of
HEEGs. This, in turn, suggests that exposure of macrophages to
cortisol during the menstrual phase is likely to regulate
angiogenesis via endothelial cells.

Cortisol has previously been shown to inhibit angiogenesis by
the induction of anti-angiogenic gene expression [22]. It is
highly likely that cortisol acts in a timely and cell-specific manner
during the cycle to finely coordinate cell function. We suggest
that cortisol can act directly on endometrial endothelial cells to
inhibit angiogenesis and limit excessive bleeding, but it might
also act on macrophages to promote endometrial repair and
vascular bed replenishment. However, pro- and anti-angiogenic
genes are thought to work in a synchronous balance [35], as
evidenced previously in endometrial endothelial cells [36]. We
proceeded to show that incubation of media containing products
secreted by cortisol-treated macrophages induced changes in
proangiogenic gene expression in endometrial endothelial cells.
This finding is consistent with data showing that alternatively
activated macrophages stimulate angiogenesis in endometriotic
lesions [37]. One notable factor that we identified was CXCL2.
CXCL2 is an important regulator of angiogenesis and thus is an
attractive target when attempting to determine the angiogenic
factors regulating the mechanisms involved in both breakdown
and repair of blood vessels at menstruation. CXCL2 is a
chemokine classically secreted by macrophages and is a potent
chemoattractant to a number of immune cells such as

www jleukbio.org
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Figure 3. Expression of CXCL2 in human endome-
trial tissue is highest during the menstrual phase
of the cycle. (A) The concentrations of CXCL2
mRNA in endometrial tissue homogenates were
highest during the menstrual phase. Values are
presented relative to the 18S ribosomal RNA
endogenous control and to a placental sample as
an internal control. (B and C) Proliferative
(n=05); (D and E) early secretory (n = 4); (F and
G) mid-secretory (n = 4); (H and I) late secretory
(n=4); and (J and K) menstrual (n = 4; *P = 0.05).
Immunohistochemical staining for CXCL2 mir-
rored the results obtained for mRNA. Weak
staining was observed during the proliferative

(B and C; n = 5) and early secretory (D and E; n = 3)
phases. Immunostaining appeared more intense as
the cycle progressed into the mid-secretory (F and
G; n = 3), late secretory (H and I; n = 3), and
menstrual (J and K; »n = 3) phases with clear
immunopositive staining of decidualized stromal
cells in the latter. Kidney (L and M) was used as a
positive control. (Insets) Negative IgG isotype
controls. Scale bars, 50 pm. GE, glandular epithe-
lium; St, stromal compartment; VE, vascular
endothelial cells. Higher magnification images

(G, E, G, LK, and M).

polymorphonuclear leukocytes [38] and hematopoietic stem
cells [39]. Regulation of the proangiogenic factor CXCL2 has
been shown in tumor progression, vessel formation during tumor
growth [40], and successful wound healing [41]. In the present
study, we have described menstrual cycle stage-dependent
expression of CXCL2 in endometrial homogenates, with highest
expression occurring during menses. This is consistent with our
previous published data of the expression of CXCL8 and CTGF
[25, 42]. This maximal expression of angiogenic factors coincides
with the time of endometrial repair and local angiogenesis.

Because the endometrial macrophage expresses the B-isoform
of the estrogen receptor, its function might be influenced by
estrogen during the proliferative and secretory phases. We have
demonstrated that the effects of estradiol had less functional
significance than those seen with cortisol pretreatment. It
remains to be determined whether estradiol has a role in priming
endometrial macrophages before cortisol exposure. Evidence has
also shown that progestins, including progesterone, might
mediate their actions via other nuclear receptors, including GRs
[43, 44]; thus, further investigation into the context of
macrophage activation in endometrium is warranted. Our
findings have indicated that it is likely that increased local levels
of cortisol at menstruation have an important role in regulating
endometrial angiogenesis.

In conclusion, the data presented support a role for
macrophages in endometrial function during menstruation
and subsequent endometrial repair. Our data are consistent
with the idea that local glucocorticoids regulate macrophage
function in this complex reproductive tract tissue, which is
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http://www.jleukbio.org

CDB8/CXCL2

Figure 4. Immunolocalization revealed expression
of vasoactive factors by human endometrial
macrophages. Double immunofluorescent stain-
ing of endometrial macrophages for CD68 (red;
B and G) and CXCL2 (green; C), or CXCLS8
(green; H) revealed overlapping expression

(D and I, respectively). Note that coexpression
was particularly striking when individual cells

CD68/CXCL8

were examined in enlarged/cropped images
(E, CD68"/CXCL2"; ], CD68"/CXCL8"). (Insets)
Negative IgG isotype controls. DAPI (blue) nuclear
staining (A and F). Scale bars, 50 wm, n = 17.

also subject to exposure to other sex steroid hormones
(estradiol and progesterone). These observations comple-
ment the published data regarding the other immune cells
present in the human endometrium [45-47]. We believe our
data provide evidence that cortisol-exposed macrophages play
a role in menses and endometrial repair but recognize the
need for future studies on the regulation of GR expression on
endometrial macrophages. Ongoing work will delineate
whether aberrant immune cell function during menstruation
is involved in common menstrual disorders, such as heavy
menstrual bleeding.
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