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Dependent Types and

Fibred Computational E↵ects

Danel Ahman1? Neil Ghani2 Gordon D. Plotkin1

1 LFCS, University of Edinburgh, Scotland
2 MSP Group, University of Strathclyde, Scotland

Abstract. We study the interplay between dependent types and gen-
eral computational e↵ects. We define a language with both value types
and terms, and computation types and terms, where types depend only
on value terms. We use computational ⌃-types to account for type-
dependency in the sequential composition of computations. Our language
design is justified by a natural class of categorical models. We account
for both algebraic and non-algebraic e↵ects. We also show how to extend
the language with general recursion, using continuous families of cpos.

1 Introduction

While dependent types have proven very useful on their own, for both program-
ming and theorem proving, one also seeks a general way to combine them with
computational e↵ects, such as I/O, state, continuations, or recursion, so as to
write more practical, concise, or clearer programs. However, despite the study of
each of the two fields being well advanced, their combination presents di�culties,
as recognised already by Moggi [25].

One puzzling problem is what to make of a type A(M) if M can raise an
e↵ect. We do not know a general denotational semantics for such types, though
there may be one (there is one for local names [28]). Pragmatically, the situa-
tion depends on the nature of the computational e↵ects considered. For e↵ects
not requiring interaction with the program runtime, such as local names [28] or
general recursion [7], one need not restrict M , as computing A(M) then only de-
pends on static information. However, this does not work well in general, as some
e↵ects, e.g., I/O, do crucially depend on interaction with the program runtime,
and so then will the computation of A(M). As one consequence, extending a
coarse-grained language, e.g., Moggi’s computational lambda calculus [24], with
dependent types seems not to give a general solution, as the natural elimination
rule for ⇧-types produces types of the form A(M) (and cf. Levy [20, §12.4.1]).

A natural move to try to solve these problems is to allow types to depend
only on value terms. This is the route we take in this paper and it does lead to a
natural general semantics. While at first such a choice might seem limiting, we
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Foundation in collaboration with the Estonian Ministry of Education and Research.



recover dependency on the statically available information about computational
e↵ects by inspecting the structure of thunked computations.

To ensure that types depend only on values, we make a clear distinction
between values and computations, using separate classes of value types A and
computation types C, as in Call-By-Push-Value (CBPV) [20] and the Enriched
E↵ect Calculus (EEC) [9]. Then the variables in types range only over value
types, as desired. However, a further problem then arises: the usual typing rule

� ` M : FA �, x :A ` N(x) : C(x)

� ` M to x in N(x) : C(x)
(⇤)

for sequential composition of computations is not correct as x may occur freely
in C(x) in the conclusion. An evident move here is to prohibit x from occurring
freely in C, as, e.g., advocated by Levy [20, §12.4.1] and Brady [5]. However,
this seems too restrictive: to make the most of dependent types, it is desirable
for the type of an e↵ectful program to depend on values produced by preceding
computations. As an example, consider combining monadic parsing [16] with
dependent types and applying it to the parsing of well-typed syntax. Then it is
natural to decompose the parsing of function applications into a parser for the
function and a parser for the argument, where the type of the latter crucially
depends on the domain of the type of the parsed function.

The approach we take is to keep the restricted form of (*), but to also intro-
duce computational ⌃-types ⌃x :A.C(x), whose use is inspired by the algebraic
treatment of computational e↵ects [31]. To explain these, suppose computa-
tion types denote algebras for the algebraic theory of boolean-valued read-only
store [35, §III.A]. Now let us consider the composite e↵ectful program

�

(return 2) ? (return 3)
�

to x in M(x)

where x :Nat ` M(x) : C(x). Here we see that, after looking up the bit with ?,
this program either evaluates as M(2), which has type C(2), or as M(3), which
has type C(3). So the whole computation yields an element of the coproduct
of algebras C(2) + C(3). This pattern also recurs with other computational ef-
fects, and dependency on value types other than natural numbers: hence the
computational ⌃-types. These types enable us to type sequential composition
by “closing-o↵” the free variable x in C(x): using the hypothesis of (*) we derive

�, x :A ` hx,N(x)i : ⌃x :A.C(x)

using the introduction rule for computational ⌃-types, and then derive

� ` M to x in hx,N(x)i : ⌃x :A.C(x)

using the restricted form of (*).
We aim to put these ideas together at a foundational level, comparable with

the levels at which the two fields have been studied separately. In contrast,
the existing work on combining dependent types with first-class computational
e↵ects has concerned only particular kinds of e↵ects (e.g., [7, 26, 28, 37]). Other
authors have used dependent types in existing languages to represent e↵ects
using DSLs (e.g., [5, 13, 23]). There has, however, been no work combining
dependent types with general, first class computational e↵ects.



In Section 2, we define a small dependently-typed language with computa-
tional e↵ects, combining features from Martin-Löf type theory (MLTT) [22] and
computational languages separating values and computations, such as CBPV
or EEC. The language design we propose is justified in Section 3 in terms of
a sound and complete interpretation in a class of categorical models naturally
combining i) comprehension categories arising from the semantics of dependent
types; and ii) adjunctions arising from the semantics of computational e↵ects.
In Section 4, we extend the language and its semantics with algebraic e↵ects. In
Section 5, we extend the language and its semantics with general recursion.

2 A dependently-typed e↵ectful language

We now define the syntax and equational theory of our dependently-typed ef-
fectful language, making a clear distinction between values and computations,
at both type and term levels: the value fragment of our language is based on
MLTT; the computational fragment is greatly influenced by CBPV and EEC.

Variables. We assume two countable sets: of value variables, ranged over by
x, y, . . .; and of computation variables, ranged over by z, . . .. The former are
treated as in MLTT: they are intuitionistic, and enjoy structural rules of weak-
ening and contraction. The latter, on the other hand, are treated linearly, as in
EEC, and play a crucial role in the elimination rule for computational ⌃-types.

Types. Our value types A,B, . . . are given as in MLTT, except for the type UC
of thunks, familiar from CBPV. To keep the presentation simple and focussed
on the computational fragment of our language, we omit value sum types and
general inductive types, both of which are easily added. Our computation types

C,D, . . . generalise those of CBPV and EEC. The grammar of types is

A ::= Nat | 1 |⌃x :A.B |⇧x :A.B | IdA(V,W ) |UC C ::= FA |⌃x :A.C |⇧x :A.C

Here, FA is the type of computations returning values of type A. The compu-
tational ⌃- and ⇧-types can be viewed as the natural dependently-typed gen-
eralisations of EEC’s computational tensor and function types: !A⌦C, A ! C.
Rules defining well-formed value contexts ` � , value types � ` A and computa-
tion types � ` C are given in Figure 1.

Terms. We let V,W, . . . to range over value terms. These are given as in MLTT,
except for thunked computations thunk M , familiar from CBPV. Compared
to CBPV, we include both value functions and complex values to accommodate
pure programs on which the types of our language could depend.
In order to define e↵ectful programs, we further distinguish between compu-

tation terms, ranged over by M,N, . . . and homomorphism terms, ranged over
by K,L, . . .. The three classes of terms are given by the following grammar:

V ::= x | zero | succV | rec(x).A(Vz, (y1, y2).Vs,W ) | ? |�x :A.V |VW | hV,W i |
fstV | sndV | refl V | indA((x1, x2, x3).B, (y).W, V1, V2, Vp) | thunk M

M ::= return V |M to x in N | force V |�x :A.M |MV | hV,Mi |M to hx, zi in K

K ::= z |K to x in M |�x :A.K |KV | hV,Ki |K to hx, zi in L



Well-formed value types

` �

� ` Nat

` �

� ` 1

�, x :A ` B

� ` ⌃x :A.B

�, x :A ` B

� ` ⇧x :A.B

� ` V : A � ` W : A

� ` Id

A

(V,W )

� ` C

� ` UC

Well-formed value contexts Well-formed computation types

` ·
` � x 62 Vars(� ) � ` A

` �, x :A

� ` A

� ` FA

�, x :A ` C

� ` ⌃x :A.C

�, x :A ` C

� ` ⇧x :A.C

Fig. 1. Well-formed contexts and types.

Our computation terms share many similarities with those in CBPV, but
additionally include the introduction and elimination rules for computational
⌃-types, given by pairing hV,Mi and pattern-matchingM to hx, zi in K, whose
syntax is similar to that for computational tensor types !A⌦ C in EEC.

As with the linear terms of EEC, our homomorphism terms contain compu-
tation variables z used linearly. From an operational perspective, the typing rules
for homomorphism terms ensure that a computation bound to z always happens
first in a well-typed term containing it. So, when eliminating a pair hV,Mi,M al-
ways happens before the rest of K in the compound term hV,Mi to hx, zi in K,
thus preserving the intended left-to-right evaluation order. This use of compu-
tation variables ensures that homomorphism terms denote algebra homomor-
phisms in the examples based on Eilenberg-Moore algebras of monads, or on
algebraic e↵ects [31]: hence the name. Similar forms of linearity are also present
in CBPV with stacks [20, §2.3.4]; indeed, homomorphism terms can be viewed
as a programmer-friendly syntax for dependently-typed stack terms.

Well-typed value terms � ` V : A, well-typed computation terms � ` M : C,
and well-typed homomorphism terms � | z :C ` K : D are given in Figure 2.

The linear use of computation variables is also reminiscent of recent work
on combining dependent and linear types in languages with distinguished intu-
itionistic and linear fragments [19, 38]. That work is designed to capture the
adjunction models of intuitionistic linear logic [3]; in contrast, our language is
designed to capture the computational nature of certain adjunctions.

Equations. We equip our language with an equational theory, consisting of equa-
tions between well-formed types, written � ` A = B and � ` C = D; and well-
typed terms, written � ` V = W : A, � ` M = N : C and � | z :C ` K = L : D.
The equations between types consist of reflexivity equations for Nat and 1, and
congruence rules for all the other type formers. We omit the equations between
value terms as they are standard from MLTT with natural numbers and in-
tensional identity types [22]. The rules for equations between computation and
homomorphism terms are given in Figure 3. We leave the well-typedness assump-
tions about the constituent terms implicit, and omit type conversion, equiv-
alence, and congruence rules. Many of the equations in Figure 3 are familiar
from EEC, modulo the dependent typing. Compared to other computational
languages, such as [24], standard equations that may seem missing from the
theory, such as associativity of sequential composition, are in fact derivable.

Some meta-theory. The substitution of value terms for value variables has a
straightforward mutually recursive definition. We write A[V/x] for the substi-
tution of V for x in A. The substitution of computation and homomorphism



Type conversions for value and computation terms

� ` V : A � ` A = B

� ` V : B

� ` M : C � ` C = D

� ` M : D

� | z :C ` K : D1 � ` D1 = D2

� | z :C ` K : D2

Well-typed value terms

` � x :A 2 �

� ` x : A

� ` M : C

� ` thunk M : UC

` �

� ` ? : 1

` �

� ` zero : Nat

� ` V : Nat

� ` succV : Nat

�, x :Nat ` A � ` V

z

: A[zero/x] �, y1 :Nat, y2 :A[y1/x] ` V

s

: A[succ y1/x] � ` W : Nat

� ` rec(x).A(V

z

, (y1, y2).Vs

,W ) : A[V/x]

� ` V : A �, x :A ` B � ` W : B[V/x]

� ` hV,W i : ⌃x :A.B

� ` V : ⌃x :A.B

� ` fstV : A

� ` V : ⌃x :A.B

� ` sndV : B[fstV/x]

�, x :A ` V : B

� ` �x :A.V : ⇧x :A.B

� ` V : ⇧x :A.B � ` W : A

� ` VW : B[W/x]

� ` V : A

� ` refl V : Id

A

(V, V )

�, x1 :A, x2 :A, x3 : IdA(x1, x2) ` B �, y :A ` W : B[y/x1, y/x2, refl y/x3]

� ` V1 : A � ` V2 : A � ` V

p

: Id

A

(V1, V2)

� ` ind

A

((x1, x2, x3).B, (y).W, V1, V2, Vp

) : B[V1/x1, V2/x2, Vp

/x3]

Well-typed computation terms

� ` V : A

� ` return V : FA

� ` M : FA � ` C �, x :A ` N : C

� ` M to x in N : C

�, x :A ` M : C

� ` �x :A.M : ⇧x :A.C

� ` M : ⇧x :A.C � ` V : A

� ` MV : C[V/x]

� ` V : A �, x :A ` C � ` M : C[V/x]

� ` hV,Mi : ⌃x :A.C

� ` M : ⌃x :A.C � ` D �, x :A | z :C ` K : D

� ` M to hx, zi in K : D

� ` V : UC

� ` force V : C

Well-typed homomorphism terms

� ` C

� | z :C ` z : C

� | z1 :C ` K : ⌃x :A.D1 � ` D2 �, x :A | z2 :D1 ` L : D2

� | z1 :C ` K to hx, z2i in L : D2

� ` V : A �, x :A ` D � | z :C ` K : D[V/x]

� | z :C ` hV,Ki : ⌃x :A.D

� ` C �, x :A | z :C ` K : D

� | z :C ` �x :A.K : ⇧x :A.D

� | z :C ` K : FA � ` D �, x :A ` M : D

� | z :C ` K to x in M : D

� | z :C ` K : ⇧x :A.D � ` V : A

� | z :C ` KV : D[V/x]

Fig. 2. Well-typed terms.

terms for computation variables is also routine, recursing only in the sub-terms
where linearly used computation variables can appear. We write K[M/z] for the
substitution of M for z in K. The following theorem is proved by induction on
the derivations of the judgments of well-formed types, terms, and equations.

Theorem 1. Weakening, exchange, and substitution rules for value variables

are admissible for all judgments of our language, e.g.:

�1,�2 | z :C ` K : D x 62 Vars(�1) x 62 Vars(�2) �1 ` A

�1, x :A,�2 | z : C ` K : D

�1, x :A, y :B,�2 | z : C ` K : D �1 ` B

�1, y :B, x :A,�2 | z : C ` K : D

�1, x :A,�2 | z :C ` K : D �1 ` V : A

�1,�2[V/x] | z :C[V/x] ` K[V/x] : D[V/x]

In addition, further substitution rules for computation variables are admissible

for judgments � | z :C ` K : D and � | z :C ` K = L : D. These rules cover the

substitution of computation or homomorphism terms for computation variables.



Equations involving thunking and forcing

� ` thunk (force V ) = V : UC � ` force (thunk M) = M : C

Equations between well-typed computation terms

� ` return V to x in M = M [V/x] : C � ` M to x in K[return x/z] = K[M/z] : C

� ` hV,Mi to hx, zi in K = K[V/x,M/z] : D � ` (�x :A.M)V = M [V/x] : C[V/x]

� ` M to hx, z2i in K[hx, z2i/z1] = K[M/z1] : D � ` M = �x :A.(Mx) : ⇧x :A.C

Equations between well-typed homomorphism terms

� | z1 :C ` K to x in L[return x/z2] = L[K/z2] : D

� | z1 :C ` hV,Ki to hx, z2i in L = L[V/x,K/z2] : D2 � | z1 :C ` (�x :A.K)V = K[V/x] : D[V/x]

� | z1 :C ` K to hx, z3i in L[hx, z3i/z2] = L[K/z2] : D2 � | z1 :C ` K = �x :A.(Kx) : ⇧x :A.D

Fig. 3. Fragment of the equational theory.

3 Denotational semantics

The denotational semantics of our language is based on standard fibred cate-
gory theory. To make our work more accessible, we recall some preliminaries of
this theory and suggest [18] for more details. Fibred category theory provides a
natural framework for developing the semantics of dependently-typed languages,
where: i) functors model type-dependency; ii) split fibrations model substitution;
and iii) closed comprehension categories model ⌃- and ⇧-types. The ideas we
develop can also be expressed in terms of other models of dependent types, such
as categories with families, or categories with attributes [15, 27].

3.1 Fibred category theory preliminaries

Fibrations. Given a functor p : E �! B, a morphism g : A �! B is called a
Cartesian lifting of f : X �! Y if p(g) = f and for all i : C �! B and
j : p(C) �! X, such that p(i) = f � j in B, there exists a unique h : C �! A
over j such that g � h = i. The functor p : E �! B is called a fibration if for
every B in E and f : X �! p(B) in B there exists a Cartesian lifting g : A �! B
of f in E . A morphism f : A �! B in E is called vertical if p(A) = p(B) = X
and p(f) = id

X

. For any X in B, we write E
X

for the fibre over X, i.e., for
the subcategory of E consisting of objects over X and vertical morphisms. A
fibration is called cloven if it comes with a choice of Cartesian liftings. We
write f(B) : f⇤(B) �! B for the chosen Cartesian lifting of f : X �! p(B). In
cloven fibrations, every B-morphism f : X �! Y determines a reindexing func-

tor f⇤ : E
Y

�! E
X

, satisfying (id
X

)⇤ ⇠= idE
X

and (g � f)⇤ ⇠= f⇤ � g⇤. A cloven
fibration is said to be split if these two isomorphisms are identities.

Given split fibrations p : V �! B and q : C �! B, a split fibred functor

F : p �! q is given by a functor F : V �! C, such that q�F = p and F preserves
the chosen Cartesian morphisms on-the-nose. Given two split fibred functors
F,G : p �! q, a split fibred natural transformation ↵ : F ) G is given by a nat-
ural transformation ↵ : F ) G, in which every component of ↵ is vertical. A split

fibred adjunction F a U : q �! p is given by split fibred functors F : p �! q and
U : q �! p, together with split fibred natural transformations ⌘ : idV �! U � F
and " : F � U �! idC , subject to the standard unit-counit laws for adjunctions.



Comprehension categories. A (split) comprehension category with unit is given by
a (split) fibration p : E �! B, together with a comprehension-admitting terminal
object functor 1 : B �! E , i.e., 1 has a right adjoint {�} : E �! B; it is said to

be full when the functor A
⇡(�)7! p("1a{�}

A

) : E �! B! is full and faithful. For
all A in E , the B-morphism ⇡

A

: {A} �! p(A) is called a projection map. The
corresponding reindexing functor ⇡⇤

A

: E
p(A)

�! E{A} is called the weakening

functor. For every comprehension category with unit p : E �! B, we have an
isomorphism E

p(A)

(1
p(A)

, A) ⇠= {g : p(A) �! {A} |⇡
A

� g = id

p(A)

}, for all A
in E . As a notational convention, we write s(f) : p(A) �! {A} for the section

corresponding to the global element f : 1
p(A)

�! A, given by {f} � ⌘
1a{�}
A

.
A comprehension category with unit p : E �! B is said to have dependent

products (resp. weak dependent sums) when the weakening functors ⇡⇤
A

have right
adjoints ⇧

A

(resp. left adjoints ⌃
A

), for all A in E , satisfying the Beck-Chevalley
condition: for all Cartesian morphisms f : A �! B, the canonical natural
transformation (p(f))⇤ �⇧

B

�! ⇧
A

� {f}⇤ (resp. ⌃
A

� {f}⇤ �! (p(f))⇤ �⌃
B

)
is an isomorphism. A comprehension category with unit p : E �! B is said to
have strong dependent sums when it has weak dependent sums, s.t. for all B in

E{A}, the morphism {⇡
A

(⌃
A

B)�⌘⌃A

a⇡

⇤
A

B

} : {B} �! {⌃
A

B} is an isomorphism.

Split closed comprehension categories. In order to define fibred adjunction mod-
els in Section 3.2, we use a particularly well-behaved class of comprehension
categories (from the perspective of interpreting type theory), namely, those that
are split and closed. A split closed comprehension category (SCCompC) is a split
full comprehension category with unit p : E �! B, where the base category B
has a terminal object; the fibred terminal objects are preserved on-the-nose by
reindexing; and which has dependent products and strong dependent sums, for
which the isomorphisms in the Beck-Chevalley conditions are identities.

Natural numbers. A SCCompC p : E �! B is said to support weak natural

numbers if there exists an object N in E
1

and vertical morphisms zero : 1
1

�! N,
succ : N �! N, s.t. for all X in B, A in E{!⇤

X

(N)}, hz

: 1
X

�! (s(!⇤
X

(zero)))⇤(A) in
E
X

and h
s

: 1{A} �! ⇡⇤
A

({!⇤
X

(succ)}⇤(A)) in E{A}, there exists h : 1{!⇤
X

(N)} �! A
in E{!⇤

X

(N)}, satisfying (s(!⇤
X

(zero)))⇤(h) = h
z

and ⇡⇤
A

({!⇤
X

(succ)}⇤(h)) = h
s

.
We present N axiomatically rather than using weak initial algebras since

our language and its models do not assume coproducts. Moreover, discussing
the semantics of inductive types and their fibred induction principles in full
generality [10] would digress too much from our central theme.

Identity types. Following the axiomatic presentation given by Warren [39], a
SCCompC p : E �! B is said to support identity types, if, for all A in E , there
exists an object Id

A

in E{⇡⇤
A

(A)}, and r

A

: 1{A} �! �⇤
A

(Id
A

) in E{A}, such that for

all B in E{Id
A

} and f : 1{A} �! (s(r
A

))⇤({�
A

(Id
A

)}⇤(B)) in E{A}, there exists

i

A,B

(f) : 1{Id
A

} �! B in E{Id
A

}, satisfying (s(r
A

))⇤({�
A

(Id
A

)}⇤(i
A,B

(f))) = f .
These identity types are also required to satisfy a split Beck-Chevalley condition:
for all Cartesian morphisms f : A �! B, we must have {f 0}⇤(Id

B

) = Id

A

in
E{⇡⇤

A

(A)}, where f 0 : ⇡⇤
A

(A) �! ⇡⇤
B

(B) is the unique mediating morphism over
{f}, arising from ⇡

B

(B) : ⇡⇤
B

(B) �! B being a Cartesian morphism. As in [18,



§9.3.5], the diagonal morphisms �
A

arise from pullback squares of the form

{A}
�
A

//

id{A}

**

id{A} --

{⇡⇤
A(A)} //

y
✏✏

{A}
⇡
A✏✏

{A}
⇡
A

// p(A)

3.2 Interpretation of our language in fibred adjunction models

A fibred adjunction model is given by a SCCompC p : V �! B, a split fibration
q : C �! B, and a split fibred adjunction F a U : q �! p, such that p supports
identity types and weak natural numbers (in the sense of Section 3.1), and q
supports split dependent products and sums with respect to p as depicted in

V

p

!!

a a {�}

}}

F

?
++ C

U

kk

q

rrB

1

OO

The split dependent products and sums in q, with respect to p, are defined as
left and right adjoints to the weakening functors ⇡⇤

A

: C
p(A)

�! C{A}, required
to satisfy the analogues of the split Beck-Chevalley conditions from Section 3.1.

Given a SCCompC p : V �! B that supports identity types and weak nat-
ural numbers, we can always pick the identity adjunction idV a idV : V �! V
to construct a corresponding “e↵ect-free” fibred adjunction model. Further, we
can construct a restricted form of adjunction models (without identity types)
from models of EEC with weak natural numbers [9], i.e., from D-enriched ad-
junctions F

EEC

a U
EEC

: E �! D, where D is Cartesian closed and has a weak
NNO, E is D-enriched and has all D-tensors and -cotensors. These models are
based on a computational variant q : s(D, E) �! D of the the simple fibration
p : s(D) �! D [18, Thm. 10.5.5]. In particular, the objects of s(D, E) are pairs
(X,C) of a D-object X and a E-object C; and the morphisms (X,C) �! (Y,D)
are pairs (f, g) of morphisms, with f : X �! Y in D and g : X ⌦ C �! D in E .
Interpretation. Following Ho↵mann [15] and Streicher [36], we define the inter-
pretation of our language in fibred adjunction models by defining a partial inter-
pretation function J�K simultaneously on pre-contexts, pre-types and pre-terms.
We do so because of the well-known issue in dependently-typed languages: the
derivations of well-formed types and well-typed terms are not unique because of
the type conversion rules, as given for our language in Figure 2.

We interpret a pre-context � as an object J� K in B, given by

J·K = 1 J�, x :AK = {J� ;AK} if x 62 �

We interpret a value pre-type � ;A as an object J� ;AK in VJ� K and a com-
putation pre-type � ;C as an object J� ;CK in CJ� K. The definition is given by



mapping the syntactic type formers to the corresponding semantic structures:

J� ;NatK = !⇤J� K(N) J� ; 1K = 1J� K J� ; IdA(V,W )K = (hs(J� ;V K), s(J� ;W K)i)⇤(IdJ� ;AK)

J� ;⌃x :A.BK = ⌃J� ;AK(J�, x :A;BK) J� ;⇧x :A.BK = ⇧J� ;AK(J�, x :A;BK)

J� ;UCK = U(J� ;CK) J� ;FAK = F (J� ;AK)

J� ;⌃x :A.CK = ⌃J� ;AK(J�, x :A;CK) J� ;⇧x :A.CK = ⇧J� ;AK(J�, x :A;CK)

In the interpretation of the identity type Id

A

(V,W ), the pairing morphism
hs(J� ;V K), s(J� ;W K)i : J� K �! {⇡⇤

J� ;AK(J� ;AK)} is the unique mediating mor-

phism into the pullback square from Section 3.1, for s(J� ;V K) and s(J� ;W K).
We interpret a value pre-term � ;V as a morphism J� ;V K : 1J� K �! A

in VJ� K, for some A in VJ� K; a computation pre-term � ;M as a morphism
J� ;MK : 1J� K �! U(C) in VJ� K, for some C in CJ� K; and a homomorphism
pre-term � ;C;K as a morphism J� ;C;KK : J� ;CK �! D in CJ� K, for some
D in CJ� K. Similarly to types, the interpretation is again straightforward, map-
ping syntactic term formers to their semantic counterparts. We omit most of
the interpretation of terms and only show the cases for return and sequential
composition as representative examples, given by the following defining rules

J� ;V K = 1J� K
f�! A

J� ; return V K = 1J� K
f�! A

⌘
A�! U(F (A))

J� ;MK = 1J� K
f�! U(F (J� ;AK)) for some value type A

J�, x :A;NK = 1J�,x:AK
g�! U(⇡⇤

J� ;AK(C)) for some C in CJ� K

J� ;M to x in NK = 1J� K
f�! U(F (J� ;AK) U(g†)�! U(C)

where g† is derived from g by recalling that U is a split fibred functor and
therefore commutes with reindexing; using the adjunction ⌃J� ;AK a ⇡⇤

J� ;AK; re-
calling that the fibred terminal objects are preserved by reindexing; noticing
that ⌃J� ;AK(⇡

⇤
J� ;AK(1J� K)) ⇠= J� ;AK in VJ� K; and using the adjunction F a U .

Following Ho↵mann [15] and Streicher [36], we prove the correctness of the
interpretation function we defined above as the following soundness result.

Theorem 2 (Soundness). The interpretation function is defined on all well-

formed contexts, well-formed types and well-typed terms. The interpretation also

identifies types and terms that are equal in the equational theory. For example,

if � ` A, then J� ;AK is an object in VJ� K; and

if � ` V = W : A, then J� ;V K = J� ;W K : 1J� K �! J� ;AK in VJ� K.

As in [15, 36], the proof of soundness relies on lemmas relating weakening
and substitution to reindexing in fibred adjunction models; we omit them here.

The classifying model. We now show that the interpretation of our language in
fibred adjunction models is complete by constructing its classifying model.

First, in the classifying fibred adjunction model the objects of B are given by
equivalence classes of well-formed value contexts � . The morphisms �

1

�! �
2



are given by equivalence classes of tuples of value terms V = (V
1

, . . . , V
m

), where
�
2

= y
1

:B
1

, . . . , y
m

:B
m

and �
1

` V
i

: B
i

[V
1

/y
1

, . . . , V
i�1

/y
i�1

], for all 1  i  m.
Next, the objects of the total category V are given by equivalence classes of

value types � ` A and its morphisms �
1

` A �! �
2

` B by equivalence classes
of tuples of value terms (V , V ), where V are typed as in B, and V is typed as
�
1

, x :A ` V : B[V /�
2

]. The objects and morphisms of C are defined similarly:
as equivalence classes of computation types � ` C; and as equivalence classes
of tuples of terms (V ,K), where K is typed as �

1

| z :C ` K : D[V /�
2

]. The
fibrations p and q are defined by context projections, i.e., by p(� ` A) = � .

The various adjunctions involved in the definition of fibred adjunction models
are defined in terms of their syntactic counterparts. For example, the split fibred
adjunction F a U : q �! p is defined using the types FA and UC, given by

F (� ` A) = � ` FA F (V , V ) = (V , z to y in return V [y/x])

U(� ` C) = � ` UC U(V ,K) = (V , thunk (K[force x/z]))

The identity types and natural numbers are also given in terms of their syntactic
counterparts, e.g., the object Id

�`A in V{⇡⇤
�`A

(�`A)} is �, x :A, y :A ` Id

A

(x, y).

Proposition 1. The above definitions, based on the syntax of our language,

constitute a fibred adjunction model, called the classifying model of our language.

Finally, we can use this result to prove the completeness of the interpretation.

Theorem 3 (Completeness). If two types or two terms of our language are

identified in all fibred adjunction models, they are equal in the equational theory.

3.3 Fibred adjunction models based on the families fibration

We now discuss some examples of fibred adjunction models based on the pro-
totypical model of dependent types, the families fibration p : Fam(D) �! Set.
The objects of Fam(D) are given by pairs (X,A) of a set X and an X-indexed
family of D-objects A : X �! ob(D); the morphisms (X,A) �! (Y,B) are pairs
(f, {g

x

}
x2X

) of a function f : X �! Y and a X-indexed family of D-morphisms
{g

x

: A(x) �! B(f(x))}
x2X

. The functor p is defined by first projection, i.e.
by p(X,A) = X. In fact, p is a split fibration: the reindexing functors f⇤ are
defined by pre-composition, i.e. by f⇤(Y,B) = (X,B � f) for all f : X �! Y . In
our examples, we take D to be Set. In this case, p is a SCCompC [18, §10.5]. The
examples we discuss below are instances of the following general result, building
on the fact that adjunctions can be lifted to families fibrations [18, Ex. 1.8.7 (i)].

Theorem 4. Given F a U : E �! Set, such that E has both set-indexed prod-

ucts and coproducts, the fibrations p : Fam(Set) �! Set and q : Fam(E) �! Set,

together with the pointwise lifting of F a U , determine a fibred adjunction model.

In Theorem 4, the set-indexed products and coproducts in E are assumed to
exist in order to define the dependent products and dependent sums in q as

⇧(X,A)(
`

x2X A(x), C) = (X,x 7!
Q

a2A(x) C(x, a))

⌃(X,A)(
`

x2X A(x), C) = (X,x 7!
`

a2A(x) C(x, a))



The lifting F̂ a Û of F a U is defined by composition, i.e., F̂ (X,A) = (X,F �A).
The first collection of examples we discuss are based on Eilenberg-Moore

algebras (EM-algebras) for a monad (T, ⌘, µ) on Set. As standard, we write SetT

for the category of EM-algebras. Its objects are given by pairs (X,↵) of a set X
and a function ↵ : TX �! X such that ↵ � T (↵) = ↵ � µ

X

and ↵ � ⌘
X

= id

X

;
its morphisms (X,↵) �! (Y,�) are given by functions f : X �! Y such that
� � T (f) = f � ↵. There is a canonical EM-adjunction FT a UT : SetT �! Set.

The category Set

T has both set-indexed products and coproducts. In fact, for
any monad (T, ⌘, µ) on Set, SetT is complete and cocomplete because Set is com-
plete, cocomplete and regular, and all epimorphisms in it are split (cf. [4, Thm.
4.3.5]). The set-indexed products in Set

T can be defined from the set-indexed
products in Set by

Q
i2I

(X
i

,↵
i

) = (
Q

i2I

X
i

, h↵
i

� T (proj
i

)i
i2I

). As shown by

Linton [21], the set-indexed coproduct
`

i2I

(X
i

,↵
i

) in Set

T can be defined as
the reflexive coequalizer e : FT (

`
i2I

X
i

) �! `
i2I

(X
i

,↵
i

) of the diagram

FT (
`

i2I Xi)
FT ([inj

i

�⌘
X

i

]
i2I

)
// FT (

`

i2I TXi)
µ`

i2I

X

i

�FT ([T (inj
i

)]
i2I

)

//
FT ([inj

i

�↵
i

]
i2I

) //
FT (

`

i2I Xi)

Corollary 1. For any monad (T, ⌘, µ) on Set, the EM-adjunction FT a UT

and

the families fibration p : Fam(Set) �! Set determine a fibred adjunction model.

A particularly well-behaved collection of fibred adjunction models arises from
the algebraic treatment of computational e↵ects [31], namely, from monads aris-
ing from countable Lawvere theories. These are exactly the monads on Set that
are of countable rank [33, Thm. 2.8]. As discussed in [17], such monads (and,
therefore, also the corresponding fibred adjunction models) combine easily, in
terms of combining the operations and equations of the corresponding countable
Lawvere theories. For constructing the fibred adjunction models, we recall that
every countable Lawvere theory L induces a category Mod(L, Set) of models of
L in Set, with an associated forgetful functor UL : Mod(L, Set) �! Set [33]. As
Set is locally countably presentable [1], UL has a left adjoint FL, inducing an
equivalence of categories between Mod(L, Set) and Set

TL , for TL = UL � FL. Im-
portantly for us, Mod(L, Set) is both complete and cocomplete: in addition to
combining the equivalence with [4, Thm. 4.3.5], this also follows from TL having
countable rank and Set being locally countably presentable [1, Thm. 2.78].

Corollary 2. For any countable Lawvere theory L, the adjunction FL a UL and

the families fibration p : Fam(Set) �! Set determine a fibred adjunction model.

Finally, we add two computationally motivated examples arising from The-
orem 4 and decompositions of monads (T, ⌘, µ) on Set into adjunctions other

than FT a UT . In particular, we consider the continuations monad RR

(�)

and
the global state monad ((�)⇥ S)S . These monads can be decomposed into the
adjunctionsR(�) a R(�) : Setop �! Set and (�)⇥ S a (�)S : Set �! Set, where
Set

op inherits its set-indexed products and coproducts trivially from Set.

Corollary 3. The adjunctions R(�) a R(�)

and (�)⇥ S a (�)S together with

the families fibration p : Fam(Set) �! Set determine fibred adjunction models.



4 Extending the language with algebraic e↵ects

Until now we have have not said how computational e↵ects, such as I/O, state,
exceptions, etc., arise in our language and how programmers can program with
them. In this section, we make the source of computational e↵ects explicit, by
drawing ideas from the algebraic treatment of computational e↵ects [31].

4.1 Algebraic e↵ects in the syntax

We begin by assuming we are given a collection of typed operation symbols

op : (x
in

:I) �! O

where we call · ` I the input type and x
in

: I ` O the output type of op. We
restrict I and O to be pure value types, i.e., value types that do not contain U .

We add such operation symbols to our language by extending the syntax
of computation terms: for each operation symbol op : (x

in

: I) �! O, we add

algebraic operations opC
V

(x.M), for all C, and a generic e↵ect genop
V

, typed as

� ` V : I � ` C �, x :O[V/x
in

] ` M : C

� ` op

C
V (x.M) : C

� ` V : I
� ` genopV : F (O[V/x

in

])

These operations and generic e↵ects are in 1-to-1 correspondence, as in [30].
The operation symbols we consider can also come equipped with a collection

of equations, describing their intended computational behaviour. We extend our
language with the corresponding equations between computation terms.

Note that we allow the output types of operation symbols to depend on
input values. This additional type-dependency is useful for giving more concise
representations of collections of standard, simply-typed operations. For example,
we can use a boolean-indexed type family and two operation symbols

lookup : (x
in

:Bool) �! (if x
in

then Nat else Bool)

update : (x
in

:⌃x :Bool.(if x then Nat else Bool)) �! 1

as a concise syntax for the four operations of global state with two locations:

lookup

tt

: 1 �! Nat update

tt

: Nat �! 1 lookup

ff

: 1 �! Bool update

ff

: Bool �! 1

In order to make the computation terms op

C

V

(x.M) behave like algebraic
operations, we extend our language with a general algebraicity equation:

op : (x
in

:I) �! O � ` V : I �, x :O[V/x
in

] ` M : C � | z :C ` K : D

� ` K[opCV (x.M)/z] = op

D
V (x.K[M/z]) : D

(⇤⇤)

Using (⇤⇤), we can easily prove equations familiar from languages with algebraic
e↵ects, e.g. the algebraicity equation for sequential composition from [34, §3.3]:

� ` op

C
V (x.(M to y in N)) = op

FA
V (x.M) to y in N : C

We omit handlers of algebraic e↵ects [32] from this paper as a full account, in
which the equational properties of handlers are derived from those of homomor-
phism terms, i.e., from (⇤⇤), involves extending our language with a further com-
putation type former hA, {V

op

}
op

i for user-defined algebras. To make handlers
first-class, one extends the language with the type C ( D of homomorphisms,
familiar from EEC. We will report on this extension separately in future work.



4.2 Algebraic e↵ects in the semantics

Following the definition of algebraic operations for a monad in terms of its EM-
algebras [30, §6], we say that a fibred adjunction model supports algebraic oper-

ations if for all op : (x
in

:I) �! O, there exist vertical morphisms

JopKC : ⌃!⇤
q(C)

(JIK)(⇧{!
q(C)(JIK)}⇤(JOK)(⇡

⇤
{!

q(C)(JIK)}⇤(JOK)(⇡
⇤
!⇤
q(C)

(JIK)(U(C))))) �! U(C)

that are natural in C. When combining this naturality with the fact that U is a
split fibred functor, it can be shown that the JopK

C

’s are preserved by reindexing.
If the given collection of operation symbols also comes with associated equations,
these vertical morphisms are additionally required to satisfy these equations.

The classifying model from Section 3.2 can be straightforwardly extended:
for any � = x

1

:A
1

, . . . , x
n

:A
n

and � ` C, the vertical morphisms JopK
�`C

are

JopK� ` C =
�

x1, . . . , xn, thunk (opC
fst x0(x.force ((sndx0)x)))

�

where x0 has type ⌃x
in

:I.⇧x :O.UC. The naturality of these is proved by
using the equations describing the interaction between thunking and forcing,
in combination with the general algebraicity equation (⇤⇤) from Section 4.1.

Finally, we note how algebraic operations can be characterised in the fibred
adjunction models based on the families fibration and EM-algebras of a monad.

Proposition 2. The fibred adjunction models from Section 3.3, based on the

EM-algebras of a monad (T, ⌘, µ) on Set, support algebraic operations if for all

operations op : (x
in

:I) �! O there exists a family of natural transformations

n

JopKi : (UT (�))JOK(h?,ii) �! UT (�)
o

i2JIK(?)

5 Extending the language with general recursion

We now show how to extend our language with general recursion, considering it
as a computational e↵ect to keep the MLTT fragment of our language e↵ect-free.

5.1 Recursion in the syntax

We start by extending our language with a new computation term, the fixed

point operation µx :UC.M . The corresponding typing rule is given by

�, x :UC ` M : C

� ` µx :UC.M : C

We also extend the language’s equational theory with unfolding of fixed points:

� ` µx :UC.M = M [thunk (µx :UC.M)/x] : C

Finally, we also alter the definition of identity types Id

A

disc

(V,W ), restricting
them to be over discrete value types, to be able to interpret this extended lan-
guage in models based on continuous families of cpos. These discrete types are

A
disc

, B
disc

::= Nat |⌃x :A
disc

.B
disc

| 1 |⇧x :A.B
disc

| IdA
disc

(V,W )



5.2 Domain-theoretic semantics for recursion

We build the denotational semantics for the language with recursion around the
SCCompC of continuous families p : CFam(CPO) �! CPO [18, §10.6]. Com-
pared to [18], we use !-complete partial orders instead of directed-complete
partial orders, because the former constitute a locally countably presentable cat-
egory, whereas the latter do not [1, Ex. 1.14 (4)]; and we need local presentability
for fibred adjunction models based on the algebraic treatment of computational
e↵ects. An overview of the relevant domain theory can be found in [11, 29].

We recall that the objects of CFam(CPO) are pairs (X,A) of a cpo X and a
continuous functor A : X �! CPOEP (a continuous family), treatingX as a cat-
egory and valued in the category of embedding-projection pairs. The morphisms
(X,A) �! (Y,B) are pairs (f, {g

x

}
x2|X|) of a continuous function f : X �! Y

and a family of continuous functions {g
x

: A(x) �! B(f(x))}
x2|X|, satisfying

x1 vX x2 =) B(f(x1 vX x2))
e � gx1 vB(f(x2))

A(x1) gx2 �A(x1 vX x2)
e

hxni incr. !-chain =) gW
n

x
n

=
W

n

�

B(f(xn vX

W

n xn))
e � gx

n

�A(xn vX

W

n xn)
p
�

The dependent products and strong dependent sums are defined by using the
cpo-indexed products

Q
X

A and coproducts
`

X

A in CPO, which are given by
`

X A =
�

`

x2|X| |A(x)|, hx1, a1i v hx2, a2i i↵ x1 vX x2 and A(x1 vX x2)
e(a1) v a2

�

Q

X A =
�

{f : X �!
`

X A | fst � f = idX}, f1 v f2 i↵ 8x 2 |X|. f1(x) v`
X

A f2(x)
�

For identity types, we require A to be a continuous family of discrete cpos,
matching the changes we made in the syntax of our language, and then define

Id(X,A) =
�

{⇡⇤
(X,A)(X,A)}, hx, a, a0i 7!

`

{? | a=a0} 1
�

The discreteness of A is necessary for hx, a, a0i 7! `
{? | a=a

0} 1 to constitute a con-
tinuous functor: if A would not be discrete, then from hx

1

, a
1

, a0
1

i v hx
2

, a
2

, a0
2

i
and a

1

= a0
1

it would not follow that a
2

= a0
2

, and vice versa, which we need for
defining the embedding-projection pair between

`
{? | a1=a

0
1}

1 and
`

{? | a2=a

0
2}

1.
For modeling computation terms involving recursion, we assume a CPO-

enriched monad (T, ⌘, µ) on CPO, such that its EM-algebras are pointed and the
morphisms between them are strict; or equivalently, we assume that the given
monad supports a least zero-ary algebraic operation, in the sense of [30, §6]. For
modeling computational ⌃-types, we further assume that CPOT has reflexive
coequalizers. We can then model our computation types in the split fibration
q : CFam(CPOT ) �! CPO, defined analogously to p above. Monads satisfying
these conditions arise naturally from the algebraic treatment of computational
e↵ects: from CPO-enriched countable Lawvere theories [17] with a least constant.

The dependent products and sums in q, with respect to p, are defined using
the cpo-indexed products and coproducts in CPOT . First, the cpo-indexed prod-
uct

Q
X

C in CPOT is directly inherited from CPO, being defined on the carrierQ
X

(UT � C). On the other hand, analogously to Section 3.3, the cpo-indexed
coproduct

`
X

C cannot be defined simply by taking
`

X

(UT �C) as the carrier.
Instead, we construct

`
X

C as the reflexive coequalizer for a diagram similar to
the one used in Section 3.3, with the di↵erence that here we would use the free
algebras over cpo-indexed coproducts rather than over set-indexed coproducts.



Despite having a more complex categorical definition, the cpo-indexed co-
products in CPOT have the same universal property as those in CPO. We
first recall Jacobs’s remark [18, §10.6] that

`
X

A results from applying the
Grothendieck construction to A. By a result of Gray [12],

`
X

A can also be un-
derstood as the oplax colimit of A in CPO. In CPOT , the situation is analogous:

Proposition 3.

`
X

C is the oplax colimit of C : X �! (CPOT )EP
in CPOT

.

Similarly to Section 3.3, the split fibred adjunction F a U : q �! p is defined
from FT a UT by post-composition, i.e., by setting F (X,A) = (X,FT �A), where
FT � A is a continuous functor because of the CPO-enrichment of FT and the
limit-colimit coincidences in CPOEP and (CPOT )EP. U is defined analogously.

We interpret our language as discussed in Section 3.2, except for recursion:

Jµx :UC.MK =
�

idJ� K, {x 2 |1| 7! µ(g�)}�2|J� K|
�

: (J� K, � 7! 1) �! (J� K, UT � JCK)

where we use the least fixed points µ(g
�

) of the family of continuous functions
{g

�

: UT (JCK)(�) �! UT (JCK)(�)}
�2|J� K|, determined by a vertical morphism

(J� K, UT �JCK) �! (J� K, UT �JCK) we derive from JMK. The least fixed points of
these continuous functions g

�

are guaranteed to exist because our assumptions
about CPOT make every UT � JCK into a continuous family of pointed cpos.

Theorem 5. Given a monad (T, ⌘, µ) on CPO satisfying the conditions given in

this section, the fibred adjunction model built from p : CFam(CPO) �! CPO and

FT a UT

is a model of the equational theory extended with fixed point unfolding.

Finally, we note that the other obvious candidate cod : CPO! �! CPO,
even if made split [14, 8], is not a SCCompC, because of [18, Thm. 10.5.5] and:

Proposition 4. CPO is not locally Cartesian closed.

In particular, the condition that every base change functor has to have a right
adjoint fails because some of these functors do not preserve all colimits, e.g.,
given a non-empty cpo X, the pullback of the epimorphism n 7! n : N

=

�! N
!

in CPO/N
!

along the constant map x 7! ! : X �! N
!

is not an epimorphism.

6 Conclusions and Future Work

We addressed the problem of finding a mathematically natural combination of
dependent types and computational e↵ects. We were motivated by: i) the suc-
cess similar foundations have had in driving the study of computational e↵ects
in the simply-typed setting; and ii) the success of dependently-typed program-
ming in generating a number of concrete attempts to combine dependent types
with computational e↵ects. Our solution is mathematically natural, combin-
ing comprehension categories, arising from the semantics of dependent types,
with adjunctions, arising from the semantics of computational e↵ects. It is also
general, covering a variety of algebraic and non-algebraic e↵ects, and can be
extended to accommodate general recursion. For future work, a natural next
step is to investigate operational semantics, leading towards an implementation.
We are also working on a fibred generalisation of Atkey’s parametrised notions
of computation [2], aiming at a semantic account of the e↵ects in Idris [5, 6].
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