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Reflections on monadic lenses

Faris Abou-Saleh1, James Cheney2, Jeremy Gibbons1, James McKinna2, and
Perdita Stevens2

1 University of Oxford, firstname.lastname@cs.ox.ac.uk
2 University of Edinburgh, firstname.lastname@ed.ac.uk

Abstract. Bidirectional transformations (bx) have primarily been mod-
eled as pure functions, and do not account for the possibility of the
side-effects that are available in most programming languages. Recently
several formulations of bx that use monads to account for effects have
been proposed, both among practitioners and in academic research. The
combination of bx with effects turns out to be surprisingly subtle, leading
to problems with some of these proposals and increasing the complexity
of others. This paper reviews the proposals for monadic lenses to date,
and offers some improved definitions, paying particular attention to the
obstacles to naively adding monadic effects to existing definitions of pure
bx such as lenses and symmetric lenses, and the subtleties of equivalence
of symmetric bidirectional transformations in the presence of effects.

1 Introduction

Programming with multiple concrete representations of the same conceptual
information is a commonplace, and challenging, problem. It is commonplace
because data is everywhere, and not all of it is relevant or appropriate for every
task: for example, one may want to work with only a subset of one’s full email
account on a mobile phone or other low-bandwidth device. It is challenging
because the most direct approach to mapping data across sources A and B is to
write separate functions, one mapping to B and one to A, following some (not
always explicit) specification of what it means for an A value and a B value to
be consistent. Keeping these transformations coherent with each other, and with
the specification, is a considerable maintenance burden, yet it remains the main
approach found in practice.

Over the past decade, a number of promising proposals to ease programming
such bidirectional transformations have emerged, including lenses (Foster et al.,
2007), bx based on consistency relations (Stevens, 2010), symmetric lenses (Hof-
mann et al., 2011), and a number of variants and extensions (e.g. (Pacheco
et al., 2014; Johnson and Rosebrugh, 2014)). Most of these proposals consist
of an interface with pure functions and some equational laws that characterise
good behaviour; the interaction of bidirectionality with other effects has received
comparatively little attention.

Some programmers and researchers have already proposed ways to combine
lenses and monadic effects (Diviánszky, 2013; Pacheco et al., 2014). Recently,
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we have proposed symmetric notions of bidirectional computation based on en-
tangled state monads (Cheney et al., 2014; Abou-Saleh et al., 2015a) and coal-
gebras (Abou-Saleh et al., 2015b). As a result, there are now several alternative
proposals for bidirectional transformations with effects. While this diversity is
natural and healthy, reflecting an active research area, the different proposals
tend to employ somewhat different terminology, and the relationships among
them are not well understood. Small differences in definitions can have dispro-
portionate impact.

In this paper we summarize and compare the existing proposals, offer some
new alternatives, and attempt to provide general and useful definitions of “monadic
lenses” and “symmetric monadic lenses”. Perhaps surprisingly, it appears chal-
lenging even to define the composition of lenses in the presence of effects, espe-
cially in the symmetric case. We first review the definition of pure asymmetric
lenses and two prior proposals for extending them with monadic effects. These
definitions have some limitations, and we propose a new definition of monadic
lens that overcomes them.

Next we consider the symmetric case. The effectful bx and coalgebraic bx in
our previous work are symmetric, but their definitions rely on relatively heavy-
weight machinery (monad transformers and morphisms, coalgebra). It seems
natural to ask whether just adding monadic effects to symmetric lenses in the
style of Hofmann et al. (Hofmann et al., 2011) would also work. We show that, as
for asymmetric lenses, adding monadic effects to symmetric lenses is challenging,
and give examples illustrating the problems with the most obvious generalisa-
tion. We then briefly discuss our recent work on symmetric forms of bx with
monadic effects (Cheney et al., 2014; Abou-Saleh et al., 2015a,b). Defining com-
position for these approaches also turns out to be tricky, and our definition of
monadic lenses arose out of exploring this space. The essence of composition of
symmetric monadic bx, we now believe, can be presented most easily in terms of
monadic lenses, by considering spans, an approach also advocated (in the pure
case) by Johnson and Rosebrugh (2014).

Symmetric pure bx need to be equipped with a notion of equivalence, to
abstract away inessential differences of representation of their “state” or “com-
plement” spaces. As noted by Hofmann et al. (2011) and Johnson and Rosebrugh
(2014), isomorphism of state spaces is unsatisfactory, and there are competing
proposals for equivalence of symmetric lenses and spans. In the case of spans
of monadic lenses, the right notion of equivalence seem even less obvious. We
compare three, increasingly coarse, equivalences of spans based on isomorphism
(following Abou-Saleh et al. (2015a)), span equivalence (following Johnson and
Rosebrugh (2014)), and bisimulation (following Hofmann et al. (2011) and Abou-
Saleh et al. (2015b)). In addition, we show a (we think surprising) result: in the
pure case, span equivalence and bisimulation equivalence coincide.

In this paper we employ Haskell-like notation to describe and compare for-
malisms, with a few conventions: we write function composition f · g with a
centred dot, and use a lowered dot for field lookup x .f , in contrast to Haskell’s
notation f x . Throughout the paper, we introduce a number of different repre-
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sentations of lenses, and rather than pedantically disambiguating them all, we
freely redefine identifiers as we go. We assume familiarity with common uses of
monads in Haskell to encapsulate effects (following Wadler (1995)), and with
the do-notation (following Wadler’s monad comprehensions Wadler (1992)). Al-
though some of these ideas are present or implicit in recent papers (Hofmann
et al., 2011; Johnson and Rosebrugh, 2014; Cheney et al., 2014; Abou-Saleh
et al., 2015a,b), this paper reflects our desire to clarify these ideas and expose
them in their clearest form — a desire that is strongly influenced by Wadler’s
work on a wide variety of related topics (Wadler, 1992; King and Wadler, 1992;
Wadler, 1995), and by our interactions with him as a colleague.

2 Asymmetric monadic lenses

Recall that a lens (Foster et al., 2007, 2012) is a pair of functions, usually called
get and put :

data α β = Lens {get :: α→ β, put :: α→ β → α}

satisfying (at least) the following well-behavedness laws:

(GetPut) put a (get a) = a
(PutGet) get (put a b) = b

The idea is that a lens of type A B maintains a source of type A, providing
a view of type B onto it; the well-behavedness laws capture the intuition that
the view faithfully reflects the source: if we “get” a b from a source a and then
“put” the same b value back into a, this leaves a unchanged; and if we “put”
a b into a source a and then “get” from the result, we get b itself. Lenses are
often equipped with a create function

data α β = Lens {get :: α→ β, put :: α→ β → α, create :: β → α}

satisfying an additional law:

(CreateGet) get (create b) = b

When the distinction is important, we use the term full for well-behaved lenses
equipped with a create operation. It is easy to show that the source and view
types of a full lens must either both be empty or both non-empty, and that the
get operation of a full lens is surjective.

Lenses have been investigated extensively; see for example Foster et al. (2012)
for a recent tutorial overview. For the purposes of this paper, we just recall the
definition of composition of lenses:

(;) :: (α β)→ (β γ)→ (α γ)
l1 ; l2 = Lens (l2.get · l1.get)

(λa c → l1.put a (l2.put (l1.get a) c))
(l1.create · l1.create)

which preserves well-behavedness.
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2.1 A naive approach

As a first attempt, consider simply adding a monadic effect µ to the result types
of both get and put .

data [α 0 β]µ = MLens0 {mget :: α→ µ β,mput :: α→ β → µ α}

Such an approach has been considered and discussed in some recent Haskell
libraries and online discussions (Diviánszky, 2013). A natural question arises
immediately: what laws should a lens l :: [A  0 B ]M satisfy? The following
generalisations of the laws appear natural:

(MGetPut0) do {b ← mget a;mput a b} = return a
(MPutGet0) do {a ′ ← mput a b;mget a ′} = do {a ′ ← mput a b; return b}

that is, if we “get” b from a and then “put” the same b value back into a, this
has the same effect as just returning a (and doing nothing else), and if we “put”
a value b and then “get” the result, this has the same effect as just returning b
after doing the “put”. The obvious generalisation of composition from the pure
case for these operations is:

(;) :: [α 0 β]µ → [β  0 γ]µ → [α 0 γ]µ
l1 ; l2 = MLens0 (λa → do {b ← l1.mget a; l2.mget b})

(λa c → do {b ← l1.mget a; b′ ← l2.mput b c; l1.mput a b′})

This proposal has at least two apparent problems. First, the (MGetPut0)
law appears to sharply constrain mget : indeed, if mget a has an irreversible
side-effect then (MGetPut0) cannot hold. This suggests that mget must either
be pure, or have side-effects that are reversible by mput , ruling out behaviours
such as performing I/O during mget . Second, it appears difficult to compose
these structures in a way that preserves the laws, unless we again make fairly
draconian assumptions about µ. In order to show (MGetPut0) for the composition
l1 ; l2, it seems necessary to be able to commute l2.mget with l1.mget and we
also need to know that doing l1.mget twice is the same as doing it just once.
Likewise, to show (MPutGet0) we need to commute l2.mget with l1.mput .

2.2 Monadic put-lenses

Pacheco et al. (2014) proposed a variant of lenses called monadic putback-
oriented lenses. For the purposes of this paper, the putback-orientation of their
approach is irrelevant: we focus on their use of monads, and we provide a slightly
simplified version of their definition:

data [α 1 β]µ = MLens1 {mget :: α→ β,mput :: α→ β → µ α}

The main difference from their version is that we remove the Maybe type con-
structors from the return type of mget and the first argument of mput . Pacheco
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et al. state laws for these monadic lenses. First, they assume that the monad µ
has a monad membership operation

(∈) :: α→ µ α→ Bool

satisfying the following two laws:

(∈-ID) x ∈ return x ⇔ True
(∈->>=) y ∈ (m >>= f )⇔ ∃x . x ∈ m ∧ y ∈ (f x )

Then the laws for MLens1 (adapted from Pacheco et al. (2014, Prop. 3, p49))
are as follows:

(MGetPut1) v = mget s =⇒ mput s v = return s
(MPutGet1) s ′ ∈ mput s v ′ =⇒ v ′ = mget s ′

In the first law we correct an apparent typo in the original paper, as well as
removing the Just constructors from both laws. By making mget pure, this
definition avoids the immediate problems with composition discussed above, and
Pacheco et al. outline a proof that their laws are preserved by composition.
However, it is not obvious how to generalise their approach beyond monads that
admit a sensible ∈ operation.

Many interesting monads do have a sensible ∈ operation (e.g. Maybe, [ ]).
Pacheco et al. suggest that ∈ can be defined for any monad as x ∈ m ≡ (∃h :
hm = x), where h is what they call a “(polymorphic) algebra for the monad at
hand, essentially, a of type m a → a for any type a.” However, this definition
doesn’t appear satisfactory for monads such as IO , for which there is no such
(pure) function: the (∈-ID) law can never hold in this case. It is not clear that we
can define a useful ∈ operation directly for IO either: given that m :: IO a could
ultimately return any a-value, it seems safe, if perhaps overly conservative, to
define x ∈ m = True for any x and m. This satisfies the ∈ laws, at least, if we
make a simplifying assumption that all types are inhabited, and indeed, it seems
to be the only thing we could write in Haskell that would satisfy the laws, since
we have no way of looking inside the monadic computation m :: IO a to find out
what its eventual return value is. But then the precondition of the (MPutGet1)
law is always true, which forces the view space to be trivial. These complications
suggest, at least, that it would be advantageous to find a definition of monadic
lenses that makes sense, and is preserved under composition, for any monad.

2.3 Monadic lenses

We propose the following definition of monadic lenses for any monad M :

Definition 2.1 (monadic lens). A monadic lens from source type A to view
type B in which the put operation may have effects from monad M (or “M -lens
from A to B”), is represented by the type [A B ]M , where

data [α β]µ = MLens {mget :: α→ β,mput :: α→ β → µ α}
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(dropping the µ from the return type of mget , compared to the definition in
Section 2.1). We say that M -lens l is well-behaved if it satisfies

(MGetPut) do { l .mput a (l .mget a)} = return a
(MPutGet) do {a ′ ← l .mput a b; k a ′ (l .mget a ′)}

= do {a ′ ← l .mput a b; k a ′ b} ♦

Note that in (MPutGet), we use a continuation k ::α→ β → µ γ to quantify over
all possible subsequent computations in which a ′ and l .mget a ′ might appear. In
fact, using the laws of monads and simply-typed lambda calculus we can prove
this law from just the special case k = λa b → return (a, b), so in the sequel
when we prove (MPutGet) we may just prove this case while using the strong
form freely in the proof.

The ordinary asymmetric lenses are exactly the monadic lenses over µ = Id ;
the laws then specialise to the standard equational laws. Monadic lenses where
µ = Id are called pure, and we may refer to ordinary lenses as pure lenses also.

Definition 2.2. We can also define an operation that lifts a pure lens to a
monadic lens:

lens2mlens :: Monad µ⇒ α β → [α β]µ
lens2mlens l = MLens (l .get) (λa b → return (l .put a b)) ♦

Lemma 2.3. If l :: Lens α β is well-behaved, then so is lens2mlens l . ♦

Example 2.4. To illustrate, some simple pure lenses include:

idl :: α α
idl = Lens (λa → a) (λ a → a)

fstl :: (α, β) α
fstl = MLens fst (λ(s1, s2) s ′1 → (s ′1, s2))

Many more examples of pure lenses are to be found in the literature (Foster
et al., 2007, 2012), all of which lift to well-behaved monadic lenses. ♦

As more interesting examples, we present asymmetric versions of the partial
and logging lenses presented by Abou-Saleh et al. (2015a). Pure lenses are usually
defined using total functions, which means that get must be surjective whenever
A is nonempty, and put must be defined for all source and view pairs. One way
to accommodate partiality is to adjust the return type of get to Maybe b or give
put the return type Maybe a to allow for failure if we attempt to put a b-value
that is not in the range of get . In either case, the laws need to be adjusted
somehow. Monadic lenses allow for partiality without requiring such an ad hoc
change. A trivial example is

constMLens :: β → [α β]Maybe

constMLens b = MLens (const b)
(λa b′ → if b b′ then Just a else Nothing)
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which is well-behaved because both sides of (MPutGet) fail if the view is changed
to a value different from b. Of course, this example also illustrates that the mget
function of a monadic lens need not be surjective.

As a more interesting example, consider:

absLens :: [Int  Int ]Maybe

absLens = MLens abs
(λa b → if b < 0

then Nothing
else Just (if a < 0 then− b else b))

In the mget direction, this lens maps a source number to its absolute value; in
the reverse direction, it fails if the view b is negative, and otherwise uses the
sign of the previous source a to determine the sign of the updated source.

The following logging lens takes a pure lens l and, whenever the source value
a changes, records the previous a value.

logLens :: Eq α⇒ α β → [α β]Writer α

logLens l = MLens (l .get) (λa b →
let a ′ = l .put a b in do {if a 6 a ′ then tell a else return (); return a ′})

We presented a number of more involved examples of effectful symmetric bx
in (Abou-Saleh et al., 2015a). They show how monadic lenses can employ user
interaction, state, or nondeterminism to restore consistency. Most of these exam-
ples are equivalently definable as spans of monadic lenses, which we will discuss
in the next section.

In practical use, it is usually also necessary to equip lenses with an ini-
tialisation mechanism. Indeed, as already mentioned, Pacheco et al.’s monadic
put-lenses make the α argument optional (using Maybe), to allow for initiali-
sation when only a β is available; we chose to exclude this from our version of
monadic lenses above.

We propose the following alternative:

data [α β]µ = MLens {mget :: α→ β,
mput :: α→ β → µ α,
mcreate :: β → µ α}

and we consider such initialisable monadic lenses to be well-behaved when they
satisfy the following additional law:

(MCreateGet) do {a ← mcreate b; k a (mget a)} = do {a ← mcreate b; k a b}

As with (MPutGet), this property follows from the special case k = λx y →
return (x , y), and we will use this fact freely.

This approach, in our view, helps keep the (GetPut) and (PutGet) laws simple
and clear, and avoids the need to wrap mput ’s first argument in Just whenever
it is called.
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Next, we consider composition of monadic lenses.

(;) :: Monad µ⇒ [α β]µ → [β  γ]µ → [α γ]µ
l1 ; l2 = MLens (l2.mget · l1.mget) mput mcreate where
mput a c = do {b ← l2.mput (l1.mget a) c; l1.mput a b}
mcreate c = do {b ← l2.mcreate; l1.mcreate }

Note that we consider only the simple case in which the lenses share a common
monad µ. Composing lenses with effects in different monads would require de-
termining how to compose the monads themselves, which is nontrivial (King and
Wadler, 1992; Jones and Duponcheel, 1993).

Theorem 2.5. If l1 :: [A  B ]M , l2 :: [B  C ]M are well-behaved, then so is
l1 ; l2. ♦

3 Symmetric monadic lenses and spans

Hofmann et al. (2011) proposed symmetric lenses that use a complement to store
(at least) the information that is not present in both views.

data α
γ←→ β = SLens {putR :: (α, γ)→ (β, γ),

putL :: (β, γ)→ (α, γ),
missing :: γ}

Informally, putR turns an α into a β, modifying a complement γ as it goes,
and symmetrically for putL; and missing is an initial complement, to get the
ball rolling. Well-behavedness for symmetric lenses amounts to the following
equational laws:

(PutRL) let (b, c′) = sl .putR (a, c) in sl .putL (b, c′)
= let (b, c′) = sl .putR (a, c) in (a, c′)

(PutLR) let (a, c′) = sl .putL (b, c) in sl .putR (a, c′)
= let (a, c′) = sl .putL (b, c) in (b, c′)

Furthermore, the composition of two symmetric lenses preserves well-behavedness,
and can be defined as follows:

(;) :: (α
σ1←→ β)→ (β

σ2←→ γ)→ (α
(σ1,σ2)←→ γ)

l1 ; l2 = SLens putR putL (l1.missing , l2.missing) where
putR (a, (s1, s2)) = let (b, s ′1) = putR (a, s1)

(c, s ′2) = putR (b, s2)
in (c, (s ′1, s

′
2))

putL (c, (s1, s2)) = let (b, s ′2) = putL (c, s2)
(a, s ′1) = putL (b, s1)

in (a, (s ′1, s
′
2))

We can define an identity symmetric lens as follows:
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idsl :: α
()←→ α

idsl = SLens id id ()

It is natural to wonder whether symmetric lens composition satisfies identity and
associativity laws making symmetric lenses into a category. This is complicated
by the fact that the complement types of the composition idsl; sl and of sl differ,
so it is not even type-correct to ask whether idsl; sl and sl are equal. To make it
possible to relate the behaviour of symmetric lenses with different complement
types, Hofmann et al. defined equivalence of symmetric lenses as follows:

Definition 3.1. Suppose R ⊆ C1×C2. Then f ∼R g means that for all c1, c2, x ,
if (c1, c2) ∈ R and (y , c′1) = f (x , c1) and (y ′, c′2) = g (y , c2), then y = y ′ and
(c′1, c

′
2) ∈ R. ♦

Definition 3.2 (Symmetric lens equivalence). Two symmetric lenses sl1 ::

X
C1←→Y and sl2 :: X

C2←→Y are considered equivalent (sl1 ≡sl sl2) if there is a
relation R ⊆ C1 × C2 such that

1. (sl1.missing , sl2.missing) ∈ R,
2. sl1.putR ∼R sl2.putR, and
3. sl1.putL ∼R sl2.putL. ♦

Hofmann et al.show that ≡sl is an equivalence relation; moreover it is sufficiently
strong to validate identity, associativity and congruence laws:

Theorem 3.3 ((Hofmann et al., 2011)). If sl1 ::X
C1←→Y and sl2 ::Y

C2←→Z
are well-behaved, then so is sl1 ; sl2. In addition, composition satisfies the laws:

(Identity) sl ; idsl ≡sl sl ≡sl idsl ; sl
(Assoc) sl1 ; (sl2 ; sl3) ≡sl (sl1 ; sl2) ; sl3
(Cong) sl1 ≡sl sl

′
1 ∧ sl2 ≡sl sl

′
2 =⇒ sl1 ; sl2 ≡sl sl

′
1 ; sl ′2 ♦

3.1 Naive monadic symmetric lenses

We now consider an obvious monadic generalisation of symmetric lenses, in which
the putL and putR functions are allowed to have effects in some monad M :

Definition 3.4. A monadic symmetric lens from A to B with complement type
C and effects M consists of two functions converting A to B and vice versa, each
also operating on C and possibly having effects in M , and a complement value
missing used for initialisation:

data [α
γ←→ β]µ = SMLens {mputR :: (α, γ)→ µ (β, γ),

mputL :: (β, γ)→ µ (α, γ),
missing :: γ}

Such a lens sl is called well-behaved if:

(PutRLM) do {(b, c′)← sl .mputR (a, c); sl .mputL (b, c′)}
= do {(b, c′)← sl .mputR (a, c); return (a, c′)}

(PutLRM) do {(a, c′)← sl .mputL (b, c); sl .mputR (a, c′)}
= do {(a, c′)← sl .mputL (b, c); return (b, c′)} ♦
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The above monadic generalisation of symmetric lenses appears natural, but
it turns out to have some idiosyncrasies, similar to those of the naive version of
monadic lenses we considered in Section 2.1.

Composition and well-behavedness Consider the following candidate definition
of composition for monadic symmetric lenses:

(;) :: Monad µ⇒ [α
σ1←→ β]µ → [β

σ2←→ γ]µ → [α
(σ1,σ2)←→ γ]µ

sl1 ; sl2 = SMLens putR putL missing where
putR (a, (s1, s2)) = do {(b, s ′1)← sl1.mputR (a, s1);

(c, s ′2)← sl2.mputR (b, s2);
return (c, (s ′1, s

′
2))}

putL (c, (s1, s2)) = do {(b, s ′2)← sl2.mputL (c, s2);
(a, s ′1)← sl1.mputL (b, s1);
return (a, (s ′1, s

′
2))}

missing = (sl1.missing , sl2.missing)

which seems to be the obvious generalisation of pure symmetric lens composition
to the monadic case. However, it does not always preserve well-behavedness.

Example 3.5. Consider the following construction:

setBool :: Bool → [()
()←→ ()]State Bool

setBool b = SMLens m m () where m = do {set b; return ((), ())}

The lens setBool True has no effect on the complement or values, but sets the
state to True. Both setBool True and setBool False are well-behaved, but their
composition (in either direction) is not: (PutRLM) fails for setBool True; setBool False
because setBool True and setBool False share a single Bool state value. ♦

Proposition 3.6. setBool b is well-behaved for b ∈ {True,False }, but setBool True;
setBool False is not well-behaved. ♦

Composition does preserve well-behavedness for commutative monads, i.e.
those for which

do {a ← x ; b ← y ; return (a, b)} = do {b ← y ; a ← x ; return (a, b)}

but this rules out many interesting monads, such as State and IO .

3.2 Entangled state monads

The types of the mputR and mputL operations of symmetric lenses can be seen
(modulo mild reordering) as stateful operations in the state monad State γ α =
γ → (α, γ), where the state γ = C . This observation was also anticipated by Hof-
mann et al. In a sequence of papers, we considered generalising these operations
and their laws to an arbitrary monad (Cheney et al., 2014; Abou-Saleh et al.,
2015a,b). In our initial workshop paper, we proposed the following definition:
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data [α −�−� β]µ = SetBX {getL :: µ α, setL :: α→ µ (),
getR :: µ β, setR :: β → µ ()}

subject to a subset of the State monad laws (Plotkin and Power, 2002), such as:

(GetLSetL) do {a ← getL; setL a } = return ()
(SetLGetL) do {setL a; getL} = do {setL a; return a }

This presentation makes clear that bidirectionality can be viewed as a state
effect in which two “views” of some common state are entangled. That is, rather
than storing a pair of views, each independently variable, they are entangled, in
the sense that a change to either may also change the other. Accordingly, the
entangled state monad operations do not satisfy all of the usual laws of state:
for example, the setL and setR operations do not commute.

However, one difficulty with the entangled state monad formalism is that,
as discussed in Section 2.1, effectful mget operations cause problems for compo-
sition. It turned out to be nontrivial to define a satisfactory notion of com-
position, even for the well-behaved special case where µ = StateT σ ν for
some ν, where StateT is the state monad transformer (Liang et al., 1995), i.e.
StateT σ ν α = σ → ν (α, σ). We formulated the definition of monadic lenses
given earlier in this paper in the process of exploring this design space.

3.3 Spans of monadic lenses

Hofmann et al. (2011) showed that a symmetric lens is equivalent to a span of two
ordinary lenses, and later work by Johnson and Rosebrugh (2014) investigated
such spans of lenses in greater depth. Accordingly, we propose the following
definition:

Definition 3.7 (Monadic lens spans). A span of monadic lenses (“M -lens
span”) is a pair of M -lenses having the same source:

type [α  σ  β]µ = Span { left :: [σ  α]µ, right :: [σ  β]µ}

We say that an M -lens span is well-behaved if both of its components are. ♦

We first note that we can extend either leg of a span with a monadic lens
(preserving well-behavedness if the arguments are well-behaved):

(/) :: Monad µ⇒ [α1  α2]µ → [α1  σ  β]µ → [α2  σ  β]µ
ml / sp = Span (sp.left ; ml) (sp.right)
(.) :: Monad µ⇒ [α  σ  β1]µ → [β1  β2]µ → [α  σ  β2]µ
sp .ml = Span sp.left (sp.right ; ml)

To define composition, the basic idea is as follows. Given two spans [A  S1  
B ]M and [B  S2  C ]M with a common type B “in the middle”, we want to
form a single span from A to C . The obvious thing to try is to form a pullback of
the two monadic lenses from S1 and S2 to the common type B , obtaining a span
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S1

A B

S2

C

S1 ⨝ S2

Fig. 1. Composing spans of lenses

from some common state type S to the state types S1 and S2, and composing
with the outer legs. (See Figure 1.) However, the category of monadic lenses
doesn’t have pullbacks (as Johnson and Rosebrugh note, this is already the case
for ordinary lenses). Instead, we construct the appropriate span as follows.

(on) :: Monad µ⇒ [σ1  β]µ → [σ2  β]µ → [σ1  (σ1onσ2) σ2]µ
l1 on l2 = Span (MLens fst putL createL) (MLens snd putR createR) where
putL ( , s2) s ′1 = do {s ′2 ← l2.mput s2 (l1.mget s ′1); return (s ′1, s

′
2)}

createL s1 = do {s ′2 ← l2.mcreate (l1.mget s1); return (s1, s
′
2)}

putR (s1, ) s ′2 = do {s ′1 ← l1.mput s1 (l2.mget s ′2); return (s ′1, s
′
2)}

createR s1 = do {s ′1 ← l1.mcreate (l2.mget s2); return (s ′1, s2)}

where we write S1onS2 for the type of consistent state pairs {(s1, s2) ∈ S1 × S2 |
l1.mget (s1) = l2.mget (s2)}. In the absence of dependent types, we represent
this type as (S1,S2) in Haskell, and we need to check that the mput and mcreate
operations respect the consistency invariant.

Lemma 3.8. If ml1 :: [S1  B ]M and ml2 :: [S2  B ]M are well-behaved then
so is ml1 onml2 :: [S1  (S1onS2) S2]µ. ♦

Note that (MPutGet) and (MCreateGet) hold by construction and do not need
the corresponding properties for l1 and l2, but these properties are needed to
show that consistency is established by mcreate and preserved by mput .

We can now define composition as follows:

(;) :: Monad µ⇒ [α  σ1  β]µ → [β  σ2  γ]µ → [α  (σ1onσ2) γ]µ
sp1 ; sp2 = sp1.left / (sp1.right on sp2.left) . sp2.right

The well-behavedness of the composition of two well-behaved spans is imme-
diate because / and . preserve well-behavedness of their arguments:

Theorem 3.9. If sp1 :: [A  S1  B ]M and sp2 :: [B  S2  C ]M are well-
behaved spans of monadic lenses, then their composition sp1 ;sp2 is well-behaved.

♦

Given a span of monadic lenses sp :: [A  S  B ]M , we can construct a

monadic symmetric lens sl :: [A
Maybe S←→ B ]M as follows:

span2smlens (left , right) = SMLens mputR mputL Nothing where
mputR (a, Just s) = do {s ′ ← left .mput s a; return (right .mget s ′, Just s ′)}
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mputR (a,Nothing) = do {s ′ ← left .mcreate a; return (right .mget s ′, Just s ′)}
mputL (b, Just s) = do {s ′ ← right .mput s b; return (left .mget s ′, Just s ′)}
mputL (b,Nothing) = do {s ′ ← right .mcreate b; return (left .mget s ′, Just s ′)}

Essentially, these operations use the span’s mput and mget operations to update
one side and obtain the new view value for the other side, and use the mcreate
operations to build the initial S state if the complement is Nothing .

Well-behavedness is preserved by the conversion from monadic lens spans to
SMLens, for arbitrary monads M :

Theorem 3.10. If sp :: [A  S  B ]M is well-behaved, then span2smlens sp is
also well-behaved. ♦

Given sl :: [A
C←→ B ]M , let S ⊆ A × B × C be the set of consistent triples

(a, b, c), that is, those for which sl .mputR (a, c) = return (b, c) and sl .mputL (b, c) =
return (a, c). We construct sp :: [A  S  B ]M by

smlens2span sl = Span (MLens getL putL createL) (MLens getR putR createR)
where
getL (a, b, c) = a
putL (a, b, c) a ′ = do {(b′, c′)← sl .mputR (a ′, c); return (a ′, b′, c′)}
createL a = do {(b, c)← sl .mputR (a, sl .missing); return (a, b, c)}
getR (a, b, c) = b
putR (a, b, c) b′ = do {(a ′, c′)← sl .mputL (b′, c); return (a ′, b′, c′)}
createR b = do {(a, c)← sl .mputL (b, sl .missing); return (a, b, c)}

However, smlens2span may not preserve well-behavedness even for simple
monads such as Maybe, as the following counterexample illustrates.

Example 3.11. Consider the following monadic symmetric lens construction:

fail :: [()
()←→ ()]Maybe

fail = SMLens Nothing Nothing ()

This is well-behaved but smlens2span fail is not. In fact, the set of consistent
states of fail is empty, and each leg of the induced span is of the following form:

failMLens :: MLens Maybe ∅ ()
failMLens = MLens (λ → ()) (λ ()→ Nothing) (λ → Nothing)

which fails to satisfy (MGetPut). ♦
For pure symmetric lenses, smlens2span does preserve well-behavedness.

Theorem 3.12. If sl :: SMLens Id C A B is well-behaved, then smlens2span sl
is also well-behaved, with state space S consisting of the consistent triples of
sl . ♦

To summarize: spans of monadic lenses are closed under composition, and
correspond to well-behaved symmetric monadic lenses. However, there are well-
behaved symmetric monadic lenses that do not map to well-behaved spans. It
seems to be an interesting open problem to give a direct axiomatisation of the
symmetric monadic lenses that are essentially spans of monadic lenses (and are
therefore closed under composition).
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4 Equivalence of spans

Hofmann et al. (2011) introduced a bisimulation-like notion of equivalence for
pure symmetric lenses, in order to validate laws such as identity, associativity
and congruence of composition. Johnson and Rosebrugh (2014) introduced a
definition of equivalence of spans and compared it with symmetric lens equiva-
lence. We have considered equivalences based on isomorphism (Abou-Saleh et al.,
2015a) and bisimulation (Abou-Saleh et al., 2015b). In this section we consider
and relate these approaches in the context of spans of M -lenses.

Definition 4.1 (Isomorphism Equivalence). Two M -lens spans sp1 :: [A  
S1  B ]M and sp2 :: [A  S2  B ]M are isomorphic (sp ≡i sp

′) if there is an
isomorphism h :: S1 → S2 on their state spaces such that h ; sp2.left = sp1.left
and h ; sp2.right = sp1.right . ♦

Note that any isomorphism h :: S1 → S2 can be made into a (monadic) lens; we
omit the explicit conversion.

We consider a second definition of equivalence, inspired by Johnson and Rose-
brugh (2014), which we call span equivalence:

Definition 4.2 (Span Equivalence). Two M -lens spans sp1 :: [A  S1  B ]M
and sp2 :: [A  S2  B ]M are related by y if there is a full lens h ::S1 S2 such
that h ; sp2.left = sp1.left and h ; sp2.right = sp1.right . The equivalence relation
≡s is the least equivalence relation containing y. ♦

One important consideration emphasized by Johnson and Rosebrugh is the need
to avoid making all compatible spans equivalent to the “trivial” span [A  ∅ 
B ]M . To avoid this problem, they imposed conditions on h: its get function must
be surjective and split, meaning that there exists a function c such that h.get ·c =
id . We chose instead to require h to be a full lens. This is actually slightly
stronger than Johnson and Rosebrugh’s definition, at least from a constructive
perspective, because h is equipped with a specific choice of c = create satisfying
h.get · c = id , that is, the (CreateGet) law.

We have defined span equivalence as the reflexive, symmetric, transitive clo-
sure of y. Interestingly, even though span equivalence allows for an arbitrary
sequence of (pure) lenses between the respective state spaces, it suffices to con-
sider only spans of lenses. To prove this, we first state a lemma about the (on)
operation used in composition. Its proof is straightforward equational reasoning.

Lemma 4.3. Suppose l1 :: A B and l2 :: C  B are pure lenses. Then (l1 on
l2).left ; l1 = (l1 on l2).right ; l2. ♦

Theorem 4.4. Given sp1 :: [A  S1  B ]M and sp2 :: [A  S2  B ]M , if sp1 ≡s

sp2 then there exists sp ::S1  S S2 such that sp.left ;sp1.left = sp.right ;sp2.left
and sp.left ; sp1.right = sp.right ; sp2.right . ♦

Proof. Let sp1 and sp2 be given such that sp1 ≡s sp2. The proof is by induction
on the length of the sequence of y or x steps linking sp1 to sp2.
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If sp1 = sp2 then the result is immediate. If sp1 y sp2 then we can complete
a span between S1 and S2 using the identity lens. For the inductive case, suppose
that the result holds for sequences of up to n y or x steps, and suppose sp1 ≡s

sp2 holds in n y or x steps. There are two cases, depending on the direction
of the first step. If sp1 x sp3 ≡s sp2 then by induction we must have a pure
span sp between S3 and S2 and sp1 x sp3 holds by virtue of a lens h :: S3 → S1,
so we can simply compose h with sp.left to obtain the required span between
S1 and S2. Otherwise, if sp1 y sp3 ≡s sp2 then by induction we must have a
pure span sp between S3 and S2 and we must have a lens h ::S1 → S3, so we use
Lemma 4.3 to form a span sp0 :: S1  (S1onS3) S3 and extend sp0.right with
sp.right to form the required span between S1 and S3. ut

Thus, span equivalence is a doubly appropriate name for ≡s: it is an equiva-
lence of spans witnessed by a (pure) span.

Finally, we consider a third notion of equivalence, inspired by the natural
bisimulation equivalence for coalgebraic bx (Abou-Saleh et al., 2015b):

Definition 4.5 (Base map). Given M -lenses l1 :: [S1  V ]M and l2 :: [S2  
V ]M , we say that h : S1 → S2 is a base map from l1 to l2 if

l1.mget s = l2.mget (h s)
do {s ← l1.mput s v ; return (h s)} = l2.mput (h s) v
do {s ← l1.mcreate v ; return (h s)} = l2.mcreate v

Similarly, given two M -lens spans sp1 :: [A  S1  B ]M and sp2 :: [A  S2  B ]M
we say that h :: S1 → S2 is a base map from sp1 to sp2 if h is a base map from
sp1.left to sp2.left and from sp1.right to sp2.right . ♦

Definition 4.6 (Bisimulation equivalence). A bisimulation of M -lens spans
sp1::[A  S1  B ]M and sp2::[A  S2  B ]M is a M -lens span sp ::[A  R  B ]M
where R ⊆ S1 × S2 and fst is a base map from sp to sp1 and snd is a base map
from sp to sp2. We write sp1 ≡b sp2 when there is a bisimulation of spans sp1

and sp2. ♦

Figure 2 illustrates the three equivalences diagrammatically.

Proposition 4.7. Each of the relations ≡i, ≡s and ≡b are equivalence relations
on compatible spans of M -lenses and satisfy (Identity), (Assoc) and (Cong). ♦

Theorem 4.8. sp1 ≡i sp2 implies sp1 ≡s sp2, but not the converse. ♦

Proof. The forward direction is obvious; for the reverse direction, consider

h :: Bool  ()
h = Lens (λ → ()) (λa ()→ a) (λ()→ True)
sp1 :: [()  () ()]µ
sp1 = Span idMLens idMLens
sp2 = (h ; sp1.left , h ; sp2.right)

Clearly sp1 ≡s sp2 by definition and all three structures are well-behaved, but
h is not an isomorphism: any k :: () Bool must satisfy k .get () = True or
k .get () = False, so (h ;k).get = k .get ·h.get cannot be the identity function. ut



16 F. Abou-Saleh, J. Cheney, J. Gibbons, J. McKinna, P. Stevens

A

S2

B

S1

≅ A

S2

B

S1

S A

S2

B

S1

R ⊆ S1 ⨉ S2
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snd

(a) (b) (c)

Fig. 2. (a) Isomorphism equivalence (≡i), (b) span equivalence (≡s), and (c) bisimu-
lation (≡b) equivalence. In (c), the dotted arrows are base maps; all other arrows are
(monadic) lenses.

Theorem 4.9. Given sp1 :: [A  S1  B ]M , sp2 :: [A  S2  B ]M , if sp1 ≡s sp2

then sp1 ≡b sp2. ♦

Proof. For the forward direction, it suffices to show that a single sp1 y sp2 step
implies sp1 ≡b sp2, which is straightforward by taking R to be the set of pairs
{(s1, s2) | l1.get s1 = s2}, and constructing an appropriate span sp :A  R B .
Since bisimulation equivalence is transitive, it follows that sp1 ≡s sp2 implies
sp1 ≡b sp2 as well. ut

In the pure case, we can also show a converse:

Theorem 4.10. Given sp1 ::A  S1 B , sp2 ::A  S2 B , if sp1 ≡b sp2 then
sp1 ≡s sp2. ♦

Proof. Given R and a span sp ::A  R B constituting a bisimulation sp1 ≡b sp2,
it suffices to construct a span sp′ = (l , r) :: S1  R S2 satisfying l ; sp1.left =
r ; sp2.left and l ; sp1.right = r ; sp2.right . ut

This result is surprising because the two equivalences come from rather differ-
ent perspectives. Johnson and Rosebrugh introduced a form of span equivalence,
and showed that it implies bisimulation equivalence. They did not explicitly ad-
dress the question of whether this implication is strict. However, there are some
differences between their presentation and ours; the most important difference is
the fact that we assume lenses to be equipped with a create function, while they
consider lenses without create functions but sometimes consider spans of lenses to
be “pointed”, or equipped with designated intitial state values. Likewise, Abou-
Saleh et al. (2015b) considered bisimulation equivalence for coalgebraic bx over
pointed sets (i.e. sets equipped with designated initial values). It remains to be
determined whether Theorem 4.10 transfers to these settings.

We leave it as an open question to determine whether ≡b is equivalent to
≡s for spans of monadic lenses (we conjecture that they are not), or whether an
analogous result to Theorem 4.10 carries over to symmetric lenses (we conjecture
that it does).
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5 Conclusions

Lenses are a popular and powerful abstraction for bidirectional transformations.
Although they are most often studied in their conventional, pure form, prac-
tical applications of lenses typically grapple with side-effects, including excep-
tions, state, and user interaction. Some recent proposals for extending lenses
with monadic effects have been made; our proposal for (asymmetric) monadic
lenses improves on them because M -lenses are closed under composition for any
fixed monad M . Furthermore, we investigated the symmetric case, and showed
that spans of monadic lenses are also closed under composition, while the ob-
vious generalisation of pure symmetric lenses to incorporate monadic effects is
not closed under composition. Finally, we presented three notions of equivalence
for spans of monadic lenses, related them, and proved a new result: bisimula-
tion and span equivalence coincide for pure spans of lenses. This last result is
somewhat surprising, given that Johnson and Rosebrugh introduced (what we
call) span equivalence to overcome perceived shortcomings in Hofmann et al.’s
bisimulation-based notion of symmetric lens equivalence. Further investigation
is necessary to determine whether this result generalizes.

These results illustrate the benefits of our formulation of monadic lenses
and we hope they will inspire further research and appreciation of bidirectional
programming with effects.
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