

Edinburgh Research Explorer

Effects of access-control policy conflict-resolution methods on
policy-authoring usability

Citation for published version:
Reeder, RW, Bauer, L, Cranor, LF, Reiter, MK & Vaniea, K 2009 'Effects of access-control policy conflict-
resolution methods on policy-authoring usability' pp. 1-15.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43717418?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/effects-of-accesscontrol-policy-conflictresolution-methods-on-policyauthoring-usability(313bc8ea-86f8-46ea-afc7-23fc29bf2b5d).html

Effects of Access-Control Policy Conflict-Resolution

Methods on Policy-Authoring Usability

Robert W. Reeder, Lujo Bauer, Lorrie Faith Cranor, Michael K. Reiter, Kami Vaniea

March 17, 2009
CMU-CyLab-09-006

CyLab
Carnegie Mellon University

Pittsburgh, PA 15213

Effects of Access-Control Policy Conflict-Resolution
Methods on Policy-Authoring Usability

Robert W. Reeder∗ Lujo Bauer† Lorrie Faith Cranor† Michael K. Reiter‡ Kami Vaniea†

ABSTRACT
Access-control policies can be stated more succinctly if they
support both rules that grant access and rules that deny ac-
cess, but this introduces the possibility that multiple rules
will give conflicting conclusions for an access. In this paper,
we compare a new conflict-resolution method, which uses
first specificity and then deny precedence, to the conflict-
resolution method used by Windows NTFS, which some-
times uses deny precedence before specificity. We show that
our conflict-resolution method leads to a more usable policy-
authoring system compared with the Windows method. We
implemented both conflict-resolution methods in a simulated
Windows NTFS file system and built a state-of-the-art pol-
icy authoring interface on top of the simulated file system.
We ran a user study to compare policy authors’ perfor-
mance with each conflict-resolution method on a range of
file-permissions policy-authoring tasks. Our results show
that the conflict-resolution method has a significant effect
on usability, and that, though no conflict-resolution method
can be optimal for all tasks, our specificity-based conflict-
resolution method is generally superior, from a usability per-
spective, to the Windows deny-based method. Ours is the
first user study we are aware of that demonstrates empiri-
cally the effect that an access-control semantics can have on
usability, independent of the graphical user interface.

1. INTRODUCTION
Access-control policies must be specified correctly to en-

sure that authorized access is allowed while unauthorized
access is denied. One obstacle to accurate access-control
policies is human error; the people who author and main-
tain these policies—whom we refer to as “authors” or “policy
authors”—are prone to making specification errors that lead
to incorrect policies [13, 20, 29].

Rule conflicts are one important area of difficulty for pol-
icy authors. Access-control policies consist of a set of rules
that dictate the conditions under which users will be al-
lowed access to resources. These rules may conflict with
each other. For example, one rule may allow user u access
to file f , while a second rule may deny group g, of which
u is a member, access to f . Past work has shown that au-
thors have difficulty detecting and resolving rule conflicts in

∗Microsoft, Redmond, WA, USA; roreeder@microsoft.com
†Carnegie Mellon University, Pittsburgh, PA, USA;
{lbauer,lorrie,kami}@cmu.edu
‡University of North Carolina, Chapel Hill, NC, USA; re-
iter@cs.unc.edu

access-control policies [20].
The conflict-resolution method is the algorithm an access-

control system uses for determining which rule, of a set of
rules in conflict, will take precedence over others. We de-
scribe a conflict-resolution method that we expect will lead
to fewer specification errors. Our method is aimed par-
ticularly at improving upon the Windows NTFS conflict-
resolution method, since Windows is such a widely deployed
operating system [27], and since it has been shown to be
prone to policy-specification problems [20, 29]. In short, our
method resolves conflicts by having specific rules take prece-
dence in cases where the Windows method has deny rules
taking precedence.

We implemented our conflict-resolution method in a sim-
ulated Windows NTFS file system. Since the Windows
policy-authoring utilities are already documented as error-
prone [20, 29], we implemented our conflict-resolution meth-
od in an Expandable Grid interface [24], instead. An Ex-
pandable Grid (see Figure 2) is an approximation of Lamp-
son’s access-control matrix [19] that illustrates effective pol-
icy resulting from an underlying set of rules, and that per-
mits authors to modify effective policy directly. We evalu-
ated our conflict-resolution method by running a user study
in which participants performed a variety of tasks using
one of three different combinations of interface and conflict-
resolution method: the Grid with the Windows conflict-
resolution method, the Grid with our conflict-resolution
method, and the native Windows interface with the native
Windows conflict-resolution method. Our results show that
whichever conflict-resolution method selects the intended
rule for a given task by default, and thus requires no ac-
tion from the policy author, is the more usable, but that
our conflict-resolution method is far more usable (leading to
gains of up to 78% in accuracy rates) for tasks that require
the author to take action. Since no method can always select
the intended rule by default, we conclude that our method
is likely superior from a usability perspective.

We make two primary contributions. First, we demon-
strate empirically that the semantics (in our case, the conflict-
resolution aspect of the semantics) underlying an access-
control system can have a large effect on usability, even when
controlling for the graphical user interface presented to pol-
icy authors. Second, we demonstrate the benefits of our spe-
cific conflict-resolution method over the Windows method.
While we have previously demonstrated the utility of the Ex-
pandable Grid [24] as a presentation technique, that work
did not thoroughly investigate the effects of different policy
semantics independent of interface. This paper builds on our

prior work by addressing the important question of how the
choice of conflict-resolution method affects policy-authoring
usability. Our results can help access-control model design-
ers determine what conflict-resolution method is most usable
for their appliction.

2. PROBLEM DESCRIPTION
Our objective is to find a conflict-resolution method that

helps authors accurately set the policies they intend. Specif-
ically, we want a conflict-resolution method that helps au-
thors set policies accurately in the presence of rule conflicts.

In this paper, we define an access-control policy to consist
of rules, which are tuples of the form (principal, resource, ac-
tion, decision). Principals may be users or groups containing
users; in Windows, groups cannot contain other groups, but
different groups may have overlapping memberships. Re-
sources may be files or folders; resources are arranged in a
strict hierarchy, so folders cannot have overlapping member-
ships. Read and Write are examples of actions. Decisions
can be Allow or Deny. Rules conflict when their princi-
pals, resources, and actions overlap but their decisions dif-
fer. Requests to an access-control system are tuples of the
form (principal, resource, action). The access-control sys-
tem takes requests and returns decisions according to the
rules in the policy. The resulting mappings of requests to
decisions are known as effective permissions. When conflict-
ing rules apply to a request, the conflict-resolution method
comes into play to resolve the conflict.

2.1 Conflict-resolution methods
To resolve rule conflicts, there must be a method for un-

ambiguously choosing a decision. Most conflict-resolution
methods in practice choose one of the rules in conflict to take
precedence over the others. (Other methods are possible,
however, such as “majority rules”—choosing the decision of
the majority of the rules in conflict.) We list several possible
conflict-resolution methods below. Note that it is sufficient
to define them in terms of their behavior when exactly two
rules are in conflict, because the access control system can
handle cases of more than two rules in conflict by following
a simple algorithm that does paired matches of each Al-
low rule against each Deny rule. This algorithm issues an
Allow decision if any Allow rule wins its matches against
every Deny rule, and otherwise issues a Deny decision.

Some of the possible conflict-resolution methods for choos-
ing rules to take precedence are:

• Specificity precedence: A rule that applies to a more
specific entity (principal or resource) takes precedence
over a rule that applies to a more general entity. For
example, a rule that applies to a user takes precedence
over a rule that applies to a group, or a rule that ap-
plies to a subfolder or file takes precedence over a rule
that applies to the subfolder’s or file’s parent.
• Deny precedence: Deny rules take precedence over Al-

low rules.
• Order precedence: Rules are totally ordered, usually

by the policy author, so the author can explicitly state
which rules take precedence over others. This is the
method commonly used in firewall policies.
• Recency precedence: Rules specified more recently in

time take precedence over rules specified less recently
in time. Note that recency precedence is equivalent

to order precedence where order is determined by the
time at which each rule was set.

These conflict-resolution methods may be used in com-
bination. It is possible to use different conflict-resolution
methods depending on whether conflicting rules differ in the
principals they cover, the resources they cover, or both. For
example, the Windows NTFS semantics uses deny prece-
dence if conflicting rules differ in principals, but specificity
precedence if conflicting rules differ in resources or in both
resources and principals. It may also be necessary to resort
to multiple conflict-resolution methods when one method
fails to resolve a conflict. For example, when conflicting
rules cover groups, but those groups are peers of each other,
specificity precedence cannot resolve the conflict.

2.2 Weaknesses of the Windows NTFS method
The Windows NTFS conflict-resolution method combines

specificity and deny precedence. When conflicting rules dif-
fer only in their resources, specificity precedence is used.
When conflicting rules differ only in their principals, deny
precedence is used. When conflicting rules differ in both
principals and resources, specificity precedence is used.

The Windows conflict-resolution method has two primary
weaknesses we seek to improve upon. First, the use of
deny precedence not only leads to specification errors, it also
makes certain policy configurations impossible. Second, the
Windows behavior in the presence of a two-dimensional con-
flict, in which one rule is more specific in its principal and
another rule is more specific in its resource, is likely to con-
fuse some authors’ expectations. We discuss each of these
weaknesses below.

2.2.1 Deny precedence
By using deny precedence, the Windows conflict resolution

leads to violations of direct manipulation, a user-interface
design principle stating that interfaces should allow users
to operate directly on objects or data of interest [26]. In
policy-authoring interfaces, direct manipulation translates
to allowing authors to change effective policy directly when-
ever possible.

The Jana task, one of the tasks we assigned to participants
in our user study (Section 4.1.3), is a good example of where
the Windows conflict-resolution method leads to violations
of direct manipulation. The goal of the task is to allow Jana
read and write access a file. Jana is initially a member of
two groups, one of which is allowed access to the file and the
other of which is denied access to that file. Windows uses
deny precedence to resolve the conflict, so Jana is effectively
denied access to the file. However, many authors do not
understand this; they may see only the rule allowing Jana
access, and not realize that another rule conflicts with it.
Even if they do notice the conflict, it is not easily resolved.
There are two ways to grant Jana access: the Deny rule
applying to the latter group can be removed, or Jana can be
removed from the group. Direct manipulation is violated be-
cause the task cannot be completed by simply manipulating
rules applying to Jana; the task requires making a change
at the group level. Moreover, both potential solutions may
lead to undesirable side effects. Removing the Deny rule
may change policy for the other members of the group and
for members added to the group in the future. Removing
Jana from the group may be undesirable since it may af-
fect Jana’s permissions on other resources. The Windows

Figure 1: The Windows XP file permissions interface. The left-hand screenshot shows rules applying to Jana
that appear to state that Jana is allowed to read and write the operative file, but the right-hand screenshot
shows rules applying to a group of which Jana is a member that conflict with Jana’s rules. If a policy author
does not know that Jana is in the group and that the Deny rules take precedence, the author may have
difficulty determining the effective permissions in the presence of a rule conflict.

conflict-resolution method provides no entirely satisfactory
way to complete the Jana task.

Figure 2: Our Expandable Grid interface for setting
file permissions in Windows XP. The interface shows
principals along the upper axis, resources along the
left-hand axis, and the effective permissions apply-
ing to the principals and resources in the colored
squares in the grid itself.

Figure 1 shows the Windows file permissions user inter-
face. The screenshot on the left shows the approach many
participants in our study took to try to resolve the conflict;
they set a rule applying specifically to Jana indicating that

she can read and write the file. However, under the Win-
dows conflict-resolution method, Jana is still denied access
because of the group rule, shown in the right-hand screen-
shot of Figure 1, that denies access to the file. Because it
is difficult to view effective permissions in the Windows in-
terface (the display of effective permissions is buried three
mouse clicks away), many authors assumed they had cor-
rectly completed the task when in fact they had not.

We designed the Expandable Grid interface, shown in Fig-
ure 2, to show effective permissions prominently and to allow
the author to directly manipulate them. In the Expandable
Grid screenshot shown in the figure, the cells at the intersec-
tion of “jana” and the “Four-part harmony.doc” file are red,
indicating that Jana cannot read or write the file. To stay
faithful to the principle of direct manipulation, an author
should be able to click on the red squares to allow Jana to
access the file. The author should see the squares turn green,
which indicates an effective permission of Allow. Unfortu-
nately, under the Windows conflict-resolution method, di-
rect manipulation is still impossible, even in the Grid inter-
face. Clicking on the red squares can set Allow rules that
state that Jana can read and write the file, but the rules
will not take effect until the conflicting group Deny rule is
removed, or Jana is removed from the group. Even when the
user clicks on them, the red squares stay red. The conflict-
resolution method we propose in Section 3 enables direct
manipulation of effective permissions in the Grid interface
for the Jana task.

2.2.2 Two-dimensional conflicts
Besides violations of direct manipulation in the presence

of rule conflicts, we seek to improve upon a second aspect
of the Windows conflict-resolution method: behavior in the
presence of a two-dimensional conflict. A two-dimensional
conflict occurs when two rules are in conflict and one rule
is more specific in the principal dimension while the other
is more specific in the resource dimension. For example, in

Table 1: Table showing which rule, of an Allow rule and a Deny rule in conflict, will take precedence for our
specificity-based conflict resolution method (S) and the Windows method (W). The table shows the relevant
cases defined by the rules’ principals and resources. Each cell shows which rule takes precedence and the
conflict-resolution method in play: specificity in the resources, specificity in the principals, specificity in both
resources and principals, or deny precedence. In the case where both rules’ resources and principals are the
same, there will be no conflict, since the more recently set rule will have overwritten the other.

Relationship between Allow rule’s principal and Deny rule’s principal

Contains Peer Same Contained by

Relationship
between
Allow rule’s
resource and
Deny rule’s
resource

Contains Deny (both) Deny (resources) Deny (resources)
S:Deny (deny)
W:Deny (resources)

Same S:Deny (principals)
Deny (deny) no conflict S:Allow (principals)

W:Deny (deny) W:Deny (deny)

Contained
by

S:Deny (deny)
Allow (resources) Allow (resources) Allow (both)

W:Allow (resources)

the Lance task we describe in Section 4.1.2, one rule denies
Lance access to an Admin folder, but another rule allows a
group he is in access to the gradebook.xls file contained in
the Admin folder. Since neither rule is strictly more spe-
cific than the other, specificity precedence cannot resolve
this conflict. Windows resolves such conflicts by favoring
the resource dimension over the principal dimension, so the
rule that is more specific in the resource dimension will take
precedence. Since Windows uses deny precedence to resolve
other conflicts, some authors may expect deny precedence to
also resolve two-dimensional conflicts, so this aspect of the
Windows conflict-resolution method is likely to be inconsis-
tent with some authors’ expectations. Moreover, some au-
thors may expect that the principal dimension to be favored,
rather than the resource dimension.

3. PROPOSED SOLUTION
We propose a conflict-resolution method that we believe

will address the weaknesses of the Windows conflict-resolution
method. We propose to use specificity precedence, in both
principals and resources, to resolve conflicts when possi-
ble and to resort to deny precedence only when specificity
precedence fails. By using specificity precedence, we address
the rule-conflict weakness in Windows in which the conflict-
resolution method violates direct manipulation. Specificity
ensures support for direct manipulation for rules that cover
users and files. Thus, tasks like the Jana task are easily
completed using the Grid with our specificity-based conflict-
resolution method; clicking Jana’s red squares turns them
green. The rule-conflict weakness in Windows where either
a group access rule has to be changed or Jana has to be
removed from the group is solved by allowing a specific rule
that applies to Jana to take effect.

To address the weakness of the Windows conflict-resolution
method in the case of a two-dimensional conflict, our pro-
posed method uses deny precedence for two-dimensional con-
flicts. Since there is no natural way to resolve such conflicts
using specificity, we ensure fail safety by using deny prece-
dence. We believe the Windows use of specificity in the re-
source dimension is likely to be confusing to policy authors,
who may expect that deny precedence would apply in these
situations. Our choice of deny precedence may or may not
be confusing, but at least it is safe and, in any case, it is eas-
ily overridden by creating a rule that is more specific in both
resources and principals than the rules in conflict. Note that

while we resort to deny precedence in two-dimensional con-
flicts, the fact that our method uses specificity precedence
first means that overriding the two-dimensional conflict with
a more specific rule is easy.

The differences between our specificity-based conflict-res-
olution method and the Windows method can be seen in
Table 1, which lays out the entire space of rule conflicts with
respect to the structural relations between principals and re-
sources of the rules in conflict. In a conflict, there will be an
Allow rule in conflict with a Deny rule. The static differ-
ences between our method and the Windows method can be
seen in two of the table cells: first, where the Allow rule’s
principal is contained by (and thus is more specific than)
the Deny rule’s principal, but the two rules’ resources are
the same; second, where the Allow rule’s principal contains
the Deny rule’s principal, but the Allow rule’s resource is
contained by the Deny rule’s resource. However, the most
significant difference between the two methods is in some
of the conflicts where both methods give a Deny decision,
but the author intends an Allow decision. Our specificity
method makes these cases easier to fix than does the Win-
dows method.

From a usability perspective, a good conflict-resolution
method is one that gives the decision the author intends,
or, if it cannot give the intended decision by default, makes
it easy to change the policy to get the right decision. No
method can always make the intended decision by default,
since it cannot know the author’s intention. Thus, it is
on the latter point—the ease of changing the policy—that
we expect our method to have the greatest usability gains
over the Windows method. To resolve a conflict for which
the conflict-resolution method is not already giving the in-
tended decision by default, an author must (1) notice the
problem; and (2) fix it. The Expandable Grid, by virtue
of showing effective permissions directly, makes noticing the
problem much easier than does the Windows interface, and
our specificity conflict-resolution method makes fixing the
problem easier by allowing user-level exceptions to group
rules, instead of requiring that a user be removed from a
group or requiring an entire group’s permissions to change.
In the Jana task, for example, both methods will result in
a Deny decision, but specificity allows an author to spec-
ify an exception for Jana to the group-level Deny decision,
while Windows simply does not allow such an exception,
and instead forces the author to make a group-level policy

Table 2: Table showing the rule-conflict structure of tasks in our user study. The Charles and Kent tasks
and the Lance and Adria tasks were structured the same, but presented inverse goals to participants. The
Jana and Pablo tasks were superficial variants on the same structure.

Relationship between Allow rule’s principal and Deny rule’s principal

Contains Peer Same Contained by

Relationship
between
Allow rule’s
resource and
Deny rule’s
resource

Contains

Same Jana Charles (goal: Allow)
Pablo Kent (goal: Deny)

Contained
by

Lance (goal: Deny)
Adria (goal: Allow)

change.

4. USER STUDY METHOD
We have argued that our conflict-resolution method should

be more usable than the Windows method for tasks that
require action from the policy author because our method
enables direct manipulation in the Grid interface. To test
this argument empirically, we ran a laboratory user study to
measure the effects of conflict-resolution method on policy-
authoring usability, as measured by task-completion accu-
racy. Our study had 54 participants, who each performed
12 policy-authoring tasks in one of three experimental con-
ditions. Experimental conditions were combinations of in-
terface and conflict-resolution method. We used a between-
participants design, so 18 participants were in each of the
three conditions. We measured accuracy for each task. The
three conditions we compared were:

• the Grid interface with our specificity-based conflict
resolution method, a combination which we henceforth
call GS ;
• the Grid interface with Windows conflict-resolution

method, a combination which we henceforth call GW ;
and
• the Windows interface with the Windows conflict-res-

olution method, a combination which we henceforth
call WW.

The WW condition served as the control in our study; it
was the condition on which we hoped to improve. The GS
condition is our best effort at improving upon WW, because
GS has both the visual presentation advantages of the Ex-
pandable Grid and the expected advantages of our conflict-
resolution method. The GW interface serves to help us sep-
arate the effects of the Grid as a presentation technique from
the effects of the conflict-resolution method. When we ob-
serve differences between the GW and WW conditions, we
attribute them to the Grid presentation, and when we ob-
serve differences between the GW and GS conditions, we
attribute them to the conflict-resolution method. Differ-
ences between the GS and WW conditions are the cumula-
tive effect of the Grid presentation and the specificity-based
conflict-resolution method. (Note that, while results from a
fourth combination of the Windows interface with the speci-
ficity conflict-resolution method would have been enlighten-
ing, it was infeasible to implement such a combination for
this study.)

We recruited 54 undergraduate and graduate students from
technical disciplines (science, engineering, or mathematics)

to participate in the study. Eighteen were female. Partic-
ipants were all daily computer users, but had never served
as system administrators. As in Reeder et al.’s work eval-
uating the Expandable Grid interface [24], our participant
pool was consistent with a target demographic of novice and
occasional policy authors.

4.1 Task design
Of the 12 tasks in which each subject participated, six

were designed to test the advantages and disadvantages of
each of the two conflict-resolution methods, as well as the
overall usability of each interface/conflict-resolution-method
combination. We discuss only these six tasks here. (The
other six tasks are fully reported elsewhere [23] and de-
scribed in Section A.2.) All tasks were based on a teaching
assistant (TA) scenario, in which the participant is put in the
role of a TA maintaining the file server for a hypothetical
music department. The hypothetical file server contained
roughly 500 principals and 500 resources. Each task is de-
fined by its task statement (i.e., the text we presented to par-
ticipants in the study) and its initial configuration, including
existing access rules, group memberships, and file locations.
Task statements asked participants to make changes to the
initial configuration.

The six tasks can be classified by their initial configura-
tion. Each task’s initial configuration included a rule conflict
that fit into one of the rule-conflict structures shown in Ta-
ble 1. Table 2 shows each task in the table cell corresponding
to the type of conflict in the task’s initial configuration. The
tasks only cover the three table cells corresponding to inter-
esting rule conflict structures, i.e., those for which the two
conflict-resolution methods yield different decisions or for
which they lend themselves to different means of resolving
the conflict (as in the Jana task, where our method allows an
author to add a simple user-level exception to the group-level
Deny rule, while Windows requires a group-level change).

The tasks were designed in pairs: the Charles/Kent pair,
the Lance/Adria pair, and the Jana/Pablo pair. For the
Charles/Kent and Lance/Adria pairs, the tasks are struc-
tured similarly except that goals are inverted. This way,
each pair of tasks has a task that favors our conflict-resolu-
tion method and a task that favors the Windows conflict-res-
olution method. The Jana and Pablo tasks share essentially
the same structure, though they differ superficially in the
specific users and files involved. We used two tasks with
the same structure because this structure best illustrates
the advantage of specificity precedence, and we wanted to
show that any usability gains from our conflict-resolution
method were due to the underlying task structure and not

the superficial aspects of the task. Also, pairing the Jana
and Pablo tasks gave us a fair balance of tasks: two tasks
in which our conflict-resolution method completes the task
goal by default (Charles and Lance), two tasks in which the
Windows method completes the task goal by default (Kent
and Adria), and two tasks in which neither method com-
pletes the goal by default and the author has to take action
(Jana and Pablo). We describe each task pair in more detail
below.

4.1.1 Charles/Kent
We designed the Charles task to show the advantage a

specificity conflict-resolution method has over the Windows
method when Allow rule exceptions to a group Deny rule
are desired. The Charles task involves adding a user to a
group; the user has several Allow permissions on some files,
the group has Deny permissions on those files, and the goal
is to keep the user’s Allow permissions. The Charles task
statement presented to participants was:

Charles has just graduated, but is going to come
back to sing in the choir with his friends.

Add Charles to the Alumni group, but make
sure he can still read the same files in the Choir
1\Lyrics folder that his good friend Carl can
read.

In the initial configuration, there are rules stating that
Charles is allowed Read access to four files in the Choir
1\Lyrics folder. These are the same files that Carl can
read, so in the final state, we want Charles to be allowed
Read access to the four files. There are rules stating that
the Alumni group is denied Read access to the same files.
When Charles is moved into the Alumni group, the group’s
Deny rules will apply to him, and under the Windows deny
precedence, he will be denied access to the files. However,
under specificity precedence, his rules are more specific than
the group access rules, so he will still be allowed to read the
files. Thus, specificity precedence makes this task easier,
and we expected participants in the GS condition to per-
form better than GW and WW in the Charles task.

We designed the Kent task to show a drawback our specif-
icity-based conflict-resolution method has when Allow ex-
ceptions to a group Deny rule are not desired. The Kent
task was structured similarly to the Charles task, but the
goal was inverted to give the advantage to the Windows
conflict resolution method. So, we expected participants in
the GW and WW conditions to perform best in the Kent
task. The complete Kent task description can be read in
Section A.1.1.

4.1.2 Lance/Adria
We designed the Lance task to test the behavior of our

conflict-resolution method in the presence of a two-dimensional
conflict when a Deny decision is desired. The Lance task in-
troduces a two-dimensional conflict, in which there are con-
flicts in both the principals and resources. The Lance task
statement presented to participants was:

Lance was hired by the New York Philharmonic
and can no longer serve as Head TA this year.

Remove Lance from the group Head TAs 2008,
but make sure you don’t remove him from Head
TAs 2007. Then make sure he is not allowed

to access any files in the Music 101\Admin
folder.

In the initial configuration, there is a rule stating that
Lance is denied Read access to the Music 101\Admin folder,
and there are rules stating that the Head TAs 2007 group is
allowed Read access to the Music 101\Admin\gradebook.xls
file, but that the Head TAs 2008 group is denied Read ac-
cess to the file. When Lance is removed from Head TAs
2008, a two-dimensional conflict is revealed, since the rule
applying to Lance on the Admin folder is more specific in
its principal, but the rule applying to Head TAs 2007 on
the gradebook.xls file is more specific in its resource. In the
Windows conflict-resolution method, the rule that is more
specific in the resource takes precedence, so Lance will be al-
lowed to read the gradebook.xls file, but in specificity-based
conflict-resolution method, the Deny rule takes precedence,
so Lance will not be allowed to read the gradebook.xls file.
Since the task calls for Lance not to be allowed to access
any files in the Admin folder, our conflict-resolution method
requires less work to complete the task correctly, and we
expected participants in the GS condition to perform best.

We designed the Adria task to test the behavior of our
conflict-resolution method in the presence of a two-dimen-
sional conflict when an Allow decision is desired. Just as
the Kent task is similar to the Charles task with the in-
verse goal, the Adria task is similar to the Lance task with
the inverse goal. So, we expected better performance from
participants in the GW and WW conditions for the Adria
task. The complete Adria task description can be read in
Section A.1.2.

4.1.3 Jana/Pablo
The Jana task, described in Section 2.2, involves a rule

conflict at the group level that must be resolved to give
Jana access to a file. The Jana task statement presented to
participants was:

Jana, a Theory 101 TA, complained that when
she tried to change the Four-part Harmony hand-
out to update the assignment, she was denied
access.

Set permissions so that Jana can read and write
the Four-part Harmony.doc file in the Theory
101\Handouts folder.

We expect specificity precedence to enable authors to per-
form better for the Jana task compared to deny precedence.
Thus, we expected participants in the GS condition to out-
perform participants in the GW and WW conditions for the
Jana task.

The Pablo task was structured similarly to the Jana task,
and we expected better performance in the GS condition
compared to the GW and WW conditions. The Pablo task
was superficially different from Jana in the names and num-
bers of principals and resources involved in the task, but
structurally the same. We included the Pablo task for ad-
ditional assurance that any effect observed in the Jana task
is due to the specificity precedence’s benefits for the conflict
structure, and not merely due to the particular superficial
aspects of the Jana task. The complete Pablo task descrip-
tion can be read in Section A.1.3.

0.00
0.20
0.40
0.60
0.80
1.00

Charles Kent Lance Adria Jana Pablo

GS GW WW

Figure 3: Accuracy results, showing proportion of
participants correctly completing each task with GS,
GW, and WW interfaces.

4.2 Procedure
At the start of each study session, participants filled out a

demographic survey so that we could ensure they were stu-
dents in technical disciplines. Following the survey, our ex-
perimenter read instructions explaining our teaching-assistant
scenario to participants. After reading these instructions,
our experimenter read interface training materials. For each
interface, training covered how to perform the following op-
erations: viewing files and folders; moving a file; viewing
group memberships; adding a user to a group; removing a
user from a group; creating a new group; checking an access
rule; checking effective permissions; creating an access rule;
and searching for a file or principal. During training, the
experimenter also explained that effective permissions may
differ from access rules because of the way rules combine, but
did not explain the precise workings of the conflict-resolution
methods. After these operations had been explained to par-
ticipants, the experimenter walked them through a training
task. The training task (described in Section A.4) gave par-
ticipants practice with some of the basic operations covered
during training, but did not involve a rule conflict. Partic-
ipants received the same training task in all three experi-
mental conditions. Training took about 10 minutes.

Participants then began completing tasks. Before each
task, the experimenter brought up the interface in a precon-
figured state tailored to each task. Task statements were
then presented to participants in a Web browser on screen.
Participants indicated they were done with each task by
clicking a button in the Web browser. Participants were
asked to think aloud while they worked on the tasks. Task
order was counterbalanced across participants using a pseudo-
random Latin square design to guard against ordering and
sequence effects.

5. RESULTS
Our results are in the form of accuracy rates for each

interface condition and for each task. Accuracy rates rep-
resent the proportion of participants in each condition who
correctly completed the task. We scored a task as correct
if the participant’s final effective permissions matched the
task goals and did not introduce any extraneous changes
not called for by the task statement or otherwise required
to complete the task. Tasks in which the goals of the task
were not met or in which the goals were met but extraneous
changes were introduced were scored as incorrect. Accuracy
results can be seen in Figure 3.

5.1 Experiment-wide results
We performed an experiment-wide test of the hypothe-

sis that GS performed better than GW and WW over all
tasks. The accuracy rates over all tasks do show that GS

performed best (overall accuracy 70.4%), followed by GW
(overall accuracy 41.7%) and then WW (overall accuracy
33.3%). We used logistic regression to test for statistical
significance of the effects of interface on accuracy. The fit-
ted model gave an intercept of 0.86 for the GS condition
and gave coefficients of −1.20 for the GW condition and
−1.56 for the WW condition. Wald tests of the hypotheses
that the intercept (Z = 4.10, p < 0.001) and the coefficients
(Z = −4.18, p < 0.001;Z = −5.31, p < 0.001) were not
equal to zero were all strongly significant at the 0.05 level,
suggesting that the GS condition led to statistically signif-
icantly greater accuracy than GW or WW. The difference
between the GW and WW accuracy rates (8.4%) shows an
improvement in usability due to the Grid interface, and the
difference between the GS and GW accuracy rates (28.7%)
shows another, much larger improvement from the conflict-
resolution method.

5.2 Task-by-task results
We followed up our experiment-wide test with post-hoc

task-by-task tests. Each of our tasks tested a specific hy-
pothesis about the effects the conflict-resolution methods
would have on usability, as measured by accuracy. We
tested hypotheses regarding accuracy rates by using one-
sided Fisher’s exact tests with the null hypothesis that the
difference in accuracy rates was zero. We used one-sided
tests since our hypotheses are directional (i.e., we expect
better performance from one condition than another). Re-
sults of all hypothesis tests of accuracy rates can be seen in
Table 3.

In the Charles, Kent, Lance, and Adria tasks, one of
the two conflict-resolution methods yielded the goal deci-
sion by default, so had an advantage over the other conflict-
resolution method in helping participants complete tasks
correctly. Thus, for those four tasks, either our conflict-
resolution method or the Windows method had a natural
advantage, and we expected the conditions using the ad-
vantaged conflict-resolution method in each task to lead to
better performance. For the Charles and Lance tasks, in
which our specificity-based conflict-resolution method had
the advantage, the accuracy rate for the GS condition was
statistically significantly higher than that for the GW and
WW conditions, as expected. For the Kent task, in which
the Windows conflict-resolution method had the advantage,
the accuracy rate for the GS condition was statistically sig-
nificantly lower than that for the GW condition, as expected,
but the result for GS compared to WW was not statisti-
cally significant. For the Adria task, in which the Windows
method had the advantage, there was no statistically signif-
icant difference between the GS condition and the GW and
WW conditions. This somewhat surprising result in favor
of GS is likely due to the combination of the Grid’s pre-
sentation aspects, which allow authors to easily notice the
discrepancy between the effective policy and their goal pol-
icy, and the ease of simply adding a specific rule applying to
Adria to overcome the conflict with specificity precedence.

For the Jana and Pablo tasks, both conflict-resolution
methods yield a Deny decision in the presence of the con-
flict, so we did not expect either method to have an advan-
tage by default. However, we expected the specificity-based
method to make it quite easy to overcome the conflict by
simply setting a specific rule allowing Jana or Pablo to ac-
cess the relevant files. As we have explained, the Windows

Table 3: Summary of post-hoc statistical tests for significant differences in accuracy rate for Grid with our
specificity-based conflict-resolution method (aGS), Grid with Windows conflict-resolution method (aGW), and
Windows (aWW). For each task, the table shows accuracy rates for the three interfaces, hypotheses tested,
and p-values from one-sided Fisher’s exact tests; p-values at or below the α = 0.05 rejection threshold are
shaded and highlighted in bold, indicating significant tests.

Task aGS aGW aWW GS vs. GW
hypothesis

p-value GS vs. WW
hypothesis

p-value

Charles 0.56 0.06 0.00 aGS > aGW 0.001 aGS > aWW < 0.001

Kent 0.50 0.88 0.78 aGS < aGW 0.014 aGS < aWW 0.082

Lance 0.94 0.39 0.00 aGS > aGW < 0.001 aGS > aWW < 0.001

Adria 0.61 0.83 0.39 aGS < aGW 0.13 aGS < aWW 0.95

Jana 0.89 0.11 0.44 aGS > aGW < 0.001 aGS > aWW 0.006

Pablo 0.72 0.22 0.39 aGS > aGW 0.003 aGS > aWW 0.046

method makes it cumbersome to overcome the conflict at
the group level. As expected, the GS condition led to bet-
ter performance over both the GW and WW conditions in
both the Jana and Pablo tasks. This better performance
was statistically significant in all four cases.

In summary, we observed GS to be statistically signif-
icantly better than both GW and WW in the four tasks
in which GS had the default advantage or in which there
was no default advantage. In the two tasks where the de-
fault advantage went the other way, GS was statistically
significantly worse compared to GW in the Kent task, and
was behind GW and WW in both tasks, though not signifi-
cantly so. The comparisons between GS and GW illustrate
the substantial usability gains that can be had just from
our conflict-resolution method; even if the Charles/Kent and
Lance/Adria accuracy rates are viewed as a wash, GS gave
a gain of 78% in accuracy rate compared to GW for Jana
and 50% for Pablo.

6. DISCUSSION
Our results show that the policy conflict-resolution method

underlying a file-permissions interface has a significant ef-
fect on task-completion accuracy. The precise effect of the
conflict-resolution method depends on what the task goals
are. If task goals are aligned with a conflict-resolution
method, such that the method yields the desired effective
policy by default, accuracy rates are likely to be higher than
if the method requires an author to take additional action to
change the decision. In the Charles, Kent, and Lance tasks,
we saw that the method that yielded the correct effective
policy by default led to the highest accuracy rates.

The evidence from our study strongly supports our hy-
pothesis that our specificity-based conflict-resolution method
is more usable in many situations than the Windows method.
No conflict-resolution method can always yield the desired
effective permissions, as we designed our inverse task pairs
(Charles/Kent, Lance/Adria) to show. However, we have ar-
gued that our specificity-based conflict-resolution method is
superior to the Windows deny-based method because, even
in a situation where specificity is not yielding the desired
effective permission, it is easy to change the effective per-
mission with a specific rule. Contrast this to the Windows
deny-precedence method, which forces an author in some
conflict situations to remove a user from a group or change
rules applying to the whole group. The Adria task shows

a situation in which, although our specificity-based conflict-
resolution method does not yield the desired decision by
default, getting the task right is a simple matter of adding a
rule more specific than those in conflict. The Pablo and Jana
tasks further illustrate the advantage that a specificity-based
conflict-resolution method has over a deny-based method in
overcoming rule conflicts. Thus, our argument that speci-
ficity is more usable when the author is required to take
action to fix a rule conflict is borne out by our empirical
results.

One concern with adopting a specificity-based conflict-
resolution method is that it introduces a risk that, when
setting a group-level Deny rule, the Deny rule will not ap-
ply to members of the group who already have Allow rules
applying to them. Specifically, in a situation like the one
in the Kent task, where a group-level Deny rule is meant
to override any user-level Allow rule exceptions, specificity
does not give the desired decision by default. If a policy au-
thor fails to notice the undesired Allow exceptions to the
Deny rule, unauthorized access may be allowed. However,
the Expandable Grid interface can help mitigate this issue by
making it much easier for authors to see anomalies in their
policies [24]. Thus, if using such an interface, the usability
gains from specificity are likely worth this slight security risk
for many applications. Moreover, an unusable policy seman-
tics may itself be a security risk, as humans frustrated that
they are unable to implement the policies they want may set
policies that are more liberal than necessary [4].

Our study design had some limitations that are worth
noting. Our results tell us that the success of any conflict-
resolution method depends largely on the requirements of
the particular tasks that an author performs. Since we do
not have data on the frequency with which particular tasks
are performed, we cannot say conclusively that a specificity-
based conflict-resolution method is always superior to deny
precedence. However, our results showed that over the six
tasks in our balanced set (balanced to be fair in alternat-
ing the advantage they gave to the two conflict-resolution
methods) the specificity-based method was superior. We
attribute its superior performance largely to the ease with
which it enables authors to fix situations in which its default
behavior is not what is desired.

Our study created scenarios that participants could com-
plete within a few minutes in our lab. We were not able to
recreate certain real-life scenarios in which policy-authoring

may happen periodically over long periods of time. Particu-
larly difficult to simulate in the lab are scenarios in which an
author must remember the intention behind a setting that
may have been made weeks or months before.

7. RELATED WORK
We discuss two relevant areas of related work: access-

control models and policy-authoring usability.

7.1 Access-control models
There is an extensive body of work describing formal access-

control models and languages. The authors of these models
and languages necessarily describe a semantics and usually
address conflict resolution. Most of these works are con-
cerned with describing the formal aspects of their models
and proving theoretical properties about them. A few of
these works address ease of policy-authoring under their se-
mantics, but none that we are aware of actually ran user
studies to evaluate their semantics empirically as we have.

Works addressing the general access-control conflict-reso-
lution methods we have addressed here include Fundulaki
and Marx [10], Jajodia et al. [15], Fisler et al. [9], the
XACML 1.0 standard [11], Dougherty et al. [7], and Gold-
berg et al. [12]. Fundulaki and Marx describe an access-
control model for eXtensible Markup Language (XML) doc-
uments. They acknowledge three conflict-resolution meth-
ods: priority precedence, in which a policy author speci-
fies a priority for each rule; deny precedence (which they
call “deny overwrites”); and allow precedence (which they
call “grant overwrites”). Their semantics uses deny prece-
dence. Jajodia et al. describe an access-control policy frame-
work that accommodates a number of conflict-resolution
methods, including specificity, deny, and allow precedence.
Their framework also accommodates “no conflicts allowed,”
in which policies are statically checked for conflicts and
conflicts are flagged as errors. Fisler et al. describe Mar-
grave, an RBAC policy-analysis tool, that supports the
three conflict-resolution methods outlined in the XACML
standard: allow precedence (called “permit-overrides” in the
standard), deny precedence (called “deny-overrides” in the
standard), and order precedence (called “first-applicable”
in the standard). The standard can also be extended to
accommodate application-specific conflict-resolution meth-
ods. Dougherty et al. are concerned with proving prop-
erties of safety and availability in access-control policies,
comparing policies to each other, and understanding the ef-
fects of dynamic changes to the policy environment. They
discuss “combiners,” the term used in the XACML stan-
dard for conflict-resolution methods, as a factor contribut-
ing to policy and policy-authoring complexity. Goldberg
et al. describe a module they built for restricting access to
system calls by untrusted browser helper applications, like
document viewers. They use specificity precedence as the
conflict-resolution method in their module.

Several works present policy analysis tools that detect
conflicts with the goal of helping policy authors resolve them.
Al-Shaer and Hamed describe the Firewall Policy Advisor,
a tool that detects firewall policy anomalies, including con-
flicts [1]. They state that firewall policies traditionally use
order precedence to resolve rule conflicts. Yuan et al. present
FIREMAN, a toolkit for performing static analysis of fire-
wall policies to check for misconfigurations [31]. Jaeger et
al. [14] present the Gokyo policy analysis tool for constraint

conflict detection, analysis, and resolution.

7.2 Policy-authoring usability
Past work in policy-authoring usability has mostly focused

on interface design or policy visualization, rather than how
the underlying access-control model (of which the conflict-
resolution method is a part) could be best designed for us-
ability. Kapadia et al. [16], described below, is an exception
that does address an underlying model issue, and two works
have noted that the underlying model may affect usability,
but they do not present user studies to show how [5, 30].
Work in policy-authoring usability includes work on policy
authoring for domains such as enterprise privacy policies and
firewalls as well as traditional file-system access control.

The HP Select Access Policy Builder is an application for
authoring enterprise security and privacy policies [22]. It
includes a user interface that provides a visualization of a
policy in a matrix indexed by principals on one axis and
resources on the other. The idea is similar to the idea of the
Expandable Grid [24], but no user study evaluating the HP
Policy Builder has been published.

Karat et al.’s SPARCLE system is concerned with the
problem of enterprise privacy policy authoring [18, 17]. SPAR-
CLE provides a natural-language input mechanism for au-
thors to write privacy policy rules in English, and also pro-
vides a mechanism for authors to select rule elements from
structured lists.

Zurko et al. designed the Adage system, a policy-based
access control system for distributed computing systems [28,
32]. The Adage designers put a premium on usability, so
Adage included the Visual Policy Builder (VPB), a graphical
user interface for supporting policy authoring.

Cao and Iverson presented Intentional Access Manage-
ment (IAM) systems for access control [6]. They define IAM
systems as systems that take a user’s intention for a specific
policy decision, convert that intention into possible rules
that would result in the decision, and present the possible
rules to the user. Thus, the user is freed from having to
figure out when a rule conflict will occur. Cao and Iverson
demonstrate that an implementation of IAM for WebDAV,
a Web-based distributed file system, is an advance over the
standard WebDAV Access Control List editor.

Balfanz developed the ESCAPE Web server, which pro-
vided an easy-to-use access control system for content pub-
lished on the Web [2]. His system allowed a person to put
content on the Web and send email announcements to peo-
ple who were allowed to view the content. The ESCAPE
server would automatically give access to the recipients of
the emails. The ESCAPE server provided a user interface
for viewing directories of Web content and the people who
had access to those directories.

The Role Control Center (RCC) is an impressive appli-
cation for managing role-based access control policies [5, 8].
It includes a graphical user interface that shows the assign-
ment of users to roles in a directed graph and allows for
viewing policy either by principal or by resource. However,
it does not, as far as we know, include a visualization of the
full, effective policy like the Expandable Grid.

In the domain of firewall policy-authoring interfaces, Mayer
et al. developed Fang, a firewall analysis tool, and Bartal et
al. (including some of the Fang authors) developed Firmato,
a firewall management toolkit [21, 3]. Fang includes a user
interface for querying the effective policy of a firewall, but

it does not include a visualization of the full policy. Fir-
mato includes a user interface that the authors call a “rule
illustrator.” The rule illustrator presents a firewall policy in
a graph in which host-groups are the nodes and rules are
indicated by edges.

Rode et al. designed Impromptu, an file sharing appli-
cation [25]. Impromptu includes a visualization-based user
interface for specifying file sharing policies. The Impromptu
visualization depicts users, files, and actions on a pie chart.
Its primary limitation seems to be that it was designed for
small groups of users (on the order of six), and cannot scale
to show policies with many users.

Kapadia et al.’s Know system addresses usability for policy-
based systems [16]. Know sits within an access control sys-
tem and provides feedback when access is denied and ex-
plains how access might be obtained.

8. CONCLUSION
We have argued that significant usability improvements

can be had from a file-system access-control conflict-resolu-
tion method based on specificity precedence compared to a
method based on deny precedence. We have implemented
a specificity-based conflict-resolution method in a simulated
Windows file system and run the Expandable Grid inter-
face on top of it. We have shown in a user study that the
specificity-based method provides substantial usability gains
for tasks that require a policy author to make changes to
a default decision issued by the conflict-resolution method.
That is, when the conflict-resolution method gets the deci-
sion wrong, specificity-precedence helps the author fix it.

Our results show the large effects that an aspect of an
access-control semantics can have on usability, even when
controlling for user interface, and suggest that designers of
access-control systems should consider the effects of their de-
sign decisions on policy-authoring usability. We have shown
that the choice of a specificity-based conflict-resolution meth-
od can be a substantial measure toward reducing specifica-
tion errors. While we have yet to consider factors such as
degree of policy-authoring expertise and other variants on
conflict-resolution methods, what we have done is a signifi-
cant first step towards a more comprehensive evaluation that
would include those factors.

9. REFERENCES
[1] E. S. Al-Shaer and H. H. Hamed. Firewall Policy

Advisor for anomaly discovery and rule editing. In
Proceedings of the IFIP/IEEE Eighth International
Symposium on Integrated Network Management, IFIP
International Federation for Information Processing,
pages 17–30, New York, NY, March 2003. Springer.

[2] D. Balfanz. Usable access control for the World Wide
Web. In Proceedings of the 19th Annual Computer
Security Applications Conference, pages 406–415, Los
Alamitos, CA, December 2003. IEEE Computer
Society. Available at
http://www.acsac.org/2003/papers/43.pdf.

[3] Y. Bartal, A. Mayer, K. Nissim, and A. Wool.
Firmato: A novel firewall management toolkit. ACM
Transactions on Computer Systems, 22(4):381–420,
November 2004.

[4] L. Bauer, L. F. Cranor, R. W. Reeder, M. K. Reiter,
and K. Vaniea. A user study of policy creation in a

flexible access-control system. In Proceedings of the
ACM SIGCHI Conference on Human Factors in
Computing Systems(CHI 2008), pages 543–552, New
York, NY, April 2008. ACM Press.

[5] R. Bobba, S. Gavrila, V. Gligor, H. Khurana, and
R. Koleva. Administering access control in dynamic
coalitions. In Proceedings of the 19th Large
Installation System Administration Conference (LISA
’05), pages 249–261, Berkeley, CA, December 2005.
USENIX Association.

[6] X. Cao and L. Iverson. Intentional access
management: Making access control usable for
end-users. In Proceedings of the Second Symposium on
Usable Privacy and Security (SOUPS 2006), pages
20–31, New York, NY, 2006. ACM Press.

[7] D. J. Dougherty, K. Fisler, and S. Krishnamurthi.
Specifying and reasoning about dynamic access-control
policies. In Proceedings of the Third International
Joint Conference on Automated Reasoning (IJCAR
2006), Lecture Notes in Computer Science, Vol. 4130,
pages 632–646, New York, NY, August 2006. Springer.

[8] D. F. Ferraiolo, G.-J. Ahn, R. Chandramouli, and S. I.
Gavrila. The role control center: Features and case
studies. In Proceedings of the 8th ACM Symposium on
Access Control Models and Technologies (SACMAT
2003), pages 12–20, New York, NY, June 2003. ACM
Press.

[9] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and
M. C. Tschantz. Verification and change-impact
analysis of access-control policies. In Proceedings of
the 27th International Conference on Software
Engineering (ICSE ’05), pages 196–205, Los Alamitos,
CA, May 2005. IEEE Computer Society Press.

[10] I. Fundulaki and M. Marx. Specifying access control
policies for XML documents with XPath. In
Proceedings of the 9th ACM Symposium on Access
Control Models and Technologies (SACMAT 2004),
pages 61–69, New York, NY, June 2004. ACM Press.

[11] S. Godik, T. Moses, A. Anderson, B. Parducci,
C. Adams, D. Flinn, G. Brose, H. Lockhart,
K. Beznosov, M. Kudo, P. Humenn, S. Godik,
S. Andersen, S. Crocker, and T. Moses. eXtensible
Access Control Markup Language (XACML) Version
1.0. OASIS Standard, February 2003.

[12] I. Goldberg, D. Wagner, R. Thomas, and E. A.
Brewer. A secure environment for untrusted helper
applications: Confining the wily hacker. In Proceedings
of the 6th USENIX Security Symposium, Berkeley,
CA, July 1996. USENIX Association.

[13] N. S. Good and A. Krekelberg. Usability and privacy:
a study of Kazaa P2P file-sharing. In Proceedings of
the ACM SIGCHI Conference on Human Factors in
Computing Systems(CHI 2003), pages 137–144, New
York, NY, April 2003. ACM Press.

[14] T. Jaeger, R. Sailer, and X. Zhang. Resolving
constraint conflicts. In Proceedings of the 9th ACM
Symposium on Access Control Models and
Technologies (SACMAT 2004), pages 105–114, New
York, NY, June 2004. ACM Press.

[15] S. Jajodia, P. Samarati, V. S. Subrahmanian, and
E. Bertino. A unified framework for enforcing multiple
access control policies. In Proceedings of the 1997

ACM SIGMOD International Conference on
Management of Data, pages 474–485, New York, NY,
1997. ACM Press.

[16] A. Kapadia, G. Sampemane, and R. H. Campbell.
KNOW why your access was denied: Regulating
feedback for usable security. In Proceedings of the 11th
ACM Conference on Computer and Communications
Security, pages 52–61, New York, NY, 2004. ACM
Press.

[17] C.-M. Karat, J. Karat, C. Brodie, and J. Feng.
Evaluating interfaces for privacy policy rule authoring.
In Proceedings of the ACM SIGCHI Conference on
Human Factors in Computing Systems(CHI 2006),
pages 83–92, New York, NY, 2006. ACM Press.

[18] J. Karat, C.-M. Karat, C. Brodie, and J. Feng.
Privacy in information technology: Designing to
enable privacy policy management in organizations.
International Journal of Human-Computer Studies,
63(1-2):153–174, July 2005.

[19] B. W. Lampson. Protection. Operating Systems
Review, 8(1):18–24, January 1974. Reprint of the
original from Proceedings of the Fifth Princeton
Symposium on Information Sciences and Systems
(Princeton University, March, 1971), 437-443.

[20] R. A. Maxion and R. W. Reeder. Improving
user-interface dependability through mitigation of
human error. International Journal of
Human-Computer Studies, 63(1-2):25–50, July 2005.

[21] A. Mayer, A. Wool, and E. Ziskind. Fang: A firewall
analysis engine. In Proceedings of the 2000 IEEE
Symposium on Security and Privacy (S&P 2000),
pages 177–187, Los Alamitos, CA, May 2000. IEEE
Computer Society Press.

[22] M. C. Mont, R. Thyne, and P. Bramhall. Privacy
enforcement with HP Select Access for regulatory
compliance. Technical Report HPL-2005-10, HP
Laboratories Bristol, Bristol, UK, January 2005.
Available at
http://www.hpl.hp.com/techreports/2005/HPL-2005-
10.pdf.

[23] R. W. Reeder. Expandable Grids: A user interface
visualization technique and a policy semantics to
support fast, accurate security and privacy policy
authoring. PhD thesis, Computer Science Department,
Carnegie Mellon University, Pittsburgh, PA, May
2008. Available as technical report number
CMU-CS-08-143.

[24] R. W. Reeder, L. Bauer, L. F. Cranor, M. K. Reiter,
K. Bacon, K. How, and H. Strong. Expandable grids
for visualizing and authoring computer security
policies. In Proceedings of the ACM SIGCHI
Conference on Human Factors in Computing
Systems(CHI 2008), pages 1473–1482, New York, NY,
April 2008. ACM Press.

[25] J. Rode, C. Johansson, P. DiGioia, R. S. Filho,
K. Nies, D. H. Nguyen, J. Ren, P. Dourish, and
D. Redmiles. Seeing further: Extending visualization
as a basis for usable security. In Proceedings of the
Second Symposium on Usable Privacy and Security
(SOUPS 2006), pages 145–155, New York, NY, 2006.
ACM Press.

[26] B. Shneiderman. Direct manipulation: A step beyond

programming languages. Computer, 16(8):57–69,
August 1983.

[27] R. Stevenson. Windows XP sales touches 210m copies.
Available at
http://www.ciol.com/content/news/2004/104050307.asp,
May 2004. Report that 210 million copies of XP have
been sold.

[28] The Open Group Research Institute. Adage system
overview. Available at
http://www.memesoft.com/adage/SystemSpec.ps.
Accessed via HTTP on September 20, 2006.

[29] U.S. Senate Sergeant at Arms. Report on the
investigation into improper access to the Senate
Judiciary Committee’s computer system. Available at
http://judiciary.senate.gov/testimony.cfm?id=1085&wit id=2514,
March 2004.

[30] T. Whalen, D. Smetters, and E. F. Churchill. User
experiences with sharing and access control. In
Conference on Human Factors in Computing
Systems(CHI 2006) Extended Abstracts, pages
1517–1522, New York, NY, April 2006. ACM Press.

[31] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and
P. Mohapatra. FIREMAN: A toolkit for FIREwall
Modeling and ANalysis. In Proceedings of the 2006
IEEE Symposium on Security and Privacy (S&P
2006), pages 199–213, Los Alamitos, CA, 2006. IEEE
Computer Society Press.

[32] M. E. Zurko, R. Simon, and T. Sanfilippo. A
user-centered, modular authorization service built on
an RBAC foundation. In Proceedings 1999 IEEE
Symposium on Security and Privacy, pages 57–71, Los
Alamitos, CA, May 1999. IEEE Computer Security
Press.

APPENDIX
A. ADDITIONAL TASK DESCRIPTIONS

This appendix gives the text and structure for the nine
of our 12 tasks that were not described in the body of the
paper due to space constraints and for our training task.
The first three of the tasks described here (Kent, Adria,
and Pablo) were reported on in this paper; the following six
tested aspects of the Grid interface, and of the semantics
we defined for it, other than the conflict-resolution method.
The last (Carolyn) was the training task used in all three
experimental conditions.

A.1 Tasks reported on in this paper

A.1.1 Kent

The Kent task statement presented to participants was:

Kent was a terrible TA for Choir 1 so the instruc-
tor demoted him to the level of student. While
Kent previously had permissions to read and write
the attendance and gradebook files, as a student
he should no longer have access to that informa-
tion.

Remove Kent from Choir 1 TAs 2008 and add
him to Choir 1 Students 2008. For files in the
Classes\Choir 1\Admin folder, make sure he
only has the same permissions as the other Choir
1 students.

In the initial configuration, there are rules stating that
Kent is allowed Read and Write access to the attendance.xls
and gradebook.xls files in the Classes\Choir 1\Admin folder,
but there are rules stating that the group Choir 1 Students
2008 is denied Read and Write access to those files. So,
when Kent is added to Choir 1 Students 2008, that group’s
Deny rules will apply to him. Under the Windows seman-
tics, the group Deny rules will take precedence, but under
specificity semantics, he will still be allowed to read and
write the files. Thus, the task is done after moving Kent out
of the TA group and into the student group in the GW and
WW conditions, but extra action is required to complete the
task in the GS condition. So, we expect the Windows seman-
tics, embodied in GW and WW, to perform better on the
Kent task. However, we expect the Grid’s visual presenta-
tion advantages over the Windows list-of-rules presentation
at least partially to offset the semantics disadvantage.

A.1.2 Adria

The Adria task statement presented to participants was:

Adria, an Opera Instructor, was not getting along
with the other instructor and left the class. You
need to remove her from the Opera Instructors
group. She is still a Music 101 instructor, though,
and the Music 101 instructors need access to the
Music 101 Lecture Notes.

Remove Adria from the Opera Instructors group.
Make sure she has the same permissions on the
files in the Music 101\Lecture Notes folder as
the other Music 101 instructors.

As in the Lance task, when Adria is removed from a group,
a two-dimensional conflict involving another group is re-
vealed. In the initial configuration, there is a rule stating
that Adria is denied Read access to the Music 101\Lecture
Notes folder and there is a rule stating that the Music 101 In-
structors group is allowed Read access to the Music101\Lecture
Notes\Bach.ppt file. This latter group access rule is ini-
tially suppressed in both semantics by a rule stating that
the Opera Instructors group is denied Read access to the
Bach.ppt file, but when Adria is removed from Opera In-
structors, a two-dimensional conflict is revealed. In the Win-
dows semantics, the group access rule, which is more spe-
cific in its resource, will take precedence and Adria will be
allowed to read the Bach.ppt file as soon as she is removed
from Opera Instructors. In our specificity semantics, deny-
precedence is used to resolve two-dimensional conflicts, so
Adria will not be allowed to read the Bach.ppt file without
some extra work. We thus expect the GW and WW condi-
tions to perform better than the GS condition for the Adria
task. However, the extra work required in the GS condi-
tion is quite simple. With the specificity semantics, simply
setting an access rule explicitly allowing Adria to read the
Bach.ppt file is sufficient, as the rule applying to Adria and
Bach.ppt will be more specific than the rules in conflict. We
thus expect that the GS’s presentation advantages over the
WW condition combined with the ease of overcoming the
two-dimensional conflict might counteract the WW seman-
tics advantage.

A.1.3 Pablo

The Pablo task, like the Jana task described in Section 2.2,
presents a group conflict in which a user is a member of two

groups, one of which has a rule allowing it access to a file and
the other of which has a rule denying it access to the same
file. The Pablo task statement presented to participants
was:

Pablo, a student in Music 101, tried to download
the homework file, assignment4.pdf, but couldn’t.

Set permissions so that Pablo can read the file
assignment4.pdf in the Music 101\Handouts
folder. Make sure you don’t change any other stu-
dents’ permissions. (Hint: If you need to, you can
add Pablo to a new group or remove Pablo from a
group he’s already in.)

In the initial configuration, Pablo is a member of the group
Music 101 Students 2008, for which there is a rule allowing
the group Read access to the assignment4.pdf file, and he is
a member of the group Troublemakers, for which there is a
rule denying the group Read access to the assignment4.pdf
file. In both semantics, deny-precedence is in effect for con-
flicts between groups. The difference between the semantics
comes into play when participants try to resolve the con-
flict. In the specificity semantics, authors can simply create
a rule allowing Pablo to read assignment4.pdf, and it will
take precedence because it will be more specific than ei-
ther of the group access rules. In the GS interface, creating
such a rule is a simple matter of clicking on the square cor-
responding to Pablo, assignment4.pdf, and Read. In the
Windows semantics, such a rule would not take precedence;
completing the task requires either removing Pablo from the
Troublemakers group or removing the rule that denies Trou-
blemakers Read access to the file. In either solution, care
must be taken not to change the effective permissions of
other members of the Troublemakers group. Because there
are more steps involved in the solution for the Windows se-
mantics, we expect better performance with the GS interface
for the Pablo task.

A.2 Tasks included in the present study but
reported on elsewhere

A.2.1 Piano

The Piano task tests the interfaces’ group-creation func-
tionality.

The Piano task statement presented to participants was:

A new seminar on piano performance was just
started.

Create a group called Piano Students 2008 and
add the following students to it: Aaron, Camilla,
Thor, and Uzi. Set permissions so that these
students and any students added to Piano Stu-
dents 2008 in the future will be able to read the
Piano\Handouts folder.

A.2.2 Troublemakers

The Troublemakers task tests the ability of the interfaces
to reveal an undesired exception to a rule.

The Troublemakers task statement presented to partici-
pants was:

The music department is full of pranksters. These
people have been put in the Troublemakers group.

Set permissions so that no one in the Trouble-
makers group has access to anything.

In the initial configuration, there are rules denying all ac-
cess to the root Classes folder to members of the Trouble-
makers group, but there is one user who has access to a
folder two levels below the root folder. The Windows in-
terface only allows the author to check the effective policy
for one user for one resource at a time. In our configura-
tion, there are seven users in the Troublemakers group and
29 folders one or two levels below the root, so it could take
up to 7x29=203 operations to ensure that no members of
the Troublemakers group have access to any of those fold-
ers using the Windows interface. The Grid interfaces show
the aggregate effective policy for Read and Write for the
Troublemakers at the root folder as mixed (yellow squares
with red dog-ears), thereby providing the author a clue that
some member of Troublemakers has access to something.
Expanding the group reveals that Marie is the user with
access to something within the Opera folder, and expand-
ing the Opera folder reveals two rules stating that Marie
has access to read and write the Opera\Admin folder. Be-
cause of the relative ease of spotting exceptions to the de-
sired Deny rule in the Grid interfaces, we expect them to
perform better in the Troublemakers task compared to the
Windows interface.

A.2.3 Assignment

The assignment task tests the semantics in the presence
of file moves and illustrates a potentially confusing aspect
of the Windows semantics.

The Assignment task statement presented to participants
was:

The Music 101 Assignment 1 had some mistakes
and needs to be edited. Students should be able
to read the file while it is being edited, and TAs
will need to read and write the file.

Move the assignment1.pdf file from the Classes\Music
101\Handouts folder to the Classes\Music 101\Drafts
folder. Then set permissions so that:

• Music 101 Students 2008 can read the as-
signment1.pdf file; and

• Music 101 TAs 2008 can read and write
the assignment1.pdf file.

In the Windows semantics, when a file is moved from one
parent folder to another, it retains the rules it inherited from
its old parent. When a change is made to the file’s or its
new parent’s access control list, the file then inherits all rules
from the new parent, and loses rules from the old parent. In
our semantics, a moved file inherits rules from its new parent
immediately.

In the initial configuration for the Assignment task, rele-
vant rules state that:

• Music 101 Students 2008 are allowed Read access to
files in the Handouts folder;

• Music 101 Students 2008 are denied Read access to
files in the Drafts folder;

• Music 101 TAs 2008 are allowed Read access but de-
nied Write access to files in the Handouts folder; and

• Music 101 TAs 2008 are allowed Read and Write ac-
cess to files in the Drafts folder.

From the rules, we see that if the assignment1.pdf file is
moved and inherits rules from its new parent folder Drafts,

the task will be correctly completed. Thus, under our se-
mantics, the Assignment task is complete as soon as the
participant has moved the file. Under the Windows seman-
tics, though, participants may be tricked by the rule that the
file retains its old parent’s rules, but may suddenly inherit all
of its new parent’s rules if the participant makes a change.
So, under the Windows semantics, after the participant has
moved the assignment1.pdf file, they may check to see that
Music 101 Students 2008 can read the file. Because students
are allowed to read files in the old parent folder Handouts,
the participant will note that the students have the correct
access. The participant may then proceed to check what
access the Music 101 TAs 2008 have to the assignment1.pdf
file, and note that they have can read but not write the file.
However, when the participant creates a rule allowing the
TAs Write access to the file, the file will inherit all rules
from its new parent, including the rule that the students are
denied Read access to files in the Drafts folder. Unless the
participant goes back and checks the students’ access again,
they will end up with the wrong access and the task will
not be completed correctly. Thus, we expect that the GS
interface will perform best in the Assignment task.

A.2.4 Syllabus

The syllabus task is structured similarly to the Assign-
ment task but with the inverse goal, so it gives the advantage
to the Window semantics.

The Syllabus task statement presented to participants was:

The Music 101 syllabus was in draft form, but is
now complete and ready for students to read.

Move the syllabus.doc file from the Classes\Music
101\Admin folder to the Classes\Music 101\Handouts
folder. Then set permissions so that all members
of Music 101 Students 2008 can read the syl-
labus.doc file.

In the initial configuration, there is a rule stating that
all students have Read access to the syllabus.doc file, but
there are rules stating that four of the students are denied
Read access to files in the Handouts folder. Under the Win-
dows semantics, moving the file does not change the stu-
dents’ access, and since they all already have Read access
to the file, the task is complete as soon as the participant
moves the file into the Handouts folder. In our semantics,
when the participant moves the file, it inherits its new par-
ents’ rules, so the rules denying Read access to the four
students go into effect. The participant must make the ex-
tra effort to check the effective policy for those students and
explicitly grant them Read access to correctly complete the
task. Thus, we expect the GW and WW interfaces with the
Windows semantics to perform better in the Syllabus task.

A.2.5 Clayton

The Clayton task tested whether participants could read
effective permissions correctly when a user is inheriting per-
missions from a group.

The Clayton task statement presented to participants was:

Clayton, a Theory 101 TA, is going away on a trip
and cannot grade the Simple Solo assignment. Be-
cause of this he will be put in charge of grading the
Simple Harmony assignment. Clayton will need
read and write access to the Simple Harmony as-
signment. He also may wish to refer to the Simple

Solo assignment, so he should be allowed to read
the Simple Solo submissions folder. However, you
don’t want him to accidentally overwrite the sub-
missions to Simple Solo when viewing them.

Set permissions so that Clayton can read and
write the Simple Harmony subfolder in the The-
ory 101\Submissions folder.

Set permissions so that Clayton can read, but
not write, the Simple Solo subfolder in the The-
ory 101\Submissions folder.

A.2.6 Quincy

The Quincy task tested whether participants could pre-
serve a desired exception to a group rule when changing
that group rule.

The Quincy task statement presented to participants was:

Students in the Choir class are going to sing the
War Requiem, so the Choir instructor, Savanna,
has asked you to give them access to the War Re-
quiem lyric sheets. However, you remember that
last week she asked you to prevent Quincy from
accessing any tenor parts, because, although he
obnoxiously insists he is a tenor, Savanna wants
him to sing baritone. You asked, and she con-
firmed that Quincy should not have access to the
tenor part. Other students should have access to
all the parts.

Set permissions so that Choir 1 Students 2008
can read the files in the War Requiem subfolder
of the Choir 1\Lyrics folder. But remember that
Quincy should not be allowed to read the tenor
part.

We designed the Quincy task to test a weakness of Reeder
et al.’s recency conflict-resolution method [24]. In a recency
conflict-resolution method, a rule at the group and folder
level can override an exception at the user and file level
that was intended to be kept. In the initial configuration
for the Quincy task, there is rule denying Quincy Read ac-
cess to the Tenor.pdf file in the War Requiem folder. Under
a recency method, when a rule is created to allow all stu-
dents Read access to all files in the War Requiem folder, the
Deny rule applying to Quincy will be overridden. However,
under both the Windows method and our specificity method,
the exception will stay in place because it is more specific
than the new rule applying to students and the War Re-
quiem folder. Thus, we expect similar performance amongst
the interfaces for the Quincy task.

A.3 Results for other tasks
Results for the six tasks not reported on in the main body

of the paper are shown in Figure 4. They suggest that
the Expandable Grid may have additional advantages over
the Windows file-permissions interface besides its conflict-
resolution method. In particular, the Grid (both GS and
GW) led to higher accuracy in the Troublemakers task,
which tests the ability of the interface to make policy anoma-
lies stand out. GS also has considerably higher accuracy for
the Assignment task, which tested our rule for when a moved
file inherits its new parent folder’s permissions. However,
the Assignment and Syllabus tasks were designed as a task
pair, in which GS has the advantage relative to the Assign-
ment task’s goals and GW and WW have the advantage for

0.00
0.20
0.40
0.60
0.80
1.00

Piano Trouble-
makers

Assignment Syllabus Clayton Quincy

GS GW WW

Figure 4: Accuracy results for the six tasks not re-
ported on in the main body of the paper, showing
proportion of participants correctly completing each
task with GS, GW, and WW interfaces.

relative to the Syllabus task’s goals, and GS’s superior per-
formance in the Assignment task is tempered by its inferior
performance in the Syllabus task.

A.4 Training task

A.4.1 Carolyn

The Carolyn task is a simple task to give participants
practice with searching for a user, searching for a file, adding
a user to a group, reading effective permissions, and creating
a new policy rule. It did not involve a rule conflict, so did
not provide any practice to participants in how to handle
conflicts. We used the same training task for participants in
all three experimental conditions.

The Carolyn task statement presented to participants was:

Carolyn is auditing the class Music 101 this semester.
She won’t be submitting any assignments for the
class and should not be allowed to do anything to
the Submissions folder.

Add Carolyn to the Music 101 Students 2008
group. Set permissions so that she has no read or
write access to the Classes\Music 101\Submissions
folder.

