

Edinburgh Research Explorer

A Formalization of the Coach Problem

Citation for published version:
Schropp, GYR, Meyer, JC & Ramamoorthy, S 2015, A Formalization of the Coach Problem. in RoboCup
2014: Robot World Cup XVIII. Lecture Notes in Computer Science, vol. 8992, Springer International
Publishing, pp. 345-357. DOI: 10.1007/978-3-319-18615-3_28

Digital Object Identifier (DOI):
10.1007/978-3-319-18615-3_28

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
RoboCup 2014: Robot World Cup XVIII

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43717413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-319-18615-3_28
https://www.research.ed.ac.uk/portal/en/publications/a-formalization-of-the-coach-problem(3a864b6a-59b0-490a-bc96-8b410789bd1c).html

A Formalization of the Coach Problem

G.Y.R. Schropp1, J-J. Ch. Meyer1, and S. Ramamoorthy2

1 Utrecht University (UU), The Netherlands
gwendolijn.schropp@phil.uu.nl

2 University of Edinburgh (UoE), United Kingdom

Abstract. Coordination is an important aspect of multi-agent team-
work. In the context of robot soccer in the RoboCup Standard Platform
League, our focus is on the coach as an external observer of the team,
aiming to provide his teammates with effective tactical advice during
matches. The coach problem can be approached from different angles: in
order to adapt the behaviour of his teammates, he should at first be able
to perform plan recognition on their observable actions. Furthermore, in
providing them with appropriate advice, he should still adhere to the
norms and regulations of the match to prevent penalties for his team.
Also, when teammates’ profiles and attributes are unknown or the sys-
tem is only partially observable, coordination should be more ‘ad hoc’ to
ensure robustness of the Multi-Agent System (MAS). In this work, we
present a formalization of the problem of designing a coach in robot soc-
cer, employing a temporal deontic logical framework. The framework is
based on agent organizations[14], in which social coordination and norms
play an important part.

Keywords: agent organization, multi-agent system, teamwork, coordi-
nation, logic, plan recognition

1 Introduction

RoboCup’s Standard Platform League (SPL) now allows for a coach robot, whose
main role is to provide tactical advice to his team. Besides that, he could help
the team in disambiguating signals (e.g. in localization) and give them high level
suggestions to improve their play. As the coach is a novel addition to the SPL,
there is currently little guidance on what a good coach should do. In contrast,
there is a lot of work on for example path planning and localization. As such,
the need for a formal understanding of the coach’s role arises. This formalization
is the goal of this paper. In the simulation and middle size leagues however,
coaching has been the topic of research since 2001 [45].

For the formalization of the robot soccer system we use the concept of agent
organizations: a set of entities or agents that are regulated by social order in
achieving common goals. A logic-based framework enables a precise and formal
but abstract specification, which could guide many different kinds of detailed fu-
ture implementations via agent programming languages [14, 12]. Because agents
are left unspecified in our framework, they can be developed according to the

2

needs and wishes of the designer, yielding a flexible and adaptable system [14].
The contribution of this paper is is to present a formalization using deontic tem-
poral logic, capturing the specification of the coach within the RoboCup SPL,
and describing the rules and temporal aspects of such a system. Once a type of
agents have been chosen, this framework is ready to be implemented. Suggestions
for implementation are also given in this work.

2 Related Research

There are few formal MAS for robot soccer based on agent organizations. How-
ever, aspects of our framework are related to ideas that have appeared previously
in the literature on multiagent systems and robotics.

Agent organizations and developing methods have been presented in [14, 16,
33, 47, 17]. Esteva et al. [16] and Dignum [14] introduce the notion of norms
in combination with the agent roles already used by Odell et al. [33], Ferber
and Gutknecht [17] and Wooldridge [47]. Roles can be used to decompose the
tasks to be performed by the MAS into sub-objectives to increase efficiency [44,
18, 42]. The role-based approach to ad hoc teamwork by Genter et al. [18] de-
termines role selection on the team’s utility. In robot soccer, roles have been
based on absolute position in the field [32], position relative to the ball [2, 3,
31] and robot trajectories, sometimes also considering positions of other play-
ers [48].Other work on team coordination through roles and dynamic positioning
can be found for example in [28, 27, 13]. Desheng et al. achieve collaboration be-
tween simulated agents via roles in situation calculus. One of the characteristics
of the human organizations framework used in this work is communication or
negotiation. However, coordination without negotiation [22] is more appropriate
if an ad hoc approach is required. Tracking multiple soccer players’ trajectories
can for example be done using the camera feed, in combination with an analyzing
system that segments motions into classified ball actions [2]. Extracting tactic
events from human soccer video feeds has also been done using spatio-temporal
interaction among players and the ball [48].

In order to handle the team’s knowledge representation, it is important that
the robots share the same definitions of concepts in their environment. Moreover,
these concepts should be grounded in order to link them to the robot’s percepts
of the real world, for example via ontologies [20, 35] and pattern recognition [24].
Also, a communication language for the coach should be defined, for example the
COACH UNILANG language, enabling both high-level and low-level coaching
through coach instructions [37].

As a first step towards integrating the framework in a coach robot, we pay
special attention to the problem of plan recognition. There’s related work on the
use of roles to infer a robot’s plans or intentions [4, 5, 7, 18]. ‘Plans’ can be inter-
preted in various ways, ranging from a sequence of actions currently performed
according to some behaviour [7, 40] to a robot’s entire internal state (e.g. be-
lief base, goals). The latter approach is sometimes called ‘opponent modelling’
and used to learn an optimal strategy against the modelled type of agent [1,

3

8, 38, 39]. Although plan recognition was first introduced in the field of logical
inference by [25], the current state of the art is mainly based on probabilistic
methods like Bayesian Networks [6, 7, 9] and Markov Models [6, 4, 21, 10, 46, 26].
For example in [39], simulated robot soccer players adapt their positions strate-
gically in adaptive response to the opponent’s behaviour throughout the game.
As for logic-based approaches, the work by Sindlar et al. [43] seems to fit our
framework best: the highly structured and regulated character of robot soccer
seems suitable for their abductive reasoning approach to intention recognition
(more in section 5). Besides abductive reasoning, intention recognition has also
been modelled formally, in a language based on situation calculus [29, 19]. In this
approach, observed behaviour is incrementally matched to an annotated library
of plans, which makes it more restricted than Sindlar’s approach.

3 Formal Framework

For the formalization of the coach problem in the context of RoboCup SPL, we
used Dignum’s OperA framework development methodology [14], as it is formal
and elaborate enough to precisely describe the system while still being flexible,
reusable and adaptable to specific agent designs and future innovations.

In OperA, structures are described in a formal logic called ‘logic for contract
representation’ (LCR), which is a combination of CTL* (computation tree logic,
a temporal logic), STIT (‘sees to it that’) and Deontic expressions [14]. Deon-
tic logic is the logic of norms (obligations, prohibitions, permissions, violations
and sanctions), allowing reasoning about ideal states versus actual states of be-
haviour [23]. STIT logic is used to determine which agent should ‘see to it that’
a certain goal is achieved [14]. Since robot soccer is a highly regulated game
with both time specific and role specific tasks and events, LCR is an appropriate
language to describe it. In our domain we don’t need the full specification of
LCR because, for example, communication is limited in comparison to that in a
human organization [41].

OperA’s methodology contains several layers of design: the Organizational
Model is by far the most elaborate layer, in which the characteristics of the
domain are given in social, interaction, normative and communicative structures.
The Social and Interaction Models are meant to instantiate specific agents and
interactions for actual implementation, which is largely outside the scope of
this work. The OperA development methodology yields a formal model with
descriptions of the roles, rules and interactions of the robot soccer system. This
framework allows for extensions and adaptations of existing interactions.

3.1 Organizational Model

Roles and Dependencies Roles are an important part of the framework.
Two kinds of roles should be distinguished: facilitation roles and operational
roles. Moreover, as our domain contains both humans and robots, a difference is
made between roles that can be enacted by human or robot agents. Specification

4

of domain concepts and entities is given in a domain ontology and in terms of
identifiers respectively. The ontology is, to certain extent, developed in Protégé3,
similar to Opfer’s approach for the Middle-Sized League [35]. It includes formulas
describing (parts of) the field (e.g. ∀x.isPartOf(x,OppArea)↔
isPartOf(x,OppHalf): all areas within the opponent’s area are also within the
opponent’s half of the field). Identifiers are used as names for the sets of agents
(both human and robot). Opponent robots are not included in the framework
at this stage but can be added in future work.

The human roles of our domain are {head-referee, assistant-referee,
GameController-operator, human-teammember}[11], whereas the robot roles are
{goalkeeper, defender, attacker, coach}. The amounts of robots playing each role
depends on specific team formation (except that there is always only one goal-
keeper and one coach). At least one human should enact the human-teammember
role, meaning that he/she is able to request for pick ups and time outs.
Roles in the robot soccer domain are defined as tuples
role(r,Obj, Sbj,Rgt,Nor, tp) where r ∈ Roles is the identifier of a role, Obj ⊆
Act is the set of objectives of the role, Sbj ⊆ Act is the set of sub-objectives
sets of the role, Rgt ⊆ Deon are the rights of the role and Nor ⊆ Deon the
norms of the role. tp ∈ {operational, institutional} is the type of the role [14,
41]. Institutional roles (e.g. referees) are typically enacted by impartial agents,
ensuring global activity, while actors of operational roles aim to achieve their
part of the society goals.

Based on these roles, agents have certain (sub-)objectives to achieve and
norms to adhere to. For example, a coach should aim to send tactic messages to
the players but is not allowed to leave its seated position beside the field. These
norms and objectives are formalized in LCR to facilitate future implementation.
Norms are based on the official RoboCup SPL rules and identified via a Norm
Analysis method, yielding the responsible roles and triggers for each norm [14,
41]. The coach role is given as an example in table 1. The sub-objectives as
defined in this table are merely suggestions for how to handle the plan recognition
module in combination with a decisionmaking module yet to be developed. In
section 5 this will be discussed in more detail.

In order to achieve their objectives, enactors of roles depend on each other.
These role dependencies determine the interactions that occur in the system.
Role dependencies depend on the power relations between roles, for example,
players can request things from one another while the coach’s advice should
perhaps have a higher priority. The robot soccer roles and their dependencies
per objective are depicted in graph 1. For example for the dependencies written
in red: the coach depends on the GameController-operator to send his messages
to the players, and the head-referee depends on the assistant-referee(s) to apply
his requests.

Interaction Scenes and Landmarks The interactions, determined by role
dependencies, are described as ‘interaction scene scripts’ and can be seen as

3 http://protege.stanford.edu

5

Role: Coach

Role id coach

Objectives o1 := messaged-tactics
o2 := followed-rules

Sub-objectives Πo1 = ({∀p∈ Players: executed-plan-rec-module(p, role(p), t),
got-plan(p, plan)), got-tactic-list(plan, formation, Tactics),
decided-tactic(Tactics, tactic),got-msg(tactic, msg),
message-sent(coach, GC-op, msg), wait(10s)}

Πo1’ =({∀p∈ Players: executed-plan-rec-module(p,t),
got-role-map(plan(p), role(p))),
got-formation-map(role(p), Formations),
got-team-tactics(formation, TeamTactics),
decided-tactic(TeamTactics, tactic), got-msg(tactic, msg),
message-sent(coach, GC-op, msg), wait(10s)}

Rights message-via-GC-op, decide-tactic(coach, (Team)Tactic)

Norms PROHIBITED(coach, move(¬(head∧arms)))
PROHIBITED(coach, communicate(coach, Robots, direct))
PERMITTED(coach, have-clothes(anyColor, anyPattern))
OBLIGED(coach, meet-msg-requirements(Msg, [Msg-Requirements]))

Type operational

Table 1. Role definition for the coach; t = window of observation, msg = message.

h-ref

a-ref GC-op

h-tm coach

goalkeeperdef.att.

requests(apply)
inform (society, robots)

requests(ask, decide)

send-msg

check-msg

comm.coach-msg
maintain-robots

handle-robots

help help-defend

Fig. 1. Role dependency graph

the coordination of interactions among several roles. Scene scripts are tuples
scene(s,Rls,Res,Ptn,Nor) where s is the identifier of the scene, Rls is the

6

set of identifiers of the roles enacting the scene, Res are the results of the
scene in terms of achievement expressions, Ptn the interaction patterns (sub-
achievements) and Nor the relevant norms of the agents in the scene. Achieve-
ment expressions are statements that describe the situation of a state after a
certain goal is achieved (e.g. ‘penalty-applied’, ‘goal-scored’, ‘ball-passed’). The
notion of landmarks is used to represent such states. How exactly these land-
marks have been reached is not defined at this level since it depends on the
specifics of the participating agents.

In the Organizational Model, all roles, dependencies, norms and interactions
of the ‘robot soccer society’ are formally defined. Since the entire model is quite
elaborate, please see [41] for the complete framework.

3.2 Social and Interaction Models

Where the Organizational Model consists of the formal model of the society,
the Social Model continues with the explicit representation of how an agent
will enact such a role. At this level, the requirements and conditions of actual
agents can be taken into account. When a specific agent is assigned a role, he
becomes a role-enacting agent (rea). The roles as described in the Organizational
Model can be adjusted to the wishes of that specific agent about to enact it. For
example, if an agent can only enact ‘assistant-referee’ for half a match, this can be
adjusted in his social contract. That contract describes the role-enacting agent:
his expected behaviour when he enacts that role. That is, a role as described in
the Organizational Model can be enacted in various ways by different agents,
based on their personal objectives and functionality. This is described in the
social contract. However, as this is fully dependent on the specific agents yet to
be implemented, we cannot describe the link between those unknown agents and
the general definitions in the Organizational Model.

The same holds for the Interaction Model, where the specific role-enacting
agents of the Social Model can be combined with interaction scenes from the
Organizational Model to ‘instantiate’ the scenes. This happens in a similar way
as described above, via instatiation of interaction contracts in which the wishes
of the participants in the scene are reflected. The method to go about the in-
stantiation of the Social and Interaction Models is given in [41, 14].

3.3 Validation

Since our framework currently is abstract and intended mainly to formalise the
specifications, we can not as yet experiment with it to verify it works as intended.
OperA frameworks can however be validated and verified in multiple ways. The
main requirements as presented in [14] are meant to check the model for in-
consistencies and contradictions. Besides formally verifying its structures, the
framework should also be checked to represent the objectives of the society. As
we only developed the Organizational Model in detail, this verification step can
only occur at the organizational level. On this level the roles, objectives and de-
pendencies are confirmed to represent society purposes. Furthermore, we haven’t

7

found conflicts within or between the descriptions of roles, results, objectives,
norms and scenes. Clearly, this has already been kept in mind in the develop-
ment phase. When instantiating the Social and Interaction Models, one should
make sure its contracts do not contradict the descriptions of the Organizational
Model.

Besides a formal verification, a note on the robot soccer specific validation
is in order. As this framework is based firmly on the official RoboCup SPL
regulations and developed in collaboration with Edinferno’s team (inspiration
has been drawn from earlier implementations together with advice and ideas of
current members), it is not only formally verified but also validated on content.

4 Plan Recognition

A necessary first step in implementing this framework is a plan recognition
module for the coach. The idea here is that the coach should be able to identify a
player’s behaviour from observed actions only. We assume that behaviour in this
sense is a set of goals and plans to achieve those goals, leading to characteristic
trajectories on the field. The trajectories can be tracked by means of the player’s
self-localization module and collected in the form of a vector containing relative
distances and angles to the possible goals. We choose to test on two behaviours
representing the intention to go either towards the center of the ‘own’ goal or
the ‘opponent’ goal. The problem is modelled as a parameterized Markov Chain
M : (S,A, T), where S is a finite set of states, A is a finite set of actions and T is
the transition function: for any state and action s ∈ S, a ∈ A, the probability of
each possible next state s′ is T(s′ | s,a). The state vector contains the distances
and angles from the player, the action vector the distances travelled between the
current state and a next state. For both behaviours, sets of states and actions
are collected as training data, based on which probabilities are calculated: given
a behaviour and a current state, what is the most likely next state for the player
to be in. A Gaussian distribution is fitted to the training data to cover the entire
soccer field for both behaviours.

In the test phase, for each observed state of the player, the most likely tran-
sition is calculated using the multivariate normal density function. Using these
likelihoods, maximum log-likelihoods for entire observed trajectories are found.
Behaviours are classified using Bayes’ rule (eq. 1): the behaviour (b) with the
highest log-likelihood given the observations (O) is chosen as the correct one.

argmaxb p(b|O) = argmax p(O|b) p(b)

Decide b1 if p(b1|O) > p(b2|O); otherwise,decide b2. (1)

For the ‘go to opponent goal’ behaviour we collected 60 trajectories, for the ‘go
to own goal’ behaviour 46. These were divided in a 80/20 ratio into training
and validation sets, where the training sets yielded the probability distribution
on the field given a certain behaviour. For ‘go to opponent goal’ we measured

8

91.6% precision, for ‘go to own goal’ only 44.4%. These numbers are the result
of an initial implementation within the framework. More sophisticated models
could have been used, for example Bayesian network representations [30]. Despite
smoothing, some trajectories still did not represent their actual paths. That is,
the logs showed jumps in positions or otherwise incorrect coordinations, mostly
due to mirrorring of the field. Also, the amount of training data for the own goal
behaviour is considerably less. A lot of the collected trajectories could not be
used due to flaws with the player’s self-localization. However, it should be noted
that the differences between the maximum log-likelihoods that determined the
classification decision were in most cases extremely small. A more sophisticated
classifier appears necessary for stronger results in this direction.

5 Application

There are several roads to follow from here in implementing the coach. Two
suggestions will be presented in this section. The first suggestion is to continue
with the current plan recognition module and integrate it with a decision making
and tactic adaptation module, for example in one of the following ways:

1. Tactics as independent sub-objectives
2. Tactics as dependent sub-objectives
3. Team tactics

For all these options, we assume that the coach has a library of plans and cor-
responding messages that he can send. The decision making module serves to
compute the optimal plan given the observed current plan per single player (1
and 2) or for the entire team (3). In the first suggestion, we take the coach’s
advice to be obligatory for the player to perform and independent of the role
of that player: the coach merely observes the game situation and decides tac-
tic plans based on player position without including their role specific abilities.
This could be a naive first test of such a decision module. The second option
does consider the player’s role: the coach decides optimal tactics like before, but
sends messages to the role-enacting agent with the most suitable role and posi-
tion to perform that tactic. The third option is to infer current roles and plans
of the entire team before deciding an optimal team tactic. The players should
re-arrange and divide the coach’s tactic plans between themselves in a similar
way as the current method of role switching (e.g. based on position relative to
the ball). For example, if the coach sends a plan involving passing a ball, then
the robot that is currently closest to the ball is in the best position to execute
that plan.

However, should one want to connect the logical framework to a logical
method of plan recognition, we suggest to continue along the lines of the work
done by Sindlar et al. [43]. They propose a method for intention recognition via
mental state abduction (MSA), were agents are assumed to be BDI agents (Be-
lief/Desires/Intentions [36]). Based on observations combined with knowledge of
the rules and roles, it can be inferred why an agent performs a certain action.

9

MSA uses ‘answer set programming’ (ASP) for nonmonotonic, abductive rea-
soning in the agent programming language (2)APL [12]. In this language, a goal
achievement rule of the form n : γ ← β | π, where n is the identifier of the rule,
γ the goal to be achieved, β the beliefs that should be true in order to be allowed
or able to perform plan π, where π generates observable action sequences leading
to achieving that goal γ. That is, a plan can generate multiple observable se-
quences and also multiple computation sequences, meaning that various different
routes can lead to the same goal. There is a subtle difference between observ-
able and seen actions: an observable action is a possible observation (something
that is possible according to the theory), while seen actions have actually been
observed. Intuitively, if an action is seen, it should also be observable [43].

From these APL rules, a translation step is made to a logical theory and sub-
sequently to a logical program in ASP style, making it directly implementable.
We will give a short example for our domain to explain how MSA works. Consider
the rule R = {1: hold-ball ← in-ownPA(g) and in-ownPA(b) | move(g,b);
if B(opponent-near) then pickup(g,b) else skip}, which would lead to
the answer set program PR:

2{g(hold-ball,0), b(conj(in-ownPA(g), in-ownPA(b)),0)}2 :- r(1,1)

2{g(hold-ball,0), b(conj(in-ownPA(g), in-ownPA(b)),0)}2 :- r(1,2)

2{o(move(g,b),1), o(pickup(g,b),2)}2 :- r(1,1)

1{o(move(g,b),1)}1 :- r(1,2)

1{r(1,1), r(1,2)}1.
:- s(A,T), not o(A,T),

where the last statement says that candidate answer sets that were seen, but
not deemed observable at step T should be discarded. The reason that r(1,1)

and r(1,2) are the same, is because the plan of this rule has two possible compu-
tation sequences, represented by the two possible observations given (depending
on the belief of ‘opponent-near’). The belief whether or not the opponent is near
is a different kind of belief than β since it is a test case in the plan (π) part of
rule R: B(opponent-near) does not need to be satisfied to execute rule R, while
beliefs β (in-ownPA(g) and in-ownPA(b)) should.
Let us say we have seen the goalkeeper moving towards the ball:
P ′ = P ∪ {s(move(g,b),1)}. This can be explained by both r(1,1) and
r(1,2). Next, we see him picking up the ball: P ′′ = P ′ ∪ {s(pickup(g,b),
2)}; this can only be explained by r(1,1). We can now infer
P ′′ |= goal(hold-ball)∧bel(conj(in-ownPA(g), in-ownPA(b)))

∧bel(opponent-near), revealing the mental state of our goalkeeper based on
observed actions and known rules.

6 Discussion

The organizational MAS development method ‘OperA’ yielded a grounded for-
malization of the robot soccer society and a detailed description of its roles and
coordination. However, a drawback of this method is that guidelines for actual

10

implementation are not provided. Recent extensions like OMNI [15] and Op-
erettA [34] explore possible means of implementation for such frameworks. The
fact that agent designs are left out of the framework is presented as an advan-
tage, as it gives the designer freedom to adjust the agents to his needs while
they can still be used in the general yet formal framework [14]. This way, there
are multiple options for future work, like the modular approach we started on
or the BDI/abduction approach we suggested above.

This formalization of the coach role has been largely based on RoboCup’s
regulations [11]. Requirements for the coach’s messages have been mentioned in
[41], but the content of these messages has not been defined yet. This depends on
the decisions made in the actual development of the coach: what would be most
valuable for him to say in order to help the team. The format for the messages
as described in the regulations has been included in the framework. All other
specifics as mentioned in the regulations are included in this formalization [41].
Examples and additions to these specifics are inspired by (former) RoboCup
members.

The plan recognition module as presented above is merely a naive first pass
implementation that could be improved in several ways. For example, our ini-
tial implementation assumed that the coach has access to the player’s self-
localization logs, while ideally he should be able to use actual observations.
Furthermore, we only tested on static goals, while ball behaviour would be more
informative to decide tactics. However, from this first step we gained some im-
portant insights into the difficulties of the coach problem.

7 Conclusion and Further Research

In general, the OperA framework has shown to be very suitable to describe robot
soccer in terms of roles and interaction structures. The coach role, as described
by RoboCup’s regulations, has been formalized within this framework. As it
leaves agent designs undefined, the next step is to choose for example between
the modular approach introduced in 4 and the logical approach based on BDI
agents suggested in 5. As robot soccer is a highly regulated game, and all robots
should have a knowledge base of the rules in any case, it seems intuitive to
continue along the lines of mental state abduction. So far we only spoke of full
observable sequences, but work on sequences with gaps (partially observable)
already exists [42]. Besides implementation of a new and improved plan recog-
nition module, the tactic decision making problem is also subject for further
research.

References

1. N. Bard and M. Bowling. Particle filtering for dynamic agent modelling in sim-
plified poker. In Proceedings of the National Conference on Artificial Intelligence,
volume 22(1), 2007.

11

2. M. Beetz, J. Bandouch, and S. Gedikli. Camera-based observation of football
games for analyzing multi-agent activities. In Proceedings of AAMAS ’06, 2006.

3. S. Behnke, J. Müller, and M. Schreiber. Playing soccer with robosapien. In:
A. Bredenfeld et al. (editors): RoboCup 2005, LNAI 4020, Springer, pages 36–48,
2006.

4. C. Boutilier. Sequential optimality and coordination in multiagent systems. Inter-
national Joint Conferences on AI, 99:478–485, 1999.

5. M. Bowling and P. McCracken. Coordination and adaptation in impromptu teams.
In Proceedings of AAAI’05, pages 53–58, 2005.

6. H.H. Bui. A general model for online probabilistic plan recognition. International
Joint Conferences on AI, 3:1309–1315, 2003.

7. S. Carberry. Techniques for plan recognition. User Modeling and User-Adapted
Interaction, 11:31–48, 2001.

8. D. Carmel and S. Markovitch. Model-based learning of interaction strategies in
multi-agent systems. Journal of Experimental and Theoretical Artificial Intelli-
gence, 10(3):309–332, 1998.

9. E. Charniak and R.P. Goldman. A bayesian model of plan recognition. Artificial
Intelligence, 64:53–79, 1993.

10. C. Claus and C. Boutilier. Reinforcement learning in cooperative multiagent sys-
tems. In Proceedings of AAAI-98, pages 746–752, 1998.

11. RoboCup Technical Committee. Robocup standard platform league (nao) rule
book, 2013.

12. M.M. Dastani. 2apl: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems, 16(3):214–248, 2008.

13. X. Desheng and X. Keijan. Role assignment, non-communicative multi-agent coor-
dination in dynamic environments based on the situation calculus. In Proceedings
of the WRI Global Congress on Intelligent Systems, volume 1, pages 89–93, 2009.

14. V. Dignum. A Model for Organizational Interaction: based on Agents, founded in
Logic. PhD thesis, Utrecht University, 2004.

15. V. Dignum, J. Vázquez-Salceda, and F. Dignum. Omni: Introducing social
structure, norms and ontologies into agent organizations. In: R.H. Bordini et
al.(editors): PROMAS 2004, LNAI 3346, pages 181–198, 2005.

16. M. Esteva, J.A. Rodŕıguez-Aguilar, C. Sierra, P. Garcia, and J.L. Arcos. On
the formal specification of electronic institutions. In: F. Dignum, C. Sierra (ed-
itors): Agent-Mediated Electronic Commerce (The European AgentLink Perspec-
tive), LNAI 1991, Springer, pages 126–147, 2001.

17. J. Ferber and O. Gutknecht. A meta-model for the analysis and design of organi-
zations in multi-agent systems. In Proceedings of the 3rd International Conference
on Multi-Agent Systems (ICMAS’98), 1998.

18. K. Genter, N. Agmon, and P. Stone. Role-based ad hoc teamwork. In Proceedings
of PAIR-11 (workshop at AAAI), 2011.

19. A. Goultiaeva and Y. Lespérance. Incremental plan recognition in an agent pro-
gramming framework. In Proceedings of Plan, Activity and Intent Recognition
(PAIR), 2007.

20. M. Grüninger and M.S. Fox. Methodology for the design and evaluation of ontolo-
gies. In Proceedings of the Workshop on Basic Ontological Issues in Knowledge
Sharing, IJCAI-95, 1995.

21. K. Han and M. Veloso. Automated robot behavior recognition. Robotics Research
- International Symposium, 9:249–256, 2000.

12

22. M. Isik, F. Stulp, and H. Utz. Coordination without negotiation in teams of
heterogeneous robots. In: G. Lakemeyer, E. Sklar, T. Sorrenti (eds): RoboCup
2006: Robot Soccer World Cup X, LNAI 4434. Springer., pages 355–362, 2007.

23. F. P. M. Dignum J.-J. Ch. Meyer, R. J. Wieringa. The role of deontic logic in the
specification of information systems. In: J. Chomicki, G. Saake (editors): Logics
for Databases and Information Systems, Kluwer Academics Publishers, pages 71–
115, 1996.

24. B. Johnston, F. Yang, R. Mendoza, X. Chen, and M. Williams. Ontology based
object categorization for robots. In: T. Yamaguchi (editor): PAKM 2008, LNAI
5345. Springer., pages 219–231, 2008.

25. H.A. Kautz and J.F. Allen. Generalized plan recognition. In Proceedings of AAAI-
86, volume 86, pages 32–37, 1986.

26. A. Kleiner, M. Dietl, and B. Nebel. Towards a life-long learning soccer agent.
In: G.A. Kaminka, P.U. Lima, R. Rojas (editors): RoboCup 2002, LNAI 2752.
Springer, pages 126–134, 2003.

27. J.R. Kok, M.T.J. Spaan, and N. Vlassis. Non-communicative multi-robot coordina-
tion in dynamic environments. Robotics and Autonomous Systems, 50(2-3):99–114.

28. N. Lau, L.S. Lopes, G. Corrente, and N. Filipe. Multi-robot team coordination
through roles, positioning and coordinated procedures. In Proceedings of IROS
2009, 2009.

29. H. Levesque, F. Pirri, and R. Reiter. Foundations for the situation calculus. Com-
puter and Information Science, 3(18), 1998.

30. L. Liao, D.J. Patterson, D. Fox, and H. Kautz. Learning and inferring transporta-
tion routines. Artificial Intelligence, 171, 5-6:311–331, 2007.

31. P. MacAlpine, F. Barrerra, and P. Stone. Positioning to win: A dynamic role
assignment and formation positioning system. In Proceedings of the RoboCup In-
ternational Symposium 2012, 2012.

32. M. Mohr, P. Krustrup, and J. Bangsbo. Match performance of high-standard
soccer players with special reference to development of fatigue. Journal of Sports
Sciences, 21:7:519–528, 2011.

33. J.J. Odell, H. Van Dyke Parunak, and M. Fleischer. The role of roles in designing
effective agent organizations. in A. Garcia et al. (editors): SELMAS 2002, Lecture
notes in computer science 2603, pages 27–38, 2003.

34. D. Okouya and V. Dignum. Operetta: A prototype tool for the design, analysis and
development of multi-agent organizations (demo paper). In Proceedings of the 7th
International Conference on Autonomous Agents and Multiagent Systems, 2008.

35. Stephan Opfer. Towards Description Logic Reasoning Support for ALICA. Mas-
ter’s thesis, Universität Kassel, 2012.

36. A.S. Rao and M.P. Georgeff. Modeling rational agents within a bdi-architecture.
KR, 91:473–484, 1991.

37. L.P. Reis and N. Lau. Coach unilang: a standard language for coaching a
(robo)soccer team. In In: A. Birk, S. Coradeschi, S. Tadokoro (eds): RoboCup
2001: Robot Soccer World Cup V, LNAI 2377. Springer, pages 183–192, 2002.

38. P. Riley and M. Veloso. Coaching a simulated soccer team by opponent model
recognition. AGENTS’01, 2001.

39. P. Riley and M. Veloso. Recognizing probabilistic opponent movement models.
RoboCup 2001: Robot Soccer World Cup V. Springer, pages 453–458, 2002.

40. S. Saria and S. Mahadevan. Probabilistic plan recognition in multiagent systems.
In Proceedings of ICAPS-04, AAAI, pages 287–296, 2004.

41. G.Y.R. Schropp. Agent organization framework for coordinated multi-robot soccer.
Master’s thesis, Utrecht University, 2014 (in review).

13

42. M.P. Sindlar, M.M. Dastani, F. Dignum, and J-J.Ch. Meyer. Mental state abduc-
tion of bdi-based agents. In: M. Baldoni et al. (editors): DALT 2008, LNAI 5397.
Springer., pages 161–178, 2008.

43. M.P. Sindlar, M.M. Dastani, and J-J.Ch. Meyer. Programming mental state abduc-
tion. In Proceedings of the 10th International Conference on Autonomous Agents
and Multiagent Systems, volume 1, pages 301–308, 2011.

44. P. Stone and M. Veloso. Task decomposition, dynamic role assignment, and low-
bandwidth communication for real-time strategic teamwork. Artificial Intelligence,
110(2):241–273, 1999.

45. U. Visser, C. Drucker, S. Hubner, E. Schmidt, and H. Weland. Recognizing for-
mations in opponent teams. In In: P. Stone, T. Balch, G. Kraetzschmar (eds):
RoboCup 2000, Robot Soccer World Cup 4, LNAI 2019. Springer., pages 391–396,
2001.

46. T. Weigel, K. Rechert, and B. Nebel. Behavior recognition and opponent modeling
for adaptive table soccer playing. In: U. Furbach (editor): KI 2005, LNAI 3698.
Springer., pages 335–350, 2005.

47. M. Wooldridge, N. Jennings, and D. Kinny. The gaia methodology for agent-
oriented analysis and design. Journal of Autonomous Agents and Multi-Agent
Systems, 3(3):285–312, 2000.

48. G. Zhu, C. Xu, Q. Huang, and W. Gao. Automatic multi-player detection and
tracking in broadcast sports video using support vector machine and particle filter.
In Proceedings of the International Conference on Multimedia and Expo, pages
1629–1632, 2006.

