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We consider the genesis and dynamics of interfacial instability in vertical gas-liquid
flows, using as a model the two-dimensional channel flow of a thin falling film
sheared by counter-current gas. The methodology is linear stability theory (Orr-
Sommerfeld analysis) together with direct numerical simulation of the two-phase
flow in the case of nonlinear disturbances. We investigate the influence of two main
flow parameters on the interfacial dynamics, namely the film thickness and pressure
drop applied to drive the gas stream. To make contact with existing studies in the
literature, the effect of various density contrasts is also examined. Energy budget
analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable
modes (interfacial, shear, internal) in the case of high density contrasts, which results
in mode coalescence and mode competition, but only one dynamically relevant
unstable interfacial mode for low density contrast. A study of absolute and convective
instability for low density contrast shows that the system is absolutely unstable for
all but two narrow regions of the investigated parameter space. Direct numerical
simulations of the same system (low density contrast) show that linear theory holds
up remarkably well upon the onset of large-amplitude waves as well as the existence
of weakly nonlinear waves. For high density contrasts, corresponding more closely
to an air-water-type system, linear stability theory is also successful at determining
the most-dominant features in the interfacial wave dynamics at early-to-intermediate
times. Nevertheless, the short waves selected by the linear theory undergo secondary
instability and the wave train is no longer regular but rather exhibits chaotic motion.
The same linear stability theory predicts when the direction of travel of the waves
changes — from downwards to upwards. We outline the practical implications of
this change in terms of loading and flooding. The change in direction of the wave
propagation is represented graphically in terms of a flow map based on the liquid
and gas flow rates and the prediction carries over to the nonlinear regime with only a
small deviation. © 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4944617]

. INTRODUCTION

Vertical two-phase flows of thin liquid films sheared by a counter-current gas are prototypical
for many technical applications, such as absorption and distillation (using structured packing), evap-
oration and condensation. In these applications, not only mass and heat transfer but also operational
limits are closely linked to the prevailing hydrodynamics. The flow in the two phases, in turn, is
largely determined by the interactions between gas and liquid at its interface. Although gas-sheared
liquid films have been part of active research on fundamental and practical level for several decades,
the rich interfacial dynamics are still not fully understood. These rich dynamics emerge as the liquid
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interface becomes unstable, leading to the development of waves. Depending on the flow rates,
these waves can form highly complex structures, which may give rise to the breakup of the regular
wave train, ligament formation, or droplet entrainment.

One of the first to investigate a channel flow with two superimposed fluid layers from a theoret-
ical point was Yih,! who used asymptotic expansion to solve the Orr-Sommerfeld (OS) eigenvalue
problem associated with the temporal linear stability in the long wavelength limit for equal densities
and layer thicknesses. He found that viscosity stratification alone can cause interfacial instability
at arbitrarily small Reynolds numbers, which is also referred to as Yih mechanism. Yiantsios and
Higgins? extended the linear stability analysis by accounting for short waves as well as effects due
to surface tension and gravity. They observed that, depending on the choice of parameters, the flow
is receptive to a short-wave instability at low Reynolds numbers and, moreover, to a shear-mode
instability (Tollmien-Schlichting mechanism) for sufficiently large Reynolds numbers. The same
approach is extended in the present work to vertical counter-current flow configurations.

To classify the various types of instabilities arising in parallel two-phase flow, Boomkamp
and Miesen® analysed by which mechanism energy is transferred from the primary flow to grow-
ing disturbances, thereby verifying that both the Yih and the shear mode are important routes to
interfacial instability. In fact, a combination of these two mechanisms, also referred to as internal
mode, represents a further possible route. We use this approach in the present work for vertical
counter-current flows and apply it in cases where a number of modes are active — and where
the classification-type of each mode is changing — as the many parameters in the problem are
varied throughout the full parameter space. Further classification of parallel flow instability is made
by way of the absolute/connective dichotomy,* which we also pursue in the present context of
counter-current vertical flows.

In this way, linear stability analysis is shown to be an effective technique to understand the
genesis of interfacial instability. However, its validity is limited to disturbances with infinitesimal
amplitude. As these disturbances grow, nonlinear effects become important and have to be taken
into account. Due to the complexity of nonlinear stability only few general theories exist.> Nonethe-
less, a variety of modelling techniques have been proposed to describe the development of the inter-
facial waves up to a finite amplitude. Some of these techniques impose a priori assumptions about
the wave dynamics under investigation, like long-wave or lubrication approximation, resulting in
model equations such as the Kuramoto-Sivashinsky equation or depth-averaged integral equations.
A large number of studies on the nonlinear dynamics of interfacial flows are based on these kind
of models.® However, given that their range of applicability is generally not known in advance,
they may at times produce incorrect results (e.g., the erroneous prediction of absolute instability
in a falling film, as highlighted by Brevdo et al.'?). This is especially the case for flow regimes
involving large pressure fluctuations and potentially large-amplitude waves, for which there is a
major necessity to gain fundamental understanding.

By contrast, weakly nonlinear theories based on either the Stuart-Landau or the Ginzburg-
Landau equations dispense with assumptions that cannot be confirmed a priori and are capable
of matching experimental observations.''~'*> Such “pure” weakly nonlinear theories are therefore
appropriate to complement direct numerical simulations (DNS) of the full Navier-Stokes equations,
which, in turn, are guided by basic OS analysis, to study interfacial instability in a rigorous manner.
Note that Ginzburg-Landau theory can be applied far from criticality (by criticality we mean that a
single mode is barely linearly unstable, and all other modes are linearly stable). Proximity to criti-
cality is sufficient for the theory to apply, but is not necessary. Instead, the necessary condition for
the theory to apply is separation of time scales — the growth rate in linear theory of the fundamental
mode should be well separated from the time scales of the other modes in the problem.'# This is the
case in the examples considered throughout this work.

The aforementioned techniques have helped to shed light on the genesis and development of
interfacial instability in shear flows and a good understanding of the mechanisms at play has been
gained. However, a substantial amount of the available literature is dedicated to horizontal flows or
flows down an inclined plane. Flow dynamics specific to a vertical configuration have not received as
much attention even though the same methods are applicable. Phenomena related to (partial) liquid
flow reversal due to the counter-current gas flow, i.e., (the onset of) flooding, influence the design,
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optimization as well as operation of technical processes to a great extent and have so far mainly been
investigated experimentally.'>"! Amongst the theoretical studies of such flows, the works by Tri-
fonov,?%?! Tseluiko and Kalliadasis?? as well as Dietze and Ruyer-Quil® are worth pointing out. The
first three studies consider a liquid film sheared by a turbulent gas stream and analyse the evolution of
the interface by solving the governing equations of gas and liquid phase independently (under appro-
priate assumptions), therefore following the “quasi-laminar” approach of Miles?* and Benjamin.?* In
contrast, Dietze and Ruyer-Quil focussed on a laminar gas phase and included the interfacial coupling
of the two phases in a complete manner using the weighted-residual integral boundary-layer (WRIBL)
method. Even though the authors also used DNS to validate their low dimensional model, studies
on interfacial instability in parallel shear flows employing direct numerical simulation are relatively
scarce. To further elucidate the rich dynamics of vertical counter-current gas-liquid flows, we there-
fore use simulations of the full Navier-Stokes equations together with the semi-analytical methods
described above. It is worth noting that applying a low to moderate density contrast to this type of
flow is popular in the simulation literature for a number of reasons, such as less complex system dy-
namics, which helps to pinpoint dynamically relevant mechanisms, but also numerical convenience,
see, e.g., the works by Scardovelli and Zaleski,”> Boeck et al.?® and Fuster et al.>’ In this respect,
we will make contact to the existing literature by considering low and high density contrasts in our
analysis and report on its influence on the system behaviour.

This work is organized as follows. We give a description of the investigated problem and
outline the employed methods in Sec. II. Results regarding temporal linear stability of the system
are discussed in Sec. III. Spatio-temporal behaviour with respect to absolute/convective instability
of the linearized dynamics is presented in Sec. IV. Section V discusses nonlinear wave dynamics.
Finally, we give concluding remarks in Sec. VI.

Il. PROBLEM DESCRIPTION AND COMPUTATIONAL METHODS

In this analysis, we consider the dynamics of a gas-liquid flow in a vertical channel, described
schematically in Fig. 1. The two continuous phases are separated by an, initially, flat interface.
A pressure gradient Ap/Ax > 0 in vertical direction counteracts gravity. We investigate cases in
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FIG. 1. Schematic representation of the undisturbed base flow. Both fluids are assumed laminar. The dashed line shows the
perturbed interface; the corresponding perturbed interface location is 77(x, 7).
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which the balance between gravity and pressure gradient gives rise to counter-current flow, with
gas flowing in the direction of decreasing pressure and liquid flowing in the direction of gravity.
Figure 1 also shows the development of a linear small-amplitude wave at the interface. Typically,
the evolution of interfacial waves depends sensitively on the details of the mean flow.

Both fluid layers exhibit steady, spatially uniform, laminar, and incompressible flow along the
vertical rectangular channel. To describe this two-dimensional flow, we use a Cartesian coordinate
system, (x,z), in which the flat interface is located at z = 0 and the confining channel walls are
located at z = —d, and at z = dg, respectively. Within these boundaries, the fully developed liquid
and gas layer occupy the regions —d; < z < 0and 0 < z < dg, respectively.

A. Base flow and linear stability analysis

With the above mentioned conditions, the Navier-Stokes equations describing the fluid flow in
both phases reduce to standard balances between pressure, viscous, and gravitational forces, which
are subject to no-slip condition at the channel walls, z = —dy, and z = dg, as well as continuity of
tangential stress at the interface, z = 0. To write the governing equations in nondimensional form,
we introduce the following dimensionless variables (without tildes) and scalings:

/HAp ) . H
X = Hx, i = Vyu, Vo= [——, e = PGV, f=—t, 1
u p P ,OGAX Tint = PG Vp ()

where x = (x,z) and u = (4, w) are the coordinate and velocity vector, H is the channel height, V), is
an inertial pressure scale, Ap/Ax is a positive pressure gradient, 7, is the interfacial shear stress, V,
is the gas-side interfacial friction velocity, and ¢ denotes time. Further, the following dimensionless
parameters arise:

_HL . pL _d;
m = ) r=-—, 6} E—t
HG PG H @)
pcVpH PcVEHH pcViH pcV,H
Re,=——, Re,=———, Re;, =——, We= ——.
P g
MG MG MG Y

Here, u; is the dynamic viscosity and p; the density of the respective phase (j = L,G), whereas
¢, is the relative thickness of the respective fluid layer. The Reynolds numbers Re,,, Re,, and Re.,
in turn, relate to the applied pressure drop, to gravity and to interfacial shear. A Weber number We
accounts for surface tension. With this rescaling, the velocity profile for the undisturbed base flow in
nondimensional form reads

1 [1 Re;
—Re,(1-r—=)(z*-6%) -
2 p( Re; ( L)

1 R€2
—=Re, (1~ r— 52
2 Rep

_6LSZSO’

] 3)

Re2 Re2
+ Repl Rei 22— —ZLz, 0<z<dg.
P

w@ =1

2 Re,,

Subsection 1 of the Appendix gives the dimensional counterpart to Eq. (3). The ratio of pressure and
gravity Reynolds number results in a Froude number, which, in combination with the pressure scale
in Eq. (1), represents a measure for the effect of applied pressure drop relative to gravity acting on
the gas layer,

Re, V), Ap/Ax
Re,  ~gH pG8
To gain insight into the development of small disturbances 7(x,#) centred around the flat inter-

face z = 0, we examine the linear stability of the interface in terms of a standard Orr-Sommerfeld-
type analysis (a comprehensive formulation of this analysis can be found in Subsection 2 of

Fr=

“)
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the Appendix). In this approach, the governing equations are linearized around the base flow,
Eq. (3), and infinitesimally small perturbations in the associated streamfunction i (z) are assumed
to have wave-like solutions of the form W(x,z,t) = el@*~®y(z), where @ = @, + ia; is the com-
plex wavenumber and w = w, + iw; is the complex angular frequency (both dimensionless). The
imaginary parts of these quantities, @; and w;, denote the spatial and temporal growth rates, respec-
tively. If w; > 0, the interface is considered temporally unstable and developing (initially) sinusoidal
waves propagate with the phase velocity v, = w,/a,.

We solve the underlying generalized complex eigenvalue problem numerically by employing a
standard Chebyshev collocation method?® (full description given in Subsection 3 of the Appendix),
thereby adjusting the number of collocation points until convergence is reached.

B. Nonlinear direct numerical simulation

To capture and analyse the development of the flow beyond the linear regime, we use the
two-phase flow solver presented by O Naraigh et al.* for direct numerical simulation of the full
Navier-Stokes equations. This in-house solver is level set method®® based and uses the continuum
surface force (CSF) formulation to model surface tension effects.>! In the level set formalism, the
governing equations read as

p ((z—l: +u- Vu) =-Vp+ I%V [ (Vu + VuT)] + p#éx + %&(q&)fm (5a)
V.u=0, (5b)
9¢
— Vo =
o T4 Ve=0 (5¢)
V¢
ﬁz—, K:—V.ﬁ_ (Sd)
IVl

Here, ¢ (x,?) is the level set function indicating the phase in which a point x lies (liquid phase
for ¢ < 0, gas phase for ¢ > 0). Hence, the zero level set, ¢ (x,t) = 0, represents the interface
1 (x,t). The level set function also determines the unit vector /i normal to the interface and
the interface curvature « in Eq. (5d). As the level set function differentiates between the two
phases, it is also used to identify the respective density and viscosity through the expressions
p=H(¢p)+r(1 —H(¢)) and u = H.(¢) + m(1 — He(¢)). The function H.(¢) is a regularised
Heaviside function, which is smooth in an interval [—¢, €] around the interface with € set equal
to 1.5 times the grid spacing. This interval also supports the regularised delta function .(¢) =
dHc(¢) /dé.

To discretize Eq. (5), we use an isotropic marker-and-cell (MAC) grid with a spacing that
resolves the height of the undisturbed liquid film with at least 30 grid points. Additionally, all
simulations have been checked for convergence. On the implemented grid, vector quantities are
defined at cell faces and scalar quantities are defined at the respective cell centres. A third-order
Adams-Bashforth scheme is used to treat the convective derivative, while the momentum fluxes
are treated in a flux-conservative fashion employing a (semi-implicit) combination of the Crank-
Nicholson and third-order Adams-Bashforth methods.?? Pressure and the associated incompressibil-
ity of the flow are treated using standard projection method.*> We use a combination of Jacobi’s
method and successive over-relaxation on a red-black scheme to evaluate the predictor and corrector
step. Moreover, a third-order (fifth-order accurate) weighted essentially non-oscillatory (WENO)
scheme* is used to advect the level set function ¢, which is subsequently reinitialised applying a
Hamilton-Jacobi equation and the algorithm formulated by Russo and Smereka.®

At the domain boundaries, we apply standard no-slip and no-penetration conditions at the
confining walls, z = 0 and z = H (note that the coordinate system underlying Eq. (5) is shifted by
—d 1, compared to the one shown in Fig. 1), as well as periodicity in x-direction. The pressure is de-
composed as p = p + (Ap/Ax) x, where p satisfies the periodic boundary conditions in x-direction
and Ap/Ax in the present context is a positive, constant, dimensionless pressure gradient. Solving
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the standard force balance in both phases (Subsection 1 of the Appendix) numerically gives the
initial velocity field (base flow).

The solver is implemented in Fortran 90 using MPI (Message Passing Interface) to decompose
the computational domain (Fig. 1) in x-direction. This parallelization scheme makes efficient use
of the architecture of the UK’s “Advanced Research Computing High End Resource” (ARCHER,
http://www.archer.ac.uk) on which we run our high-resolution simulations.

lll. TEMPORAL STABILITY ANALYSIS

In this section, we restrict ourselves to the study of the temporal evolution of an (initially)
infinitesimally small perturbation of the liquid interface. This temporal framework provides deep
insight into the onset of interfacial waves and, thus, the complex dynamics of vertical films sheared
by counter-current gas flows. It further enables us to map flow regimes typical for such systems.

We analyse the temporal stability for the following two distinct cases:

e High density contrast: We assume a liquid density of p; = 1000 kg m~3, corresponding to
a gas-liquid flow typified by an air and water combination. We demonstrate below that the
large density contrast leads to a complicated characterization of the instability, consisting of
competing and coalescing linearly unstable modes.

e Low density contrast: To make contact with the existing simulation literature, we study a
low-density-contrast case, with p; = 10 kg m=3. Studying this test case is of further benefit,
since it corresponds to a system without mode competition. This provides a “clean” data-
base of linear stability results, which can be used as an unambiguous benchmark for direct
numerical simulations.

25-27

For both considered cases, we further assume a liquid dynamic viscosity of x; = 500 - 107 Pa s
and a surface tension of y = 1 - 107> N-m~!, while the dynamic viscosity and density on the gas side
are g = 10- 107 Pa s and pg = 1 kg m~3, respectively. The flow is confined by a channel of the
height H = 0.01 m. These values result in density ratios of » = 1000 and 10, a viscosity ratio of
m = 50 as well as a gravity Reynolds number of Re, = 313 and leaves the relative film thickness
o1 and the Froude number Fr, which can be related to liquid and gas flow rates, respectively, as
the remaining parameters to determine the two-phase flow. The chosen value of the surface tension
is not reflective of true liquid/gas systems (e.g., an air-water system at 20 °C has a surface tension
of about 73 - 10~ N m~!; a methanol-air system of about 23 - 1073 N m™"). Instead, the value is
chosen so as to throw into sharp relief some particular features of the dispersion relation in the
linear theory, which also appear in high-surface-tension cases, but in a less clear-cut fashion. Where
appropriate, results at higher surface-tension-values (which are qualitatively similar) are discussed
and compared with the presented results fory = 1- 103N m™.

Throughout the linear stability analysis, i.e., both density-ratio cases, we consider 6., € [0.02,
0.14], whereas the Froude number is varied within the interval Fr € [1.05,13] for the case of high
density contrast. This corresponds to an absolute film thickness d; ranging from 0.2 - 1073 m to
1.4-1073 m and an applied pressure drop Ap/Ax in the range of 10.8 Pa m~'-1657.9 Pa m™".
Within this parameter space, we determine the temporal dispersion relation v = w (a,,a; = 0)
numerically on a grid with Ady =0.005 and AFr = 0.25. The associated eigenvalue problem,
Eq. (A24), is solved for «, € [0.05,a.] with Aa, = 0.05, where a. is the cutoff wavenumber
beyond which w;™ < 0. In the low-density-contrast case, we apply the interval Fr € [1.05,1.55],
corresponding to Ap/Ax € [10.8,23.6] Pa m~!, with AFr = 0.025 and determine the dispersion
relation for @, € [0.05,15] with Aa, = 0.01. For each parameter set (6., Fr), we further identify the
pair (", w;"™) that maximizes w; as the linearly most unstable mode.

For both density-ratio cases, our analysis shows that the temporal growth rate of the most
unstable mode always attains positive values (Fig. 2), which means that the interface is inherently
unstable. However, the same figure demonstrates that the behaviour of the growth rate of the most
unstable mode throughout the parameter space is markedly different for the two density-ratio cases.
Additional contrasts can be seen from consideration of the wavelength of the most unstable wave,
Am = 21/as™, and its extent relative to the respective film thickness, A,,/d;. Figure 3(a) shows
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FIG. 2. Temporal growth rate w
(a) r =1000; (b) r = 10.

of the linearly most unstable mode in the parameter spaces of the two investigated cases.

the abrupt changes in A,,/6, in various regions of the parameter space for » = 1000. Note that the
dashed line in Fig. 3 indicates the locus of zero phase velocity (i.e., standing waves) as will be
discussed in more detail in Sec. III B.

The rich dynamics observed for the high-density-ratio case can be explained by looking at
the dispersion curve of representative points in the parameter space (Fig. 4). It becomes apparent
that multiple unstable modes are active, which are coalescing and competing with each other. It
is this mode interaction that causes the complex structures presented above. In contrast, the case
with low density ratio shows mostly one unstable mode throughout the considered parameter space.
Even though further unstable modes are observed, these modes are very weak and appear only
occasionally. Hence, for this case, the system behaviour is less intricate (Figs. 2(b) and 3(b)).

A. Energy budget

To identify the character of these unstable modes and hence the driving force of the instability
in these scenarios, we characterize the energy transfer from the base flow by decomposing the distur-
bance kinetic energy into production and dissipation terms. However, as both presented parameter
spaces are quite extensive, we restrict ourselves to the detailed analysis of the representative scenarios
listed in Table I. The mode characteristics for all other parameter sets are deduced by inspection.

Thus, following the approach of Boomkamp and Miesen,? the rate of change of kinetic energy
(per unit width in the spanwise direction) in both phases KIN s can be decomposed into

KIN; + KING = DISS; + DISSG + REY 1 + REYG + NOR + TAN. (6)

The terms DISS ¢ represent energy losses due to viscous dissipation, whereas REY ¢ denotes
wave-induced Reynolds stresses transferring energy between the base flow and the perturbation in
the bulk of the two phases. Lastly, NOR and TAN describe the work done per unit time (also per

(b) 1.55 T
145 \

&

Fr [-]
Fr [-]

. 002 004 006 008 0l 0.2 014
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FIG. 3. Wavelength A, of the linearly most unstable mode scaled by the corresponding relative film thickness §7, in the
parameter spaces of the two investigated cases. (a) r = 1000; (b) r = 10. For reference, the dashed line indicates zero phase
velocity above which the waves travel upwards.
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FIG. 4. Selected dispersion curves for the case = 1000. Solid lines: interfacial mode; dashed lines: shear mode in gas layer;
dotted lines: shear mode in liquid layer; dotted-dashed line: internal mode. Top to bottom: Fr €[2.5,3.0,7.5,8.5]; left to
right: 67, €[0.03,0.08,0.13]. The labels “T1d” etc. refer to the scenarios studied in the energy-budget analysis and DNS.

unit width) by normal and tangential stresses at the interface (for a precise explanation of all of the
terms in Eq. (6), see Subsection 2 of Appendix). The energy budgets for the investigated scenarios
are given in Table II. The aim here is to use the different positive terms in Eq. (6) together with the
shape of the associated streamfunction as a way of classifying the different instability mechanisms
at work.

TABLE I. Conditions studied in detail using linear theory and nonlinear direct numerical simulations. The leading letter of
the scenario name designates temporal stability analysis (prefix “d” for decreased density ratio), followed by a running num-
ber for this type of analysis; the trailing letter corresponds to the direction of propagation of the linearly most unstable wave
(downward-travelling, standing, upward-travelling; introduced in Sec. III B). In this table, Rej =q; /v = Rep(r jujoi/m j),
where g denotes the dimensional volumetric flow rate per unit width of the j™ phase, v its kinematic viscosity, u; its
dimensionless mean velocity and j = L, G. The two last columns give the temporal growth rate of the linearly most unstable
mode.

r Scenario o1 Fr We Rey, Reg akm Up,0s ;"Zps w;e'gfvs
Tid 0.13 3.00 8.829 27261 36323 40.05 16.47 1.6853 n/a

1000 T2d 0.08 7.50 55.181 3125 350800 161.90 0.82 8.8447 n/a
T3d 0.08 3.00 8.829 6166 48332 40.85 5.97 1.7662 1.7783
dT4d 1.157 1.313 0.384 2142 3.99 0.05 0.3662 0.3668

10 dT5s 0.08 1.179 1.363 0.351 2471 4.29 0.00 0.4669 0.4634
dT6u ’ 1.201 1.415 0.317 2806 4.59 -0.05 0.5829 0.5790

dT7u 1.319 1.706 0.126 4710 6.19 -0.30 1.4347 1.3806
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TABLE II. Energy budgets of the active modes for the scenarios listed in Table I. The individual terms have been scaled by
the total rate of change of kinetic energy (KINy, +KING = 1).

r Scenario a KINg, KING DISSt. DISSG REY REYG NOR TAN
T1d 1.30 0.02 0.98 -0.01 -1.39 -0.04 2.42 0.00 0.02
1000 T1d 6.20 1.00 0.00 -0.33 -0.01 1.31 0.02 0.00 0.01
T1d 40.05 0.51 0.49 -0.46 -31.37 -0.05 —4.82 -0.30 37.98
T2d 69.50 0.76 0.24 -0.31 -18.65 1.06 -3.67 -0.02 22.57
dT4d 3.99 0.06 0.94 -1.09 -13.93 0.00 -1.77 -0.46 18.25
10 dT5s 4.29 0.09 0.91 -1.21 -12.24 0.00 -1.19 —-0.44 16.08
dT6u 4.59 0.12 0.88 -1.36 -10.67 0.00 -0.72 -0.42 14.17
dT7u 6.19 0.32 0.68 —-1.48 -5.44 0.00 0.44 -0.32 7.79

In general, positivity of the TAN term corresponds either to the viscosity-contrast mechanism
of Yih! or to the density contrast. Both viscosity and density contrasts are relevant here. The latter
causes a jump in the curvature of the base-state velocity profile at the interface, which in turn
induces disturbance shear stresses T, ; to satisfy continuity of total shear stress.® The combination
of these two mechanisms produce a viscosity-gravity-induced instability which is characterized by
a streamfunction compactly supported around the location of the undisturbed interface (hence, this
mode is also referred to as an “interfacial mode”). Positivity of REY s or REY, corresponds to
an instability whose streamfunction extends into the gas or liquid layer, respectively, and whose
shape is similar to that observed for a Tollmien-Schlichting mode in a single-phase flow. These are
referred to herein as shear modes. Occasionally, several source terms in the energy budget are rele-
vant, in which case the shape of the streamfunction is used to classify the instability conclusively.

Decomposition of the energy budget in scenario T1d (Fig. 4(f)) uncovers three unstable (active)
modes. Consideration of the budget in Table II (first three line therein) reveals that the most-
dangerous mode is an interfacial one and that the other two are shear modes associated with
either fluid layer. This conclusion is supported by the shape of the streamfunction in each case:
the streamfunction of the interfacial mode is localized near the undisturbed interface location
(Fig. 5(c)), while the streamfunction of the two shear modes extends throughout one fluid layer
or the other (Figs. 5(a) and 5(b)). The interfacial mode is active across the entire parameter space
of the high-density-contrast case (Fig. 4). The shear mode (first line in Table II) in the gas layer
is also active for all values of §, above a minimum Froude number ranging from 1.46 to 2.34 for
increasing film thickness. Above this threshold, the mode becomes stronger with increasing gas
flow, though thicker films exhibit slightly lower growth rates. The opposite trend is observed for the
wavenumber at maximum growth rate, which shifts towards lower values with increasing Fr and,
in general, higher values for thicker films. Contrasting the behaviour of the shear mode in the gas
layer, the liquid layer shear mode (second line in Table II) is only active for thick enough films
(6L > 0.067). While this threshold value increases with increasing Froude number, the maximum
growth rate of this mode drops, thereby rendering it less unstable for higher gas flow rates. Further
complexity is added to the system dynamics by the fact that the energy contribution to this particular
mode due to tangential stresses at the interface becomes larger for increasing Fr and reaches signif-
icant values (TAN = 1). Eventually, TAN becomes the dominant term but with REY;, still important
enough to overcome the restoring effects in both phase. This combination of energy sources driving
the instability is also known as internal mode.?

A further internal mode emerges at Froude numbers ranging from 5.21 to 5.55 for increasing
oL, e.g., Fig. 4(g) or scenario T2d (fourth line in Table II, its streamfunction shown in Fig. 5(d)).
As this mode grows stronger with higher gas flow rates, the wavenumber ok, at its maximum
growth rate shifts towards lower values (compare Figs. 4(g) and 4(j)). Furthermore, this mode
starts to coalesce with the dominant interfacial mode, leading to a second “hump” in the dispersion
curve of the interfacial mode (Fig. 4(h)). During the formation of this second hump, the dispersion
curve broadens with the position of maximum growth rapidly shifting towards higher wavenumbers
(shorter wavelengths) as Fr increases (Fig. 3(a)). Yet, at the same time, the growth rate increases
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FIG. 5. Streamfunction of the four observed modes in the high-density-contrast case, corresponding to the energy budget

of scenario T1d and T2d in Table II. (a) Gas shear mode (T1d, a =1.30); (b) liquid shear mode (T1d, a =6.20); (c)

interfacial mode (T1d, @ =40.05); internal mode (T2d, a =69.50). The inset shows the wave-Reynolds stress, Tys(z) =
2/

—rj(a/2n) [ " 5uswdx.

only slightly, resulting in the plateau-like region at moderate Froude numbers observed in Fig. 2(a).
For even higher Fr, the coalescing internal mode undergoes a change in identity itself and forms a
second active interfacial mode, thereby effectively “splitting” the initial dispersion curve into two
separate ones (Figs. 4(k) and 4(1)). Although mode coalescence occurs throughout the entire range
of investigated film thicknesses, splitting of the dispersion curve is not observed for low values of
o1, (Fig. 4(3)). It is further worth mentioning that additional modes can become unstable, which are,
however, mostly temporarily active and thus of minor significance.

The multitude of active and coexisting modes leads not only to mode coalescence but also to
a certain amount of mode competition. In the high-density-contrast case, this mode competition
mainly occurs at low Froude numbers, where the growth rate associated with the interfacial mode
is still comparatively low. The shear modes at low and high values of ¢, on the other hand, exhibit
stronger growth and therefore constitute the dominant mode (Figs. 4(a) and 4(c)). As Fr increases,
the interfacial mode picks up strength and supersedes the shear modes as the dominating mode
(Figs. 4(d) and 4(f)), which results in a jump of the wavenumber a/if,m” associated with the maximum
growth rate. This jump corresponds exactly to the sharp jumps in the contour plot in Fig. 3(a) at both
low and high values of 6.

As mentioned above, the low-density-ratio case exhibits mainly one unstable mode, which is
due to the density and viscosity contrasts of the two fluids (fourth line in Table II). Although both
differences account for energy transferred towards the disturbed flow, the contribution related to the
viscosity contrast dominates. Hence, this mechanism is, in general, consistent with the so-called Yih
mode.! It is further apparent that the relative fraction of kinetic energy associated with the liquid
phase increases with increasing Froude number. This rise, together with an enhanced energy dissi-
pation, can be linked to more agitation in the liquid film as we will show in Section V. The amount
of energy dissipated in the gas phase, on the other hand, seems to drop, which is counter-intuitive
for an increased Fr. Yet, dissipation in the gas does increase in absolute terms but at a slower rate as
the total kinetic energy. That, in turn, leads to the seemingly decreasing rate of dissipation in the gas
phase. The same effect can be seen for NOR and TAN.
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Another result worth noting is the change in sign of REYs as Fr increases, turning wave-
induced Reynolds stresses from an additional dissipative energy “sink” into an energy “source”
(scenario dT7u). This, in turn, can be explained by an unstable Tollmien-Schlichting mode appear-
ing in the gas stream that delivers energy to the interfacial instability, thereby suggesting a transition
to turbulence in the bulk of the gas phase. Therefore, this particular scenario can conceptually not
be regarded as a “pure” Yih-type instability any more but tends towards an internal mode. This
positive contribution of wave-induced Reynolds stresses to the instability above a certain Froude
number occurs throughout the entire parameter space but the threshold decreases for thicker liquid
films. However, it has to be emphasized that the tangential stresses doing work at the interface are
the dominant driving force of the instability in all presented scenarios for the low-density-ratio case
(lower half of Table II). Across the entire parameter space, the maximum growth rate wﬁem” of this
interfacial mode increases with increasing 6, and Fr (Fig. 2(b)), whereas the associated wavenum-
ber aky™ increases with increasing Froude number but decreases for thicker films, which is in
agreement with results presented by Dietze and Ruyer-Quil.” Overall, the system is predominantly

receptive to long-wave instability under low-density-ratio conditions (Fig. 3(b)).

B. Flow regimes

Figure 6 shows the phase velocity v, of the fastest growing wave developing on the interface
for both density-ratio cases. It becomes apparent that the parameter space is divided into two re-
gimes: one in which developing waves exhibit a positive phase velocity and another in which the
phase velocity is negative. With respect to the chosen coordinate system (Fig. 1), these regions
correspond to waves propagating downwards and upwards, respectively. The vanishing of v, at
the demarcation between these regimes (dashed lines in Fig. 6) relates therefore to a standing
wave and is herein referred to as the loading curve. This demarcation between downward- and
upward-travelling waves is important from a practical point of view because it is related to the onset
of flooding, which is understood as the partial upward flow of the liquid phase'> (flooding itself is
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FIG. 6. Phase velocity v), of the linearly most unstable mode in the parameter spaces of the two investigated cases. (a)
r =1000; (b) r = 1000, enlarged illustration of the island with negative phase velocity; (c) r = 10. Zero phase velocity (dashed
line) corresponds to a standing wave at the interface. For comparison, the curve of zero interfacial velocity in the undisturbed
base flow (dotted line) is also shown.
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regarded as the zero net flow of the liquid*®). Because the demarcation refers to the direction of
travel of waves only, it does not by itself imply flooding. Yet, it implies the possibility of flood-
ing, since upward-travelling nonlinear waves may form complicated nonlinear structures leading to
ligaments and droplet entrainment, of which the latter will promote transport of the liquid in the
upwards direction.

The flow map for the case with high density ratio (Fig. 6(a)) reflects the complex interfacial
dynamics described above. In regions with mode competition and a changing dominant mode, the
phase velocity changes drastically due to the jump of the wavenumber o, associated with the
linearly most unstable mode. For low Froude numbers, this leads to an “island” of upward-travelling
disturbances amidst the sea of downward-travelling waves at the thin-film end of the parameter
space (Fig. 6(b)), while a region of comparatively slow waves occurs at the high-film-thickness end.
Once v, < 0 for the most unstable mode, we can expect that exponentially growing wave to travel
upwards and overwhelm all other signals. In contrast, the phase velocity changes smoothly in the
low-density-ratio case due to the absence of mode competition (Fig. 6(c)).

To illustrate the different factors that determine the shape of the loading curve, Fig. 6 also
shows the curve of zero interfacial velocity (dotted line) obtained from the undisturbed base flow.
In the high-density-ratio case, the two curves coincide (with exception of the island region) and
information from the base state alone is sufficient to determine the loading curve (Fig. 6(a)). This
can be explained by looking at the expression for the phase velocity, which can be decomposed as
Up = Uo,im + U1 (@), Where ug ;, denotes the interfacial velocity of the undisturbed base flow. At the
linearly most unstable mode, the difference |v,, — ug,in/| decreases with increasing r (Fig. 7), except
at very large density ratios r > 1000, whereupon the difference saturates at a small residual value.
Thus, the phase speed of the (linearly) most unstable interfacial mode can be well approximated
by uy,in for high density ratios. Conversely, at low density ratios, determination of the phase speed
requires information not only from the base state but also from the full eigenvalue problem, as the
loading curve is substantially modified by the latter (Fig. 6(c)).

We have carried out further investigations at higher surface-tension values to understand qual-
itatively the behaviour of the linearized system at conditions more indicative of an air-water-type
system. The two broad behaviour types obtained in the present study carry over to higher values of
surface tension. Not surprisingly, the shear modes are virtually unaffected by an order-of-magnitude
change in surface tension. On the other hand, the growth rate of the interfacial mode as well as
the corresponding wavenumber are reduced by the same increase in surface tension. For the r = 10
case, this leads to a simple “shift” in the dispersion relation of the interfacial mode to longer
wavelengths. In contrast, higher surface tension promotes further mode competition between the
interfacial and shear modes for the high-density-ratio case, leading to a more complicated flow map
(not shown) than the one presented in Fig. 6(a); with larger “islands” of negative phase velocity and
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FIG. 7. The difference |v, —u0,in| at the maximum growth rate for various density ratios showing the fact v, is well
approximated by u,_;,, for large density ratios (Fr=2.5, 6, =0.03).
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relatively slow waves (bottom corners of the flow pattern map) due to mode competition and the
increasing prominence of the shear modes.

IV. ABSOLUTE AND CONVECTIVE INSTABILITY OF THE LINEAR DYNAMICS

Complementing the temporal analysis of the interfacial instability, we study the response of the
system to a small localized impulsive disturbance imposed on the liquid interface. If the disturbance
grows in-situ, the system is absolutely unstable. Conversely, if the disturbance grows but only as it
is convected away from the source, the system is called convectively unstable. In this section, we
restrict ourselves to the study of the low-density-ratio case. The reason for this is the complex sys-
tem behaviour associated with the high-density-ratio case caused by mode competition and mode
coalescence, which complicates the use of the methods outlined below. This is discussed further at
the end of the present section.

To determine the spatio-temporal nature of the instability, the complex dispersion relation
D (a,w) =0, which is obtained by solving the eigenvalue problem of Eq. (A18) numerically for
a range of complex wavenumbers @ = @, + i;, has to be evaluated against conditions essential
for absolute instability as outlined by Huerre and Monkewitz*: (i) a positive imaginary part of the
angular frequency w; o := w; (@s) > 0 at a saddle point s in the complex a-plane, where a s solves
dw/da = 0, forms the necessary condition; (ii) to satisfy the sufficient condition, spatial branches
a* (w) that originate from opposite halves of the a-plane have to coalesce at the saddle point a,
forming a genuine pinch point (this coalescence corresponds to the formation of a branch point/cusp
at w, o in the complex w-plane®’). Meeting both conditions will result in growth of the disturbance at
its source with the absolute growth rate w; o.

Although the described procedure seems straightforward, inspection of the results of a spatio-
temporal Orr-Sommerfeld (ST-OS) analysis (Fig. 8) requires great care in order to avoid misinter-
pretation due to the complexity of the dispersion relation that can arise from the multivalued nature
of the eigenvalue problem as well as specifics of the investigated problem, such as applied boundary
conditions or multiple unstable temporal modes. Hence, to conclude the character of the instability
correctly, it is necessary to examine the global topography of w; in the complex a-plane for each
relevant set of parameters. As we are interested in identifying convective/absolute instability (C/A)
transition, the described method is not practical given the large parameter space considered herein.
Instead, we use an approximation technique (Quadratic Approximation - QA) based on an analyt-
ical connection between temporal and spatio-temporal frequencies presented by O Naraigh and
Spelt.®
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FIG. 8. Global topography of w; for scenario ST4 (r = 10, 67, =0.08, Fr=1.201, Re), =376, We = 1.415) as obtained from
spatio-temporal Orr-Sommerfeld analysis. Dynamically relevant saddle point: ST-OS (X), Quadratic approximation (<). The
analytic continuation is centred at (+).
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The approximation technique is based on the following identity for the analytic continuation of
the growth rate w; into the complex plane:

( 1)n d Cg 2n+1 ( 1)n+l d2n+2 Iemp 2n+2 7
2n +1)! da? a2 i Z(2n+2)| da2+? @ (N

wl(a'r’ 1) = temp(ar) + Z (

where ¢, = dw,/de; is the group velocity in a standard temporal analysis and a)itemp is the temporal
growth rate in the same. Equation (7) is a consequence of the Cauchy-Riemann conditions on w(a)
viewed as an analytic function on an appropriate open subset in the complex plane.*® We truncate
this series at quadratic order in ¢; to yield

dw™™ (« 2w ™ (a
wi(ar @) = 0™ (@) + — (@) @ -3 — (@) al. (8)
! da,
We apply the conditions for a saddle point dw/da = 0 to Eq. (8). By Cauchy-Riemann, this implies
that dw;/da, = dw;/da; = 0 for a saddle point. Hence, in the quadratic approximation, for a saddle
point, the following simultaneous equations are satisfied:

do?

4™ de, Folt™

da. + d_a'rai =0, cglay) — da? a; =0. ©)]
Solution of these equations for w; and w, yields the quadratic approximation for the location of
the saddle point as and hence, an estimate for the absolute growth rate wjy = wi(ays) for a given
set of flow parameters. Note that all of these estimates are based on results from a temporal linear
stability analysis only, meaning that it is straightforward to make these estimates using standard
temporal linear stability theory, and one apparently circumvents the pitfalls associated with the full
spatio-temporal linear stability analysis outlined above. However, one must be cautious in applying
this methodology, as the quadratic approximation is, strictly speaking, only valid inside a disc of
convergence with radius R, where R is the minimum distance from the centre of the complex Taylor
series (ar =™, 0) to the nearest singularity of w (@).

Like in the purely temporal framework, we study several scenarios in more detail (Table III).
Using spatio-temporal Orr-Sommerfeld analysis and quadratic approximation as outlined above, we
determine the saddle point ag as well as the corresponding absolute growth rate wjg for all listed
scenarios and further perform direct numerical simulations for the scenarios ST1 and ST4. In the
following, we want to compare and discuss the obtained results for scenario ST4 in more detail.

As shown earlier already, the global topography of w; in the complex a-plane (Fig. 8) is
rather complex. First, the dispersion relation contains two saddle points, of which both may be
dynamically relevant. The confinement of the flow by the channel walls has, furthermore, created
a discrete pole (not shown) on the imaginary axis,*® (a;,a;) = (0,3.34), which has implications on
the character of the saddle point closer to that particular singularity. Lastly, the multivalued nature
of the dispersion relation becomes apparent by the branch cut just below the real axis. Although

TABLE III. Scenarios with low density ratio (» = 10) studied in the spatio-temporal (ST) framework.

Scenario S Fr Re)p, We Method a, s a; s wio
STI 0.08 1.075 337 1.134 QA 334 —2.24 —0.0877
’ ’ ) ’ DNS n/a n/a <0
ST2 0.08 1.157 362 1313 QA 401 0-24 0.3632
: : : ST-0S 4.02 0.24 0.3632
QA 435 0.66 0.4422
ST3 0.08 1.179 369 1.363
ST-0S 443 0.65 0.4423
QA 472 1.02 0.5205
ST4 0.08 1.201 376 1415 ST-0S 4.87 0.97 0.5221

DNS n/a n/a 0.5269
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FIG. 9. (a) Space-time plot of the norm n(x,7) for scenario ST4 (initial disturbance located at xo= 16); (b) DNS results
showing the growth of the disturbance at the source and a comparison with the predicted value from the complete
spatio-temporal Orr-Sommerfeld theory (ST-OS). The comparison is valid only at intermediate times: there are transient
effects at short times as the ST-OS theory is only valid asymptotically, while at late times, finite-size effects spoil the
comparison.

these features make the final characterisation of the instability more difficult, the saddle point at
(ap, @;) = (4.87,0.97) clearly appears as a result of the coalescence of spatial branches emanating
from opposite half-planes. It is therefore also a pinch point and contributes to spatio-temporal
growth at a rate of wjg = 0.5221. The positive value of «; indicates that spatial growth of the distur-
bance happens for x < 0 (upwards), which is confirmed by DNS (Fig. 9(a)). On the other hand, the
saddle point at (a,@;) = (0.62,0.65) is not a pinch point. In fact, the spatial branch o™ (w) (above
the saddle point) is a closed curve, whereas the a~ (w) branch does not (entirely) originate from the
negative half-plane. Hence, this saddle point is dynamically irrelevant regarding absolute instability.

As mentioned before, the singularity closest to the position of the temporally most unstable
mode (ar = aiﬁmp,O) determines the disc of convergence in which the quadratic approximation can
be applied with confidence. In scenario ST4, the confinement pole at (ay,a;) = (0,3.34) limits the
outermost radius R of this disc to about 5.68. Equation (8) is thus convergent across the relevant
section of the complex a-plane depicted in Fig. 8. The approximated position of the pinching saddle
point as well as the corresponding growth rate agree well with spatio-temporal OS analysis, see
Table III.

We further compare the impulse response for the parameters of scenario ST4 captured by
DNS against linear theory (ST-OS). Use of the DNS with periodic boundary conditions is justified,
provided a long channel is used, such that a comparison between the theory and the numerics can be
made before the onset of finite-size effects. We carefully check in what follows that our findings are
robust to such effects. In contrast to simulations within the purely temporal framework, a Gaussian
pulse, centred around xo = 16, with a height of 1-1073 and a standard deviation of 1- 107! is
applied to the otherwise flat interface position as initial condition to study the spatio-temporal
nature of the flow. Growth of this perturbation at its source then constitutes absolute instability.
However, the developing disturbances will inevitably contaminate the pulse source due to the im-
plemented streamwise periodic boundary conditions. To delay this contamination sufficiently, the
channel length is set to L, = 20. Using the pulse norm

1 1/2
n(x,t) = (/ |w(x,z,t)|2dz) , (10)
0

where w denotes the wall-normal velocity, the space-time plot in Fig. 9(a) shows the temporal
evolution of the perturbations along the streamwise coordinate. It can be seen that, starting from
its initial position at xo = 16, the pulse is convected upwards, which is in accordance with the
results from linear theory mentioned above. This upward motion triggers a pressure disturbance
moving ahead of the pulse, which is visible on the left-hand side of Fig. 9(a). However, this “shock”
decays sufficiently before it re-enters the computational domain, thus avoiding early contamination
of the instability source. Further information from this plot is extracted in Fig. 9(b), where the
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FIG. 10. Evolution of the disturbed interface for scenario ST4. (a) t =0.0; (b) t =3.6; (c) t =7.2; (d) t = 10.8.

growth of the instability at its source is given. After an initial transient period, the growth rate of
the instability follows the value predicted by ST-OS and QA closely, therefore validating the DNS
results. Thereafter, a second, more violent, pressure shock develops as a result of two merging
waves (Fig. 10) at# ~ 11.5 and travels upwards to eventually contaminate the pulse source at around
t = 14.0 (disturbances on the right-hand side of Fig. 9(a)).

The excellent agreement that has been established between linear theory (ST-OS) and quadratic
approximation in ST4 can also be observed for the scenarios ST2 and ST3 (Table III). For scenario
ST1, we were not able to determine the absolute growth rate of the system by means of OS analysis
and saddle point method due to the multivalued nature of the associated eigenvalue problem. In fact,
the dynamically relevant saddle point appears in the lower half-plane below the branch cut arising
near the real axis. To analyse this saddle point, a laborious reconstruction of the corresponding
part of the Riemann surface from discrete eigenvalues would have to be carried out. However, we
avoid this procedure by using the quadratic approximation, which indicates scenario ST1 to be
convectively unstable. A further direct numerical simulation confirms this result (not shown).

Given these results, we apply the QA to identify the spatio-temporal nature of the system
throughout the wide parameter space considered in the low-density-ratio case. The calculated
growth rates w; o are shown in Fig. 11, where the dashed lines demarcate the C/A boundaries. It
becomes apparent that the system is absolutely unstable in almost the entire domain with exception
of two narrow bands at the low-Froude-number and low-film-thickness end of the parameter range,
respectively. In view of these results and those of Sec. III B, it appears that C/A transition and the
onset of upward-travelling waves are not closely related for the case of density ratio r = 10.

1.55

1.45

1.15

FIG. 11. Absolute growth rate w; ¢ at the saddle point (contours) as obtained by analytic continuation (quadratic approxima-
tion) from purely temporal quantities. The dashed lines demarcate the transition between convective and absolute instability.
The loading curve is shown for comparison (dotted-dashed line).
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Regarding the accuracy of these results, it has to be mentioned that the relative error
(wQA - wST-os) / lwst0s| between QA and linear theory increases with decreasing film thickness
and increasing Froude number. At the same time, the quadratic approximation generally underes-
timates the “true” value of w; o as obtained by ST-OS, which leads to a larger regime of absolute
instability (towards thin films) than displayed in the above figure.

As mentioned at the beginning of this section, the mode coalescence and mode competition
encountered in the case with high density ratio (Fig. 4) makes it difficult to identify the nature of the
instability in a spatio-temporal framework with both the present semi-analytical methods. To study
this manifestation of the instability, alternative techniques, such as linearized DNS* (wherein the
linearized equations of motion are solved as a Cauchy problem, but still within the framework of
the Orr-Sommerfeld linear operators) or construction of series solutions of the underlying stability
problem,****? might be more suitable. A detailed investigation of this particular regime, i.e., high
density contrast, will be left to future work.

V. NONLINEAR WAVE DYNAMICS

As temporal linear stability analysis permits the analysis of infinitesimally small interface
perturbations only, we carry out direct numerical simulations to study the evolution of these distur-
bances up to finite amplitudes for both low and high density contrast. To that end, we use the
in-house solver described in Sec. II B with streamwise-periodic boundary conditions and initial
interface location

N
n(x,t=0)= 6L+AOZcos(anx+gon), (11
n=1
where Ag is some small initial amplitude (herein Ap = 1 - 107%), N is the number of linearly unstable
modes initialized, a, = n (27/L,) is a wavenumber in streamwise direction and ¢, is a random
phase. Even though periodic boundary conditions do not reflect the behaviour of a real system, it is
appropriate to consider this setup as it allows for a rigorous comparison of DNS results with linear
theory as well as unambiguous results of the Fourier transform taken of the interfacial wave at finite
times.?’

A. Low density contrast

To allow for rigorous comparison with linear theory, we perform direct numerical simulations
for each flow regime of the low-density-contrast case (lower part of Table I). For that purpose, we
set the wavenumber a,, in Eq. (11) equal to the linearly most unstable mode a's™” of the respective
scenario. Figure 12(a) shows the L?-norm of the wall-normal velocity perturbation w over time

for scenario dT4d and it can be seen that the disturbance grows with the rate w;"” predicted by

a) 10 : : : b) 12
) 7 (b)
/ — — —o0s
/ s
PN
T N\
- | \
a0 [ N
= S
= | N
N | N
| N
DNS 02¢ A
— — — 08, w‘=036622 ~
107 ‘ 0 .
0 10 20 30 40 0 0.2 0.4 0.6 0.8 1
t[-] z [

FIG. 12. Comparison of nonlinear DNS with linear theory through semi-analytical Orr-Sommerfeld analysis for scenario
dT4d. (a) Shows the L%-norm of the perturbation w-velocity, therefore exhibiting the wave growth rate; (b) is a plot of the
streamfunction normalized by the wave height at the position of the wave crest at  =4.2.
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FIG. 13. Typical evolution of the disturbed interface in the three flow regimes (low-density-contrast case) within the time
interval # =[0,17.5] at steps of At =2.5 (dotted lines). The solid lines show the initial and final shape of the interface,
respectively. (a) Downward-travelling wave, dT4d; (b) standing wave, dTSs; (c) upward-travelling wave, dT6u.

Orr-Sommerfeld theory. Comparing the streamfunction ; (z) at the crest of the developing wave
also yields excellent agreement (Fig. 12(b)). Also the other scenarios follow the theoretical predic-
tions in terms of growth rate in an equally convincing fashion (Table I). It can further be seen in
Fig. 12(a) that the wave initially grows exponentially before nonlinear effects gain importance at
about # = 8.0. Beyond that point, wave growth slows down and eventually saturates, leading to a
steady nonlinear wave of constant amplitude travelling along the interface. The nonlinear saturation
in Fig. 12 occurs almost immediately after the period of exponential growth ends. This is because of
the large separation in time scales between the linearly unstable fundamental and the linearly stable
harmonics. Because the harmonics are damped in the linear theory, they become rapidly slaved to
the fundamental, which in turn leads to prompt saturation of the same.

Figure 13(a) depicts the early stage evolution of the interface up to saturation for the scenario
with downward-travelling wave, dT4d. It can be appreciated that the wave developing on the inter-
face moves indeed downwards as is predicted by linear theory. More insight into the flow features
of this scenario is given by Fig. 14(a). Plotted in a fixed frame of reference, a large anticlockwise
rotating recirculation zone, positioned on the “downwind” side of the wave, is revealed in the gas
phase. This vortex is sandwiched between the main flow of the gas and a thin layer of gas along
the entire length of the interface, which is dragged downwards by the liquid due to interfacial shear
stress. The liquid phase itself does not exhibit any major disturbances.
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FIG. 14. Pressure perturbation field, streamlines, and liquid interface in a wall-fixed frame of reference for the scenarios
near the loading curve (low-density-contrast case). (a) Downward-travelling wave, dT4d, r =27.7; (b) standing wave, dT5s,
t =34.6; (c) upward-travelling wave, dT6u, ¢ =23.3.
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According to linear theory, the loading point of the system, with 6, = 0.08, is reached by
increasing the Froude number to Fr = 1.179 (scenario dT5s, see Fig. 6(c)). At this point, the phase
velocity of the wave vanishes as gravitational and lift forces on the wave hump balance each
other, resulting in a standing wave. The evolution of this wave in its early stage is depicted in
Fig. 13(b). It can be apprehended that the initial upward motion of the wave slows down after
it is saturated and eventually comes to a complete halt around the position last indicated in the
plot. As the system evolves further, the saturated wave begins to move downwards with the bulk
of the liquid (not shown here). This is attributed to nonlinear effects which lead to an anticipated
deviation from the system behaviour predicted by linear theory. However, it is worth mentioning
that the deviation is relatively small (v, = 0.0103) and, hence, linear theory gives a good indication
of the development and behaviour of the liquid interface for the loading scenario (dT5s). Moreover,
the increased Froude number leads to a decrease of the mean liquid streamwise velocity, which, in
turn, reduces the extent of the thin layer of downward gas flow along the liquid interface, causing
the gas-side vortex to move closer to the interface. On the liquid side, contrary to the scenario with
downward-travelling wave, a small anticlockwise rotating vortex occurs in the wave body, which
indicates a negative (upwards) streamwise velocity of the liquid at the interface in the vicinity of the
wave crest and is in agreement with the results of Trifonov.2° However, the bulk of the liquid, which
refers to the region of the film between channel wall and wave trough, remains largely unaffected.

By increasing the Froude number beyond the loading point, as in scenario dT6u, shear on the
wave body due to the enhanced gas flow overcomes the gravitational forces, causing interfacial
waves to travel upwards (Fig. 13(c)). Similar to the previous scenarios, the developing wave satu-
rates and forms a coherent structure. However, with higher Froude numbers, the general trend of
increasing growth rate and decreasing amplitude becomes apparent. Furthermore, the change of
direction in which the interfacial wave propagates leads to a more agitated liquid film, especially in
the wave body (Fig. 14(c)). Compared to scenario dT5s, an extended region of liquid near the wave
crest experiences upward movement with the wave body and becomes recirculated in an enlarged
eddy. The bulk of the liquid, on the other hand, essentially remains unaltered also in this scenario.

After having discussed the influence of the Froude number, i.e., gas flow rate, on the gas-liquid
flow in a qualitative manner, we now want to turn our attention to a qualitative description of the
nonlinear wave dynamics. To understand the genesis of these, we compute the amplitude of the
Fourier modes of the interface height for each time step. The amplitudes of the first three harmonics
are shown in Fig. 15(a). Matching the rate given by Orr-Sommerfeld theory, the first harmonic
(@) = &%’ =3.99) grows exponentially fast at the beginning. At the same time, the higher har-
monics (@, = 7.98,a3 = 11.97) are linearly stable, as predicted by the same theory. However, these
harmonics eventually also undergo exponential growth, whereat the n” harmonic grows at a rate
na)i.emp (). As time goes by, the growth rate of all harmonics decreases and the amplitudes saturate
simultaneously. It is thus apparent that the dynamics of the higher harmonics are “slaved” to the
first harmonic. This temporal development of the amplitudes is perfectly consistent with weakly

—o— DNS, ot=3.99
—&— DNS, a=7.98
—&— DNS, a=11.97
— —-0S,a=399
-—-— WNL,a=7.98
————————— WNL, o= 11.97
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FIG. 15. Comparison of direct numerical simulations with weakly nonlinear theory for the scenario with downward-
travelling wave (dT4d). (a) Amplitude of the Fourier modes of the interface height. The wave number a =3.99 is close to the
most-dangerous mode of Orr-Sommerfeld theory. (b) Stuart-Landau equation, Eq. (12), fitted to the fundamental mode.
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TABLE IV. Landau coefficients (real part, fitted to DNS results) for the
scenarios investigated under low density contrast.

Scenario M %) M3 RMSD R?

dT4d 0.7344 —-867.1 252355 1.1306-1073 0.9932
dTSs 0.9290 -913.9 0 8.1751-107*  0.9933
dT6u 1.1582 -1410.1 0 5.7185-107*  0.9957
dT7u 2.7613 —5466.6 0 9.0486-107*  0.9749

nonlinear theory.!! Using this theory, one can also model the temporal development of the first har-
monic using the Stuart-Landau (SL) equation.**** Including up to quintic-order terms, the absolute
value of the finite amplitude follows

6

1Al = e+ ol [+ s (12)
where y; is twice the temporal growth rate 2w;€m‘" and (1 3 is twice the real part of the Landau coef-
ficients.’ These coefficients have been fitted numerically for the different scenarios discussed above
and are listed in Table IV together with the root mean square deviation (RMSD) and R%-value of the
best fit, illustrating the excellent agreement between theory and direct numerical simulations. The
negative value of w, confirms that the instability is saturating in all scenarios. For scenario dT4d,
the relatively large value of us3 points towards a longer transition phase, with decreasing growth
of the wave amplitude, leading from the initial stage of exponential growth to saturation in this
scenario. In contrast, the wave in case dT5s, dT6u, and dT7u reaches its saturated state faster, which
is reflected by the vanishing of u3 in Eq. (12). The comparatively low R>-value in scenario T7u can
be explained by an overshoot of the amplitude in the transition phase due to transient effects before
the wave settles at a stable equilibrium amplitude. In principle, one could compute the coefficients
of Eq. (12) a priori. This has been done for some fairly simple single-phase flows.> For two-phase
flows, the calculations rapidly become very complex and analytical progress is difficult. Therefore,
we use Eq. (12) not for a priori prediction, but rather as an explanation and a theoretical description
of the nonlinear saturation. In conclusion, Fig. 15 and the surrounding discussion establish that the
waves created via the linear-stability mechanisms saturate at a finite amplitude. In this context, the
saturated travelling waves can be regarded as the end-point of the dynamics and there is no ligament
formation or droplet entrainment.

B. High density contrast

To gain insight in the nonlinear wave dynamics under high-density-contrast conditions, we
perform direct numerical simulations with the system parameters corresponding to Fig. 4(e), sce-
nario T3d (Table I). This system exhibits two distinct linearly unstable modes, one long-wave
shear mode and a short-wave interfacial mode, which are accounted for by aggy; = 1.549 and
ampy = 40.27 in Eq. (11), respectively. It is due to the short-wave nature of the interfacial mode
combined with the high inertia of the liquid phase that the flow characteristics near the interface
(Fig. 16) differ significantly from those observed in the low-density-contrast case. Unlike the sce-
narios presented in Sec. V A, no prominent features, such as recirculation zones, emerge within the
wave train. However, a vortex layer with the familiar “cat’s eye structure” develops at the demar-
cation between the bulk of the gas and a thin gas layer dragged downwards by the liquid due to
interfacial shear stress. Thereby, the vortices are pinched between two consecutive high-pressure re-
gions, which are forming on the “upwind” side of the short-wave crests. Further snapshots indicate
that this vortex layer is unstable to secondary instability. Hence, the wave form in Fig. 16 should not
be regarded as a quasi-steady state.

Similar to the low-density-ratio case, the nonlinear dynamics of the interfacial mode appear
to be consistent with Stuart-Landau theory, albeit these dynamics develop faster due to the higher
growth rate of the first harmonic (apy = 40.27). Evidence is provided in Fig. 17. Consistency
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FIG. 16. Pressure perturbation field, streamlines, and liquid interface in a wall-fixed frame of reference for the high-density-
ratio scenario T3d. (a) t =1.08; (b) r =1.71; (¢c) t =2.025.

with the Stuart-Landau theory is especially clear in the time-frequency domain. In particular in
Fig. 17(b), where a power-spectral density

T
flwy) = / w (x0,07,1) e dr|, xo = 0.007 (13)
0

is shown (T corresponds to the duration of the simulation). A well-defined global maximum is
observed at w, = 239.8, corresponding to the frequency of the most-unstable mode at o = 40.27
in the spatial domain. Successive maxima at w, = n(239.8) with n =2,3,... indicate that the
harmonics of the most-unstable mode are slaved to the fundamental.
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FIG. 17. Spectral analyses confirming the relevance of the Stuart-Landau theory for the high-density-contrast case. (a) Spec-
tra in the spatial domain showing the evolution of relevant wavenumber normal modes; (b) Power-spectral density f(w) in
the frequency domain.

The maxima in the power-spectral density function, although well defined, are by no means
sharp. The broadening of the maxima here is a sign that the wave train is not strictly periodic,
and that a very large number of frequencies is present in the dynamics. Crucially, the broadness of
the lines is a function of the simulation time: for longer simulations, more and more frequencies
come into play (albeit that the same maxima remain dominant throughout). This indicates the onset
of chaos. Thus, the Stuart-Landau theory manifests itself as the leading-order approximation to a
chaotic dynamics, albeit that the wave train in Fig. 16 is subject to secondary instability.

Other second-order effects are key to understanding the secondary instability. The vortex layer
in Fig. 16(a) is not steady but breaks down at later times (Fig. 16(b)). In particular, a long-wave
perturbation to the vortex layer (wavelength on the domain scale) is seen to coincide with the signif-
icant growth of the long-wave shear mode. Therefore, it would appear that a complicated secondary
instability sets in, involving a destabilization of the vortex layer by perturbations that are fed by the
long-wavelength linearly unstable subdominant mode. (This mode is subdominant in the sense that
it is linearly unstable but its growth rate is not as large as that of the most-unstable mode.) At this
stage, individual waves steepen even further, up to the point where wave overturning is imminent
(Fig. 16(b)). Summarizing, it is clear that secondary instability may inhibit the operation of the
system in a quasi-steady laminar state at high density ratios.

VI. CONCLUSIONS

We have presented a comprehensive study on two-dimensional laminar flow of a vertical film
sheared by laminar counter-current gas in a confined channel. This study tries to further elucidate
the nature of interfacial instability in such two-phase flows using several complementary methods,
namely Orr-Sommerfeld analysis, energy budget analysis as well as high resolution direct numer-
ical simulations. Two sample systems have been selected for investigation: one with a high density
contrast (pr/pc = 1000) and a second with a low density contrast (pr./pg = 10). In both cases, the
same viscosity contrast (¢7./uc = 50) and comparatively low surface tension (y = 1- 103 N m™)
were used. In our study, we focussed on analysing the influence of liquid film thickness and applied
pressure drop on the development of interfacial waves.

Temporal linear stability analysis reveals that the liquid interface is inherently unstable for
both cases. In the system with high density ratio, short-wave instability is predominant, whereas
the low-density-contrast case tends to favour long-wave instability. Furthermore, the instability is
governed by a multitude of coexisting linearly unstable modes (interfacial mode, shear mode in both
phases, internal mode) under high-density-ratio conditions, where the latter two modes indicate the
onset of turbulence in the bulk of one of the phases. In contrast, the low-density-ratio system ex-
hibits only one linearly unstable mode, which is consistent with the Yih mode' and a manifestation
of the viscosity contrast.
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Additionally, we use the phase velocity of the linearly most unstable mode to identify two
distinct flow regimes, which we characterize by the direction of propagation of travelling waves.
A standing wave marks the boundary of these regimes and is associated with the loading point.
A flow map has been constructed to illustrate these regimes in a precise manner; for the high
density contrast, the map reveals an island of upward-travelling disturbances amidst a sea of
downward-travelling waves, which is the result of mode competition (shear mode in the gas layer
vs. interfacial mode).

We have further determined the nature of the instability in the spatio-temporal framework under
low-density-ratio conditions. Using this information, we established a second flow map indicat-
ing the transition from convective to absolute instability (C/A). Besides standard Orr-Sommerfeld
analysis, we also adopted the analytic connection between temporal and spatio-temporal growth
rates in the linear regime as presented by O Naraigh and Spelt.’® This approach, which is based
on analytical continuation, circumvents possible difficulties in identifying the absolute growth rate
that are associated with the multivalued nature of the eigenvalue problem and specifics of the
problem at hand. Compared with OS analysis and DNS, this method shows good agreement and is
therefore appropriate to accurately estimate the absolute growth rate of the instability. We find that
the system is absolutely unstable in most parts of the parameter space considered herein with the
exception of two narrow bands at low applied pressure drop and low film thickness, respectively.
In the high-density-ratio case, mode competition and mode coalescence between the multiple line-
arly unstable modes hindered the mapping of convective and absolute instability in the respective
parameter space. For such systems, linearized DNS*° or series solutions of the underlying stability
problem***? may allow for more conclusive results.

To assess the development of interfacial waves up to finite amplitudes, we perform direct
numerical simulations for parameters within the established flow regimes of the low-density-ratio
case, using a level set method based solver that has been developed in-house. These simulations
show excellent agreement with linear theory during the stage of exponential wave growth and
confirm the determined flow patterns. The simulations also show saturation of the waves once
nonlinear effects become important. A Fourier analysis reveals that the growth of the higher
harmonics of the interfacial waves is coupled to that of the fundamental in a fashion which is
consistent with weakly nonlinear theory. The growth of the first harmonic also agrees well with
the Stuart-Landau model, thus underpinning the weakly nonlinear nature of the instability and,
moreover, suggesting the existence of a supercritical bifurcation. Regarding high-density-contrast
conditions, the dynamics of the (short-wave) interfacial mode appear to be similar to those observed
under low density ratio. However, direct numerical simulations suggest that the emergence of an
additional (long-wave) shear mode triggers a secondary instability, which leads to a chaotic wave
train showing signs of imminent wave overturning.

Although we have focussed on laminar-laminar cases only in this work, the ideas and results
contained herein can be extended to turbulent gas streams. In this context, the most accurate and
appropriate methodology is full-scale DNS, which is the target of future work. However, short of
full-scale DNS, a quasi-laminar model may be assumed for the linear stability of the two-phase
flow?>* or, alternatively, a weighted-residual integral boundary-layer model,>***’ which also
models nonlinear interfacial waves. These approaches both have their own advantages and short-
comings, and the aim of future work will be to confirm these reduced-dimensional modelling
approaches with evidence from accurate DNS, towards which the present work is an initial contribu-
tion.

In summary, the combination of generic complementary (semi-)analytical and numerical methods
presented herein yields a comprehensive and convincing characterization of interfacial instability in
vertical counter-current gas-liquid flows. We are therefore confident that this rigorous methodology
can be employed to further elucidate the dynamics of parallel shear flows in a wide range of techni-
cally relevant parameter regimes, such as flows with high viscosity contrast, high surface tension or
non-steady gas flow. Beyond that, the outlined approach may be used as a starting point for the future
study of heat and mass transfer phenomena in vertical gas-liquid flows.
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APPENDIX: FULL FORMULATION OF THE LINEAR STABILITY ANALYSIS
AND NUMERICAL SOLUTION

1. Base flow velocity profile

Here, we give a detailed formulation of the governing equations underlying the linear stability
analysis undertaken in Secs. III and IV as well as a description of the numerical method used to
solve the corresponding generalized complex eigenvalue problem.

Under the assumption of a steady, spatially uniform, laminar, and incompressible flow in both
phases, the Navier-Stokes equations governing the undisturbed base flow reduce to standard bal-
ances between pressure as well as viscous and gravitational forces. For the liquid film, this balance
can be written as

2~ ~
w0 Ly g =0, —dp<z<0, (A1)
dz?2  dx
where i is the dimensional base flow velocity in the respective phase (tildes denote dimensional
quantities). Equation (A1) is subject to no-slip at the liquid side channel wall, 7 = —d, and conti-
nuity of tangential stress at the interface, 7 = 0,

di
Go(2=-d) =0, prgZ| =T (A2)
2 |z=0-
Thus, integration of Eq. (A1) yields
1 (dp Tint , - -
ﬁo(z>=—(—’f—pLg)(z2—di)——’(z+dL), ~dp<7<0 (A3)
2pp \dX HL

as the velocity profile for the liquid film. The interfacial velocity, which constitutes one of the
boundary conditions of the gas layer, reduces to

~ ~ [~ d~ Tin
o, int = 1ip (£ = 0) = —— (_p - PLg) di - ﬂ—LtdL- (A4)

The velocity profile for the laminar gas layer is derived analogous to the liquid layer. We
therefore write the force balance as
d%iy  dp
po—t =Lt pog =0, 0<z<dg, (AS)
dz dx
which is subject to continuity of velocity and shear stress at the interface,
o - didp
Ug (Z = 0) = U, int> MGd_Z = —Tint- (A6)

z=0*

Applying these interfacial conditions in Eq. (AS) yields

| 3
o (2) = do,im + = (—If - pcg) 77—z 0<i<dg (A7)
2uG H
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as the gas side velocity profile. To determine the interfacial shear 7;,,, we apply the no-slip condition
at the gas side channel wall, iy (Z = dg) = 0

1 (dp Tin L (dp Tin
- (B - prg)di - ap+ — (£ - pag|di - g =0, (A8)
2up \dx ML dx HG
In summary, the velocity profile of the undisturbed base flow in dimensional form reads
1 Tint 5
2/,1_L(__pl‘g)<2 )——t( +dL), -d; <7<0,
. 1 Tin
iy (2) = Ry ( pLg) - _ldL (A9)
Hr
(—~—pg)22 Tntz  0<z<dg
2,uc d HG

Applying the nondimensionalization scheme of Eqs. (1) and (2) finally leads to the dimensionless
form of the base flow velocity profile as presented in Eq. (3).

2. Perturbation equations and energy budget

As mentioned in Sec. II A, we introduce a small disturbance that shifts the flat interface from
z =0to z = n, where || < 1. This (dimensionless) wave elevation gives rise to perturbations in the
flow field of the following form:

(u,w,p) = (up (z) + du(x,z,t),0w (x,z,t),po(z) + 6p (x,z,1)), (A10)

where the subscript zero denotes base flow quantities and the ¢ quantities are infinitesimally small
perturbations. We use these variables of the flow field and obtain the linearized Navier-Stokes
equations in both phases (j = L,G),

66 + 86 +ou-V Vé +mjV26 (Al1)
ri|=ou +up—ou+ éu - Vuy| = - —V-6u,
"\ ot Yx 0 P Re,,

where (rp,rg) = (r,1), and (mp,mg) = (m,1). The pressure is eliminated from Eq. (A11) by taking
the curl of both sides, which yields the linearized equation for the component of vorticity éw,, out of
the plane generated by the wall-normal and streamwise directions,

0 0 mj _, 02
— —— V] bw, = —Sw—=uy, Al2
(Bt + ity "R, ) wy w5t (A12)
where
0 0
= —d6u— —ow. Al
dwy azéu axéw (A13)

It is further convenient to use the streamfunction representation (Su,éw) = (0¥/0z,—0¥/dx) for
the two-dimensional disturbance velocity field, hence

dw, = V. (A14)

Assuming a wave-like solution of the form W¥(x,z,t) = e/@*~“Dy(z) for the streamfunction,
Equations (A12) and (A14) lead to the Orr-Sommerfeld equations governing the stability of the

liquid interface,
a2 d2up m; [ R 2
i - — =—|— - i AlS
1@ [(MO a) (dZ )lﬂ; lﬂ;] rjRep (d22 a ) W/ ( )

where @ = @, + i@; and w = w, + iw; are the complex wavenumber and angular frequency, respec-
tively. This equation is subject to no-penetration and no-slip conditions at both channel walls,

d d
W (=0r) = d_zl’b (=0p) =¥ (6g) = d—zlﬂ(éG) =0. (A16)
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Furthermore, conditions for continuity of velocity and tangential stress as well as a jump in the
normal stress due to surface tension are applied to match the streamfunction across the interface at
z = 0 (we use the notation ¢ = w/a),

VL =va, (Al7a)
dl,[/L dl,DG d/L duo duo
b — Al7b
dz dz oo o \ dz | dz |, ( )
d2 d? v [ dPup d2ug
(p+a)l//L_(—+a)l//G+c_uo(d—Zzo—md—zzo_), (Al7¢)

. dyyp . dug iaRe, a?
) orke (¢~ G wiarke, G| v T G

Py 24y
-3a
m( dz? dz

dPyg dyg) . dye . dug
= (d_ﬁ - 3a2d_z +iaRep, (¢ — ug) e +iaRe, e . (A17d)
Using operator notation to rewrite Eqs. (A15)-(A17) yields
Ly =ioMy, (A18)

which highlights the generalized eigenvalue problem associated with the stability problem.

To understand the physical mechanism that causes the instability, we perform an energy-budget
analysis. To find the energy budget of the system, we multiply Equation (A11) by éu and integrate
over a single wavelength in the streamwise x-direction and over the entire wall-normal z-domain.
The right-hand side of Equation (A11) is first rewritten as the divergence of the stress tensor V - T,
where

2m; 2m; m;
Tyx,j = —0p + —’%(m, Tyrj = —0p + —J%(‘Sw, Tox,) = ]?Jp (6‘925 + géw)
(A19)

In deriving the Orr-Sommerfeld equation, we find that the pressure terms have a representation in
terms of the streamfunction ¥/; (2),

m; &y;
iaRe, dz3

imja | dy;

R ]wl
ep dz d

Thus, we multiply Equation (A11) by éu and integrate over the unit cell, [0, 4] X [-d,0] for the

liquid and [0, 1] X [0,0¢] for the gas layer. Here A = 27/« is the wavelength of the disturbance

(working with a sinusoidal disturbance gives periodic boundary conditions in the lateral direction).
Using Gauss’ theorem on the stress term, we obtain the energy relation for each phase,

/dx/dz [%( 6u)+6u1(5w,c(l1 ]—
m; d d (0 9 :
- L 2| =6u; 2| =6w; —ZSu: + —Sw;
Re, /dx/dz [ (axéuj) + (azéw_,) + (6z6u1+ axéw_,)
i/dx [6uszx,j+(5U)szzyj]z:0, (A21)

where the positive sign corresponds to the liquid phase and the negative sign to the gas phase
(the integration limits are obvious and are not stated explicitly here). We sum up over j in
Equation (A21) to obtain, in a standard fashion, the energy-budget relation

D> KIN;j= > REY;+ > DISS;+INT,

j=L,G j=L,G Jj=L,G

d
KIN; = %a/dx/dzrjéu?,

(A20)

opj = + [r j(c—up(2))

where
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d
REsz—rj/dx/dzdujéwjdizo,

‘ 2 2 2
DISS; = —I;nTJ/dx/dz [2(0%5”1') +2(§Z5w,) + (%5uj+ %&u,) }
P

Lastly, the term “INT” is related to the following interfacial conditions:

A A
INT = / dx [6MLsz,L + 6wLTZZ,L]Z=Q — / dx [6MGsz,G + 6wGTZZ,G]z:0’
0 0

which is decomposed into normal and tangential contributions,
INT = NOR +TAN,

where

N
NOR = / dx[ow,T,; 1 — 6wGT.; Gl
0

z=0’

and

1
TAN = / dx [6MLTZX,L - 5“GTZX,G]Z:()~
0 4

Note that the tangential contribution can be further decomposed to highlight the effect of the
viscosity contrast,

3 Re2(m—1) [

2
TAN = / dx[(6ur, — 6ug) Toxl,— = dxn sz|2=0 (A22)
0

Rep,m 0
wheren = (dur, — dug)/[uy(0") — uj(07)]is the height of the perturbed interface (cf. Equation (A17b))
and where we have used the continuity of tangential stress at the interface to write T, 1 = T;y.¢ =
T,x at z = 0. Thus, provided the absolute value of the phase difference between 7 and the tangen-
tial stress does not exceed m/2, a viscosity contrast m > 1 implies that the TAN term is a source of
instability.

3. Numerical method

We solve the eigenvalue equation (A18) numerically by employing a standard Chebyshev
collocation method?® with an approximation for the streamfunction of the form

N, 22
ZanTn(_+1)’ _6LSZSO,
n=0 oL

Ng

2
anTn(—Z—l), 0<z<dq,
n=0 6G

where T}, () is the n'" Chebyshev polynomial of the first kind. We substitute this trial solution into
Eq. (A18) and evaluate the result at N, + N — 6 Gauss-Lobatto collocation points. Together with
the eight boundary and interfacial conditions, this yields Ny + Ng + 2 linear equations in as many
unknowns. In matrix terms, we solve

¥ (z)~ (A23)

Ly = iwMpy, (A24)

where v = (ao,. . .,an,,bo, . . . ,bNG)T. We use a standard linear algebra package (MATLAB®) to
solve this equation, thereby adjusting the number of collocation points (N + 1,Ng + 1) until
convergence is reached.
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