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Abstract. This paper presents a technique for spectral modeling us-
ing a deep neural network (DNN) for statistical parametric speech syn-
thesis. In statistical parametric speech synthesis systems, spectrum is
generally represented by low-dimensional spectral envelope parameters
such as cepstrum and LSP, and the parameters are statistically modeled
using hidden Markov models (HMMs) or DNNs. In this paper, we pro-
pose a statistical parametric speech synthesis system that models high-
dimensional spectral amplitudes directly using the DNN framework to
improve modelling of spectral fine structures. We combine two DNNs,
i.e. one for data-driven feature extraction from the spectral amplitudes
pre-trained using an auto-encoder and another for acoustic modeling into
a large network and optimize the networks together to construct a single
DNN that directly synthesizes spectral amplitude information from lin-
guistic features. Experimental results show that the proposed technique
increases the quality of synthetic speech.

1 Introduction

Recently, deep neural networks (DNNs) with many hidden layers have been sig-
nificantly improved in statistical speech synthesis researches. For instance, DNNs
have been applied for acoustic modelling. Zen et al. [1] use DNN to learn the
relationship between input texts and extracted features instead of decision tree-
based state tying. Restricted Boltzmann machines or deep belief networks have
been used to model output probabilities of hidden Markov model (HMM) states
instead of GMMs [2]. Recurrent neural network and long-short term memory
have been used for prosody modelling [3] and acoustic trajectory modelling [4].
In addition, an auto-encoder neural network has also been used to extract low
dimensional excitation parameters [5].

However, the synthetic speech of the latest statistical parametric speech syn-
thesis still sounds muffled, and averaging effects of statistical models are often
said to remove spectral fine structure of natural speech. To improve the quality
of synthetic speech, a stochastic postfilter approach has been proposed [6] where
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a DNN is used to model the conditional probability of the spectral differences
between natural and synthetic speech. The approach was found to be able to
reconstruct the spectral fine structure lost during modeling and has significantly
improved the quality for synthetic speech [6]. In this experiment, the acoustic
model was trained using lower dimensional spectral envelope features, while the
DNN-based postfiler was trained using the spectral amplitudes obtained using
the STRAIGHT vocoder [7]. From the experimental findings, we can hypothesize
that the current statistical parametric speech synthesis may suffer from quality
loss due to not only statistical averaging but also acoustic modeling using lower
dimensional acoustic features.

On the basis of this hypothesis, in this paper we present a new technique for
constructing a DNN that directly synthesizes spectral amplitudes from linguistic
features without using spectral envelope parameters such as mel-cepstrum. It is
well known that there are many problems for training a DNN such as the local
optima, vanishing gradients and so on [8]. However, it has been reported in
the ASR field that DNNs that deal with high-dimensional features, e.g. FFT
frequency spectrum, can be appropriately constructed using an efficient training
technique such as pre-training [9].

Thus, in this paper we propose an efficient training technique for construct-
ing a DNN that directly synthesizes spectral amplitudes from input texts. A key
idea is to stack two DNNs, an auto-encoder neural network for data-driven non-
linear feature extraction from the spectral amplitudes and another network for
acoustic modeling and context clustering. The proposed technique is regarded as
a function-wise pre-training technique for constructing the DNN-based speech
synthesis system.

The rest of this paper is organized as follows. Section 2 reviews a DNN-
based acoustic model for the statistical parametric speech synthesis. Section 3
describes a DNN-based acoustic feature extractor and spectrum re-generator.
Section 4 explains the proposed technique for constructing a DNN that directly
synthesizes the spectral amplitudes. The experimental conditions and results
are shown in Section 5. Concluding remarks and future works are presented in
Section 6.

2 DNN-based Acoustic Model for Statistical Parametric
Speech Synthesis

It is believed that the human speech production system has layered hierarchical
structures to convert the linguistic information into speech. To approximate such
a complicated process, DNN-based acoustic models that represent the relation-
ship between linguistic and speech features have been proposed for statistical
parametric speech synthesis [1–4] This section briefly reviews one of the state-
of-the-art DNN-based acoustic models [1].

Figure 1 illustrates a framework of the DNN-based acoustic model. In this
framework, linguistic features obtained from a given text are mapped to speech
parameters by a DNN. The input linguistic features include binary answers to



Fig. 1. A framework of DNN-based acoustic model.

questions about linguistic contexts and numeric values, e.g. the number of words
in the current phrase, the position of the current syllable in the word, and dura-
tions of the current phoneme. In [1], the output speech parameters include spec-
tral and excitation parameters and their time derivatives (dynamic features). By
using pairs of input and output features obtained from training data, the pa-
rameters of the DNN can be trained with a stochastic gradient descend (SGD)
[10]. Speech parameters can be predicted for an arbitrary text by a trained DNN
using forward propagation.

3 Deep Auto-encoder based Acoustic Feature Extraction

An auto-encoder is an artificial neural network that is used generally for learning
a compressed and distributed representation of a dataset. It consists of the en-
coder and the decoder. In the basic one-hidden-layer auto-encoder, the encoder
maps an input vector x to a hidden representation y as follows:

y = fθ(x) = s(Wx + b), (1)

where θ = {W,b}. W and b represent an m×n weight matrix and a bias vector
of dimensionality m, respectively, where n is the dimension of x. The function
s is a non-linear transformation on the linear mapping Wx + b. A sigmoid, a
tanh, or a relu function is typically used for s. y, the output of the encoder, is
then mapped to z, the output of the decoder. The mapping is performed by a
linear mapping followed by an arbitrary function t that employs an n×m weight
matrix W′ and a bias vector of dimensionality n as follows:

z = gθ′(y) = t(W′y + b′), (2)

where θ′ = {W′,b′}. An auto-encoder can be made deeper by stacking multiple
layers of encoders and decoders to form a deep architecture.

Pre-training is widely used for constructing a deep auto-encoder. In pre-
training, the number of layers in a deep auto-encoder increases twice as compare
to a deep neural network (DNN) when stacking each pre-trained unit. It has been
reported that fine-tuning with back-propagaqion through a deep auto-encoder



Fig. 2. Greedy layer-wise pre-training for constructing a deep auto-encoder.
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Fig. 3. Original and reconstructed spectra using mel-cepstral analysis and a deep auto-
encoder.

is ineffective due to vanishing gradients at the lower layers [8]. To overcome this
issue, we restrict the decoding weight as the transpose of the encoding weight
following [10], that is, W′ = WT where WT denotes the transpose of W. Each
layer of a deep auto-encoder can be pre-trained greedily to minimize the recon-
struction loss of the data locally. Figure 2 shows a procedure for constructing a
deep auto-encoder using pre-training. In pre-training, a one-hidden-layer auto-
encoder is trained and the encoding output of the locally trained layer is used
as the input for the next layer. After all layers are pre-trained, they are stacked
and are fine-tuned to minimize the reconstruction error over the entire dataset
using error backpropagation [11]. We use the mean square error (MSE) for the
loss function of a deep auto-encoder.

Figure 3 shows an example of original and reconstructed spectrograms using
the standard mel-cepstral analysis and a deep auto-encoder. Both mel-cepstral
analysis and the deep auto-encoder produced 120-dimensional acoustic features.
We can clearly see that the deep auto-encoder reconstructs spectral fine struc-
tures more precisely than that of the mel-cepstral analysis. Log spectral dis-
tortions between natural spectrum and reconstructed spectrum calculated using
441 sentences were 2.53 and 1.19 dB for the mel-cepstral analysis and deep auto-
encoder, respectively. Similar auto-encoder based bottleneck features were tested



Fig. 4. Constructing a DNN-based spectral model based on a deep autoencoder and a
DNN-based acoustic model.

for a ClusterGen speech synthesizer [12]. Our idea is different from [12] and we
stack the decoder part of the deep auto-encoder onto another DNN for acoustic
modeling.

4 Proposed DNN-based Spectral Modeling

A DNN-based acoustic model described in Section 2 may be used for the direct
spectral modeling by substituting an output of the network from mel-cepstrum
to the spectrum. However, the dimension of spectrum is much higher than that
of mel-cepstrum. For a speech signal at 48kHz, the mel-cepstral analysis order
typically used is around 50-dim, whereas the dimension of spectrum corresponds
to FFT points such as 2049. Because of this high dimensional data, a more
efficient training technique is needed to construct a DNN that directly represents
the relationship between linguistic features and spectra. In this paper, we hence
propose a function-wise pre-training technique where we explicitly divide the
general flow of the statistical parametric speech synthesis system into a few sub-
processes, construct and optimize a DNN for each task individually, and stack
the individual networks for the final optimization.

Figure 4 shows a procedure for constructing the proposed DNN-based spec-
tral model. Details of each step of the proposed technique are as follows:

Step 1. Train a deep auto-encoder using spectra and extract bottleneck fea-
tures for a DNN-based acoustic model used in Step 2. Layer-wise pre-training
or other initialization may be used for the learning of the deep auto-encoder.

Step 2. Train a DNN-based acoustic model using the bottleneck features
extracted in Step 1. Layer-wise pre-training or other initialization may be
used for learning the DNN.

Step 3. Stack the trained DNN-based acoustic model for bottleneck features
and the decoder part of the trained deep auto-encoder as shown in Figure 4
and optimize the whole network.



Fig. 5. Structures of constructed DNNs for each technique.

A DNN that represents the relationship between linguistic features and spec-
tra is constructed based on a DNN-based spectral generator and a DNN-based
acoustic model using the bottleneck features. After this proposed pre-training,
we fine-tune the DNN to minimize the error over the entire dataset using pairs
of linguistic features and spectra in training data with SGD.

5 Experiments

We have evaluated the proposed technique in the subjective experiment. The
dataset we use consists of 4546 short audio waveforms uttered by a professional
female native speaker of English and each waveform is around five seconds long.
All data was sampled at 48 kHz.

We compared three techniques; CEPSTRUM is the DNN that synthesizes
cepstrum vectors, SPECTRUM has the same network structure as that of CEP-
STRUM, but it outputs the spectral amplitudes directly, and INTEG is the pro-
posed DNN that synthesizes spectrum amplitudes with the proposed pre-training
framework. In these techniques, the dynamic and acceleration features were not
used. Figure 5 shows structures of constructed DNNs for each technique. We
trained five-hidden-layer DNN-based acoustic models for each technique. The
number of units in each of the hidden layers was set to 1024. Random initial-
ization was used in a way similar to [1]. In INTEG, we trained the symmetric
five-hidden-layer auto-encoder. The numbers of units of the hidden layers were
2049, 500, 60, 500 and 2049 As a result, we constructed and fine-tuned the eight-
hidden-layer (1024-1024-1024-1024-1024-60-500-2049) DNN for INTEG. We used
a sigmoid function for all units of hidden and output layers of all DNNs.

For each waveform, we first extract its frequency spectra using the STRAIGHT
vocoder with 2049 FFT points. For constructing the conventional system, 59 di-
mensional cepstrum coefficients were used. Spectrum and cepstrum were both
frequency-warped using the Bark scale. Note that all the techniques synthesize



Fig. 6. Results of preference test.

only spectrum features and other requisite acoustic features; that is, F0 and ape-
riodicity measures were synthesized from the same HMM-based synthesis system
[13]. Feature vectors for HMMs were comprised of 258 dimensions: 59 dimen-
sional bark-cepstral coefficients (plus the 0th coefficient), log f0, 25 dimensional
band aperiodicity measures, and their dynamic and acceleration coefficients.
Phoneme durations were also estimated by HMM-based speech synthesis. The
context-dependent labels were built using the pronunciation lexicon Combilex
[14]. The linguistic features for DNN acoustic models were comprised of 897 di-
mensions: 858 dimensional binary features for categorical linguistic contexts, 36
numerical features for numerical linguistic contexts, and three numerical features
for the position of the current frame and duration of the current segment. The
linguistic features and spectral amplitudes in the training data were normalized
for training DNNs. In the proposed technique, however, the bottleneck features
are not normalized, and the normalization process is not used for hidden units in
the integrated DNN. The input linguistic features were normalized to have zero-
mean unit-variance, whereas the output spectral amplitudes were normalized to
be within 0.0–1.0.

We synthesized speech samples from spectrum amplitudes, F0 features and
aperiodicity measures using the STRAIGHT vocoder in all techniques. In CEP-
STRUM, synthesized cepstral vectors were converted into spectrum amplitudes
for using the STRAIGHT vocoder.

In subjective experiments, two preference tests were conducted. Seven sub-
jects participated in both listening tests. Thirty sentences were randomly selected
from the 180 sentences for each subject. The experiment was carried out using
headphones in a quiet room.

5.1 Experimental Result

Figure 6 shows the results of the preference tests with 95% confidence inter-
vals. In the first preference test, they were asked to compare the DNN that
synthesizes cepstrum vectors (CEPSTRUM) with the proposed DNN (INTEG).
In the second preference test, they were asked to compare the DNN without the
proposed pre-training technique that synthesizes spectrum amplitudes (SPEC-
TRUM) with the proposed DNN (INTEG). The figure shows that the proposed
technique produces more natural-sounding speech than other techniques. This
indicates that the DNN that directly synthesizes spectra was efficiently trained
using the proposed technique.



6 Conclusion

In this paper, we have proposed a technique for constructing a DNN that directly
synthesizes spectral amplitudes. On the basis of the general flow for constructing
the statistical parametric speech synthesis systems, a part of layers of a DNN
could be efficiently pre-trained. Experimental results showed that the proposed
technique increased the quality of synthetic speech.

In future work, we will investigate the effect of structures of a DNN-based
acoustic model and a DNN-based spectrum auto-encoder more thoroughly. Time
derivative features will also be interesting to investigate.
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