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A Case Study in Capacity Planning for PEPA
Models with the PEPA Eclipse Plug-in

Christopher D. Williams and Allan Clark1,2,3

LFCS, School of Informatics
University of Edinburgh

Edinburgh, United Kingdom

Abstract

We report on the addition of Capacity Planning facilities to the PEPA Eclipse Plug-in, a software tool for
analysing performance models written in the PEPA language. The PEPA language allows the compositional
description of complex systems consisting of different kinds of processes. The capacity planning addition
allows modellers to automatically search for the populations of processes that allows for an optimal trade-off
between the performance of the system and the cost of acquiring or operating the components of the system
under the modeller’s control.

Keywords: PEPA, Capacity Planning, Optimisation, Performance Evaluation, Modelling

1 Introduction

In this paper we report on the capacity planning framework for Performance Eval-

uation Process Algebra (PEPA)[8] implemented in the PEPA Eclipse Plug-in[16].

PEPA is a language in which modellers can compositionally describe complex sys-

tems. Generally modellers define several different kinds of processes which interact

with each other by sharing activities. Once the model is defined, it can be numeri-

cally evaluated via a suite of techniques to obtain performance metrics. If the model

is accurate enough then these translate to, and provide insight to, the real system

under investigation.

Typically a process is defined with several possible states. The performance

metrics in the first instance are the long-term probabilities of a process being in

each of its possible states. Where the model contains many copies of the same

process, this is equivalent to asking the long-term populations of each state.

1 Special thanks to Mirco Tribastone who contributed the case study
2 Email: c.d.williamsed.ac.uk
3 Email: a.d.clark@ed.ac.uk
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Generally, the populations, will provide the modeller with utilisation informa-

tion. For example in a Server-Client model, a server process may have a set of

possible states, some of which correspond to a state in which the server is busy

processing a particular kind of response and other states will correspond to a state

in which the server is idle waiting for a client to make a request. Knowing the

proportion of servers which are generally busy may tell the modeller if the service is

over-provisioned, in that we have many servers which are idle because the number

of servers is enough to satisfy the expected (and modelled) demand.

From the model and the long-term/steady-state population distributions we can

derive performance measures which may more directly determine whether the ser-

vice would be over or under provisioned. Two important measures are the through-

put of particular actions or the time a particular component can expect to remain

in a particular set of states. Again in a Server-Client setting, the throughput may

tell us how many requests are responded to per unit of time, or it may tell us the

rate at which requests must be dropped.

However the throughput of requests is commonly also dependent upon the rate

at which requests are made, and hence may not be a reliable indicator of whether

the system has enough performance for a given demand. For this we can calculate

the expected time a given component is in a given set of states. Typically we would

calculate the expected time a single client is in a state in which they have made

their request and are waiting for that request to be responded to by the service.

This gives us the response-time as observed by a typical consumer of the service.

Being able to predict the performance of a proposed service by modelling the

service and calculating the response-time under a given client-load is clearly useful.

However when designing the system we still have some flexibility around the number

of components that we may deploy. In the simple case we may be able to deploy more

or fewer servers. In a more complex environment there are different components

that make up the service being offered. For example there may be web servers and

database servers as well as an external authentication service.

When designing such a system, we would like to know what configuration of the

system is optimal. So we wish to know what populations of server components meets

some required performance standard. One can often meet a performance standard

simply by deploying ever-increasing numbers of all server components. However,

there is generally some cost associated with acquiring and/or operating each server

and the costs may differ for different types of server. Hence we wish to find not

only a configuration of the system that will satisfy the performance demands but

also the cheapest such system configuration.

A modeller can always guess at a sufficiently low-cost configuration that might

satisfy the performance demands and simply evaluate that configuration through

their model. In previous work [13], an extension to the PEPA Eclipse Plug-in

software is discussed. The extension implements an automatic search for the optimal

configuration, ie. the extension implements automatic capacity planning for PEPA

models.

In this paper we contribute a case-study demonstrating the value of the capacity

C.D. Williams, A. Clark / Electronic Notes in Theoretical Computer Science 318 (2015) 69–8970



planning extension to the PEPA Eclipse Plug-in. We begin in the following section

with background information detailing PEPA, associated performance measures and

capacity planning in general. This is then followed by a in-depth description of the

case study scenario and the associated PEPA model. The results obtained from

running the software to obtain an optimal configuration of the server components in

the case study are then discussed. We end with future work discussing how to make

the software ever more general without sacrificing ease-of-use and the conclusion

that the capacity planning extension is an important feature for modelling software.

2 Background

This section gives an overview of the PEPA modelling language and the necessity

to provide capacity planning facilities. We first discuss PEPA, then describe how

PEPA models can be evaluated to obtain basic quantitative information concern-

ing how the model’s component states evolve over time and their steady-state (or

long-term) distributions. We then describe how more informative performance mea-

sures can be derived from this basic information. Crucially we are looking at the

throughput of particular activities within the model as well as the expected time

the model remains in a particular set of states. The latter is known as the average

response-time in the specific case where the set of states represents a client waiting

for service/response from a server.

2.1 PEPA

PEPA is a stochastically-timed process algebra where sequential components are

defined using prefix and choice. PEPA models require these sequential components

to cooperate on some activities, and hide others. A PEPA model typically consists

of several sequential components, placed in cooperation. In the model:

P ��
L Q

The sequential components P and Q cooperate on the activities in the set L. If
activity α is in the set L then P and Q are required to cooperate on α. If activity β

is not in L then either of P or Q, or both, may perform this activity independently.

When L is empty we write P ‖ Q instead of P ��
∅ Q. We also allow the special

cooperation P ��∗ Q to be a synonym for P ��
L Q where L is the set of activities

performed by both P and Q.

Rates are associated with activities performed by each component. The symbol

� is used to indicate that the component will passively cooperate with another on

this activity. In this case the passive component may enable or restrict the activity

from being performed by the cooperating component but the rate when enabled is

determined by the actively cooperating component. The component (a, r).P per-

forms the activity a at rate r whenever it is not blocked by a cooperating component

and becomes the process P . The component (a,�).Q passively synchronises on a

and becomes process Q.

In PEPA models we often work with arrays of components. We use arrays to
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represent workload (such as a number of independent clients) or resources (such

as a number of independent servers). We write P [5] to denote five copies of the

component P which do not cooperate and P [5][α] to denote five copies of the com-

ponent P which cooperate on the activity α. That is, P [5] is an abbreviation for

P ‖ P ‖ P ‖ P ‖ P and P [5][L] is an abbreviation for

P ��
L P ��

L P ��
L P ��

L P.

The PEPA language is formally defined in [8]. Applications of the language are

described in [7,11,10].

2.1.1 Evaluating the Model

PEPA is used to calculate performance measures. Traditionally this has been

achieved by translating the PEPAmodel into its underlying continuous-time Markov

chain. However for models with large numbers of components the state-space of

the model is too large to traverse and other techniques have been utilised. We

have used stochastic simulation and translation into Ordinary Differential Equa-

tions (ODEs) [9,17].

In this work we have utilised the translation into ODEs. The techniques de-

scribed are generalisable to any method of obtaining results from a PEPA model,

however if the search space is large we may evaluate many instantiations of the

model, meaning that whichever method is used should be fast for all the candidate

configurations of the model.

When the model is translated into a set of ODEs these can be numerically

evaluated to provide a time series which describes the population levels of the states

of each component kind over time. For some measures we are not interested in the

evolution of the component state populations but rather the long-term proportion of

the components in each state, known as the steady-state. To obtain these the ODEs

can be numerically evaluated for increasing time until the populations are stable.

This technique requires that your system does not exhibit oscillating behaviour.

2.1.2 Performance Measures

Once we have the long-term component populations we can calculate the expected

performance of the system. The two most common performance measures that we

are interested in are the throughput of particular actions or the average duration

of a particular state, or set of states. For example when considering some kind of

service we may wish to measure the throughput of responses made or the average

response-time. The average response-time here would be the expected delay between

a particular client making a request and that same client receiving a response to

the earlier request.

Typically the average response-time is appropriate because it is not a measure

that is penalised when the service is over-provisioned. When the service is over-

provisioned the performance may be very high, but the throughput of responses

can only be as high as the throughput of requests made by the users of the service.

Response-time on the other hand can still be, and is likely to be, low, even when
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the rate of requests is low. In the case study presented in this work we focus on

response-time.

Response-time can be calculated with an application of Little’s Law[14]. Little’s

law states that the long-term average number of customers in a stable system L

is equal to the long-term average arrival rate λ multiplied by the average time a

customer spends in the system W . Hence, L = λW , re-arranging for W we have

that W = L/λ. In our case W is the response-time we seek, and L is the long-term

population of clients in states between their request and response activities whilst

λ is long-term throughput of requests made.

When considering systems with many consumers we wish to evaluate the per-

formance of the system as observed by a typical consumer. In other words we must

be careful to measure the expected time between a request made by a particular

client and the response received by that same client. Rather than the expected time

between any request and the next response to any client. To achieve this we use a

simple technique of tagging a single client, similar to the technique described in [5].

Tagging and specifying the states to be considered as part of the response-time, or

the specific actions considered part of the measured throughput are discussed in [2]

which introduces extended stochastic probes as a means for performance query

specification. Automatically modifying the model to suit the performance query is

discussed in [3].

Often a modeller must be careful to evaluate both response-time and throughput.

Since a low throughput of requests may results in a low average-response time, but

only because, for some reason, the demand is low. Similarly with no bound on the

number of clients in a waiting state may mean that the throughput of responses is

high, but that clients are waiting a long time for their requests to be satisfied.

2.2 Capacity Planning

Complex systems are commonly modelled to provide insight. Either this insight is

used to aid the design of the system before it is built or it is used to understand a

system already in operation. A complex system may have many components such

as different kinds of servers. One aspect of the design of a system is reasoning

about the most appropriate configuration, that is the numbers of different kinds

of components. Modelling of a system can allow one to speculate about the most

appropriate configuration and compare candidate configurations without physically

implementing them.

Once efficient comparison of multiple candidate configurations is possible, it

makes sense to perform a search for the best or most appropriate configuration.

Several techniques exist for searching a space of candidate parameter configurations.

Capacity planning has the unique property that usually the parameters in question

are all integers since they represent a physical configuration of a system in terms of

the populations of component types.

When considering configurations there are generally some trade-offs to consider.

Usually some or all of the components over which the designer has control of their

populations, have some cost associated with obtaining and running those compo-
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nents. For example a web-service must spend money to obtain and run the physical

(or virtual) servers which host the web-service. However the designer will also wish

to ensure that the service gives enough performance such that, for example, the

response-time is sufficiently low.

We already know how to obtain performance measures from a PEPA model such

as response-time as explained above. Suppose we have a model with only one kind

of server and a desired average response time from a given level of service demand

or number of users. In this simple scenario it is straightforward to find the optimal

configuration. We can simply evaluate the response-time when just a single server is

allocated. If this response-time is low enough then this configuration can be reported

as the most appropriate configuration knowing that all other configurations will cost

more. If not then the model can be modified such that there are two servers and

re-evaluate the response-time. In this way a simple brute-force search for the lowest

number of servers which satisfies the response-time can be conducted.

In this simple case the first configuration found will be the most appropriate

since we know that all other configurations we have tried do not satisfy the desired

response-time and all configurations not yet tried will cost more. An obvious im-

provement would be a binary search. Both techniques would be performing a full

search of the configuration space and guaranteed to find the best configuration.

However complex systems are often not as simple. There may be several kinds of

servers each with a different cost to obtain and/or operate. Such a linear search for

the best candidate solution can still be done if the candidate configurations can be

ordered in terms of their operating cost. This may become prohibitively expensive

to perform when the number of candidate configurations increases rapidly. Binary

search may help in this scenario, but only if the candidate configurations are trivial

to order and index in terms of cost.

Furthermore it may also be that the modeller does not have a strict performance

threshold to achieve, but simply wants to trade-off good performance against the

cost of operation. In this case the modeller might give a notional cost to each unit of

response-time. Hence the cost of a candidate configuration is a combination of the

cost of obtaining and operating the components and the predicted response-time

achievable under that configuration.

In such a scenario we cannot do a linear search and stop at the first candidate

configuration which satisfies the performance constraints because there are no strict

performance constraints and a better trade-off may exist. One must search over the

terrain of the entire search space. In this kind of search it may still be possible to

perform a brute-force search and simply evaluate all possible configurations. This

is only possible if the number of plausible configurations is low.

When brute-force search is not possible, search techniques exist which avoid eval-

uating all possible configurations. The work described here utilises such techniques

specifically for PEPA models with associated performance measures. In essence

then capacity planning is a search for the optimal configuration. Search heuristics

make it possible to perform a search over a very large space of possible configura-

tions without evaluating all possible configurations. This means that the absolute
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best configuration may not be found. However, even in such cases it is worth per-

forming the search automatically. Such techniques often fall under the category of

evolutionary computing of which there is a large literature base, for example [15,4,1].

2.2.1 Cost Functions

The evaluation of a particular configuration involves assessing how appropriately

the configuration balances performance and operating cost. These two measures are

combined into an overall cost of a candidate configuration. Hence, where, costpm
is the cost associated with the performance measure, costpop is the cost associated

with the candidate configuration populations and wpm and wp are weights, the cost

function has the general form:

cost = (wpm × costpm) + (wp × costpop)

However not all populations are weighted equally. One possible task is deciding

how many of each different kind of server to deploy and it may well be that the

different kinds of servers do not cost the same to acquire or operate. For N compo-

nent kinds, Pi is the population of component kind i and Ci is the cost associated

with a single component of kind i. Hence our populations component of the cost

function becomes:

costpop = ΣN
1 Ci × Pi

Recall that our performance measure may be associated with the throughput of

an action or the average response-time. Additionally in either case we may desire

either a high or low value. Hence the cost function must be capable of penalising

both a high or a low value for a performance measure. The simple solution is to set

a target value for the performance measure and calculate the difference from this

value. The modeller sets the target and the direction, so for a performance measure

which we wish to search for as low a value as possible we have:

costpm = measured− target

Similarly for a performance measure for where we are searching for as high a

value as possible we have:

costpm = target−measured

Note that in both cases this value may become negative. That is perfectly

acceptable and there is no reason to avoid negative costs. The search engine will

simply search for the configuration which gives the lowest cost, whether that lowest

value is negative or not.

However this simple measure assumes that the modeller would penalise perfor-

mance linearly. Consider the case of measuring average response-time. The modeller

may be interested in keeping the average below that which is noticeable by users and

hence may be very keen to discard configurations which evaluate to a response-time

of 1.0 time units or greater over those which evaluate to a response-time of less than

1.0 time units. However, the modeller may be less concerned about distinguishing

between two configurations that evaluate to response-times of 0.1 and 0.2 time units.

Preferring instead to distinguish those two configurations more according to the cost

of the populations.

Providing non-linear cost functions adds significantly to the complexity of the

C.D. Williams, A. Clark / Electronic Notes in Theoretical Computer Science 318 (2015) 69–89 75



user-interface provided for the modeller to specify their cost function. Hence we

have approximated non-linear cost functions by utilising a penalty for missing the

target. Hence our cost function for a performance measure for which we wish to

search for the lowest possible value becomes:

costpm = (target−measured) + (H(target−measured)× penalty)

Where H is the Heaviside function which returns zero when given a negative

argument and one otherwise. This corresponds to a situation in which you may

wish to adhere to a given service level agreement. For example the service level

agreement may state that the average response-time observed by users is no more

than 0.5 time units. Hence we can heavily penalise all configurations which result

in the model predicting an average response-time of more than 0.5 time units. This

means that for configurations which result in a response-time better than 0.5 time

units the search will still prefer better configurations, but that the weights on the

performance and population costs can be set sensibly.

For configurations in which the average response-time computed is worse than

the target then the penalty is applied. This allows the search to reject such config-

urations regardless of the population cost.

Recall that capacity planning is a search for the optimal configuration. Avoiding

a brute-force search of all configurations is important because the search space of

configurations is often infeasibly large. Search heuristics can avoid an exhaustive

search by finding good areas of the search space. To enable this it is important that

our cost function enables the search to be directed towards good areas in the search

space. For this reason there is still a gradient on the performance cost when the

target is not reached. That is, a configuration that misses the target response-time

by a little, still evalutes to a lower (performance) cost than a configuration which

misses the response-time target by a larger amount. This helps the search to move

towards configurations in which the target will be met, rather than simply rejecting

those that fail to meet the response-time target.

The weights of the overall cost function wpm and wpop allow the user to adjust the

importance of reducing the cost associated with the performance measure against

the cost associated with the populations of the components. The task that the user

has is to set these weights such that neither component of the cost dominates the

overall cost.

Unfortunately it is impossible for us to set a useful default here since we cannot

know in advance how the populations are costed. In addition the unit used for

the rates in the model is undefined. Hence determining how costly each unit of,

for example, response-time is, is a task that is necessarily left for the user. To see

this, consider that a model which used seconds as the unit can have all rates in

the model multiplied by 1000. The steady-state probabilities will not change, but

any response-time measure we calculate will now be in the units of milliseconds

rather than seconds. This new model is just as valid, but clearly there would be a

much smaller real cost associated with a one time unit rise in average response-time.

Hence the weights used in this model would need to reflect that.

Strictly speaking the weights are unnecessary since the user could always adjust
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Fig. 1. Deployment diagram of the e-University case study. Solid connectors between components indicate
request/reply communication. Dashed lines denote the deployment of services onto processors.

the weights on the populations, but we include them as a convenience for the user.

Typically the user will not run a single capacity planning search, but will run several

searches modifying their search parameters accordingly.

We have given a brief description of the cost function considerations in this

section. Cost functions can become very complicated. There is a natural tension

between providing clear and usable software whilst also covering as many use cases

as possible. Ultimately to be entirely generic would require that we allow the user

to calculate their own cost function in some full evaluation environment such as a

general purpose programming language. This currently remains future work but

for now we hope to have provided enough flexibility for common use cases without

adding significant bloat and complication to the software and its associated user

interface.

3 Case Study

Our example scenario concerns a previously studied [12] scenario which formed part

of a case study of the SENSORIA project [6, Chapter 2]. It concerns a hypothetical

European-wide virtual university in which students study remotely. The part of

the case study considered in the above work and in this work concerns the course

selection phase where students already matriculated to the university must enrol in

specific courses. Although the students only enrol in a few courses per year they all

do this at the same time, so it is important that sufficient provision is provided to

maintain a responsive service.

The case study is comprised of a number of scenarios; here the scenario of inter-

est is the Course Selection scenario, where students obtain information about the

courses available at their education establishment and may enrol in those for which

specific requirements are satisfied. Although the overall application is intended to

be service-oriented, the scenario investigated here is such that the kinds of services

available in the system do not to change over the time frame captured by this model.

This reflects the fact that a university’s course organisation is likely to be fixed be-

fore it is offered to students. Furthermore, minor changes are likely not to affect the

system’s behaviour significantly. The model will not consider other services which

may be deployed in an actual application (e.g. authentication services) because their

impact on performance is assumed to be negligible. The scenario also considers a

constant population of students to capture a real-world situation where the univer-

sity’s matriculation process is likely to be completed before the application may be

accessed.
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3.1 The Model

The current authors are indebted to the authors of the above mentioned study [12]

for allowing us to include their description of the model here.

The access point to the system is the University Portal, a front-end layer which

presents the available services in a coherent way, for example by means of a web

interface. There are four services in this model:

Course Browsing allows the user to navigate through the University’s course of-

ferings;

Course Selection allows the user to submit a tentative course plan which will be

validated against the University’s requirements and the student’s curriculum;

Student Confirmation will force the student to check relevant personal details;

Course Registration will confirm the student’s selection.

These components make use of an infrastructural Database service, which in

turn maintains an event log through a separated Logger service.

The modelling paradigm adopted here captures the behaviour of a typical multi-

threaded multi-processor environment used for the deployment and the execution of

the application. The University Portal instantiates a pool of threads, each thread

dealing with a request from a student for one of the services offered. During the pro-

cessing of the request the thread cannot be acquired by further incoming requests,

but when the request is fulfilled the thread clears its current state and becomes

available to be acquired again. Analogous multi-threaded behaviour will be given

to the Database and Logger components.

Performance issues may arise from the contention of a limited number of threads

by a potentially large population of students. If at some time point all threads

are busy, further requests must queue, provoking delays and capacity saturation.

This model also proposes another level of contention by explicitly modelling the

processors on which the threads execute. Here, delays may occur when many threads

try to acquire a limited number of processors available. Furthermore, this may be

worsened by running several multi-threaded services on the same multi-processor

system, as will be the case in the deployment scenario considered in this model:

University Portal will run exclusively on multi-processor PS, whereas Logger and

Database will share multi-processor PD (see Figure 1).

3.1.1 General Modelling Patterns

Processing a request involves some computation on the processor on which the

service is deployed. Such a computation in the PEPA model is associated with an

activity (type, rate), where type uniquely identifies the activity and rate denotes

the average execution demand on the processor (i.e. 1/rate time units). A single

processing unit may be modelled using a two-state sequential component. One state

enables an acq activity to acquire exclusive access to the resource, while the other

state enables all the activities deployed on the processor. Letting n be the number

of distinct activities, the following pattern is used for a processor:
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Processor1 = (acq, racq).P rocessor2

Processor2 = (type1, r1).P rocessor1

+ (type2, r2).P rocessor1

+ . . .

+ (typen, rn).P rocessor1

(1)

Communication in this model is synchronous and is modelled by a sequence of

two activities in the form (reqfrom,to, rreq).(replyfrom,to, rrep) where the subscript

from denotes the service from which the request originates and to indicates the

service required. A recurring situation is a form of blocking experienced by the

service invoking an external request. Let A and B model two distinct interacting

services, for example,

A= (reqA,B, rreqA).(replyA,B, rrepA).A

B= (reqA,B, rreqB).(execute, r).(replyA,B, rrepB).B

(2)

The communication between A and B will be expressed by means of the coop-

eration operator A��
L

B where, L = {reqA,B, replyA,B}.
According to the operational semantics, A and B may initially

progress by executing reqA,B, subsequently behaving as the process

(replyA,B, rrepA).A��
L

(execute, r).(replyA,B, rrepB).B.

Now, although the left-hand side of the cooperation enables replyA,B, the activ-

ity is not offered by the right-hand side, thus making the left-hand side effectively

blocked until execute terminates (i.e., after an average duration of 1/r time units).

These basic modelling patterns will be used extensively in this case study, as dis-

cussed next.

3.1.2 University Portal

A single thread of execution for the application layer University Portal is imple-

mented as a sequential component which initially accepts requests for any of the

services provided:

Portal= (reqstudent,browse, v).Browse

+ (reqstudent,select, v).Select

+ (reqstudent,confirm, v).Confirm

+ (reqstudent,register, v).Register

(3)

The rate v will be used throughout this model in all the request/reply activities.

In the following, the action type acqps is used to obtain exclusive access to processor

PS .

Course Browsing is implemented as a service which maintains an internal cache.

When a request is to be processed, the cache query takes 1/rcache time units on

average, and is successful with probability 0.95, after which the retrieved data is
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processed at rate rint. Upon a cache miss, the information is retrieved by the

Database service, and is subsequently processed at rate rext:

Browse= (acqps, v).Cache

Cache= (cache, 0.95× rcache).Internal

+ (cache, 0.05× rcache).External

Internal= (acqps, v).(internal, rint).BrowseRep

External= (reqexternal,read, v).(replyexternal,read, v).

(acqps, v).(external, rext).BrowseRep

BrowseRep= (replystudent,browse, v).Portal

(4)

Course Selection comprises four basic activities. An initial set-up task initialises

the necessary data required for further processing (raterprep). Then, two activities

are executed in parallel, and are concerned with validating the selection against

the university requirements (rateruni) and the student’s curriculum (ratercurr),

respectively. Finally, the outcome of this validation is prepared to be shown to the

student (raterdisp). The relative ordering of execution is maintained by considering

three distinct sequential components. The first component prepares the data, then

forks the two validating processes, waits for their completion, and finally displays

the results:

Select= (acqps, v).(prepare, rprep).ForkPrepare

ForkPrepare= (fork, v).JoinPrepare

JoinPrepare= (join, v).Display

Display= (acqps, v).(display, rdisp).SelectRep

SelectRep= (replystudent,select, v).Portal

(5)

The two validating processes are guarded by the fork/join barrier as follows:

V alUni= (fork, v).(acqps, v).(validateuni, runi).(join, v).V alUni

V alCur= (fork, v).(acqps, v).(validatecur, rcur).(join, v).V alCur

(6)

These components will be arranged as follows in order to obtain a three-way

synchronisation:

Select ��
fork,join

V alUni ��
fork,join

V alCur(7)

Student Confirmation is represented in the PEPAmodel as an activity performed

at rate rcon. The service uses Logger to register the event:

Confirm= (acqps, v).(confirm, rcon).LogStudent

LogStudent= (reqconfirm,log, v).(replyconfirm,log, v).ReplyConfirm

ReplyConfirm= (replystudent,confirm, v).Portal

(8)
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Finally, Course Registration performs some local computation, at rate rreg, and

then contacts Database to store the information:

Register= (acqps, v).(register, rreg).Store

Store= (reqregister,write, v).(replyregister,write, v).ReplyRegister

ReplyRegister= (replystudent,register, v).Portal

(9)

The general pattern 1 is applied to processor PS as follows:

PS1 = (acqps, v).PS2

PS2 = (cache, rcache).PS1 + (internal, rint).PS1

+ (external, rext).PS1 + (prepare, rprep).PS1

+ (display, rdisp).PS1 + (validateuni, runi).PS1

+ (validatecur, rcur).PS1 + (confirm, rcon).PS1

+ (register, rreg).PS1

(10)

3.1.3 Database

This service exposes two functions for reading and writing data. Reading is a

purely local computation, whereas writing additionally uses the Logger service. In

this model, Database is only accessed by the university portal in states External

and Store in equations 4 and 9, respectively. Let PD denote the processor on

which Database is deployed, acquired through action acqpd . Similarly to University

Portal, a single thread of execution for Database is:

Database= (reqexternal,read, v).Read+ (reqregister,write, v).Write

Read= (acqpd, v).(read, rread).ReadReply

ReadReply= (replyexternal,read, v).Database

Write= (acqpd, v).(write, rwrite).LogWrite

LogWrite= (reqdatabase,log, v).(replydatabase,log, v).WriteReply

WriteReply= (replyregister,write, v).Database

(11)

3.1.4 Logger

This service accepts requests from Student Confirmation and Database, as de-

scribed in equations 8 and 11, respectively. It is deployed on the same processor

as Database, i.e., processor PD. Thus, one thread execution may be modelled as

follows:

Logger= (reqconfirm,log, v).LogConfirm+ (reqdatabase,log, v).LogDatabase

LogConfirm= (acqpd, v).(logconf , rlgc).ReplyConfirm

ReplyConfirm= (replyconfirm,log, v).Logger

LogDatabase= (acqpd, v).(logdb, rlgd).ReplyDatabase

ReplyDatabase= (replydatabase,log, v).Logger
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(12)

Taking together 11 and 12 it is possible to write the sequential component that

models the processor PD:

PD1 = (acqpd, v).PD2

PD2 = (read, rread).PD1 + (write, rwrite).PD1

+ (logconf , rlgc).PD1 + (logdb, rlgd).PD1

(13)

3.1.5 Student Workload

A student is modelled as a sequential component which interacts with the university

portal and accesses all of the services available. The behaviour is cyclic and the

student interposes some think time between successive requests. This results in a

closed-workload type of behaviour which is typical of many performance studies:

StdThink= (think, rthink).StdBrowse

StdBrowse= (reqstudent,browse, v).(replystudent,browse, v).StdSelect

StdSelect= (reqstudent,select, v).(replystudent,select, v).StdConfirm

StdConfirm= (reqstudent,confirm, v).(replystudent,confirm, v).StdRegister

StdRegister= (reqstudent,register, v).(replystudent,register, v).StdThink

(14)

3.1.6 System Equation

The multiplicity of threads and processors is captured in the system equation, in

which all the sequential components illustrated above are composed with suitable

cooperation operators to enforce synchronisation between shared actions. The com-

plete system equation for this model is:

StdThink[NS ]

��∗(
(Portal[NP ]��

M1
V alUni[NP ]��

M1
V alCur[NP ])

��
M2

Database[ND]��
M3

Logger[NL]
)

��∗

(PS1[NPS ]��∅ PD1[NPD])

where:

M1 = {fork, join}
M2 = {reqexternal,read, replyexternal,read, reqregister,write, replyregister,write}
M3 = {reqconfirm,log, replyconfirm,log, reqdatabase,log, replydatabase,log}
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It is worth pointing out that the separate validating threads ValUni and ValCur

inherit the multiplicity levels of the thread Portal which spawns them.

3.2 Performance Measure

Given this model we wish to measure and optimise for the performance observed by a

typical student. We are therefore interested in calculating the average response-time

for student requests. From the definitions in 14 the students in the StdThink state

are not attempting to make use of the system. We therefore calculate the average

time it takes from the moment a student actively uses the system by moving into

the StdBrowse state until the student returns to the StdThink state.

For the default configuration of the model we obtain the results 15.248 time

units for the average response-time. We now wish to optimise the configuration of

the system to obtain satisfactory performance whilst spending as little as possible

on the components.

3.3 Capacity Planning

The populations that a designer of the hypothetical e-university service may be

able to control are those of the components: Database, Logger, PD, Portal, PS,

V alCur and V alUni, we do not expect the service to be able to control the average

number of students accessing the service simultaneously. Therefore the modeller

assumes some fixed level of demand by fixing the initial population of StdThink,

in this case to 600.

We are interesting in optimising for the response-time performance measure

described above. In addition we would like to keep the cost of the system as low as

possible.

We have limited data to allow us to obtain realistic rates for some of the activities

in the model. Since the meaning of a unit of time in a PEPA model is unspecified

we need only be concerned that the rates are of realistic magnitudes relative to each

other.

In addition, as discussed in Section 2.2 we are able to place a threshold average

response-time above which there is a heavy cost function penalty, to approximate a

non-linear performance measure cost. In this study we somewhat arbitrarily specify

the threshold to be 15, but this is no more arbitrary than the unspecified unit of

time used in the PEPA model itself. The 15 in question comes from the fact that

the hand-optimised version of the model for 600 users reported in [12] (mentioned

above as the source of our case study’s PEPA model), is 15.248.

Without specialist knowledge it is difficult to weigh the importance of the re-

ducing the average response-time against the importance of reducing the cost of the

system. So we have also somewhat arbitrarily set the cost function weights wpm

(the weight of the performance measure component) and wpop (the weight of the

populations components).

Hence we have two arbitrary pieces of information included in our cost function,

that is the penalty threshold for the performance measure and the ratio of weight-
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ings for the performance measure and population components of the cost function.

However both such pieces of information would be available to a real-world modeller

utilising our capacity planning extension.

3.4 Results

The previously mentioned work which introduced our case study [12] utilised the

ODE response-time evaluation to find a configuration of the model with a low

response-time for the case in which there are 600 students. Table 1 shows the

populations for configurations found, using three search methods. The first is the

hand optimised configuration reported in the above referenced work, the second

is our heuristic-based search and the last is for a brute force search, in which the

search space was limited to a small area around the optimal configuration found by

the heuristic based search.

In the hand-optimised case for the original publication the authors held three

of the server populations to be equal to each other but not fixed. So in their case

NV C = NV U = NP , this was not a restriction that we imposed on our capacity

planning search. Such a restriction is indeed easily imposed, but we wished to allow

the search as much flexibility as possible.

Our software has found a model that has a significantly lower average response-

time, with a response-time of 5.999 compared to 15.248. This would not be im-

pressive if the cost of the server configuration were not cheaper. The population

of every server component kind cannot be lower than the hand-optimised version

otherwise we would have at best the same average response-time. However, in our

case we obtain a model that has a total population of server components that is

significantly less than that of the hand-optimised version. A total server component

population of 415 against 480 for the hand-optimised version.

Half of the server components in the hand-optimised version has a lower popula-

tion than the configuration found by our automatic search. These are, the number

of Portal components NP , the number of PS components NPS and the number of

V C components NV C . In the case of the Portal component there are more than

25% more of them, for PS it is 50%, and lastly V C more than 15%.

As we have stated it is difficult to provide realistic costs for each of the server

Table 1
Optimal configurations found for three search techniques. The first is manual optimisation, the second is

our heuristic-based search and the last is a brute-force search around in a limited region around the
optimal configuration found by the heuristic-based search. Both the heuristic and brute-force search find
configurations that have a lower total population and a lower average response-time. The heuristic-based
search finds the lowest average response time of the three whilst the brute-force search finds a lower total

population.

7.307398429160101312350Brute

5.999415459460103342653Search

15.24848080804080408080Hand

Avg ResTotalNV UNV CNPSNPNPDNLNDOptimisation
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components in such a hypothetical scenario. However our automatically optimised

model is a significant improvement on the hand-optimised version unless Portal

components or the multiprocessor systems that they run on are significantly more

expensive than, for example, the multi-processors which execute the Database and

Logger components.

We can assert that given our cost values for each of the components, the au-

tomatic search was able to find a configuration that had a significantly improved

average response-time whilst simultaneously reducing the total cost of the server

components.

The entire search took 9499 seconds, or under 160 minutes. In doing so it solved

1694 models. We can say that each model therefore took approximately 5.1 seconds

to solve on average. Each model may take a different time to solve because the

rates affect how quickly the model is solved. In addition there is some time spent

performing the search algorithm logic, but this will serve us as an approximation. All

of the computations described here were performed on a standard desktop computer.

In addition it is the relative, rather than absolute times that we are mostly concerned

with.

3.5 Brute Force Comparison

As described above the alternative to performing a stochastic search over the space

of potential configurations is to perform a brute-force search evaluating all possible

configurations.

The time taken to solve the set of ODEs generated from the PEPA model de-

pends on the configuration, but is generally comparable across the configurations.

As described above the capacity planning search is not instantaneous, but took

around 160 minutes. The näıve approach to a brute-force search would evaluate

all possible configurations within our initial constraints. This would have meant

solving 671088640000000 distinct possible configurations and taken approximately

106400405 years.

A modeller could of course be a little more clever about the ranges set on popula-

tion levels to reduce the search space. Whenever one does this there is a trade-off as

you are trading-off the possibility that a better solution exists outside your narrower

ranges against the advantage of your search performing faster.

However, the best solution had a highest population of 103 and a lowest popu-

lation of 26. Even if we set all ranges to be from this lowest value 26 to the highest

value 103, which would require insight into the search space that the modeller does

not have, then the search space still has (103−26)7 = 16048523266853 possible can-

didate configurations. Hence searching the entire space with a brute-force approach

will still take 80242616334265 seconds or approximately 42407 years.

However, one could use the driven search to provide a suitable search area in

which to perform an exhaustive search. To perform our brute-force search in a

reasonable amount of time we set the ranges for each configurable population to a

range around the value that we have found from the capacity planning search. To

further reduce this we held the number of PS components constant at 60. As a
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result our brute-force search had a more manageable number of configurations to

solve: 46656 = (47− 42) ∗ (96− 91) ∗ (55− 50) ∗ (105− 100) ∗ (36− 31) ∗ (28− 23).

This too approximately 7.2 hours to solve. This best solution being shown in the

table in Section 3.4.

3.5.1 Search Space

Figure 2 gives some idea of the search space of configurations. Each graph pair of

graphs concerns one configurable component (in the interests of brevity we have

included only two representative components, Portal and Logger). The left graph

of each pair displays the results from the driven capacity planning search and the

right displays the results from the brute-force search.

Each plotted dot represents a candidate configuration, the x-axis position de-

termines the population of the candidate configuration for the particular server

component kind depicted in that specific graph. The y-axis position determines

the value of the cost function for that configuration. Recall that the cost function

considers both the populations of all the configurable server components and the

resulting average response-time.

The x-axis range on the brute-force search results are much narrower, because the

brute-force search was centred on a narrow range around each optimal configuration

found by the capacity planning search. This is because it is infeasible to do an

exhaustive search for larger ranges.

The capacity planning graphs exhibit a lower left corner slope. This indicates

that for each of these components there is a lower-bound on the population such

that populations below this result in too high an average response-time, regardless

of the rest of the configuration.

Each graph additionally demonstrates that one cannot optimise for each com-

ponent kind independently. For each population of each component kind a wide

range of costs are possible. Hence one must optimise for all of the configurable

component populations simultaneously, because the population of one affects both

the sensitivity and optimal value of another.

4 Future Work

Although we think that the user has been given much flexibility in the configuration

of their cost function we realise that there are surely scenarios which call for some

cost function that cannot be expressed using our configuration interface. A more

general solution would be to allow the modeller to express their own cost function

in a general purpose programming language such as Java which is used in our

implementation.

To provide this, some interface to the results and the model parameters would

be required. This would also place something of a burden on the modeller so we

would be keen to retain a simple gui-based configuration scheme that may be used

as a first exploration of the configuration space, and/or by novice users.

Recall that our practice of having the user specify a target performance measure
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Capacity Planning Search Brute-Force Search

(A) (B)

(C) (D)

Fig. 2. Scatter plots showing the results for a selection of the configurable server components. The
left-hand graphs depict the results for the capacity planning search whilst the right hand graphs depict the
results for the brute-force search. The x-axis ranges are much smaller for the brute-force search since it is
infeasible to evaluate all configurations when the range of possible values is large.

value is an approximation to a non-linear cost function. We think this is a good

trade-off of complexity, easy of use and power of expression. However, we continue

to investigate other possibilities.

Finally throughout this paper we have assumed that the modeller can either

make a good guess to the level of expected demand or is prepared to over-estimate

it. A further possibility is to perform multiple capacity planning searches assuming

different levels of demand.

We could perform multiple capacity planning searches for different levels of de-

mand automatically. Furthermore we may see adaptability to different levels of

demand as a particularly good thing to have. For example some services can op-

erate at different levels, in the most obvious case by simply turning servers on or

off. Currently, whilst we may find a configuration which is particularly good for

a particular level of demand it may not be very adaptable. Hence we continue to
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investigate ways in which we may reward configurations that are adaptable.

In the meantime we provide methods for the modeller to examine some of the

configurations that have been found mid-search, but perhaps did not have the glob-

ally best cost, because adaptability is not accounted for in the cost function. This

provides a further reason that it is particularly useful for the modeller to be able to

examine elements of the search rather than simply the best configuration found.

5 Conclusion

When modelling service based systems such as the system modelled in our case study

the modeller is unlikely to have great control over the level of demand. Therefore

the system designer must be sure to provision enough service to satisfy a realistic

level of demand.

Most realistic levels of demand can be satisified with enough service provision,

but generally there is some significant cost to providing that level of service. If not

then one need do little modelling but simply provision plenty of service component.

Assuming that there is some significant cost we would like to know how best to

provide the required level of service. Even further we may not know the level of

service we demand but we have some idea of how to trade-off the level of performance

against the cost of the provision.

However, knowing this is not enough for many kinds of services. These are

services in which there are more two kinds of components that need to be deployed

to provide the whole service. In these kinds of scenarios there are simply too many

plausible configurations of the service to try them all. Furthermore it is rarely

obvious what the most efficient configuration is, or even how to improve on the

current one.

Hence an automatic search through the configuration space can provide excellent

insight for the modeller. We are of the opinion that not only the end result of such

a search but many of the configurations and their associated costs found mid-search

may be of interest to the modeller.

Performing such a search is a non-trivial task. A user-friendly GUI based tool

which not only performs the search itself but guides the user through the configu-

ration of the search is a significant help to the modeller. We have presented such a

software tool in this paper.

The trade-off is that the developers of such a tool must consider the ways in which

the modeller may wish to evaluate the efficacy of a particular model configuration.

We think that so far we have a powerfully expressive method of configuration but

we continue to investigate methods to be more expressive as well as more intuitive.

A problem with a brute-force search as opposed to a search heuristic, is there

are so many configurations to solve we must reduce the available flexibility meaning

that the modeller must already have significant insight into their model. Capacity

planning can either be used on its own, or to find a good set of ranges in which

to perform an exhaustive search. Indeed a good workflow is to use a driven PSO

search to find an optimal area of the search space, and then to use a brute-force
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search to exhastively search the local area.

Finally we wish to claim that capacity planning, or more generally a heuristic

search, is a useful addition to any modelling software. It is difficult to provide the

correct interface, but this is ultimately worth the effort. The capacity planning

extension to the PEPA Eclipse Plug-in project [16] is now available as of October

2014.
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