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Counterfactual Reasoning about Intent for
Interactive Navigation in Dynamic Environments

Alejandro Bordallo1 Fabio Previtali2 Nantas Nardelli1 Subramanian Ramamoorthy1

Abstract— Many modern robotics applications require robots
to function autonomously in dynamic environments including
other decision making agents, such as people or other robots.
This calls for fast and scalable interactive motion planning.
This requires models that take into consideration the other
agent’s intended actions in one’s own planning. We present
a real-time motion planning framework that brings together a
few key components including intention inference by reasoning
counterfactually about potential motion of the other agents as
they work towards different goals. By using a light-weight motion
model, we achieve efficient iterative planning for fluid motion
when avoiding pedestrians, in parallel with goal inference for
longer range movement prediction. This inference framework
is coupled with a novel distributed visual tracking method that
provides reliable and robust models for the current belief-state of
the monitored environment. This combined approach represents a
computationally efficient alternative to previously studied policy
learning methods that often require significant offline training
or calibration and do not yet scale to densely populated envi-
ronments. We validate this framework with experiments involving
multi-robot and human-robot navigation. We further validate the
tracker component separately on much larger scale unconstrained
pedestrian data sets.

I. INTRODUCTION

Motion planning for mobile robotic platforms in hu-
man environments is a problem involving many constraints.
Where and how the robot can travel is fundamentally defined
by the environment and its evolution over time. For instance,
the simplest motion planning specification is that the robot
should not collide with entities in the environment. Given
a model of the world, there are by now many standard
approaches to computing trajectories that satisfy this simple
requirement. However, the small modification that some
entities in this environment can move around, on their own
accord and possibly with their own separate goals, can
have a substantial influence on the nature of the motion
planning problem. Of the few methods that can cope with
such dynamic environments, many depend on having access
to significant amounts of prior knowledge (e.g., corpora of
example movements from past experience) so as to train
models of the dynamics of the environment which are then
used for decision making. A standard approach, for instance,
is to pose the problem in decision theoretic terms (e.g.,
using Partially Observable Markov Decision Processes or
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Fig. 1. Inferring intentions of three KUKA YouBots and two people by
using our counterfactual intention inference algorithm. Interactions among
agents are forced due to a limited collision-free navigation space. A novel
distributed tracking method is used to provide real-time motion data.

its variants), learning the necessary components of mod-
els from past data. However, this can be cumbersome in
many application scenarios. Realistic navigation in crowded
spaces is an intrinsically interactive planning problem, which
significantly increases the complexity of decision-theoretic
formulations. Also, we often want robots to be deployable in
multiple environments, which further stretches these methods
in terms of model complexity and data requirements. So,
on platforms that have resource constraints, there is an
unmet need for efficient solutions to these interactive motion
planning problems.

We adopt an intermediate stance wherein we utilise a
simple parameterised motion model (based on the concept
of Hybrid Reciprocal Velocity Obstacles) that captures key
elements of how people navigate when encountering other
people in the same space; estimating the parameters of such
a model from data. Our model is simple enough, structurally,
to enable tractable learning from data. At the same time, it
provides sufficient bias to incorporate what is otherwise often
learnt in an expensive way from historical data. Furthermore,
we utilise a tractable set of such models to define a belief-
update computation over goals.

In our framework, we conceptualise each other agent
as adopting locally-optimal actions given a potential goal.
These goals, which represent movement intention, are of
course latent and unobserved by our planning agent. So,
the problem of said agent is to infer from noisy data these
goals in real-time, enabling a trajectory to be planned over
a longer horizon than reactive avoidance would. Intention-



awareness is achieved by counterfactual reasoning, using the
predictions of the locally-optimal movement model to update
beliefs regarding latent goals. The key contributions of this
proposed framework are:
• An intention-inference algorithm for dynamic environ-

ments with multiple interactively navigating agents;
• A novel multi-camera multi-object tracking system,

light weight yet flexible enough to accommodate dy-
namically varying numbers of objects;

• An asynchronous distributed architecture to improve
efficiency and robustness (e.g. with respect to commu-
nication failures).

We report on experiments with simulated and physical
experiments in which robotic and human agents navigate
autonomously, moving toward goals while naturally avoiding
each other (see Figure 1). Our robot planner runs robustly at
10Hz, navigating naturally around other agents - implicitly
inferring the target goal of other agents in real-time using
our inference model.

II. RELATED WORK

Interactive Motion Planning. One could summarise
progress in this domain by placing prior work in two major
categories.

The first category, involving optimal planning, includes
works that attempt to generatively describe various elements
that influence human navigation behaviours, such as en-
vironment context-dependent navigation [1] or interacting
social forces between agents [2]. While these approaches
are often successful in achieving faithful description, they
can also be computationally expensive. Moreover, it has
been observed that attempting to achieve tractability in
such models by shortening planning horizons can lead to
pathological behaviour, such as ‘freezing’ [3] where no path
seems feasible when one allows for potential evolution of
uncertainty models.

This perhaps explains the popularity of simpler models
which is the second category, e.g., constant velocity models
for pedestrians combined with A* planning on a road-map
environment [4]. Although these simpler methods do work
in many large outdoor spaces, they can perform poorly
when pedestrian density increases (e.g., crowded indoor
environments). Working from this direction, to overcome the
limitations of these simplistic motion models, it has been
shown that offline training from demonstration data can yield
optimal navigation policies and human-like trajectories, e.g.,
[5]. However, by the time we lift this to highly dynamic
environments, e.g., [6], the data requirements can become a
burden. An alternative approach is to not model the environ-
ment iteratively but instead to derive an optimal policy from
a navigation model and and fit its parameters online given
the observed behaviour [7]. However, this can easily become
suboptimal when the environment changes sufficiently.

Multi-Object Tracking. The problem of multiple object
tracking has been addressed by many researchers, yielding
many solutions each specialising the proposed approach to

a chosen application field. Multi-object tracking algorithms
can be classified in two groups: global and recursive [8].

Global (or offline) methods formulate the tracking problem
as one of optimisation, where all the trajectories within a
temporal window are optimised jointly (e.g., [9]–[11]). To
be computationally tractable, such approaches try to restrict
the space of possible object locations to a relatively small
set of discrete points, either by first locating objects in
each frame and then linking them together, or by using a
discrete location grid. Berclaz et al. [9] introduce a generic
and mathematically sound multiple object tracking frame-
work based on a k-shortest paths optimisation algorithm.
Firstly, objects are detected in individual frames and then
linked across frames allowing them to be very robust to
false detections. Leal-Taixé et al. [12] formulate a new
graph model for the multiple object tracking challenge
by minimising network flow. Another global approach, by
Sharma et al. [13], involves a Cluster-Boosted-Tree based
pedestrian detector, adapted to deal with people tracking.
The hierarchical association framework of Sharma et al. first
generates initial object tracklets by directly linking detection
responses in neighbouring frames, and then progressively
associates these tracklets to obtain final object tracks at
multiple levels. However, the aforementioned methods allow
the possibility of getting information from the future - a
physically unrealistic feature that renders the methods only
suitable to offline use.

On the other hand, recursive (or online) methods estimate
the current state relying only on the current observations and
on the previous state. Early examples of such methods are
Kalman filter based approaches (e.g., [14], [15]), while more
recent work usually uses particle filtering, allowing mod-
elling of non-linear behaviours and multi-modal posterior
distributions (e.g., [16], [17]). Breitenstein et al. [16] propose
an online method for multi-person tracking-by-detection in a
particle filtering framework obtaining good results. However,
the designed approach cannot perform in real-time due to
the low frame rate. Yang et al. [18], instead, design a
probabilistic appearance model method to track multiple
people through complex situations. Both the background and
foreground models are described using Gaussian appearance
models. However, the well-engineered system of Yang et al.
is not real-time and it relies on a static background, making
the entire method weak when it comes to changes in the
environment.

III. MODELLING APPROACH

A. Intention Inference

For each agent, aj ∈ a that is detected and tracked in the
environment, we compute predictions of movement intention
in real-time. The ‘intention’ of an agent is defined as the tar-
get goal, gi that agent, aj is attempting to reach. The action
space is defined as the set of possible velocities achievable in
the next planning step given the agent’s dynamic constraints.
We construct the agent motion model by online parameter
fitting given a stream of observed behavioural data, provided
by the aforementioned distributed tracker (see Section V).



(a) (b) (c)

Fig. 2. Left: two autonomous agents aj navigating with instantaneous velocities vtaj
. Center: Hybrid Velocity Obstacle HRV OA|B for agent A

influenced by agent B. Right: our counterfactual framework iteratively generates a set of simulated environments for each agent in the real world. Each
simulation computes the locally optimal motion given each possible target goal. These velocities are compared with the observed agent motion using
Bayesian recursive estimation for intention inference. Figure 2(a) and 2(b) are borrowed from Snape et al. [19].

We then use these models to generate a set of plausible
actions vt

ji where each vtji is the simulated locally optimal
motion of aj navigating towards gi. These simulated velocity
vectors vtji provide the motion probabilities required for
estimation of the likelihood of aj navigating to gi, given
the observed agent motion vtaj

.

B. Interactive Multi-Agent Navigation Framework

Our parametrised interactive dynamics model is con-
structed based on the notion of Hybrid Reciprocal Velocity
Obstacles (HRVO) [20]. Multi-agent simulators utilising this
concept represent an efficient framework for simulating large
numbers of agents navigating towards predefined goals while
avoiding collisions with each other. These simulation runs
iteratively, where in each time step all agents compute a
new velocity vector. Their planned motion is constrained by
the movements and positions of other agents, represented as
velocity obstacles. The selected new velocity is the closest
to the preferred velocity, the best unconstrained velocity
towards the goal belonging to the subset of non-colliding
velocities.

Originally designed for massive multi-agent simulations,
the simulation maximises computation speed and scalability
at the cost of short-sighted motion and agent collisions
[21]. We utilise its advantages to perform fast deterministic
sampling of agent motions for parameter fitting for densely
populated indoor environments.

This motion model is inherently interactive, by consid-
ering the relationships between velocity obstacles implied
my multiple agents, which enables our inference algorithm
to usefully differentiate between purposeful advancement
towards a goal and avoidance behaviours which could be
mistaken as such. The framework is comparable to a constant
velocity model whenever an agent is unobstructed.

IV. GOAL INFERENCE ALGORITHM

In our framework, we consider each agent to be pursuing
a goal while avoiding collisions and minimising travel time.
Each agent has an internal model of the environment and
agents within it. In the context of such internal models, we
consider our agents to be boundedly rational.

Each planning agent first performs a sensing update of
all agent positions and velocities. Using the updated agent
motion models, the planner agent infers the target goal of all

Algorithm 1: Goal Inference
Input: set of goals g, agents to be modelled a, planner

environment P , inference history stored in Pt−1

Data: simulation environments S, simulated velocities vt
ji

Output: updated intention posteriors P(gi|vtaj
)

1 Sensor update Pt→ P:{xtaj
, vtaj
} ∀ aj∈ a

2 foreach aj∈ a do
3 foreach gi∈ g do

4 Instantiate Sji← Pt−1

5 Set aj goal ← gi

6 Sji do simulation step
7 Obtain vtji← Sji
8 Nx1,x2

(
µji,Σj

)
, Eq. 2

9 P(vtaj
|gi) from Nx1,x2

(
µji,Σj

)
, Eq. 2

10 if P(gi) not initialised then
11 P(gi)= 1

‖g‖

12 Update P(gi|vtaj
), Eq. 1

13 Return P(gi|vtaj
) ∀ aj ,gi

agents given past observations. Finally, the planner computes
a collision free motion given the inferred next movement of
surrounding agents. We assume every other agent performs a
similar but not necessarily identical procedure for navigating
through the environment.

We now present the goal inference (Algorithm 1), which
calculates the posterior distribution over possible goal inten-
tions using Bayesian Recursive Estimation (Eq. 4).

Description. The set of navigation goals g is provided
a priori (such as could be given by a semantic map). The
goals represent the set of hypothetical intentions the planning
agent P considers for each agent aj . Observed positions
and velocities xtaj

, vtaj
∀ a are updated during the sensing

step and stored in Pt. We then generate a simulation Sji
of the environment for each ajand gi , transferring the up-
to-date information of all agents to each instantiated Sji.
Each simulated environment is run for a single time step,
producing simulated vtji for each agent given the specified
target goals. These velocities are constrained by vt−1aj

and
aj navigation parameters (average, maximum velocities and
accelerations), which are updated online given sensor ob-
servations and stored on the planner agent’s memory. See



Fig. 3. Two autonomous planning robots moving towards opposite goals.
Agent1’s bearing and velocity indicate movement towards Goal3, but our
inference algorithm correctly predicts its true intention towards Goal2.
Agent trails represent past trajectories, instantaneous likelihoods are shown
under each counterfactual simulation window.

Figure 2(c) for a visual depiction of this process.
The set of simulated velocities vt

jiis used for generating
the set of counterfactual motion probability distributions used
by the inference algorithm. The posterior update rule for
Bayesian Recursive Estimation is described as:

P(gi|vtj) = P(vtj |gi)P(gi) (1)

where P(gi|vtaj
) is the probability that agent aj with current

velocity vtaj
is heading towards goal gi. P(gi) is the prior

probability for each gi, initially uniformly distributed across
all goals and updated after every inference step with the
previously calculated posterior P(gi|vt−1aj

). The likelihood
P(vtaj

|gi) of vtaj
given gi is sampled from a bivariate normal

probability distribution constructed from each vtji such that:

Nx1,x2

(
µji,Σj

)
, µji =

(
µx1

µx2

)
(2)

where µji is the mean for the bivariate gaussian distribution
for aj and gi centered at vtji , or P(vtaj

|gi) in Eq. 1. After
each iteration of the inference algorithm, the set of nor-
malised posterior probabilities converges towards the latent
intention of the agent. The most probable goal is then used
by the planner agent to accurately predict the future motion
of each aj .

As an example, consider two agents navigating au-
tonomously between Goals 1 and 2, as seen in Figure 3.
The intersection between goals forces agents to evade each
other while navigating towards their target. The velocity of
Agent1 is, in an unobstructed scenario, closer to the optimal
velocity towards Goal3 rather than 2. However, the presence
and behaviour of Agent0 constraints the range of possible
motions by Agent1 and vice versa. Our inference framework
considers this and generates a set of counterfactual velocities
for each agent given all possible goals and other agents

present in the environment. So P(vt1|g2) > P(vt1|g3) and
thus P(g2|vt1) increases towards iterative convergence.

V. DISTRIBUTED MULTI-CAMERA MULTIPLE
OBJECT TRACKING

A. Problem Definition

The Distributed Multi-Camera Multiple Object Tracking
problem can be formalised as follows. Let O = {o1, . . . , on}
be the set of all moving objects, each one having a different
identity, and S = {s1, . . . , sS} be the set of arbitrarily
fixed sensors, each one having limited knowledge about the
environment (i.e., each camera can monitor only part of the
scene). Moving objects are detected by a background sub-
traction algorithm and the number of objects n is unknown
and can change over time. The set of measurements about
the objects in the field-of-view of a camera s ∈ S at a time t
is denoted by zs,t = {z(1)s,t , . . . , z

(l)
s,t}, where a measurement

z
(i)
s,t can be either a real object present in the environment

or a false positive. The set of all the measurements gathered
by all cameras at time t is denoted by zS,t = {zs,t | s ∈ S}.
The history in time of all the measurements coming from all
cameras is defined as zS,1:t = {zS,j : 1 ≤ j ≤ t}. It is worth
noticing that, we do not assume the measurements generated
by the cameras to be synchronised. The goal is to determine,
for each camera s, an estimation xs,t of the position of the
objects at time t in a distributed fashion.

B. Distributed Multi-Clustered Particle Filtering

In order to achieve this goal, we estimate, for each camera
s, the position xs,t = {x(1)s,t , . . . , x

(v)
s,t } of the objects by

merging all the available information. Although the cameras
continuously send information about their observations, the
estimation computed by one camera may be different from
the others due to noise or delay in communication. Specif-
ically, the overall objective is to determine the likelihood
p(xs,t | zS,1:t) of the global estimation xs,t for each camera
s, given the observations zS,1:t collected by all cameras.

We assume that the acquired observations are affected by
an unknown noise that is conditionally independent among
the cameras. During the acquisition process, each camera
does not interact with the others, thus allowing for a factori-
sation of the likelihood of the global estimation that can be
expressed by the following joint likelihood:

p(zS,t|xs,t) =
∏

s∈S
p(zs,t|xs,t) (3)

Given the assumption in Eq. (3), a fusion algorithm can be
described using Bayesian Recursive Estimation:

p(xs,t|zS,1:t) =
p(zS,t|xs,t)p(xs,t|zS,1:t−1)∫
p(zS,t|xs,t)p(xs,t|zS,1:t−1)dxs,t

(4)

p(xs,t|zS,1:t−1) =

∫
p(xs,t|xs,t−1)p(xs,t−1|zS,1:t−1)dxs,t−1 (5)

Eq. (4) and (5) represent a global recursive update that can be
computed if and only if complete knowledge about the envi-
ronment is available. Therefore, we propose to approximate
the exact optimal Bayesian computation - Eq. (4) and (5) -
by using a Distributed Particle Filter-based algorithm. To this



Algorithm 2: PTracking
Input: perceptions zs,t, local track numbers is,t−1, global

track numbers Is,t−1

Data: set of local particles ξ̃s,t, set of global particles ξ̃S′,t,
local GMM set L, global GMM set G

Output: global estimations xs,t = (Is,t,Λs,t,Ms,t,Σs,t)

1 begin
2 ξ̃s,t ∼ πt(xs,t|xs,t−1, zs,t)

3 Re-sample by using the SIR principle

4 L = KClusterize(ξ̃s,t)

5 (is,t,λs,t,µs,t,σs,t) = DataAssociation(L, is,t−1)

6 Communicate belief (is,t,λs,t,µs,t,σs,t) to other agents
7 end
8 begin
9 Collect LS′ from a subset S ′ ⊆ S of cameras within a ∆t

10 ξ̃S′,t ∼ π̃ =
∑

s∈S′ λs,tN (µs,t,σs,t)

11 Re-sample by using the SIR principle

12 G = KClusterize(ξ̃S′,t)

13 (Is,t,Λs,t,Ms,t,Σs,t) = DataAssociation(G, Is,t−1)
14 end

end, we devise a novel method, called PTracking, based on
Distributed Multi-Clustered Particle Filtering. The algorithm
is divided into two phases, namely a local estimation phase
and a global estimation phase (Algorithm 2). Each camera
performs the local and global computation, sharing the
obtained results in order to achieve a better representation
of the current scene.

The novelty of the proposed approach is in the integration
of the following three main features: 1) a new clustering
technique that keeps track of a variable unknown number of
objects ensuring a limited distribution in the space of the
particles; 2) the approximation of the particle distribution as
Gaussian Mixture Models (GMM) to improve robustness and
reduce the network overload; 3) an asynchronous approach to
improve the flexibility and the robustness of the entire system
(e.g., robustness to communication failures, dead nodes and
so on).

Local estimation. The local estimation phase (Algorithm
2, lines 1-7) contains three steps: 1) A particle filtering step,
that computes the evolution of the local estimations given
the local observations zs,t provided by the sensor; 2) A
clustering step that determines the GMM parameters of this
distribution; 3) A data association step to assign an identity
to each object o ∈ O.

The prediction step of the PF uses an initial guessed distri-
bution, based on a transition state model π. Such a transition
model makes a prediction of the next state based on the
sensor movement. Then, using the previously computed state
xs,t−1, the transition model, given by the measurements zs,t,
is applied. Afterwards, from this hypothesised distribution, a
set of samples is drawn and weighted exploiting the current
local perception zs,t. Finally, the Sampling Importance Re-
sampling (SIR) principle is used to re-sample the particles
which are then clustered in order to determine the parameters

(a) (b) (c)
Fig. 4. Group tracking. Two sailing boats are going to cross each other.
Occlusions are handled considering the collapsing tracks to form a group,
instead of tracking them separately.

of the final GMM model. It is worth noticing that, in
contrast to other related approaches, this step enables the
creation of a more compact information structure allowing
us to drastically reduce the communication overhead. A data
association step is then applied to assign an identity (track
number) to each object.

When the final GMM set has been computed, each camera
broadcasts the set of GMM parameters describing all the
objects detected.

KClusterize. The clustering phase is performed by using
a novel clustering algorithm, called KClusterize, aiming
at fulfilling the following three requirements: 1) number
of objects to be detected cannot be known a priori, 2)
low computational load for real-time applications and 3)
Gaussian distribution for each cluster. Alternative clustering
methods are not adequate since they either need to know
the number of clusters in advance (e.g., k-means), or they
are computationally expensive and not real-time (e.g., free-
clustering algorithms like Expectation-Maximization, BSAS
or QT-Clustering). KClusterize does not require any initiali-
sation, it has a linear complexity and all the obtained clusters
reflect a Gaussian distribution.

More specifically, KClusterize first clusters the particles
trying to find all the possible Gaussian distributions. Then, a
post-processing step is applied to verify that each cluster
actually represents a Gaussian distribution. To this end,
all the non-Gaussian clusters are split (if possible) into
Gaussian clusters. It is worth noticing that, the final number
of Gaussian distribution components provided as output
can be different from the one found during the first step.
Finally, using such clusters a GMM set (λs,t,µs,t,σs,t),
representing the estimations performed by the camera s, is
created.

Global estimation. The global estimation phase (Algo-
rithm 2, lines 8-14) starts receiving information from other
cameras. Notice that, as already mentioned, the proposed
method is asynchronous and the collection of information
is limited to a small amount of time ∆t. During this time
information is received from a subset S ′ ⊆ S of cameras.
This mechanism is thus robust to communication delays and
dead nodes, since the global estimation phase proceeds even
if some node is not communicating or the communication
channel is not reliable. Once data have been gathered, a
particle set ξ̃S′,t is updated using the received GMM param-
eters (is,t,λs,t,µs,t,σs,t) for s ∈ S ′. These particles are re-
sampled in order to extract reliable quality information about
the global estimates. Then, a weighting procedure is applied
to the set. Instead of weighting the particles by using the
whole pool of GMM parameters, we cluster them by again



TABLE I
QUANTITATIVE COMPARISON ON PETS 2009 WITH STATE-OF-THE-ART METHODS. RESULTS TAKEN FROM CORRESPONDING PAPER OF THE AUTHORS.

Leal-Taixé
et al. [12]

Berclaz
et al. [9]

Sharma
et al. [13]

Breitenstein
et al. [9]

Yang
et al. [18]

PTracking
Mono

PTracking
Multi

MOTA 67.0% 73.2% 67.5% 74.5% 75.9% 76.0% 87.4%
MOTP 53.4% 60.3% 48.2% 56.3% 53.8% 63.0% 72.2%

using KClusterize to obtain a new GMM pool. The weighting
of particles is performed using such a new GMM pool.
In this way the assigned weights are more consistent since
only the most relevant parameters are considered. The global
estimation phase determines the GMM parameter set of
the tracked objects considering all the information available
at time t (local observations and information received by
other cameras). Finally, a data association step is applied to
assign an identity to each object considering all the available
information received by other cameras.

Data association. An identity (i.e., a track number) has
to be assigned to each object, by associating the new obser-
vations to the existing tracks. This is the most difficult and
fundamental step for any tracking algorithm. In our approach,
we consider as features for data association the direction, the
velocity and the position of the objects. Complete and partial
occlusions can occur when objects are aligned with respect
to the camera view or when they are very close to each other,
making visual tracking hard. Our solution is to consider
collapsing tracks to form a group, instead of tracking them
separately (see Figure 4). When multiple tracks have their
bounding boxes moving closer to each other (Figure 4a), the
tracker saves their color histograms and it merges them into
a group (Figure 4b) - the histograms are used as models for
re-identifying the objects when the occlusion phase is over
(Figure 4c). A group evolves considering both the estimated
trajectory and the observations coming from the detector.
When an occluded object becomes visible again, the stored
histograms are used to re-assign the correct identification
number, belonging to the corresponding registered track.

Quantitative analysis. We use the CLEAR MOT [22]
metrics MOTA and MOTP to quantitatively measure the
performance of the proposed tracking method. We use the
ground-truth used in [8] and the CLEAR MOT metrics have
been computed using the publicly available code provided
by Zhang et al. [23]. The assignment of tracking output to
ground-truth is done using the Hungarian algorithm with an
assignment cut-off at 1 meter. MOTP is normalized to this
cut-off threshold. Table I shows the quantitative comparison
with state-of-the-art approaches on the PETS 2009 data set.
It is worth noticing that this data set is one of the most
challenging one for tracking systems. Finally, we use View1,
View3 and View8 to perform the distributed tracking in the
“PTracking Multi” setup.

VI. EXPERIMENTAL EVALUATION

The intention inference algorithm and the distributed
tracker were tested in two different environments: Our HRI
lab (see Figure 1) and the main entrance to our Informatics
Forum. Videos of our experiments are publicly available on

our website1.

A. Laboratory Experiments

Setup. Robot position and velocity estimates are acquired
through adaptive Monte Carlo localization with an on-board
laser scanner per robot. Pedestrian position and velocity
estimates are provided by the distributed tracker using two
overhead cameras, facing opposite directions with overlap-
ping fields of view over the environment. Each agent is
delimited by a 80 cm2 circular boundary given the footprint
of the robots used for the experiments. In high density
navigation, autonomous robots are challenged with reacting
fast enough to avoid collisions while navigating towards their
goals efficiently. We use an HRVO-based fast de-centralised
reactive planner for controlling our robots autonomously.

Description. Although many experiments with differing
agent and task combinations were carried out, we choose
to show a 4 agent navigation experiment for demonstration
purposes. Figure 5 shows two autonomous robots (Agents0
and 1) tasked with moving through the goals in a clockwise
cycle. Two human participants (Agents20 and 21) randomly
decide which goal to go for next after arriving at each
target goal. This experiment forces both robots and humans
to navigate interactively since the space for collision free
motion is limited.

Pedestrian motion. The accurate velocity control by the
robot agents enhances the position and velocity estimates
provided by the distributed tracker. People are however
generally faster in both navigation speed and motion plan-
ning, representing a harder agent to track and predict. Our
distributed tracker updates the agent motion parameters
online and provides a representative navigation model of
each agent in the environment. This enables the inference
algorithm to predict human navigation goals just as fast as
for autonomously planning robots.

Performance. During our experiments in complex scenar-
ios including autonomous robots and human walkers, motion
is fluid and convergence over posteriors occurs as quickly
as 100ms after leaving a goal – one single iteration of the
inference algorithm. When agents are unobstructed, our al-
gorithm performs comparable to a simpler constant-velocity
model that assumes a direct trajectory towards the goal.
When agents are forced to move at a velocity constrained by
other agents’ motion, our inference framework predicts the
reciprocal change in motion accurately. Our algorithm thus
converges towards the true latent goal when the observed
velocity is affected by interactive constraints.

Figure 5 shows the instantaneous likelihoods and poste-
rior estimates over goals for all agents. The inference of

1Videos can be downloaded from http://goo.gl/r4pJIV.



Fig. 5. Two autonomous robots (Agents 0 and 1) cycle clockwise and
2 pedestrians (Agents20 and 21) navigate around the environment. Human
participants were instructed to choose random goals and to let the robots
do most of the avoidance. Even in complex scenarios, our goal-inference
algorithm provides real-time accurate intention predictions for all agents.

Agent20’s intention is the only one not converged yet since
the agent just left Goal2. Its velocity (influenced by Agent0’s
motion) is used by our framework to predict the agent is
moving towards Goal3. Note the probability of Agent20
moving towards Goal1 is relatively high, given that it’s hypo-
thetical motion towards Goal1 could be blocked by Agent1.
During some experiments, humans were asked to not avoid
the robots and navigate towards goals non interactively. Our
reactive planner is still capable of evading un-cooperative
agents, even though the framework is designed for fully-
aware interactive navigation. Minor collisions during ex-
periments were rare and caused due to wireless failure or
complete occlusion of a camera tracked agent.

Goal Sampling. Navigation goals may not be pre-defined
ahead of time, such as a robot that is unaware of the human’s
space of goals. For this case we may sample the space with
a discrete set of goals, and use our inference algorithm
to calculate the posterior probability distribution over all
possible intentions. In Figure 6, 100 goals were placed evenly
across the space, and the autonomous agent sent to navigate
towards Goal1. The plot shows that the inference framework
correctly predicts the location of the agent’s goal. Note the
posterior distribution behind Goal1 formed by the previous
motion towards Goal1 as shown by the agent trajectory. Goal
sampling is specially suitable for converging over dynamic
goals, such as when an agent is followed by another.

B. Atrium Experiments

Unconstrained. We evaluated our framework to perform
real-time tracking and goal inference in a natural human en-
vironment. This is challenging due to numerous aspects, such
as containing agents with changing intentions, or navigating
with other latent constraints (e.g., maintaining a formation
with other agents). Our results show that, after selecting
relevant goals for the environment (i.e., main exit, elevators,

Fig. 6. Sampling of goal space for intention inference. 100 discrete
samples across the x and y space dimensions at 1 and 0.5 meter separation
respectively. Agent0 navigates and reaches Goal1, located at [-6.3, 1.5].
The 3D plot shows the probability distribution of goals over the navigation
space.

bathrooms), our inference algorithm provides accurate beliefs
over the possible set of goals (see Figure 7).

Dynamic. The large size of this environment increases
the available navigation space around agents, thus relaxing
the constraint of swift collision avoidance. However, the
continuous stream of agents entering and leaving the scene
creates difficulties experienced by a navigating robot when
navigating across a human dominated environment. Our
inference algorithm is robust in dealing with any occasional
identity mismatches or occlusions by the tracker.

Density. Given the distributed nature of our tracker and
inference algorithms, computational complexity increases
linearly per each agent entering the scene. This experiment
shows ∼20 real agents entering the environment and nav-
igating freely between goals. Our framework is robust and
goal inference accuracy remains high and convergence is fast
under such a challenging setup.

VII. METHODOLOGY

All experiments were carried out using the ROS frame-
work. The code used for our experiments is publicly available
on GitHub2.

We use a group of five KUKA YouBots in a laboratory
space that covers an open space of 8 x 6 metres. The
robots are autonomous, where each planner has independent
knowledge and they carry out separate decision-making
processes online without centralised control. Sensor fusion
of data provided by the distributed tracker and robots’ amcl
produce accurate robot position and velocity estimates.

Computability. In order to ensure real-time performance,
we measured the computational speed of our proposed
method on all the environments used for the experiments.
The results are produced using a single core Intel(R)
Core(TM)2 Duo CPU P8400 @ 2.26GHz, 4 GB RAM.

2PTracking can be downloaded from https://github.com/
fabioprev/ptracking.git and the counterfactual framework from
https://github.com/ipab-rad/Youbot-RVO.git.



Fig. 7. Real-time intention prediction in a densely populated environment.
Around 20 agents navigate unconstrained in a natural scenario. In this
setup, the algorithm generates 60 simulated environments (20 agents, 3
goals) during each inference iteration, providing an up-to-date probability
distribution over agent intentions.

Our framework is robust at tracking, inferring and plan-
ning in real-time (Tracker: ∼30Hz, AMCL: ∼3Hz, Infer-
ence/Planner: 10Hz). Each inference step takes ∼3ms for a
default 5 agent, 3 goal setup, scaling linearly with number
of agents and goals to be inferred.

VIII. CONCLUSIONS

We presented a novel framework for inferring and plan-
ning with respect to the movement intention of goal-oriented
agents in an interactive multi-agent setup. Our counterfactual
reasoning approach generates locally optimal motions of
agents in the environment based on parametrised agent
models, whose parameters are being estimated online from
observed data. Our goal-inference procedure is a Bayesian
Recursive Estimation to maintain beliefs over potential goals
for all agents. This method is tested for accuracy and ro-
bustness in dense environments with autonomously planning
robots and pedestrians in dynamic environments. Our results
show that this is an effective and computationally efficient
alternative to models that often depend on offline training of
pedestrian trajectory models.
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