

Edinburgh Research Explorer

Using Genetic Programming for Source-Level Data Assignment
to Dual Memory Banks

Citation for published version:
Murray, AC & Franke, B 2009, Using Genetic Programming for Source-Level Data Assignment to Dual
Memory Banks. in Proceedings of the 3rd Workshop on Statistical and Machine Learning Approaches to
Architecture and Compilation.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 3rd Workshop on Statistical and Machine Learning Approaches to Architecture and
Compilation

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43717295?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/using-genetic-programming-for-sourcelevel-data-assignment-to-dual-memory-banks(9a3368cc-e69d-4ecf-bad1-b43ab0ac89a8).html

Using Genetic Programming for Source-Level
Data Assignment to Dual Memory Banks

Alastair Murray and Björn Franke

Institute for Computing Systems Architecture
School of Informatics

University of Edinburgh

Abstract. Due to their streaming nature, memory bandwidth is criti-
cal for most digital signal processing applications. To accommodate these
bandwidth requirements digital signal processors are typically equipped
with dual memory banks that enable simultaneous access to two operands
if the data is partitioned appropriately. Fully automated and compiler
integrated approaches to data partitioning and memory bank assignment
have, however, found little acceptance by DSP software developers. This
is partly due to the inflexibility of the approach and their inability to cope
with certain manual data pre-assignments, e.g. due to I/O constraints.
In this paper we build upon a more flexible source-level approach where
code generation targets DSP-C [1], using genetic programming to over-
come the issues previously experienced with high-level memory bank as-
signment. We have evaluated our approach on an Analog Devices Tiger-
SHARC DSP and achieved performance gains of up to 1.57 on 13 UTDSP
benchmarks.

1 Introduction

Digital signal processors are domain specific microprocessors optimised for em-
bedded digital signal processing applications. The demand for high performance,
low power and low cost has led to the development of specialised architectures
with many non-standard features exposed to the programmer. With the recent
trend towards more complex signal processing algorithms and applications, high-
level programming languages (in particular C) have now become a viable alter-
native to the predominant assembly coding of earlier days. This, however, comes
at the price of efficiency when compared to hand-coded approaches [2].

Optimising compiler technology has played a key role in enabling high-level
programming for digital signal processors (DSP). Many of the newly developed
approaches to code generation for specialised DSP instructions [3], DSP specific
code optimisation [4] and instruction scheduling [5] have transitioned out of the
research labs and into product development and production.

The situation, however, is different with compiling techniques targeting one
of the most distinctive DSP features: dual memory banks. Designed to enable the
simultaneous fetch of two operands of, for example, a multiply-accumulate oper-
ation, they require careful partitioning and mapping of the data to realise their

full potential. While the dual memory bank concept has found active interest in
the academic community this work has not been deployed into production com-
pilers. Instead, DSP specific language extensions of the ISO C language such as
DSP-C [6] and Embedded C [7] that shift the responsibility for data partitioning
and mapping to the programmer are widely embraced by industry. We believe
this is partly due to the fact that fully automated and compiler integrated ap-
proaches to memory bank assignment ignore that programmers require control
over the mapping of certain variables. E.g., for I/O buffering and tied to a spe-
cific bank. Additionally, programmers would frequently like to specify a partial
mapping to achieve a certain effect on particular regions of code, and leave the
remainder to the compiler. To our knowledge, none of the previously published
memory bank assignment schemes allows for this level of interaction.

In this paper we follow a different approach, namely explicit memory bank as-
signment as a source-level transformation operating on ISO C as input language
and generating output in DSP-C. Next to its inherent portability, the advantage
of this high-level approach is the ease with which the manual pre-assignment of
variables, i.e. coercing them into a specific user-directed bank, can be accom-
plished. On the other hand, a high-level approach like the one presented in this
paper needs to address the difficulty of having to cope with “unpredictable” later
code optimisation and generation stages that may interact with the earlier bank
assignment.

Where previous approaches, e.g. [8, 9], aim for optimality of the generated
partitioning, we have previously shown that an optimal solution according to
the standard interference graph model does not necessarily result in the fastest
program in practice [1]. Thus a more advanced method of data assignment is
required to include the effect of future interactions when choosing an assignment.
We therefore hypothesise that a machine learning method will be better able to
predict which colourings will be effective, specifically: genetic programming.

Genetic programming (GP) exploits the same evolutionary principles as ge-
netic algorithms. Instead of mutating and breeding strings, however, trees are
used to represent functions [10, 11]. Trees are mutated and are allowed to survive
by their “fitness”, the higher their “fitness” the higher the probability is that
they will make it into the next generation. To breed two trees one of each of their
sub-trees are swapped and to mutate a tree a sub-tree is replaced with a ran-
domly generated sub-tree. We chose genetic programming due to its high level of
flexibility at generating functions for problems which are poorly understood [12].

1.1 Motivation

Efficient assignments of variables to memory banks can have a significant bene-
ficial performance impact, but are difficult to determine. For instance, consider
the example shown in figure 1. This shows the lmsfir function from the UTDSP
lmsfir 8 1 benchmark. The function has five parameters that can be allocated
to two different banks. Local variables are stack allocated and outside the scope
of explicit memory bank assignment as the stack sits on a fixed memory bank
on our target architecture. On the bottom of figure 1 four of the possible legal

void lm s f i r (f loat input [] , f loat output [] ,
f loat expected [] , f loat c o e f f i c i e n t [] ,
f loat gain)

{
/∗ Variable dec lara t ions omitted ∗/

sum = 0 . 0 ;
for (i = 0 ; i < NTAPS; ++i) {

sum += input [i] ∗ c o e f f i c i e n t [i] ;
}
output [0] = sum ;
e r r o r = (expected [0] − sum) ∗ gain ;
for (i = 0 ; i < NTAPS−1; ++i) {

c o e f f i c i e n t [i] += input [i] ∗ e r r o r ;
}
c o e f f i c i e n t [NTAPS−1] = c o e f f i c i e n t [NTAPS−2] +

input [NTAPS−1] ∗ e r r o r ;
}

Fig. 1. lmsfir function with four memory bank assignments resulting in different ex-
ecution times.

assignments are shown. In the first case, as illustrated in figure 1(a), all data is
placed in the X memory bank. This is the default case for many compilers where
no explicit memory bank assignment is specified. Clearly, no advantage of dual
memory banks can be realised and this assignment results in an execution time
of 100 cycles for our Analog Devices TigerSHARC TS-101 platform. The best
possible assignment is shown in figure 1(b), where input and gain are placed
in X memory and output, expected, and coefficient in Y memory. Simul-
taneous accesses to the input and coefficient arrays have been enabled and,
consequently, this assignment reduces the execution time to 96 cycles. Interest-
ingly, an “equivalent” assignment scheme as shown in figure 1(c) that simply
swaps the assignment between the two memory banks does not perform as well.
In fact, the “inverted” scheme derived from the best assignment results in an
execution time of 104 cycles, a 3.8% slowdown over the baseline. The worst pos-
sible assignment scheme is shown in figure 1(d). Still, input and coefficient
are placed in different banks enabling parallel loads, but this scheme takes 110
cycles to execute, a 9.1% slowdown over the baseline.

This example demonstrates how difficult it is to find the best source-level
memory bank assignment. Source-level approaches cannot analyse code genera-
tion effects that only occur later in the compile chain, but must operate a model
generic enough to cover most of these. In this paper we use a refined variable
interference graph construction [1] to aid a genetic programming based solution
capable of handling complex DSP applications.

The rest of this paper is structured as follows. In section 2 we discuss the large
body of related work. Relevant background material is explained in section 3.
The source-level memory bank assignment scheme is introduced in section 4,
with two different colouring techniques described in sections 5 and 6 before we
present our results in section 7. Finally, we summarise and conclude in section 8.

2 Related Work

Gréwal et al. used a highly-directed genetic algorithm to provide a solution to
dual memory bank assignment [13]. They used a constraint satisfaction problem
as a model, with hard constraints such as not being able to exceed memory
capacity, and soft constraints such as not wanting interfering variables in the
same memory. The genetic algorithm is then used to find the optimal result in
terms of this model. This use of machine learning does not actually learn trends
regarding the problem, but is more akin to solving the constraint satisfaction
problem by brute force as it is rerun for every instance of the problem. Given
the high computational cost of running a genetic algorithm it seems undesirable
to include one into the run-time of the compiler. Additionally, due to technical
limitations this method was only evaluated on randomly generated synthetic
benchmarks.

Several authors have proposed integer linear programming solutions. Initially
Leupers and Kotte described a method [8] that modelled the interference graph
between variables as an integer linear program and tries to minimise total in-

terferences. This approach worked on the compiler IR after the back-end has
been run once, allowing it access to very low-level scheduling and memory ac-
cess information. Another approach by Ko and Bhattacharyya uses synchronous
data flow specifications and the simple conflict graphs that accompany such
programs [14]. They used an integer linear program to find an assignment to
memories, but for all benchmarks that the techniques were evaluated against
there exists a two-colouring, so the technique is not demonstrated to work on
hard problems. More recently Gréwal et al. described a more accurate integer
linear programming model for DSP memory assignment [9]. The model described
here is considerably more complex than the one previously presented by Leupers
and Kotte [8] but provides greater improvements.

Sipkovà describes a technique [15] that operates at a higher-level than the
previously described methods. It performs memory assignment on the high-level
intermediate representation, thus allowing the assignment method to be used
with each of the back-ends within the compiler. The problem is modelled as an
independence graph and the weights between variables take account of both exe-
cution frequency and how close the two accesses are in the code. Several different
solutions, based on a max-cut formulation, were proposed. Unfortunately, this
paper does not address any of the issues created by assigning data to memories
at a high-level. So it is not clear the technique is as portable as is claimed, nor
that it is taking full advantage of the dual-memory capability.

We, Murray and Franke, have previously described an alternative high-level
technique [1] that works at the source-level. Specifically, ISO-C is taken as input
and DSP-C (see section 3.2) is produced as an output. This paper evaluates the
effects of high-level assignment on the effectiveness of integer linear programming
(ILP) based data assignment and finds that the ILP solution suffers from inexact
interference data. This has the effect of causing the ILP “optimal” solutions to
represent a range of results (rediscussed in section 5). An alternative probabilis-
tic data assignment approach called soft colouring was proposed, it achieved a
similar speed-ups to the ILP approach but with a much lower run-time.

Finally, Stephenson et al. use genetic programming in compilers [16, 12],
though for completely different purposes than dual memory bank assignment.
They use genetic programming to generate heuristics for priority functions re-
lated to hyperblock formation, register allocation and data prefetching. Although
many of the results they report are due to evaluating the heuristics on their own
training data they also present results for separate test benchmarks. They were
able to improve on the existing heuristic in a mature compiler by 9% on average
for hyperblock formation across many SPEC benchmarks, demonstrating the
potential of genetic programming.

3 Background

3.1 Dual Memory Banks

Typical digital signal processing operations such as convolution filtering, dot
product computations and various matrix transformations make intensive use

of multiply-accumulate (MAC) operations, i.e. computing the product of two
numbers and adding the product to an accumulator.

Digital signal processors are application-specialised microprocessors designed
to most efficiently support digital signal processing operations. Among the most
prominent architectural features of DSPs are support for MAC operations in the
instruction set and dual memory banks that enable simultaneous fetching of two
operands. Provided the data is appropriately partitioned across the two mem-
ory banks this effectively doubles the memory bandwidth and ensures efficient
utilisation of the DSP datapath.

3.2 DSP-C and Embedded C

DSP-C [6] and its later extension Embedded C [7, 17] are sets of language exten-
sions to the ISO C programming language that allow application programmers
to describe the key features of DSPs that enable efficient source code compila-
tion. As such, DSP-C includes C-level support for fixed point data types, circular
arrays and pointers, and, in particular, divided or multiple memory spaces.

DSP-C uses address qualifiers to identify specific memory spaces in variable
declarations. For example, a variable declaration like int X a[32]; defines an
integer array of size 32, which is located in the X memory. In a similar way, the
address qualifier concept applies to pointers, but now up to two address qualifiers
can be provided to specify where the pointer and the data it points to is stored.
For example, the following pointer declaration int X * Y p; describes a pointer
p that is stored in Y memory and points to integer data that is located in X
memory. For unqualified variables a default rule will be applied (e.g. to place
this data in X memory).

4 Methodology

Our memory bank assignment schemes comprises the following the stages:

1. Group Forming. During this stage groups of variables that must be allo-
cated to the same memory bank, due to pointer aliasing, are formed.

2. Interference Graph Construction. An edge-labelled graph representing
potential simultaneous accesses between variables is constructed.

3. Colouring of the Interference Graph. Finally, the nodes of the inter-
ference graph are coloured with two colours (representing the two memory
banks) such as to maximise the benefit from simultaneous memory accesses.

Of these three stages only stage one is critical for correctness, whereas approxi-
mations are acceptable for stages two and three. I.e. an inaccurate interference
graph or a non-optimal colouring still results in correct code that, however, may
or may not perform optimally.

For both the colouring methods used here the first two stages are the same,
for the third stage either the integer linear programming colourer gets dropped
in, or the colourer produced by genetic programming. Note that unlike in other

X Y

p

c

d

(a) Incompatible pointer assignments.

X Y

p x

y

z

q

(b) Pointer induced variable grouping.

Fig. 2. Incompatible pointer assignments and pointer induced grouping.

genetic approaches to the memory assignment problem [13] the genetic algorithm
is trained off-line, so only the function produced the genetic programming will
be run during colouring.

4.1 Group Forming

Group forming is the first stage in our memory bank assignment scheme. It is
based on pointer analysis and summarises those variables in a single group that
arise through the points-to sets of one or more pointers. All variables in a group
must be allocated to the same bank to ensure type correctness of the memory
qualifiers resulting from our memory bank assignment.

Figure 2 illustrates this concept. In figure 2(a) the pointer p may point to
c or d. However, c and d are stored in memory banks X and Y, respectively.
This eventually causes a conflict for p because both the memory bank where p
is stored and the bank where p points to must be statically specified. Thus, p
must only point to variables located in a single bank. A legal assignment would
place c and d in the same bank as a result of previous grouping. This grouping
is shown in figure 2(b) for two pointers p and q. In this example p may point at
variables x and z at various points in the execution of a program and, similarly,
q is assumed to point at x and y. Grouping now ensures that x and z are always
stored in the same bank (due to p), and also x and y (due to q). By transitivity,
x, y and z have to be placed in the same memory bank. Note that p and q
themselves can be stored in different memory banks, only their targets must be
grouped and located in a single memory bank. The algorithm to calculate these
groups is described in our previous paper [1].

A

B C

D E

(a) Expression dependence
tree

A

B C

D E

(b) Expression interference
graph

B C

D E

A

(c) Coloured interference

B C

D E

A

(d) Alternate colouring

Fig. 3. Mapping dependances to potential interferences.

4.2 Interference Model

To be able to effectively assign groups of variables to memory banks it is neces-
sary to build an interference graph that represents the memory accesses in the
program. This is done statically by taking the dataflow dependence graph for
each expression and marking each pair of memory or variable accesses with no
dependence between them as potentially interfering (see figure 3). This repre-
sents cases where loads or stores could be scheduled in parallel. Each of these
potential interferences is given a weight that is equal to the estimated number
of times that the expression will be executed. This estimate is determined by
calculating each loop’s iteration count (or using a constant value if the exact
count can not be statically determined), and assuming all non-loop branches are
taken with 50% probability. The estimated call count for each function is also
calculated this way by estimating how many times each call site is executed.
This variable interference graph is then reduced to a group interference graph
using the previous assignments. This approximate information is sufficient for
determining which groups of variables are the most important.

For this interference graph to be usable by genetic programs it must be
reduced further. This is because a genetic program will be more effective if it
has a fixed number of features to operate on, rather than an arbitrary number
of neighbours. As a genetic program will only be colouring one node of the
graph at a time, we can exploit this and provide a “view” of the graph for a
specific node and as this “view” will be generated on demand it works well with
partially coloured graphs. This is essential as the genetic program colours the
nodes in some sequential order, not simultaneously, and will need to consider
both already-coloured and not-yet-coloured neighbours.

To reduce the number of nodes to a fixed number, we can first discard all
nodes that do not interfere with the current node. Then we can recognise that
each of these nodes must belong to one of three classes: not yet assigned to a
memory bank, assigned to memory bank X or assigned to memory bank Y. So
the remaining nodes can be collapsed down to three nodes, with all interference
information being aggregated so as each collapsed node accurately represents
the sum of its constituents.

5 Integer Linear Program Colouring

A reference Integer Linear Programming (ILP) colouring approach that is ap-
proximately equivalent to the model by Leupers and Kotte [8] is implemented.
This model is fully described in our previous paper [1].

Although the ILP method finds the “optimal” solution, the colouring found
is not necessarily truly optimal though, it is only an optimal solution in terms
of the interference graph. This ILP model is based on the model described in
the Leupers and Kotte paper [8], their model used an interference graph built
after the back-end of the compiler had run so it is a reasonably accurate model
of the potential parallelism in the program. However, in our technique we build
the interference model based on the program’s source-code, the entire target
compiler still has to be run on the program after variables have been assigned
to memory banks.

Building the interference graph at a high-level also means that the problem
is less constrained, this means that there may be many optimal solutions to the
ILP model. For example, if a node is completely disconnected in the interference
graph then the score to be maximised by the linear solver will be the same
whichever memory bank that group of variables is assigned to.

ILP solvers generally work by first reducing as much of the program to a non-
integer linear problem that can be solved quickly and then using a branch-and-
bound technique to solve what remains. If there are multiple optimal solutions
then they may only be found during the branch-and-bound stage, where it is
possible to keep on searching even after an optimal solution has been found.
However, in the process of reducing the integer problem to a non-integer one,
many of the alternate optimal solutions may be lost and there will be fewer
solutions for the branch-and-bound technique to find. An example of this can
be seen in figure’s 1(b) and 1(c). These two assignments are equivalent in the
ILP model, switching between them just results in a complete inversion of the
interference graph, so if 1(b) is optimal in the ILP model then so is 1(c). When
running on the hardware, however, we find that 1(c) does not perform as well.

6 Genetic Program Colouring

We want use the genetic programming library to produce a function that will
colour every node in an interference graph. It is unrealistic to expect genetic
programming to produce a function that will return a complete graph colouring,

Feature Description

Parallel Interference The no. of interferences at an immediate parallel level.
Para. Interfere. Accuracy The estimated accuracy of the parallel interferences.
Expression Interference The no. of interferences at an expression level.
Expr. Interfere. Accuracy The estimated accuracy of the expression level.
Symbols: Aggregate No. of aggregate symbols (e.g. structs) in group.
Symbols: Arrays No. of array symbols in group.
Symbols: Pointers No. of pointer symbols in group.
Symbols: Scalar No. of scalar symbols in group.
Type: Integer No. of integer symbols in group (e.g. an array of ints).
Type: Float No. of floating point symbols in group.
Type: Complex No. of non-numerical symbols in group (e.g. a void pointer).
Size Total no. of bytes occupied by all variables in this group.
Size Accuracy The estimated accuracy of the size of this group.

Table 1. Program features available to a genetic program.

so we instead colour the graph one node at a time. A view of the graph is
given from the perspective of the current node from the interference graph, as
described in section 4.2. The three neighbour nodes are constructed (assigned to
X, assigned to Y, not yet assigned). Now we run the the function produced by
the genetic programming library (which will be an entirely random tree initially)
twice for each node, once saying if this node is assigned to X then what score
would you give it, and the same for Y. This is done by mapping the X and Y
nodes to Same Colour and Different Colour node – and vice versa for testing a
Y assignment. We assign the node to the colour with the higher score. For each
function we repeat this process on every benchmark in our training data.

Once all the nodes on all the benchmarks have been assigned a colour we can
assign a fitness to the function. Using an table of previously generated exhaustive
results we look up the performance of this colouring. If it is equivalent to the
best possible colouring the function is given a fitness of 0.0 (best possible). If
it is equivalent to the worst colouring it is given a fitness of 1.0 and results in-
between are assigned a fitness proportionally. The overall fitness of a function
is its average fitness across all benchmarks in the training data. Functions with
a better fitness have a higher chance of being used in breeding and of surviving
into the next generation.

The benchmarks were evaluated using leave-one-out cross-validation, so for
each of the 13 benchmarks used for evaluation the GP colourer was trained on the
other 12 benchmarks and then tested against the 13th. This ensures the results
are representative of how the colourer will perform on an unseen program.

The full-set of features used are described in table 1, this set of features
is replicated for each of the X, Y and unassigned nodes. The full set of math-
ematical and logical operators available are described in table 2. The genetic
programming library produces trees consisting of these nodes, it ensures that all
nodes have the correct number of children. The only data-type is a floating point
number. Because every function produced by the genetic programming library

Function No. Inputs Description

Add 2 A + B
Sub 2 A−B
Mul 2 A ∗B
Div 2 A÷B

Sqrt 1
√

A (returns 0.0 for negative inputs)
Abs 1 |A|
Max 2 max A, B
EQ 4 if (A == B) { C } else { D }
GE 4 if (A >= B) { C } else { D }
GT 4 if (A > B) { C } else { D }
LE 4 if (A <= B) { C } else { D }
LT 4 if (A < B) { C } else { D }

Const 0 random (0 ≤ X < 1000)
Table 2. Functions available to a genetic program.

is guaranteed to be valid, and every colour assignment possible is valid we are
assured that every function produced will be accurately evaluated.

To try and improve the performance of the functions produced by genetic pro-
gramming, three modifications were attempted. The modifications are described
here, their effects are described in section 7.

Firstly changed the way the evolved program was used by considering the
order in which the nodes are coloured, two variations were attempted. In the
first variation we sorted the nodes according to the sum of their interferences,
so the most critical nodes are coloured first. In the second variation, instead of
just running the generated function on one node we ran it on every uncoloured
node in the graph. We then coloured the node that was assigned the highest
score overall, this is effectively letting the generated function pick the order in
which to colour the nodes. This affects time it takes to perform the colouring,
for a graph with n nodes it takes O(n) time to produce a graph view for a given
node, with pre-ordered nodes O(n) nodes are evaluated resulting in a colouring
time of O(n2). For a self-ordering method O(n2) nodes are evaluated resulting
in a colouring time of O(n3).

Secondly we changed how the evolved program was evaluated by adding a
size penalty heuristic to the fitness function. Functions with fewer than 10 nodes
got no penalty, functions with more than 50 got a penalty of 1.0 (a very large
penalty), sizes between these are penalised proportionally. The aim of doing this
was to stop huge functions highly specialised to the training data from being
generated.

Thirdly we reduced the amount of potentially extraneous information avail-
able to the evolved program, by attempting to perform the assignment without
using the unassigned node. The idea behind this was that nodes that are not
yet assigned to a memory bank do not effect immediate assignment decisions –
it wasn’t clear if the functions would be able to use the information to “plan
ahead” or if it was just noise.

 adpcm
 f ir_32_1

 f ir_256_64
 f f t_256

 iir_1_1
 iir_4_64

 latnrm_8_1
 latnrm_32_64

 lmsf ir_8_1
 mult_10_10

 lpc
 mult_4_4

 spectral
 AVG

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

GP
ILP Best
ILP Average
ILP Worst

Benchmark

S
pe

ed
-U

p

Fig. 4. A comparison of the range of ILP solutions against the GP solutions.

7 Experimental Evaluation

7.1 Platform and Benchmarks

We implemented our source-level C to DSP-C compiler using the SUIF compiler
framework [18]. The C program is converted into the SUIF intermediate format
which is then annotated with aliasing information using the SPAN tool [19].
We use this information to form groups of variables as described in section 4.1
and output DSP-C with group identifiers in place of memory qualifiers. The C
preprocessor may be used to assign a group of variables to a specific memory
bank according to the generated group to memory bank mapping.

Both the ILP colourer and the GP colourer are implemented in Java. The
ILP colourer makes use of the lp solve [20] library, which is implemented as
a native binary, with the default pre-solve and optimisation settings. The GP
colourer uses the ECJ [21] package to evolve and execute genetic programs.
The evolutionary settings used were ECJ’s default Koza [11] parameters, with a
population of 1024 and 50 generations. Additionally a small amount of elitism
is used, the best 2 functions from each generation always survive into the next.

The colourings were done on a Linux system with two dual-core 3.0GHz
Intel Xeon processors and 4GB of memory. The experiments where run on an
Analog Devices TigerSHARC TS-101 DSP operating with a clock of 300MHz,
the DSP-C programs were compiled using the Analog Devices VisualDSP++
compiler. We evaluated our technique using the UTDSP benchmark suite [22].
Each colouring was only run once as the TigerSHARC’s static pipeline and lack
of cache results in deterministic hardware.

7.2 Results

We compared the GP colourer against the ILP colourer. Figure 4 shows the
speed-up achieved by the best GP colourer (nodes may be coloured in any order,
constrained size of genetic function and has access to information on uncoloured
nodes) against the range of ILP results. The ‘ILP Best’ and ‘ILP Worst’ bars
in the figure correspond to the highest and lowest ILP speed-ups, relative to

adpcm
fir_32_1

f ir_256_64
ff t_256

iir_1_1
iir_4_64

latnrm_8_1
latnrm_32_64

lmsf ir_8_1
lpc

mult_4_4
mult_10_10

spectral
AVG

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Size Constraints and
Coloured Node
No Size Contraints
No Uncoloured Node

Benchmark

S
pe

ed
-U

p

(a) Self-ordering GP.

adpcm
fir_32_1

f ir_256_64
ff t_256

iir_1_1
iir_4_64

latnrm_8_1
latnrm_32_64

lmsf ir_8_1
lpc

mult_4_4
mult_10_10

spectral
AVG

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Size Constraints and
Coloured Node
No Size Contraints
No Uncoloured Node

Benchmark

S
pe

ed
-U

p

(b) Pre-ordered GP.

Fig. 5. A comparison of the different modes of operation for the GP.

the performance of ISO C, in the set of equivalent ILP solutions found per
benchmark. The ‘ILP Average’ bars represent the average speedup of these sets.
There is not a range of GP results for each benchmark as each genetic program
only ever returns one colouring for a given input program. The average speed-
up achieved by the GP colourer is 1.078, which although not as good as the
upper range of the ILP colourer’s potential it is much higher than the lower end.
The GP colourer achieves 65.7% of the performance available in ILP’s range of
potential performance (speedups of 1.030 to 1.103). This is significant because it
means that given the generally uniform distribution of ILP performance across
it’s range of potential results (demonstrated by the average speedup across a
set of ILP solutions generally being equidistant between the best and worst
solutions), the GP colourer will out-perform ILP 65.7% of the time. Other points
of note are that the GP colourer only results in a slow-down for two benchmarks
(lpc and spectral), whereas the ILP colourer may result in slow-downs for four
benchmarks. Additionally, the ILP colourer always results in a slowdown for
adpcm but the GP colourer manages to obtain a small speed-up.

In the process of developing the GP colourer different methods were exper-
imented with. Here we compare three variations described in section 6 to the
method that was found to be best. First pre-ordered vs self-ordered nodes, the
general trend is that letting the GP colour the nodes in any order is almost
always better than arranging the order beforehand. If keeping the other variants

fixed then average speed-ups of 1.078 and 1.065 are achieved respectively, this
trend holds for the other combinations of the variants.

Secondly, we penalised the fitness of larger functions. It was found that this
penalty improved performance, the effects of eliminating it may be seen in the
first and second columns of each benchmark in figures 5(a) and 5(b).

Thirdly, we eliminated the uncoloured node from the reduced interference
graph (see section 4.2). The effects of this may be seen by comparing the first
and third columns of each benchmark in figures 5(a) and 5(b). In most cases this
made little difference. A few benchmarks, however, suffered without this node
so eliminating it slightly reduces the performance of the colourer on average.

The time taken to do the colouring for these benchmarks is trivial. Even if
including the time to perform alias analysis, the only benchmarks to take longer
than one second to colour are adpcm and spectral (for both the ILP and GP
colourers, as alias analysis dominates the run-time for these benchmarks). If,
however, we take the adpcm program and modify the code so as all automatic
variables are made into global variables, we can obtain a semi-synthetic program
that has a much larger number of groups to colour. Once alias analysis has been
performed, which takes 7 seconds, the ILP colourer takes a further 1.5 hours
to find a solution. The GP colourer takes under a second, demonstrating the
benefit of its polynomial run-time over the ILP colourer’s exponential run-time.

8 Summary and Conclusions

We have presented a method for performing dual memory bank assignment at
the source-level, using a C to DSP-C compiler. We have demonstrated an as-
signment technique that performs more predictably than ILP colouring, has a
lower execution time and is able to find a better solution than the “optimal” ILP
colourer 65.7% of the time. We evaluated our technique on the UTDSP bench-
mark suite where we achieved a 7.8% speed-up on average, out of an absolute
maximum of 10.4%.

Our technique may be easily introduced to an existing DSP tool-chain due
to operating at the source-level. The ability to train the tool offline means that
a large suite of benchmarks could be used to train the tool, resulting in good
performance with an extremely low execution cost.

References

1. Murray, A., Franke, B.: Fast source-level data assignment to dual memory banks.
In: Proceedings of the 11th International Workshop on Software and Compilers for
Embedded Systems (SCOPES ’08). (March 2008) 43–52

2. Frederiksen, A., Christiansen, R., Bier, J., Koch, P.: An evaluation of compiler-
processor interaction for DSP applications. In: Proceedings of the 34th IEEE
Asilomar Conference on Signals, Systems, and Computers. (2000)

3. Bhattacharyya, S., Leupers, R., Marwedel, P.: Software synthesis and code gener-
ation for signal processing systems. IEEE Transactions on Circuits and Systems
II: Analog and Digital Signal Processing 47(9) (2000)

4. Leupers, R.: Novel code optimization techniques for DSPs. In: Proceedings of the
2nd European DSP Education and Research Conference. (1998)

5. Timmer, A., Strik, M., van Meerberger, J., Jess, J.: Conflict modelling and in-
struction scheduling in code generation for in-house DSP cores. In: Proceedings of
the Design Automation Conference (DAC). (1995)

6. ACE: DSP-C, an extension to ISO/IEC IS 9899:1990. Technical report, ACE
Associated Compiler Experts bv (1998)

7. JTC1/SC22/WG14: Programming languages - C - extensions to support embedded
processors. Technical report, ISO/IEC (2004)

8. Leupers, R., Kotte, D.: Variable partioning for dual memory bank DSPs. In:
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP ’01). Volume 2. (May 2001) 1121–1124

9. Gréwal, G., Coros, S., Morton, A., Banerji, D.: A multi-objective integer linear
program for memory assignment in the DSP domain. In: Proceedings of the IEEE
Workshop on Memory Performance Issues (WMPI ’06). (February 2006) 21–28

10. Cramer, N.L.: A representation for the adaptive generation of simple sequential
programs. In: Proceedings of the International Conference on Genetic Algorithms
and their Applications (ICGA85). (1985) 183–187

11. Koza, J.: Genetic Programming: On the Programming of Computers by Means of
Natural Selection. The MIT Press (1992)

12. Stephenson, M., Martin, M., O’Reilly, U.M., Amarasinghe, S.: Meta optimiza-
tion: Improving compiler heuristics with machine learning. In: Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implemena-
tion (PLDI ’03). (June 2003) 77–90

13. Gréwal, G., Wilson, T., Morton, A.: An EGA approach to the compile-time as-
signment of data to multiple memories in digital-signal processors. SIGARCH
Computer Architecture News 31(1) (March 2003) 49–59

14. Ko, M.Y., Bhattacharyya, S.S.: Data partioning for DSP software synthesis. In:
Proceedings of the International Workshop on Software and Compilers for Embed-
ded Systems (SCOPES ’03). (September 2003) 344–358

15. Sipkovà, V.: Efficient variable allocation to dual memory banks of DSPs. In:
Proceedings of the 7th International Workshop on Software and Compilers for
Embedded Systems (SCOPES ’03). (September 2003) 359–372

16. Stephenson, M., O’Reilly, U.M., Martin, M.C., Amarasinghe, S.: Genetic pro-
gramming applied to compiler heuristic optimization. In: Proceedings of the 6th
European Conference on Genetic Programming. (April 2003)

17. Beemster, M., van Someren, H., Wakker, W., Banks, W.: The Embedded C exten-
sion to C. http://www.ddj.com/cpp/184401988 (2005)

18. Wilson, R.P., French, R.S., Wilson, C.S., Amarasinghe, S.P., Anderson, J.M.,
Tjiang, S.W.K., Liao, S.W., Tseng, C.W., Hall, M.W., Lam, M.S., Hennessy, J.L.:
SUIF: An infrastructure for research on parallelizing and optimizing compilers.
SIGPLAN Notices 29(12) (December 1994) 31–37

19. Rugina, R., Rinard, M.: Pointer analysis for multithreaded programs. In: Proceed-
ings of the ACM SIGPLAN Conference on Programming Language Design and
Implemenation. (May 1999) 77–90

20. : lp solve package. http://lpsolve.sourceforge.net/5.5/ (2008)
21. : ECJ package. http://cs.gmu.edu/ eclab/projects/ecj/ (2008)
22. Lee, C.G.: UTDSP benchmark suite. http://www.eecg.toronto.edu/ corinna/D-

SP/infrastructure/UTDSP.html (1998)

