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Trends
Appropriate analytical anddecision sup-
port tools (ADSTs) are critical for deploy-
ing genomics-assisted breeding.

Development of breeder-friendly pipe-
lines and/or tools will enhance the
adoption of ADSTs and facilitate the
rapid development of new breeding
lines.

Deployment of ADSTs in public breed-
ing programs is the need of the hour.

Advances in next-generation sequen-
cing technologies have prompted
geneticists and breeders to utilize more
sophisticated tools for sequencing-
based mapping and genome-wide
selection for the development of new
breeding lines.

The availability of open-source and
one-stop integrated platforms such
as Integrated Breeding Platform (IBP)
and their hubs across the world will
facilitate the modernization of crop
breeding programs.
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Review
Analytical and Decision
Support Tools for
Genomics-Assisted Breeding
Rajeev K. Varshney,1,2,@,* Vikas K. Singh,1 John M. Hickey,3

Xu Xun,4 David F. Marshall,5 Jun Wang,4 David Edwards,2 and
Jean-Marcel Ribaut6

To successfully implement genomics-assisted breeding (GAB) in crop improve-
ment programs, efficient and effective analytical and decision support tools
(ADSTs) are ‘must haves’ to evaluate and select plants for developing next-
generation crops.Herewe review theapplications anddeployment of appropriate
ADSTs forGAB, in the context of next-generation sequencing (NGS), an emerging
source of massive genomic information. We discuss suitable software tools and
pipelines for marker-based approaches (markers/haplotypes), including large-
scale genotypic and phenotypic, data management, and molecular breeding
approaches. Although phenotyping remains expensive and time consuming,
prediction of allelic effects on phenotypes opens new doors to enhance genetic
gain across crop cycles, building on reliable phenotyping approaches and good
crop information systems, including pedigree information and target haplotypes.

Breeding for Sustainable Food Production
GAB (see Glossary) has become popular for crop improvement in recent years partly due to
availability of low-cost high-throughput genotyping (HTPG) and NGS technologies. Several
successful examples of GAB are now available not only in major crop species but also in many
so-called ‘orphan crops’ [1,2]. GAB pipelines involve various steps including: characterization of
diverse germplasm collections; development of mapping populations; identification of genomic
regions through genetic or association mapping; and application of markers in breeding.
Numerous ADSTs are required throughout all four of these steps [3]. Better understanding
of the genetic diversity that is present in germplasm collections in gene banks and breeding
material helps breeders identify new valuable alleles for breeding. Field evaluation of large
germplasm collections is challenging due to, for example, poor genetic background, variation
in phenology, the logistics and resources required, and selection of smaller subsets that
represent the diversity of the collection. These sets include ‘core collections’ (10% of the
entire collection) [4], ‘mini-core collections’ (about 10% of the core collection or 1% of the
entire collection) [5], and ‘reference sets’ (usually developed based on the molecular charac-
terization of a composite collection) [6]. Efforts to define these sets should also benefit from the
use of ADSTs on germplasm collections.

For trait mapping, two complementary approaches – namely, linkage mapping and association
mapping,which in thecontextof large-scalegenotypingand thewhole-genomere-sequencing
era are now referred to asgenome-wideassociationstudies (GWAS) –havebeenused in crop
genetics. Construction of high-quality genetic maps with precise marker orders is critical when
undertaking quantitative trait locus (QTL) analysis, which leads to the identification of genomic
Trends in Plant Science, Month Year, Vol. xx, No. yy http://dx.doi.org/10.1016/j.tplants.2015.10.018 1
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regions andmarkers associatedwith target traits. Associationmapping orGWAShas emerged as
a new approach for the identification of causal loci/genes for traits of interest and some tools have
been developed in recent years. Availability of the re-sequencing data ofmultiple accessions of the
same species or different species has initiated the concept of the pan-genome. The generated
hapmap information through pan-genome analysis is useful for the construction of high-density
linkage maps. Pan-genomes are useful for the collection of all the genes at clad level. Additionally,
with re-sequencing-based mapping of populations now being possible, new approaches for trait
mapping using two contrasting bulks for the given traits have also been used.

Once molecular markers linked with traits are identified, they can be used formarker-assisted
back crossing (MABC) or marker-assisted selection (MAS) programs [7]. ADSTs can be
helpful in selecting superior lines based on foreground and background selection for the next
crossing. The other two approaches of GAB also require ADSTs, specificallymarker-assisted
recurrent selection (MARS), which enables the accumulation of superior alleles from different
genetic backgrounds to one background, and genomic selection (GS), which enables
enhancing genetic gain in crop breeding. Furthermore, data generated during the course of
one GAB program often need to be shared with different partners to better enable future GAB
programs in other institutes and countries. Therefore, ADSTs are required for the management,
retrieval, and sharing of data.

In view of all of the above, it is evident that appropriate ADSTs and their integrated use at the right
time in different steps of GAB is critical for the next generation of genomics and integrated
breeding (see Outstanding Questions). This review discusses the need, availability, and future
requirements of ADSTs for enhancing the precision and modernizing of crop breeding (Table S1
in the supplemental information online and Figure 1).

Genetic Diversity and Population Genetic Analysis
Genetic diversity estimates help to structure germplasm defining, for example, heterotic pools,
and provide useful information to select contrasting parental lines for new breeding populations.
Analysis of molecular marker-based estimates of genetic diversity depends on a number of
criteria, such as type (dominant or codominant) of markers, number of markers and genotypes,
missing data, and proportion of heterozygosity. Similarly, population genetic analysis provides
estimates of the allele frequencies that are helpful to breeders because alleles are the raw
material for selection in breeding programs [8]. High-density genotyping has revolutionized the
identification of favorable alleles in populations, minimizing the risk of recombination between
markers and target genes.

To analyze genetic diversity, the numerical taxonomy and multivariate analysis system
(NTSYSpc) is one of the most widely used software tools (see Table S1 for a description of
all of these tools) [9]. Molecular evolutionary genetic analysis (MEGA) is another widely used
program for estimating evolutionary distances and phylogenetic trees from DNA or protein
sequence data [10]. Although several other programs/tools are available, DARwin (http://darwin.
cirad.fr), a free and easy to use program for diversity and multivariate analysis of datasets that
also provides publication-ready figures, has emerged as a popular tool in recent years for genetic
diversity analysis. Due to the capacity to generate millions of SNPs in germplasm collections,
construction of phylogenetic trees is an increasingly computationally challenging task. In this
context, new pipelines such as SNPhylo [11] are being developed. SNPhylo works by selecting
one informative SNP from each linkage disequilibrium (LD) block, thereby greatly decreasing
the running time without losing much information.

For population genetics analysis, Arlequin is a highly used software package for molecular
variance (AMOVA) analysis of datasets that includes several statistics like diversity, genetic
2 Trends in Plant Science, Month Year, Vol. xx, No. yy
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Glossary
Analytical and decision support
tools (ADSTs): refer to a wide range
of computer-based tools (simulation
models, algorithms, techniques, and/
or methods) developed for the
analysis of different datasets and
selection of promising genotypes in
GAB programs for the development
of new breeding lines.
Bulked segregant analysis (BSA):
an approach for the identification of
molecular markers associated with
the trait of interest through the
genetic analysis of two different pools
based on phenotypic extremes from
the segregating population.
Chromosome segment
substitution lines (CSSLs): these
are powerful QTL mapping
populations that are used to identify
favorable alleles from unadapted
germplasm. These are a series of
near-isogenic lines in which each
CSSL carries specific chromosome
segments in the genetic background
of the recipient parent.
Composite interval mapping
(CIM): a combination of interval
mapping with multiple regressions
that separate individual QTL effects. It
prevents genetic variation in other
regions of the genome, which effects
QTL detection.
Consensus map: developed
through combining multiple genetic
maps available for the same species
to obtain a higher density of markers
for greater genome coverage than
any individual genetic map.
Core collection: a limited set of
accessions (10% of the entire
collections) that represents the
maximum diversity of the entire set
with a minimum of repetitiveness. A
core collection is suitable germplasm
set for allele mining and LD analysis.
Genetic map: the arrangement or
ordering of genes/loci on the basis of
recombination frequency on a
chromosome by defining linkage
groups.
Genome-wide association study
(GWAS): a population-based
statistical association analysis for the
identification of marker trait
associations based on LD through
genotyping and phenotyping of
diverse individuals.
Genomics-assisted breeding
(GAB): a method of breeding in
which the selection of genotypes
depends on genome information
including molecular markers. More

Mapmaker
MapDraw

JoinMap
MSTMap
SEG-Map

Madmapper
Record

MapDisto
LPmerge

SimpleMap
GENEPOP

DnaSP
GenAIEx

PowerMarker
SMOGD

QGene
Mapmanager QTX

Win QTL- Cartographer
PLABQTL
MapQTL

QTLnetwork
R/QTL

Mul�QTL
QTL mapping

Mapmaker/QTL
ProcQTL

QTLMapper
MetaQTL

Biomercator V3
MapChart

MQ2
R/qtlcharts

Linkage map constru�on

Popula�on gene�cs

Analy�cal and decision support tools (ADSTs)

Molecular breeding

Sampling

Integrated pipelines

Sequencing-based-mapping

Gene�c diversity

Hapmaps

WHAP
SHAPEIT
HaploBlockFinder
fastPHASE

Haploview
SNPhylo
PAUP
DAMBE

DarWin
MEGA
NTSYS-pc

NGM
CloudMap

MutMap
QTL-seq

ShoreMap
ISMU V2
ISMU V1
MBDT
IciMapping
iMAS

SPCLUST
maxRec

MMA
PowerCore

sol:GS

GGT
Flapjack
Op�MAS

CSSL Finder

Figure 1. The Most Popular Analytical and Decision Support Tools (ADSTs) Used for Specific Purposes. This
figure presents various analytical and decision support tools for genomics-assisted breeding components including linkage
map construction, population genetic analysis, quantitative trait locus (QTL) mapping, molecular breeding, sampling,
integrated pipelines, sequencing-based mapping, genetic diversity, and hapmaps. Different ADSTs can be selected based
on their suitability for the experiment along with the strength of the tools. The details of individual ADSTs are presented in
Table S1 in the supplemental information online.
distance, equilibrium analysis, and neutrality tests [12]. DNA Sequence Polymorphism (DnaSP)
utilizes DNA sequence data and estimates several measures of DNA sequence variation within
and between populations including LD, recombination, gene flow, and gene conversion param-
eters and can perform several tests of neutrality [13]. GenAlEx, which is based on Microsoft
Excel, offers a wide range of population genetic analysis options for the full spectrum of genetic
markers with rich graphical outputs for data exploration and publication [14]. Several other
software tools have become available in recent years for various applications. For example,
Power Marker is useful for simple sequence repeat (SSR) or SNPmarker datasets for population
genetic analysis and has a user-friendly graphical interface [15].

Based on sequence/marker diversity analysis on a large scale, a core set of germplasm, also
called a reference set [16], can be developed. Reference sets seem to be better than core
collections (comprising �10% of the entire collection [4]) and mini-core collections (comprising
�10% of the total core collection or 1% of the total collection [5] for undertaking GWAS, as
discussed below), as they have lower structural components than the full germplasm sets.
Furthermore, the concept of selective phenotyping is also increasingly popular for selecting the
subsets of mapping populations. This type of mapping is often done using recombination
breakpoints to eliminate the need to extensively phenotype large numbers of individuals [17].
This is important in the case of populations likemultiparent advanced generation intercross
(MAGIC) [a population developed by crossingmultiple founder lines (four or eight) to improve the
precision and resolution of QTL mapping] where large numbers of lines are available and
genotyping can be done in a high-throughput manner, but phenotyping of such large number
of lines is challenging.
Trends in Plant Science, Month Year, Vol. xx, No. yy 3
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precisely, GAB is the application of
various genetic and genomics tools
to develop new breeding lines.
Genomic-estimated breeding
values (GEBVs): estimated breeding
values generated through genotyping
of populations using statistical model
(s) and used to select superior
individuals in a segregating
population.
Genomic selection (GS): is a new
method of molecular breeding in
which selection of lines is based on
GEBVs calculated based on genome-
wide markers. GEBVs can be
estimated through genotyping and
phenotyping of a training population.
High-throughput genotyping
(HTPG): a powerful and efficient
method for rapid analysis of DNA
sequence variations among large
number of samples using the most
advanced techniques, thereby
generating a huge set of datasets
that can be analyzed to understand
nucleotide variations.
Linkage disequilibrium (LD):
nonrandom association between two
markers, genes or, QTLs on the
same chromosome in a population
owing to their tendency to be
coinherited. When variants of two
genetic loci are in LD, the variant
seen at one locus predicts the variant
found at the other.
Linkage drag: the carry-forward of
any unwanted genes/loci along with
the trait of interest from a donor
parent during a backcross breeding
program that might reduce the
agronomic character of the elite
cultivar.
Marker-assisted back crossing
(MABC): the breeding method for
introgression of major effect loci (two
to four) in an elite genetic
background through marker-aided
foreground selection (selection of
plants with the desired alleles from
the donor parent) and supplemented
with background (selection of plants
with higher recurrent parent genome)
in a rapid and precise manner.
Marker-assisted recurrent
selection (MARS): a marker-based
breeding process used to identify
and monitor key regions (up to 20 or
more) from both of the superior
parents for complex traits in
consecutive breeding generations.
Mini-core collection: a limited set
of accessions (about 10% of a core
collection or 1% of the entire
collection) without losing much
genetic diversity. The smaller size of
For a selection of genotypes for core or mini-core formation, PowerCore is a widely used
software package. It was developed based on advanced Maximization (M) strategy with a
heuristic search for establishing core sets [18]. The M strategy has been used to select specific
combinations of accessions that include complete coverage and is useful for selecting entries
with the most diverse alleles and eliminating redundancy. It has been suggested that before
considering molecular markers datasets for the construction of core sets, the data resolution
(DR) needs to be calculated using a jackknife approach to the selection of suitable marker sets
[19]. However, for selection of lines (with maximal dissimilarity) from the mapping population for
undertaking selective phenotyping, three main methods are available. The minimum moment
aberration (MMA) method minimizes the average of all pairwise similarities between the individ-
uals of the population. It can be utilized in selecting F2 recombinants without any missing
datasets [20]. maxRec is another statistical tool for selecting lines on the basis of higher numbers
of recombination events during the course of the recombination generations [21]. This statistical
package is suitable for backcross, double haploid, and recombinant inbred line (RIL) popula-
tions. SPCLUST is another program that has been developed for selecting lines from BC, F2
intercross, and complex crosses like four-way MAGIC [19]. The power of QTL detection using
selected subsets using SPCLUST was similar to the power that could be achieved by using the
entire dataset for analysis for QTL experiments.

Construction of Genetic Maps
Genetic maps serve as the foundation for various genetic applications, such as ordering of
genes/markers, QTL mapping, association mapping, and map-based cloning [22]. Genetic
maps are useful for anchoring scaffolds to linkage groups as well as assembling (and sometimes
correcting) smaller contigs into large contigs [1]. However, construction of high-quality genetic
maps depends on the following four parameters: the type of the population (e.g., biparental
populations like F2, F2:3, BC, RILs, NILs, DH, multiparental mapping populations); the size of the
population (100–500 lines); the number of markers (50–100 000); and the nature of the markers
(SSR, DArT, SNP). Managing all of these parameters requires skills like working on a LINUX
platform as well as high-performance computing programs [23].

Construction of linkagemaps for small-scale experiments with fewer markers (<500) and smaller
population sizes (<200) can still be undertaken with the first-generation and most widely used
mapping software tool MAPMAKER [24]. MapDraw is a simple Microsoft Excel-based free
software tool that can create attractive linkage maps as well as undertaking various kind of
analysis [25]. JoinMap (https://www.kyazma.nl/index.php/JoinMap/) is a Windows-based soft-
ware tool that can handle up to 50 000 markers and its key capability is to integrate data from
multiple populations. This software generates high-quality publication-ready images. Recombi-
nation Counting and Ordering (Record) is a statistical tool that can be utilized for ordering marker
loci on genetic maps [26]. Recently, an ultrafast pipeline, namely SimpleMap (http://
simplemap-aj.sourceforge.net/), was streamlined for the construction of high-density linkage
maps. This pipeline can develop linkage maps with �1000 loci in <10 min, compared with
>8–10 h using other programs.

Currently, genotype data is becoming available for 50 000 to 100 000 marker loci. For such
marker densities, MSTMap has been developed and works on a minimum spanning tree (MST)-
based method (http://www.mstmap.org/). The MST algorithm uses well-established graph
theory and provides an efficient solution to the generation of genetic maps using large numbers
of markers and individuals. MSTMap outperforms other mapping programs when the input data
are noisy or incomplete. To manage large-scale re-sequencing data on the population, the
sequencing enabled genotyping based map (SEG-Map) has also been developed for the
construction of linkage maps [27]. This software allows the mapping of short reads generated
for progeny into pseudomolecules of the parents of the mapping population, which in turn
4 Trends in Plant Science, Month Year, Vol. xx, No. yy
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mini-core collections makes them
suitable for a wide range of
applications including trait mapping
and breeding.
Multiparent advanced generation
intercross (MAGIC): a type of
population developed by crossing
multiple founder lines (four or eight) to
improve the precision and resolution
of QTL mapping. Multiparent crossing
creates a mosaic of the founders
through reshuffling of the genome of
each parental line, enabling fine
mapping of the QTLs at a higher
genetic resolution.
Nested association mapping
(NAM): combines the advantages of
linkage and association mapping and
eliminates the disadvantages of both
methods. NAM takes into
consideration both recent and
historical recombination events to
define the genomic region
responsible for the trait of interest,
with high mapping resolution.
Quantitative trait locus (QTL): a
genomic region possessing several
minor- and/or large-effect genes on a
chromosome and responsible for
complex quantitative traits.
Reference set: usually developed
based on the molecular
characterization of composite
collection (which may include core
and mini-core collections). These sets
are ideal for genetic diversity analysis,
population structure, and association
mapping.
Simple interval mapping (SIM):
testing for the presence of QTLs at
many positions, between each pair of
adjacent markers. The SIM method
calculates a LOD score, on the basis
of which the probability of the
presence of a QTL at that position
can be indicated.
Single marker analysis (SMA): a
part of QTL analysis where
associations between molecular
markers and traits of interest can be
detected using a single marker at a
time by calculating the recombination
frequencies of linked genes.
Whole-genome re-sequencing:
sequencing of the genomes of
individual lines for the species for
which the reference genome is
available. Provides a wide range of
variants, mutations, structural
variation, copy number variation, and
rearrangements between and among
individuals.
enables detection of SNPs. These SNPs can be used to identify recombination breakpoints and
for bin map construction. The output data of SEG-Map can be directly used for QTL mapping
studies.

For a given species, several genetic maps have sometimes been developed using various
mapping populations. As a result, no single genetic map has a marker order for all markers
available in that crop, and sometimes maps from different populations are different. Consensus
genetic maps based on multiple biparental mapping populations are, therefore, an important
resource for providing order for large numbers of marker loci for a given species. Thesemaps are
useful for analyzing LD as well as for association analysis and fine mapping of QTLs. Based on
the availability of the common markers mapped from different mapping populations, consen-
sus maps have been generated in many crops using the JoinMap program [28–31]. Recently,
LPmerge, a new R-based package, has also been developed to construct consensus maps,
with amajor focus onmarker orders to remove and resolve the conflicts in consensusmaps [32].
Programs like JoinMap, MSTMap, and SEG-Map are increasingly common for the construction
of high-density maps. Similarly, JoinMap or LPmerge will be useful for the development of
consensus maps from different mapping populations. At present, medium numbers of markers
(200–500) are being used for linkage map development and trait mapping. However, in the
future, with the advent of sequencing-based trait mapping, current programs/methods for the
development of high-density linkage maps may become obsolete. With the rapid development
of sequencing technologies and the possibility to sequence hundreds/thousands of accessions
at species or even genus level, a pan-genome for the species/genus can be developed. Such
pan-genomes have already been developed in some crops like maize [33], rice [34], and
soybean [35]. The hapmap information coming from these pan-genomes should serve as
the foundation for the construction of ‘universal maps’ for given species/genera.

Linkage-Mapping Based QTL Analysis
QTL mapping, in general, uses one of following approaches: single marker analysis (SMA),
simple interval mapping (SIM), or composite interval mapping (CIM). However, it can be
further extended in terms of estimating epistatic and environmental interactions [36,37]. Most
QTL mapping tools have been developed for biparental mapping populations (Table S1).
However, in recent years some sophisticated tools have been developed for multiparent
mapping populations, like MAGIC and nested association mapping (NAM) populations.

Although a range of QTL analysis programs are available, QGene [38], MapManager QTX
(http://iubio.bio.indiana.edu/soft/molbio/mac/map-manager-readme.html), and MapMaker/QTL
(http://www.broadinstitute.org/ftp/distribution/software/mapmaker3/) are the appropriate soft-
ware tools for SMA. For CIM, WinQTL Cartographer (http://statgen.ncsu.edu/qtlcart/
WQTLCart.htm), MapQTL (https://www.kyazma.nl/index.php/mc.MapQTL), and PLABQTL
[39] have been shown to be appropriate software [40]. Inclusive CIM (ICIM) [41] and QTLNetwork
[42] are other commonly used programs for QTL mapping.

To analyze marker–trait associations (MTAs) and to finely map genetic regions in multiparent
mapping populations of outbred animal stocks, the specialized software package HAPPY was
developed [43]. However, in the case of plant species, R-based packages such as R/qtl,
R/ricalc, R/mpMap, and R/mpwgaim have been used to map genomic regions [44–46]. For
analyzing multiparent mapping populations like NAM populations, an integrated software tool
called IciMapping (see detailed description later) has been developed to identify the genomic
regions responsible for the trait of interest [41]. As many QTL analysis studies are based on
different populations with phenotyping data from different environments, many researchers have
started to undertake meta-QTL analysis to understand the genetic determination of complex
traits. This approach is also useful for the identification of robust QTLs, which can be subjected
Trends in Plant Science, Month Year, Vol. xx, No. yy 5
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for fine mapping and ultimately useful for the identification of candidate genes. To perform meta-
analysis of QTLs, MetaQTL [47] and BioMercator [48] are promising software packages.
Additionally, to develop linkagemaps and to project QTLs, several other packages have become
available recently, including MapChart [49], MQ2 [50], and R/qtlcharts [51].

GWAS
In the case of GWAS, understanding population structure and the level and distribution of LD in
the populations is a prerequisite for using the appropriate approach of association mapping. In
this context, STRUCTURE [52] is the most extensively used software to detect population
genetic structure. STRUCTURE generates clusters based on both transient Hardy–Weinberg
disequilibrium and LD caused by admixture between populations [53,54]. EIGENSOFT is
another widely used statistical package for the detection and correction of population stratifi-
cation in GWAS using principal component analysis [55]. Similarly, Bayesian analysis of popu-
lation structure (BAPS) is another program for Bayesian inference of the genetic structure,
especially for analyzing large-scale population genetics data in a population [56]. Furthermore,
for analysis of re-sequencing data in terms of LD and haplotype block analysis, haplotype
population frequency estimation, single SNP and haplotype association tests, and permutation
tests for association significance, SNP analyzer 2.0 has been developed [57]. A detailed list of
other available software for LD analysis can be found at http://www.genes.org.uk/software/
LD-software.shtml.

For performing association analysis, Trait Analysis by aSSociation, Evolution, and Linkage
(TASSEL) is the most commonly used and highly cited software in GWAS in plants [58]. This
software provides several new and powerful statistical approaches for association mapping
such as the General Linear Model (GLM) and Mixed Linear Model (MLM) [59]. GenABEL
(http://www.genabel.org/manuals/GenABEL) is a genome-wide SNP-association analysis
program based on R. PLINK is another highly cited open-source software for whole-genome
association analysis. This program is designed to perform a range of basic and large-scale
analyses [60]. PLINK focuses on the analysis of genotype/phenotype data to perform the
association analysis.

Most association mapping analyses have been conducted based on GLM or MLM, which does
not seem sufficient for the identification of robust MTAs. Therefore, in the near future, models
such as multilocus mixed models (MLMMs) and multitrait mixed models (MTMMs) need to
become more common. To confirm the association of SNPs identified from the GWAS with the
target traits, nonsynonymous SNP (nsSNP)-based association mapping is one of the most
promising approaches [61]. Additionally, with the increasing use of small Indels for MTAs, the
ADSTs available at present need to bemodified in such a way that they can accommodate SNPs
as well as small Indels for performing trait association analysis. Recently, NGS-based trait
mapping approaches and analysis of re-sequencing data were found promising for the identifi-
cation of target genomic regions. In this context, large numbers of scripts/software were
developed that could be deployed in NGS-based studies, including haplotype-based GWAS
(Box 1). For better utilization of GWAS results, the identified MTAs in various crops should be
made available as open-access databases for the selection and deployment of the most robust
alleles in crop improvement programs.

Molecular Breeding
Significant progress has been achieved in the area of molecular breeding in developing improved
plant varieties [62,63]. Among various GAB approaches, MAS/MABC has been used extensively
in public breeding programs. MAS/MABC, in general, do not use any sophisticated tools to
select plants for advancement or backcrossing. However, open-access visualization tools such
as Graphical Genotypes (GGT) [64], Flapjack [65], and the molecular breeding design tool
6 Trends in Plant Science, Month Year, Vol. xx, No. yy

http://www.genes.org.uk/software/LD-software.shtml
http://www.genes.org.uk/software/LD-software.shtml
http://www.genabel.org/manuals/GenABEL


TRPLSC 1364 No. of Pages 10

Box 1. Genomic Tools for Sequencing-Based Mapping and Re-sequencing Analysis

NGS-based mapping approaches using bulked segregant analysis (BSA) have been used for mapping target
genomic regions without the construction of linkage maps. However, these approaches require specialized skills
and tools. Some approaches have been developed for facilitating trait mapping using NGS approaches. For instance,
the ShoreMap approach (simultaneous mapping and mutant identification by deep sequencing) was developed to map
the target genes in mutant lines [76]. This software package, available at http://1001genomes.org/software/shoremap.
html, is open source and is continuously updated. Similarly, the next-generation mapping (NGM) (http://bar.utoronto.ca/
ngm/) pipeline was proposed and developed for trait mapping [77].

The MutMap [78] and QTL-seq [79] approaches facilitate the mapping of targeted genomic regions from EMS-derived
mutants and from any desirable genotype, respectively. To perform either of these two analyses, specific bioinformatics
pipelines are available at http://genome-e.ibrc.or.jp/home/bioinformatics-team/mutmap. CloudMap (http://usegalaxy.
org/cloudmap) is another open-source web-based analytical bioinformatics pipeline for the identification of candidate
genes directly from EMS-derived mutants without the development of a mapping population [80].

Re-sequencing of numbers of lines from different crop species opens new avenues and is useful for understanding the
evolution of and genetic relationships among individuals. Therefore, for analyzing re-sequencing datasets in terms of
haplotypes, construction of hapmaps, haplotype population frequency estimation, single SNP and haplotype association
tests, and permutation tests for association significance, Haploview is a promising tool. Haploview can analyze
thousands of SNPs (tens of thousands in command-line mode) in thousands of individuals [81]. SHAPEIT [82],
fastPHASE [83], WHAP [84], and HaploBlockFinder [85] are some other important analytical tools/pipelines for the
development of hapmaps/haplotypes and performing GWAS.
(MBDT) (https://www.integratedbreeding.net/179/training/bms-user-manual/marker-assisted-
backcross-breeding-tool) have become available in recent years for the selection of plants with
maximum recurrent parent genome recovery at the global level to eliminate the precise linkage
drag on carrier chromosomes. Another data visualization and selection tool called CSSL Finder
is useful for developing chromosome segment substitution lines (CSSLs) [66]. This is a
useful tool to search a population of advanced backcross lines for a set of lines with the
optimized representation of the donor parent genome in the recurrent parent background. This
software, in conjunction with a graphical genotype, also displays the phenotypic values of the
individual lines. Therefore, this program is useful for the identification of elite/novel CSSLs
responsible for a trait of interest.

For MARS, OptiMAS has been developed by the French Agricultural Research Centre for
International Development (CIRAD) as a part of the Integrated Breeding Platform (IBP). This
software helps in selecting plants possessing superior alleles from elite parents in several cycles
of recombination [67]. GS is a newmolecular breeding approach that integrates marker data and
phenotypic data from a training population to generate a prediction model for predicting
genomic-estimated breeding values (GEBVs) for all segregating individuals of a breeding
population. Calculation of GEBV requires specific statistical models that treat markers as
random effects. The most commonly used GS prediction models are the Random Regression
Best Linear Unbiased Predictor (RR-BLUP) [68], BayesA [68], BayesB [68], BayesCp [68],
Bayesian Ridge Regression (RR) [69], Bayesian LASSO [70,71], and Random Forest Regression
(RFR) [72]. However, no single statistical model has emerged as being clearly better than the
others for all applications. For some applications, it is possible to select the most suitable model
after testing several alternative models. In this context, solGS, a web-based tool for GS based on
the RR-BLUPmodel, has been developed [73]. This software is an easy-to-use analysis platform
for performing GS in plant breeding. Similarly, ISMU 2.0 is being developed by ICRISAT, with the
close collaboration of several leading institutions. ISMU 2.0, which is an improved version of
ISMU 1.0 [74], has several data processing capabilities including several models of GS. This
pipeline includes most of the GS models, including RR-BLUP, Kinship Gauss, RR, Bayesian
LASSO, BayesA, BayesB, BayesCp, and RF and works on Windows, CentOS, and Ubuntu
platforms [75]. Thus, ISMU 2.0 will be useful for the breeding community to analyze large-scale
datasets for GS experiments for enhancing genetic gains (Box 2).
Trends in Plant Science, Month Year, Vol. xx, No. yy 7

https://www.integratedbreeding.net/179/training/bms-user-manual/marker-assisted-backcross-breeding-tool
https://www.integratedbreeding.net/179/training/bms-user-manual/marker-assisted-backcross-breeding-tool
http://1001genomes.org/software/shoremap.html
http://1001genomes.org/software/shoremap.html
http://bar.utoronto.ca/ngm/
http://bar.utoronto.ca/ngm/
http://genome-e.ibrc.or.jp/home/bioinformatics-team/mutmap
http://usegalaxy.org/cloudmap
http://usegalaxy.org/cloudmap


TRPLSC 1364 No. of Pages 10

Box 2. Integrated Pipelines for GAB

Most of the tools presented in this review are standalone applications that use different, and not necessarily compatible,
formats, especially for their input and ouput files. Their different technical charateristics and specifications represent a
major constraint on their use in routine breeding activities. To overcome this bottleneck, a few platforms are emerging that
offer continuous analytical and decision-making pipelines, integrating ADSTs in a seamless fashon whereby the ouput of
one tool in the pipeline is readily accepted as input by the next tool in the chain.

To identify the MTA using biparental mapping population, integrated MAS (iMAS) was developed by ICRISAT. It is an
open-source integrated molecular breeding analysis platform to facilitate trait mapping based on freely available and
powerful software tools (http://www.icrisat.org/bt-software-imas.htm). This software suite comprises six different
modules including data validation, phenotypic evaluation, linkage map construction, QTL analysis, QTL projection,
and marker-assisted breeding.

The Integrated Breeding Platform (IBP) (http://www.integratedbreeding.net), developed recently by the CGIAR's Gen-
eration Challenge Programme and partners, is a web-based one-stop shop for information, analytical tools, and related
services to design and carry out integrated breeding projects. The IBP aims to provide, on a single portal, access to the
crop information, tools, and services that a breeder needs to conduct modern genomics- and/or informatics-based
breeding activities. The core ‘product’ of the IBP is the BreedingManagement System (BMS), an integrated application of
various data management, statistical analysis, and decision support tools to support the various stages of the crop
breeding process toward the release of improved germplasm [86]. The BMS provides useful tools for analyzing
phenotypic and genotypic datasets and managing day-to-day activities through all phases of breeding programs. This
is open-source and one-stop shopping for all of the tools required for GAB programs. One such tool for MAS experiments
is MBDT (https://www.integratedbreeding.net/179/training/bms-user-manual/marker-assisted-backcross-breeding-
tool). MBDT comprises of six modules including data validation, phenotyping, linkage map building, QTL analysis,
genome display, and MABC sample size.

With an objective to identify and use of SNPs in breeding programs, ICRISAT recently developed a pipeline called
Integrated SNP Mining and Utilization (ISMU 1.0) for preprocessing of the raw NGS data, SNP detection between any
combinations of genotype, visualization of the alignment and SNPs results, and the development of KasPar and Golden
Gate assays for a range of experiments [74]. This pipeline has been extended to ISMU 2.0 [75]. The updated pipeline
comprises several genomic selection modules for estimating GEBVs and the selection of superior lines.
Strategic Outlook on the Future Prospects
While significant advances havebeenmade in the areas of genomics andGAB, further efforts need
to be made to develop ADSTs and crop information systems. In the area of data management for
crop breeding (storage, curation, analysis, and publication) one size clearly does not fit all, so there
is an increasing need to better integrate software tools and develop interoperable application
program interfaces (APIs) to facilitate access to diverse tools and databases across different
pipelines. In addition to these analytical and bioinformatics needs, we identify here four other areas
that could be addressed to improve the efficiency of GAB: (i) further reduction in genotyping costs
per line so that genome-wide marker profile data can be generated on large populations in routine
breeding activities for enhancing/fixing favorable alleles; (ii) reduction in field-relevant phenotyping
costs and implementation of new high-throughput screening methods such as aerial infrared
screening; (iii) adoption of best, or at least good, data management practices, starting with
adequate resource allocation and implementation of a data management policy at institute level
through the joint efforts of management and the donor community; and (iv) a sustainable adoption
of ADSTs and associated programs/tools that goes beyond just technological development to
include training and suitable support services for breeders.

Deployment of ADSTs and crop information systems must be considered carefully. Some of
these issues need to be adressed through an integrated approach and one should not
underestimate the difficulty related to technology transfer in the public sector. Local support,
such as that provided by the IBP through regional hubs, can be an attractive option to enhance
the use of modern breeding tools and services. This would be mainly through capacity building,
technical support, and crop-specific expertise.

We are hopeful that the development and deployment of the right ADSTs at the right time, in
keeping with the needs, resources, and technical readiness of breeding programs, will usher
8 Trends in Plant Science, Month Year, Vol. xx, No. yy
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Outstanding Questions
What are the major ADSTswith specific
features that are available for plant
breeding?

Will the construction of genetic maps
be obsolete and/or outdated in the
context of generating millions of data
points on segregating populations?

Can pan-genome information for a
given crop be useful for developing
high-density linkage maps that can
serve as ‘universal maps’?

Can open-source and one-stop inte-
crop improvement programmes into a modern, knowledge-based crop improvement era,
leading to sustainable crop production and global food security.
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