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ABSTRACT
We propose a new model for agent communication in open
systems that is based on the principle that the meaning of
communicative acts lies in their experienced consequences.
A formal framework for analysing such evolving semantics is
defined. An extensive analysis of example interaction pro-
cesses shows that our framework allows for an assessment
of several properties of the communicative conventions gov-
erning a multiagent system. Among other advantages, our
framework is capable of providing a very straightforward
definition of communicative conflict. Also, it allows agents
to reason about the effects of their communicative behaviour
on the structure of communicative expectations as a whole
when making decisions.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems, Languages and structures

General Terms
Theory, Measurement

Keywords
Agent communication languages, evolutionary semantics.

1. INTRODUCTION
Defining the semantics of agent communication languages

(ACLs) is one of the most important aspects of ACL re-
search. In terms of speech act theory [1], which is the most
widely accepted theory used for designing ACLs, this in-
volves explaining the link between illocution and perlocu-

tion, i.e. to describe the effects of utterances (those desired
by the sender and those brought about by the recipient of
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the message) solely in terms of the speech acts used. Vari-
ous proposed semantics suggest, however, that it is necessary
to either resort to the mental states of agents [4, 3, 17] or
to publicly visible commitments [5, 8, 13, 16] in order to
capture the semantics of speech acts, i.e. to aspects of the
system that are external to the language itself.

In the context of open multiagent systems (MAS) [6],
characterised by dynamically changing populations of self-
interested agents whose internal design is not (completely)
accessible to others, it is not clear how specifications of men-
tal attitudes or systems of commitments can be linked to the
observed interactions. How can we make predictions about
agents’ future actions, if the semantics of their communica-
tion is defined in terms of mental states or commitments not
related to the design of these agents?

In response to this problem, this paper suggests a view
of communication semantics that is empirical, consequen-

tialist and constructivist in nature. It is based on aban-
doning the distinction between illocution and perlocution in
favour of defining the meaning of illocutions solely in terms

of their perlocutions. This means that any utterance bears
the meaning of its consequences (hence consequentialist),
i.e. other utterances or observable physical actions, as de-
rived from previous experience (hence empirical); also, this
meaning is always regarded from the standpoint of a self-
interested, locally reasoning agent with decision-theoretic
(bounded) rationality (hence constructivist).

By grounding meaning in interaction and viewing seman-
tics as an emergent and evolving phenomenon, this model of
communication has the capacity to provide a basis for talk-
ing about agent communication that will prove useful as
more and more MAS applications move from closed to open
systems. Its practical use lies in the possibilities it offers
for analysing agent interactions and for deriving desiderata
for agent and protocol design. At a more theoretical level,
our framework provides a very simple link between auton-
omy and control and introduces a new, powerful notion of
conflict defined in purely communicative terms, which con-
trasts mentalistic or resource-level conflict definitions such
as those suggested in [11]. As a central conclusion, “good”
protocols are proven to be both autonomy-respecting and
contingency-reducing interaction patterns, which is shown
through an analysis of example protocols with our frame-
work.

The remainder of this paper is structured as follows: sec-
tion 2 presents the assumptions underlying our view of com-



munication, and in section 3 we lay out requirements for
agents our model is suitable for. Sections 4 and 5 describe
the model itself which is defined in terms of simple con-
sequentialist semantics and entropy measures. An analysis
of several interaction scenarios follows in section 6, and we
round up with some conclusions in section 7.

2. BASICS
Our framework is based on a set of observations about

communication, which follow quite naturally, once a certain
view of agents in open systems is adopted.

We assume that agents are situated in an environment
that is co-inhabited by other agents they can communicate
with. They have preferences regarding different states of
the world, and they strive to achieve those states that are
most desirable to them. To to this end they deliberate, i.e.
they take action to achieve their goals. Also, agents’ actions
have effects on each other’s goal attainment – agents are
inter-dependent.

In open, dynamic and unpredictable systems, it is useful
to organise experience into a cause-and-effect model (which
will depend much more on statistical correlation rather than
on “real” causality) of the behaviour of their environment
in order to take rational action. This is not only true of the
physical environment, but also of other agents. Therefore,
we regard the foremost function of communication to lie in
providing such a causal model for the behaviour of other
agents that an agent can use in a similar way as rules that
it discovers regarding the physical environment.

However, two distinctions have to be made between phys-
ical actions executed to manipulate the environment and
communicative interaction between agents: firstly, the au-

tonomy of agents stands in contrast to the rules that gov-
ern physical environments – agents receive messages but are
free to fulfil or disappoint the expectations [2] associated
with them. Secondly, communication postpones (or replaces)
“real” physical action1: it allows for the establishment of
causal relationships between symbols and subsequent sym-
bols or physical actions.

With this in mind, we claim the following:

(1) Past experience with communication creates
expectations for the future. (2) Agents employ
information about expectations strategically.
(3) Communicative expectations are generalised.
(4a) Uncertainty regarding expectations should
be reduced in the long run. (4b) Undesirable
expectations need to be broken.

Statement (1) simply states that causal models can be built
by agents from experience and used for predicting future
behaviour. (2) is a consequence of (1) and the assumptions
made about agent rationality (we can expect agents to use
any information they have to achieve their goals).

The first interesting claim is (3) which points at a dis-
tinct property of communication. It means that in con-
trast to other causal models, the meaning of symbols used
in communication is supposed to hold for any agent (cf. so-
ciological models of communication [9, 10]). The fact that

1Of course, communication takes place in physical terms
and hence is physical action. Usually, though, exchanging
messages is not supposed to have a strong impact on goal
achievement since it leaves the physical environment virtu-
ally unmodified.

illocutions (which usually mark certain paths of interac-
tions) represented by performatives in speech act theory are
parametrised with “sender” and “recipient” roles conforms
with this intuition. Without this generalisation (which is ul-
timately based on a certain homogeneity assumption among
agents [10]), utterances would degenerate to “signals” that
spawn particular reactions in particular agents.

Claims (4a) and (4b) provide a basis for the design crite-
ria applied when building agents that are to communicate
effectively. Unfortunately, though, the goals they describe
may be conflicting. (4a) states that the uncertainty in ex-
pectations should be reduced to a minimum. From a “con-
trol” point of view, ideally, an agent’s peers would react to
a message in a mechanised, fully predictable way so that
any contingency about their behaviour can be ruled out.
At the same time, the agent itself wants to be free to take
any decision at any time to achieve its own goals. Since its
plans might not conform with existing expectations, she may
have to break them as stated by (4b). Or she might even
desire some other peer to break an existing expectation, if,
for example, the existing “habit” does not seem profitable
anymore. We can summarise these considerations by view-
ing any utterance as a request, and asking what is requested
by the utterance: the confirmation, modification or novel
creation of an expectation.

These considerations lead to several desiderata for seman-
tic models of communication:

• The meaning of a message can only be defined in terms
of its consequences, i.e. the messages and actions that
are likely to follow it. Two2 levels of effects can be
distinguished:

1. The immediate reactions of other agents and one-
self to the message.

2. The “second-order” impact of the message on the
expectation structures of any observer, i.e. the
way the utterance alters the causal model of com-
municative behaviour.

• Any knowledge about the effects of messages must be
derived from empirical observation. In particular, a
semantics of protocols cannot be established without
taking into account how the protocols are used in prac-
tice.

• Meaning can only be constructed through the eyes of
an agent involved in the interaction, it strongly relies
on relating the ongoing communication to the agent’s
own goals.

Following these principles, we have developed a framework
to describe and analyse communication in open systems that
will be introduced in the following sections.

3. ASSUMPTIONS ON AGENT DESIGN

3.1 The InFFrA social reasoning architecture
In order to present the view of communication that we

propose in this paper, we first need to make certain assump-
tions regarding the type of agents it is appropriate for. For

2A third level of effects can be identified, that of non-
observable effects. Since they cannot be correlated with ut-
terances in the way discussed here, they are not considered.



this purpose, we shall briefly introduce the InFFrA social rea-
soning meta-architecture that has previously been described
in full detail in [15]. We choose InFFrA to describe this view
of communication, because it realises the principles laid out
in the previous section, while making only fairly general as-
sumptions about the kind of agents our models are suitable
for.

InFFrA is based on the idea that agents organise the in-
teraction situations they find themselves into so-called in-

teraction frames [7], i.e. knowledge structures that represent
certain categories of interactions. These frames contain in-
formation about

• the possible interaction trajectories (i.e. the courses
the interaction may take in terms of sequences of ac-
tions/messages),

• roles and relationships between the parties involved in
an interaction of this type,

• contexts within which the interaction may take place
(states of affairs before, during, and after an interac-
tion is carried out) and

• beliefs, i.e. epistemic states of the interacting parties.

While certain attributes of the above must be assumed to be
shared knowledge among interactants (so-called common at-

tributes) for the frame to be carried out properly, agents may
also store their personal experience in a frame (in the form
of private attributes), e.g. utilities associated with previous
frame enactments, etc. What makes interaction frames dis-
tinct from interaction protocols and conversation policies is
that (i) they provide comprehensive characterisations of an
interaction situation (rather than mere restrictions on the
range of admissible message sequences), and (ii) they always
include information about experience with some interaction
pattern, rather than just rules for interaction.

Apart from the interaction frame abstraction, InFFrA also
offers a control flow model for social reasoning and social
adaptation based on interaction frames, through which an
InFFrA agent performs the following steps in each reasoning
cycle:

1. Matching: Compare the current interaction situation
with the currently activated frame.

2. Assessment: Assess the usability of the current frame.

3. Framing decision: If the current frame seems appro-
priate, continue with 6. Else, proceed with 4.

4. Re-framing: Search the frame repository for more suit-
able frames. If candidates are found, “mock-activate”
one of them and go back to 1; else, proceed with 5.

5. Adaptation: Iteratively modify frames in the reposi-
tory and continue with 4.

6. Enactment: Influence action decisions by applying the
current frame. Return to 1.

This core reasoning flow, that is supposed to be performed
by InFFrA agents in addition to their local goal-oriented rea-
soning processes (e.g., a BDI [14] planning and plan mon-
itoring unit) is reasonably generic to cater for almost any
kind of “socio-empirically adaptive” agent design.

Using the InFFrA meta-architecture, we can specify a “min-
imal” set of properties of agents that is in accordance with
the principles laid out for our framework in section 2.

3.2 “Minimal” InFFrA agents
The simplest InFFrA-compliant agent design that can be

conceived of is as follows: we consider agents that engage
in two-party turn-taking interactions that occur in discrete
time and whose delimiting messages/actions can always be
determined unambiguously. This means that agents always
interact only with one peer at a time, that these encounters
consist of a message exchange in which agents always take
turns, and that an agent can always identify the beginning
and end of such an encounter (e.g. by applying some message
timeout after which no further message from the other agent
is expected anymore).

We also assume the existence of some special “deictic”
message performative do(A, X) that can be sent by agent A

to indicate it is executing a physical (i.e. non-communicative)
action X in the environment3.

Further, we assume that agents store these encounters as
“frames” F = (C, w, h) in a (local) frame repository F where
C is a condition, w is a message sequence and h is a vector
of message counters.

The message sequence of a frame is a simple kind of trajec-
tory that can be seen as a word w ∈ Σ∗ from some alphabet
of message symbols Σ (which include the do-symbols that
refer to physical actions). Although agents may invent new
symbols and the content language of messages (e.g. first-
order logic) may allow for an infinite number of expressions,
Σ is finite, since it always only contains symbols that have
already occured in previous interactions.

Since specific encounters are relevant/possible under par-
ticular circumstances only, we assume that the agent has
some knowledge base KB the contents of which are, at any
point in time, a subset of some logical language L, i.e. KB ∈
2L. Then, provided that the agent has a sound inference
procedure for L at its disposal, it can use a condition (ex-
pressed by a logical formula C ∈ L) to restrict the scope of a
message sequence to only those situations in which C holds:

(C, w, h) ∈ F ⇔ (KB |= C ⇒ w can occur )

In practice, C is used to encode any information about roles
and relationships, contexts and beliefs associated with a
frames as described in section 3.1.

As a last element of the frame format we use, agents em-
ploy “usage counters” h ∈

� |w| for each message in a frame
trajectory. The counter values for all messages in some pre-
fix trajectory sequence w ∈ Σ∗ is incremented in all frames
who share this prefix word whenever w occurs, i.e.

(w has occured n times ∧ |w| = i) ⇒
∀(C, wv, h) ∈ F .∀i ≤ |w|.hi = n

(for some v ∈ Σ∗). This means that h is an integer-valued
vector that records, for each frame, how often an encounter
has occured that started with the same prefix w (note that
during encounters, hi is incremented in all frames that have
shared prefixes w if this is the message sequence just per-
ceived until the ith message). Therefore, count(F )[i] ≥
count (F )[i + 1] for any frame F and any i ≤ |traj (F )| (we
use functions cond(F ), traj (F ) and count(F ) to obtain the

3More precisely, do(A, X) is actually a shortcut for an obser-
vation action of the “recipient” of this message by which she
can unambiguously verify whether A just executed X and
which she interprets as part of the encounter; it need not be
some distinguished symbol that has been agreed upon.



values of C, w and h in a frame, respectively). To keep F

concise, no trajectory occurs twice, i.e.

∀F, G ∈ F .traj (F ) 6= traj (G)

and if a message sequence w = traj (F ) that has been expe-
rienced before occurs (describing an entire encounter) under
conditions C′ that are not compatible with cond (F ) under
any circumstances (i.e. cond(C)∧C ′ |= false), F is modified
to obtain F ′ = (cond(F ) ∨ C ′, w, h).

As a final element in this agent architecture, we assume
the existence of a utility function

u : 2L × Σ∗ → �
which will provide to the agent an assessment of the utility
u(KB , w) of any message/action sequence w and any knowl-
edge base content KB .

Minimal InFFrA agents who construct frame repositories
in this way can use them to record their interaction experi-
ence: In any given situation, they can filter out those frames
that are irrelevant under current belief and compute proba-
bilities for other agents’ actions and for the expectations oth-
ers have of themselves given their own previous behaviour.
They can assess the usability of certain frames by consult-
ing their utility function, and they use the trajectories in
F both to determine the frames that are applicable and to
pick their next actions.

4. EMPIRICAL SEMANTICS
As mentioned before, the semantic model we want to pro-

pose is purely consequentialist in that it defines the meaning
of utterances in terms of their effects.

Let 2 ·H ∈
�

be some upper bound on the possible length
of encounters, and let ∆(ΣH) be the set of all discrete prob-
ability distributions over all words from Σ∗ no longer than
H.

We define the interpretation IF induced by some frame
repository F as a mapping from knowledge base states and
current encounter sequence prefixes to the posterior proba-
bility distributions over all possible postfixes (conclusions)
of the encounter. Formally, IF ∈ (2L ×ΣH → ∆(ΣH )) with

IF (KB , w) = λw
′
.P (w′|w)

where

P (w′|w) = α ·
�

F ∈ F , traj (F ) = ww′,

KB |= cond(F )

count (F )[|traj (F )|]

for any w, w′ ∈ ΣH and some normalisation constant α.
This means that, considering those frames only whose con-

ditions hold under KB , we compute the ratio of experienced
conclusions w′ to the already perceived prefix encounter w

and the number of all potential conclusions to w.
The intuition behind this definition is that during an in-

teraction encounter, if the encounter started with the initial
sub-sequence w, the interpretation function IF will yield a
probability distribution over all possible continuations w′

that may occur in the remainder of the current interaction
sequence.

Finally, given this probability distribution, we can also
compute the expected “future utility” of any message se-

quence w by computing

ū(w) =
�

w′∈ΣH

IF (KB , w)(w′) · u(KB
′
, w

′)

if KB ′ is the state of the knowledge base after w′ has oc-
cured4.

The definitions in this section resemble the framework
of Markov Decision Processes (MDPs) very much, and to
capture the fact that probabilities of communication effects
are affected by the decision-making agent herself, the MDP
model would have to be modified appropriately. For the pur-
poses of the present analysis, though, defining some simple
measures on expectation structures will suffice.

5. ENTROPY MEASURES
With the above definitions at hand, we can now return to

the principles of communication laid out in section 2. There,
we claimed that an agent strives to reduce the uncertainty
about others’ communicative behaviour, and at the same
time to increase its own autonomy.

We can express these objectives in terms of the expecta-

tion entropy EE and the utility deviation UD that can be
computed as follows:

EEF (w,KB) =
�

w′∈ΣH

−P (w′|w) log2 P (w′|w)

UDF (w,KB) = � �
w′∈ΣH

(u(w′,KB) − ū(w′,KB))2

Total entropy EF(w,KB) of message sequence w is defined
as follows:

EF (w,KB) = EEF (w,KB) · UDF (w,KB)

How can these entropy measures be interpreted? The ex-
pectation entropy assesses the information-theoretic value
of having performed/perceived a certain sequence w of mes-
sages. By computing the information value of all potential
continuations, EE (again, we drop subscripts and arguments
whenever they are obvious from the context) expresses the
entropy that is induced by w in terms of potential continua-
tions of this encounter prefix: the lower EE , the higher the
value of w with respect to its ability of reducing the uncer-
tainty of upcoming messages/actions. Thus, by comparing
expectation entropies for different messages in the process
of selecting which message to utter, the agent can compare
their values or regard the system of all possible messages as
an “encoding” for future reactions.

Utility deviation, on the other hand, is defined as the
standard deviation between the utilities of all possible con-
tinuations of the encounter given w so that the importance
of the potential consequences of w can be assessed. Its power
lies in being closely related to the expected utility of the en-
counter, while at the same time providing a measure for the
risk associated with the encounter sequence perceived so far.

Returning to the observation we made regarding the “re-
quest” nature of any communicative action in section 2, we
can now rephrase this view in terms of the mathematical
tools introduced in the above paragraphs: Any message

4This is because w′ might involve actions that change the
state of the environment. Unfortunately, this definition re-
quires that the agent be able to predict these changes to the
knowledge base a priori.
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Figure 1: A frame repository based on the SRP,
compiled into a tree.
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0.3
1.0
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Figure 2: RAP frame repository tree.

v ∈ Σ considered in the context of an encounter has an
expectation entropy associated with it, so that EE (wv,KB)
can be used to predict how much using v will help to “set-
tle” the communication situation, i.e. to reduce the number
of potential outcomes of the entire encounter. At the same
time UD(wv,KB) can be used to check how “grave” the
effects of different outcomes would be.

By combining these two measures into E , the agent can
trade off the reduction of uncertainty against sustainment
of autonomy depending on its willingness to conform with
existing expectations or to deviate in order to pursue goals
that contradict the expectations held towards the agent.

6. ANALYSIS
To see how the above framework may help interpret the

meaning of utterances and guide the agent’s behaviour, we
will compare three different interaction scenarios, in which
the frame repositories of some agent a1 have been compiled
into the trees shown in figures 1, 2 and 3, respectively (we
use trees of interaction trajectories as defined in [2] instead
of sets of sequences as a more compact representation). The
nodes which represent messages are connected by edges that
are labelled with transition probabilities in italics (computed
using count(F )). We use variables A,B, X etc. to capture
several “ground” situations by a single tree. The substitu-
tions that are needed to reconstruct past interactions using
the tree are not displayed in the examples, but form part of
the private attributes (cf. section 3.1).

Where the direct utility associated with an action is not
zero, the increase/decrease in total utility is printed on top
of the action in bold face in square brackets [] (if communi-
cation preceding these “utility nodes” comes at a cost, this
has been already considered in the utility of the leaf node).
For simplicity, we also assume the trees presented here to
be the result of combining all frames that are consistent
with the current knowledge base, i.e. frame conditions have
already been checked.

6.1 Interaction scenarios
The repository shown in figure 1 summarises experience

with a “simple-request” protocol (SRP) where one agent
starts by requesting an action X and the other may simply
execute the requested action or end the encounter (the ⊥

request(A,B,X)

accept(B,A,X)

0.3

0.5
0.2

propose(B,A,Y)

reject(B,A,X)

0.5

0.5
accept−proposal(A,B,Y)

reject−proposal(A,B,Y)

confirm(A,B,X)1.0

do(B,X)
[−10]

0.9

0.1 do(B,X)
0.9

0.1

0.23

[−5]
do(A,Y)
[−5]

0.77

Figure 3: RCOP tree.

symbol is used to denote encounter termination whenever
termination probability is below 1.0) – in a sense, this is
the most “minimal” protocol one can think of. So far, only
30% out of all requests have been fulfilled, all others went
unanswered. We now picture a situation in which agent a1

is requested by agent a2 to execute some action, but this ac-
tion has a utility of −10 for a1. Note that the probabilities
in the tree are derived from observing different interactions
where a1 may have held both participating parties’ roles
in different instances, but the utility decrease of 10 units
is computed on the grounds of the current situation, by in-
stantiating variable values with agent and action names (e.g.
A = a2, B = a1 and X = deliver(quantity = 100 )).

Figure 2 shows a “request-accept” protocol (RAP) that
leaves some more options to the requestee as she may accept
or reject the request. After confirmation of the requesting
agent (which is certain), the requestee executes the request
with a probability of 90%; in 10% of the cases, the agent
who agreed to fulfil the request is unreliable.

The “request-counter-offer” protocol (RCOP) in figure 3
offers more possibilities still: it includes “accept” and “re-
ject” options, but it also allows for making a proposal Y

that the other agent may accept or reject in turn, and if this
proposal is accepted, that other agent is expected to execute
action Y if the first agent executes X. The distribution be-
tween accept/propose/reject is now 0.3/0.2/0.5, because
it is realistic to assume that in 20% of the cases in which
the initial offer would have been rejected in the RAP, the
requestee was able to propose a compromise in the RCOP.
As before, the requestee fails to perform X with probability
0.1, and this unreliability is even larger (23%) for the other
agent. This is realistic, because the second agent is tempted
to “cheat” once its opponent has done her duty. In the
aforementioned scenario, we assume that the “compromise”
actions X and Y (e.g. X = deliver(quantity = 50 ), Y =
pay bonus) both have utility −5.0, i.e. the compromise is
not better than the original option deliver(quantity = 100 ).

Now let us assume a1 received the message

request(a2, a1, deliver(quantity = 100 ))

from a2 who starts the encounter. The question that a1 finds
herself in is whether she should perform the requested action
despite the negative utility just for the sake of improving the
reliability of the frame set or not5.

6.2 Entropy decrease vs. utility

5Ultimately, this depends on the design of the agent, i.e. in
which way this reliability is integrated in utility computa-
tion.



First, consider the case where she chooses to perform
the action. In the SRP, this would decrease UD(request)
from 5.39 to 5.366, but it would increase EE (request) from
0.8812 to 0.8895. The total entropy E(request) would in-
crease from 4.74 to 4.76. In case of not executing the re-
quested action utility deviation would rise to 5.40, expec-
tation entropy would decrease to 0.8776, and the resulting
total entropy would be 4.73.

How can we interpret these changes? They imply that
choosing the more probable option ⊥ reduces entropy while
performing the action increases it. Thus, since most requests
go unanswered, doing nothing reassures this expectation.
Yet, this increases the risk (utility deviation) of request, so
a1’s choice should depend on whether she thinks it is prob-
able that she will herself be in the position of requesting an
action from someone else in the future (if e.g., the utility of
do becomes +10.0 in a future situation and a1 is requesting
that action). But since the difference in ∆E7 is small (0.02
vs. -0.01), the agent should only consider sacrificing the im-
mediate payoff if it is highly probable that the roles will be
switched in the future.

Let us look at the same situation in the RAP case. The
first difference to note here is that

UD(accept) = UD(confirm) = 6.40 > 4.76 = UD(request)

This nicely illustrates that the “closer” messages are to utility-
relevant actions, the greater the potential risk, unless occur-
rence of the utility-relevant action is absolutely certain. This
means that the 0.9/0.1 distribution of do/⊥ constitutes a
greater risk than the 0.7/0.3 distribution of reject/accept,
even though EE(confirm) < EE (request)!

If a1 performs the requested action, the total entropy of
request increases from 4.86 to 4.89, if she doesn’t (by send-
ing a reject), it decreases to 4.84. Since this resembles the
entropy effects in the SRP very much, what is the advantage
of having such a protocol that is more complex?

6.3 External paths and path criticality
The advantages of the RAP become evident when look-

ing at the entropies of accept and confirm after a reject,
which remain unaffected (since they are located on differ-
ent paths than reject). So RAP is, in a sense, superior to
SRP, because it does allow for deviating from a certain ex-
pectation by deferring the expectations partly to messages
on unaffected external paths. Effectively this means that
after a reject, a request becomes riskier in future encoun-
ters, but if the agent waits until the accept message in a
future interaction, she can be as certain of the consequences
as she was before. Of course, in the long run this would
render request almost useless, but if used cautiously, this
is precisely the case where autonomy and predictability can
be combined to serve the needs of the agents.

The most dramatic changes to entropy values will be wit-
nessed if the agent doesn’t perform the action, but promises
to do so by uttering an accept message: E(request) in-
creases from 4.86 to 5.05, E(accept) and E(confirm) both
increase from 3.00 to 3.45. This is an example of how our
analysis method can provide information about path criti-

6The small changes are due to the fact that the frame repos-
itory is the product of 100 encounters – a single new en-
counter induces only small changes to the numerical values.
7∆E is defined as the difference between entropies after and
before the encounter.
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Figure 4: RCOP entropies along “success” path for
all four interaction cases.

cality: it shows that the normative content of accept is very
fragile, both because it is closer to the utility-relevant action
and because it has been highly reliable so far.

6.4 Trajectory entropy shapes
Let us now look at the RCOP and, once more, consider

the two alternatives of executing the request right away or
rejecting the request. Now, the total entropy decreases from
14.41 to 14.38 and 14.35 in the case of accept/reject, re-
spectively. This is similar to the SRP and the RAP, even
though the effects of different options are now less clearly
visible (which due to the fact that refusal and acceptance
are now more evenly distributed). Also, the total entropy
of request that is more than three times higher than be-
fore (with comparable utility values). This suggests that it
might be a good idea to split the RCOP into two frames that
start with different performatives, e.g. request-action and
request-proposal.

Of course, the propose option is what is actually inter-
esting about the RCOP, and the final step in our analysis
will deal with this case. If a1 analyses the possible runs that
include a propose message, she will compare the effects of
the following encounters on the frame tree with each other:

Short name Encounter
“success”: request(A, B, X) . . .→ do(A,Y )
“A cheats”: request(A, B, X) . . .→ do(B, X)
“B cheats”: request(A, B, X) . . .→ accept-proposal(A,B, Y )
“rejection” : request(A, B, X)→ reject-proposal(B, A,X)

Figures 4 and 5 show the values of E(w) and ∆E(w) (the
change in total entropy before and after the encounter) com-
puted for the messages along the path

w = propose(A, B, X) → . . . → do(A,Y )

A first thing to note is the shape of the entropy curve in
figure 4 which is typical of meaningful trajectories. As il-
lustrated by the boxed “perfect” entropy curve, reasonable
trajectories should start with an “autonomy” part with high
entropy which gives agents several choices, and then con-
tinue with a “commitment” part in which entropy decreases
rapidly to make sure there is little uncertainty in the conse-
quences of the interaction further on.



Secondly, figure 5 which shows the changes to the node
entropies before and after the respective interaction proves
that as in the RAP, cheating has a negative impact on en-
tropies. Moreover, the effects of “A cheats” appear to be
much worse than those of “B cheats” which reassures our in-
tuition that the closer utterances are to the final outcome of
the encounter, the more critical will the expectations about
them be.

Thirdly, as before, the “rejection” dialogue and the “suc-
cess” dialogue are acceptable in the sense of decreasing en-
tropies of propose and accept-proposal (note that the small
entropy increase of request is due to the 0.1/0.23 probabili-
ties of cheating after accept-proposal and do(B, X)). The
fact that “success” is even better than “rejection” suggests
that, in a situation like this, there is considerable incentive
to compromise, if the agent is willing to sacrifice current
payoff for low future entropies.

6.5 Conflict potential
Looking at the plots in figure 5, a more general property of

communication becomes evident: we can imagine an agent
reckoning what to do in an ongoing encounter who evaluates
the potential entropy changes to relevant paths after each
message.

For this purpose, let F ′ be the result of adding a new en-
counter w′ to the current repository F (we assume count(w)
and cond(w) are computed as described in section 3). The
entropy change induced on trajectory w ∈ Σ∗ by performing
encounter w′ ∈ Σ∗ is defined as

∆EF(w, w
′) = EF′(w) − EF(w)

This quantity provides a measure of the expectation-affir-

mative or expectation-negating character of an utterance. In
other words, it expresses to which degree the agents are
saying “yes” or “no” to an existing expectation.

The conflict potential of an encounter can be derived by
comparing the expected entropy change to the occured en-
tropy change, and thus revealing to which degree the agents
exceeded the expected change to expectation structures. We
can define the conflict potential exerted by the occured en-
counter w′′ on encounter w if the expected encounter was
w′ as

CPF (w′′
, w

′
, w) = � w[|w|]

w[1]

∆EF (w, w
′′) − ∆EF (w, w

′)dwi

This is the area under the “conflict curve” in figure 5, that
computes

∆E(“success”, “A cheats”) − ∆E(“success”, “success”)

This curve shows how the difference between expected and
actual entropy change grows larger and larger, until the
encounter is terminated unsuccessfully. This increases the
probability that the participating agents will stop trusting
the expectation structures, and that this will inhibit the nor-
mal flow of interaction, especially if CP is large for several
paths w.

A noteworthy property of this view of conflict is that in
cases where, for example, entirely new performatives are
tried out, the conflict potential is 0 because the expected
entropy change (which is very large, because the agents know
nothing about the consequences of the new performative)
is identical to that actually experienced. So what matters
about conflict is not whether the expectations associated
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Figure 5: RCOP entropy changes ∆E along the
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with a message are clear, but rather whether the effect of
uttering them comes close to our expectations about that
effect on the expectation structures – a property we might
call second-order expectability.

7. CONCLUSIONS
In this paper, we have presented a novel model for defining

and analysing the semantics of agent communication that is
based on the experience of agents (or external observers)
with the ongoing communicative behaviour in a MAS. This
model is very general in that it only relies on a statistical
analysis of observed communication and makes no assump-
tions regarding the domain of application. It does impose
some restrictions on the design of the agents by assum-
ing them to fulfil minimal InFFrA criteria, i.e. to be able
to record and statistically analyse observed interaction se-
quences. Subsequently, we defined entropy measures that
proved to be very powerful when analysing different inter-
action situations.

The central conclusion from this analysis is that appropri-
ate expectation structures are structures that leave enough
room for autonomy but are at the same time reliable once
certain paths are chosen by interactants – they are autonomy-

respecting and contingency-reducing at the same time.
Such structures are characterised by the following fea-

tures:

- external paths whose entropies remain unaffected by
agent’s choices in the early phases of an encounter;

- low expectation entropy where utility deviation is high
– the higher the potential loss or gain of a path, the
more predictable it should be (esp. towards the end of
an encounter);

- alternatives for different utility configurations; paths
that are likely to have a wider range of acceptable out-
comes for the partners (e.g. by containing do-actions
for all parties, cf. RCOP) are more likely to become
stable interaction procedures, as they will be used more
often.



One of the strengths of our framework is that empirical se-
mantics suggest including considerations regarding the use-
fulness of “having” a certain semantics in the utility-guided
decision processes of agents. Agents can compute entropy
measures of message trajectories prior to engaging in the ac-
tual communication and assess the first- and second-order
effects of their actions under current utility conditions or
using some long-term estimate of how the utility function
might change (i.e. which messages they will want to be re-
liable in the future). The fact that agents consider them-
selves being in the position of someone else (when comput-
ing entropy changes) links the protocol character of commu-
nication to the self-interested decision-making processes of
the participating agents, thus making communication truly
meaningful.

This role-taking [10] in communication necessitates the use
of speech acts in our framework to generalise over agents.
The “content” slot of the speech acts used is necessary to
parametrise them with additional symbols, thus construct-
ing a topic of the conversation, the ultimate objective being
to use performatives as markers for certain interaction tra-
jectories (and probability distributions) that occur in a va-
riety of situations. This allows us to view frame repositories
as ontologies of performatives with a probabilistic, quan-
titative annotation – rotating the frame trees of section 6
clock-wise by 90◦ suffices to make them look like semantic
network style ontologies. In our understanding, the mean-
ing of things always depends on “how we act upon them”,
so the relationship between expectation-based semantics and
ontologies certainly goes beyond the above observation and
deserves further investigation.

Critics may object that there is more to communication
than statistical correlations between messages and actions,
because the purpose of communication is not always physi-
cal action (but also, e.g., exchange of information) and that
many (in particular, normative) aspects of communication
are neglected by reducing semantics to an empirical view.
We still believe that such empirical semantics can serve
as a “greatest common denominator” for divergent seman-
tic models of different agents, if no other reliable common
knowledge about the meaning of messages is available. If, on
the other hand, such knowledge is available, our framework
can still be used “on top” of other (mentalistic, contractual)
semantics.

Our definition of conflict potential is another strength of
our framework, because conflict is defined as the situation in
which agents’ trust in the communication system becomes
weaker. Sudden, unexpected “jumps” in entropies that be-
come bigger and bigger render the expectation structures
questionable, the meaning of communicative acts becomes
more and more ambiguous. This definition of computa-
tional conflict is very powerful because it does not resort
to domain-dependent resource or goal configurations and is
defined solely in terms of communicative processes. How-
ever, we have not yet suggested resolution mechanisms for
such conflict interactions. We believe that reifying conflict in
communication (i.e. making it the topic of communication)
is key when it comes to conflict resolution. We are currently
developing protocols in which agents exchange information
about their entropy changes in order to resolve conflicts and
these seem very promising.

Another interesting issue to look at in future work is the
emergence of system-wide, stable interaction patterns from

scratch, in particular analysing how and when agents intro-
duce new types of messages and message sequences, and how
they re-combine expectation structures to make sense out of
new communication structures.

Finally, a more elaborate decision-theoretic framework is
needed that views expectation structures as uncertain envi-
ronments for which rational decision-making processes with
provable optimality criteria can be defined. We are cur-
rently exploring the possibilities of adapting reinforcement
learning algorithms for this purpose.
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