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Abstract
Detailed observations of larval Drosophila chemotaxis have characterised the relationship

between the odour gradient and the runs, head casts and turns made by the animal. We

use a computational model to test whether hypothesised sensorimotor control mechanisms

are sufficient to account for larval behaviour. The model combines three mechanisms

based on simple transformations of the recent history of odour intensity at the head location.

The first is an increased probability of terminating runs in response to gradually decreasing

concentration, the second an increased probability of terminating head casts in response to

rapidly increasing concentration, and the third a biasing of run directions up concentration

gradients through modulation of small head casts. We show that this model can be tuned to

produce behavioural statistics comparable to those reported for the larva, and that this tun-

ing results in similar chemotaxis performance to the larva. We demonstrate that each mech-

anism can enable odour approach but the combination of mechanisms is most effective,

and investigate how these low-level control mechanisms relate to behavioural measures

such as the preference indices used to investigate larval learning behaviour in group

assays.

Author Summary

The larvae of the fruitfly are attracted to many odours. We use a computational model in
which simulated larvae stop, start and redirect their crawling behaviour in response to
their experience of changes in odour. We show that three simple rules for switching
between behaviours are sufficient to produce larva-like results in a simulated agent.

Introduction
It is well established that Drosophila larvae perform chemotaxis towards a wide range of odour-
ants (e.g. [1]). Our aim in this paper is to examine what sensorimotor mechanism(s) account
for larval chemotaxis, looking for a minimal model that captures observed phenomena. This
will allow us to examine the nature of sensory input and its processing, and identify possible
key control outputs that are modulated by conditions or experience. In particular, we are
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interested in connecting models of odour discrimination and learning to the odour experience
of the animal as it moves in a gradient.

Many other organisms also exhibit chemotaxis, using a variety of different strategies [2]. The
basic forms of orientation mechanism are reviewed in [3]. Bacteria alternate straight swimming
and random tumbling, with the probability of switching modulated by the direction of change
in chemical intensity [4]. In C. elegans, a similar modulation of the frequency of large re-orienta-
tions (pirouettes) by the odour gradient is accompanied by a more gradual directed bias of runs
towards the odour [5]. Insects such as the silkworm moth that navigate in patchy odour plumes
make upwind surges in response to odour encounters, interspersed with zig-zag and casting
behaviours [6]. Flies approaching odour sources in relatively still air might do so by alteration of
their visuomotor control, to increase straight flight and suppress turning if odour concentration
is increasing [7, 8]. Note that none of these strategies requires the use of spatially separated
olfactory sensors to obtain instantaneous measurement of the direction of an odour gradient,
but rather exploit temporal change due to movement of the animal, movement of the chemo-
sensors, movement of the medium carrying the odour, or a combination of all three. However,
in many cases a bilateral arrangement of sensors does make instantaneous assessment of the rel-
ative concentration across space possible, and this is sometimes exploited: for example, bees [9]
and flies [10, 11] exhibit turning towards the antenna experiencing higher concentration.

Drosophila larvae’s olfactory sensors are located at the tip of the head [12, 13]. As larvae
have left and right olfactory sensory organs it would seem possible that they could compare
between left and right odour concentrations to perform odour taxis. It has been reported that
crude unilateral surgical ablation of sensory organs leads to increased turning towards the
intact side [14]. However the separation between these sensors is very small and it seems
unlikely that the minute instantaneous difference in concentration between left and right could
be detected over environmental, sensory and neural noise [15]. Furthermore, using genetic res-
cue of single olfactory neurons, it has been demonstrated that while bilateral sensory input
improves chemotaxis, it is not required [16].

The most salient features of the larva’s movement patterns also seem inconsistent with
instantaneous lateral steering. Larval locomotion has two distinct modes [17]. During runs,
consistent peristaltic waves cause the larva to move forwards in a relatively straight line (but
see below). During turns, unilateral contraction of one side of the body or the other causes the
anterior section of the body to sweep from side to side, a behaviour referred to as ‘head casting’.
The effective direction of a turn is determined by the casting behaviour ending with the ante-
rior section of the body at an angle to the rest of the body. In this case, when the larva resumes
running, it moves off in a new direction with respect to the previous run. As it moves forward,
the rear gradually realigns itself with the front. Larvae have been shown to produce run and
turn behaviours without the brain [18], suggesting they may have a ‘basic’ locomotion pattern
embedded in the ventral nerve cord and motor system, which can be modulated by higher
brain areas in response to sensory input.

The most detailed behavioural description of larval Drosophila chemotaxis comes from
[19]. By using an arena designed to produce a well-defined odour gradient (described in [16]),
and fine-grained tracking of individual larvae exploring this environment, the authors were
able to decompose larval behaviours based on orientation with respect to the local odour gradi-
ent. This analysis revealed that larvae were 1) more likely to stop runs and start head casting
when moving down gradient, and 2) more likely to turn (i.e. finish head casting and return to
running) towards the direction of higher odour concentration. Similar results have been
reported in a study using linear odour gradients [20].

But how do larvae determine when to turn and which direction to turn? Turn initiation is
typically preceded by a period of decreasing sensory experience (defined as a normalised
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derivative of concentration) corresponding to running down the gradient [19]. Turns to the
direction of higher concentration are typically preceded by a large spike in sensory perception,
corresponding to a head cast in the direction of higher concentration. Given that the direction
of a turn (the alteration in direction between two runs) is determined by the direction of the
head cast preceding the turn, a large spike in sensory perception could act as a signal to transi-
tion from head casting back to forward movement, resulting in turns generally being towards
the direction of high concentration [19].

More recently a third factor contributing to odour-directed paths in larvae has been
described [21, 22] which has been termed ‘weathervaning’. During runs, the larva’s path tends
to be curved slightly but significantly towards the side of higher odour concentration. This
behaviour can still be observed for larvae with single, unilateral olfactory receptors, and has
been hypothesised to utilise active sensing of the lateral olfactory gradient through low ampli-
tude head casts during runs [21].

In this paper we use an agent based model to determine if these three control mechanisms—
initiating head casting when the odour intensity is decreasing, ending head casting when a sharp
increase in odour is experienced, and ‘weathervaning’—can be derived from simple perceptual
processing; whether they can replicate fine-grained statistics of larval behaviour; whether they
are necessary and/or sufficient to produce chemotaxis; and whether they can be used to provide
a low-level account for high-level behavioural descriptions such as preference indices.

Models

Simulated larva
We abstract the body of a larva as consisting of two sections of equal length, the head and
body, with one articulation between them. The basic larva has two distinct behaviours, runs
and head casts (Fig 1a). During a run, the head section moves forward at constant speed vfor-
ward. Head orientation remains constant during a run, apart from slight modulation by the
weathervane mechanism (see below). The body section is ‘pulled’ behind the head section dur-
ing runs; when the head body angle is not zero the body section gradually rotates to align with
the head section as the larva moves forward. During head casting, the body section remains
motionless while the head section rotates from side to side relative to the body section, at speed
y0cast . Upon reaching the limit of rotation, θmax_head_cast, in one direction, head rotation in the
opposite direction begins immediately. Head casting may terminate with the head section ori-
ented differently to the body section; this orientation will determine the direction of the follow-
ing run, and thus the effective size and direction of turns. All our simulations consist of single
larva trials, and we therefore do not consider collisions or interactions between larvae.

Odour environment and perception
The intensity of the odour at any location in the simulation is given by a single value; in this
paper we consider only single-odour environments (as used in many behavioural experiments).
We use both artificial odour gradients (e.g. a Gaussian distribution of concentration around an
odour source), and data taken from measurements of real experimental odour landscapes in
which larvae have been tested.

For a simulated larva in a given landscape we use the odour concentration C at the tip of the
head section as the input to the larva’s ‘perception’. This perceptual value is generally the only
information the simulated larva has about the environment, and all behavioural modulation is
based on a limited history of this value.

AModel of Drosophila Larva Chemotaxis
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Fig 1. Outline of the simulated larva. a) Basic behaviours. The simulated larva can move forward in the direction it is oriented with the body rotating to align
(runs); or the head section can rotate back and forth relative to the body (head casts). b) State transition diagram illustrating the control of behaviour in the
simulated larva. Transitions between running and head casting and pauses in weathervane casting are probabilistic, with the probabilities modulated by the
preceding sensory experience. (Note that the wall contact response is not shown, see text). c) Perceptual experience of a simulated larva in an odour
gradient. A typical body / head trajectory through a Gaussian odour landscape is shown on the left. The concentration, perceptual measure, and behavioural
transition rates modulations experienced by the model as it follows this trajectory are shown on the right. The perceptual measure is obtained by taking the
normalised rate of change of the odour concentration, while the behavioural transition rate modulations are obtained by convolving the perceptual measure
with the associated kernel (shown beside each trace).

doi:10.1371/journal.pcbi.1004606.g001
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Following [19], we approximate perception with a rule of the form:

� ¼ 1

C
� dC
dt

ð1Þ

This rule gives the larva access to a measure of the relative rate of change of the odour con-
centration. When moving up gradient the perceptual value will be positive, and when moving
down gradient the value will be negative. Note that this perceptual processing is deliberately
simple, intending to capture the hypothesis that a relative rate-of-change perceptual signal is
sufficient to allow for larva-like chemotaxis. In reality there must be some level of odour which
falls below the perceptual limits of the animal, and some level that entirely saturates the
response, but these effects are not included in the current model. We address the issue of more
realistic sensory processing in the discussion.

Due to the normalisation in our perception rule, the scale of concentration values in our
odour landscapes is arbitrary. Thus for simplicity, unless otherwise noted we normalise the val-
ues of all odour environments such that the peak concentration is 1.

Basic behavioural control
Our starting point for behavioural control of the simulated larva is based directly on the
hypothesis proposed by [19], that directed behaviour emerges out of sensory-driven probabilis-
tic transitions between running and head casting that are controlled solely by the recent history
of perception (Fig 1b). Specifically, it is assumed that larvae:

1. Increase prun_terminate(t), the probability of terminating a run and initiating head casting
when detecting a gradual decrease in perception value during a run and

2. Increase pcast_terminate(t), the probability of terminating head casting and resuming running
on detecting a sharp increase in perception value.

For our purposes, it is simpler to first define rates of transitions, and convert these into proba-
bilities of transitioning between behaviours on each time step by:

prun terminateðtÞ ¼ rrun terminateðtÞ � dt ð2Þ

pcast terminateðtÞ ¼ rcast terminateðtÞ � dt ð3Þ

Note that simulations proceed in discrete timesteps of length dt = 0.1s.
We can now define our control problem as converting the larva’s perceptual history (the

only information it has available to it) into these transition rates. We do this by defining a ker-
nel for each transition, and obtaining a rate of transitions by convolving the perceptual history
with the appropriate kernel (i.e. element-wise multiplying and then summing). As larvae make
transitions from runs to turns even in the absence of odour stimuli, we further include a base
rate of making a transition regardless of the perceptual history.

rrun terminateðtÞ ¼ rrun terminate base þ
Xtrun kernel

t0¼0

�ðt � t0Þ � krun terminateð�t0Þ ð4Þ

rcast terminateðtÞ ¼ rcast terminate base þ
Xtcast kernel

t0¼0

�ðt � t0Þ � kcast terminateð�t0Þ ð5Þ

To encode the desired behavioural controls into our model, we use simple linear kernels
which resemble the average perceptual history preceding behavioural transitions in real larvae,

AModel of Drosophila Larva Chemotaxis
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as reported in [19]. Thus the kernel for run termination takes the form of a gradual negative
slope, while the kernel for cast termination is a steeper positive slope with a similar duration to
a single head cast (see depictions in Fig 1c). Note that both transition rates are continuously
calculated regardless of behavioural state, but only affect behaviour when the larva is in the cor-
responding state. The output of the perception rule ϕ and the control rules rrun_terminate(t) and
rcast_terminate(t) for a section of simulated larva paths are shown in Fig 1c.

Extensions to behavioural control
Initial simulations using the control outlined above raised a number of issues leading to the fol-
lowing modifications to the control scheme.

Transition on outward casts only. When a simulated larva head casts towards a side with
lower odour concentration, the probability of terminating the head cast (and transitioning
back to forward crawling) is low, due to the decreasing odour value. However, when casting
back towards the centre after a head cast to the low-odour side, the probability of terminating
the head cast rises, making it likely for the cast to terminate before the head has actually
returned to the centre. This means that when the run is resumed, the larva has effectively made
a turn towards the side of lower odour. To reduce this effect, we altered the behavioural control
so that transitions from head casting to running could only occur during the ‘outward’ phase
of the head cast, and only when the head cast has reached a minimummagnitude, θmin_head_cast.
One side effect of this change is that in our model head casting is always followed by a turn, i.e.
our model never head casts and then continues in its original direction. Larvae do sometimes
head cast and then resume their runs in the same direction, however, such events make no dif-
ference to the larva’s trajectory, and were excluded from analysis of the larval data to which we
later compare our simulation’s behaviour [19].

Enable repeated casts to one side. Real larvae show significant instances of consecutive
head casts to the same side. To allow our model to match this behaviour, we altered the head
casting behaviour such that when the head crosses the centreline, the simulated larva has a 50%
probability of reversing the current head rotation direction so as to cast back in the same direc-
tion again.

Minimum run duration. With the basic behavioural control scheme described above, it is
possible for larvae to transition from head casting to running, and then immediately transition
back to head casting. This tends to distort the proportions of apparent consecutive head casts.
To prevent this, we added a period of length tmin_run following transitions to running during
which a transition back to head casting cannot occur.

Weathervaning. The basic controller produces straight runs only, but it is clear that larval
behaviour contains curved runs, and as discussed in the introduction, it has been shown that
these tend to curve the path towards the side of higher concentration. We therefore introduced
a weathervaning mechanism to the simulated larva, which gradually reorients it towards the
odour source during runs. We follow the hypothesis from [21] that larvae sense lateral concen-
tration differences during runs via low amplitude head casts, and use this information to bias
the direction of their runs towards the side of higher concentration.

During runs, our simulated larva continuously makes small casts of magnitude
θmax_weathervane_cast in alternating directions at an angular speed of y0weathervane cast , while still mov-
ing forwards in the direction of the head section. We refer to these casts as ‘weathervane casts’
to distinguish them from the larger casts made when running has stopped. The model proba-
bilistically transfers from weathervane casting to simple forward crawling at rate rweathervane_-
cast_terminate. If this transition to simple forward crawling happens when the head is at an angle
to the body, the resulting reorientation of the body will lead to a curve in the path. The
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transition back to weathervane casting also happens probabilistically, at constant rate
rweathervane_cast_resume.

rweathervane is calculated in a similar manner to rrun_terminate and rcast_terminate, with the only
difference being the choice of kernel and base transition rate. To produce a weathervaning
effect, we want the model to preferentially pause its weathervane casting when the head is
angled towards the side of higher odour concentration. Intuitively, this suggests a kernel similar
to that used for cast termination, which translates short term rises in perceptual value to high
cast termination rates. However, for weathervaning there is an additional complication—the
perceptual signal results from a combination of both forward motion and lateral casting. We
therefore use a kernel which looks for an increase in perceptual signal relative to a longer term
average, as displayed in Fig 1c. When convolved with the perceptual history, this kernel calcu-
lates a value proportional to the mean perception of the last tweathervane_short_average seconds
minus the mean perception of the last tweathervane_long_average seconds.

Biased first cast direction. [19] show that around 70% of the time, a larva’s first head-cast
after terminating a run is towards the direction of higher odour concentration. Our basic
model casts left or right with equal probability, and so does not capture this phenomenon.

We therefore altered the model such that the direction of the first head cast after terminat-
ing a run is determined by the current angle of the head (which is constantly changing due to
to the weathervaning mechanism introduced above); if the head is to the left of the mid-line
the first cast will be to the left, while if the head is to the right of the mid-line the first cast will
be to the right. As weathervaning tends to lead to the larva curving towards the side of higher
odour concentration, this should lead to a bias in first head casts to the direction of higher
odour concentration.

Wall contact. To be able to compare our simulated behaviour with standard test situations
for the larva, we need to test it in delimited areas, and hence require a mechanism to determine
how simulated larvae will behave when they come into contact with a wall. Collision detection
occurs when the head point of the larva coincides with a defined wall location in the environ-
ment. A collision while running results in a small turn of the head section in the direction away
from the wall. A collision during a head cast leads to a switch in head casting direction. The
effective result is that the simulated larvae will run along a wall until it transitions to head cast-
ing, and may then end its head casting in a direction taking it away from the wall. Although the
behaviour of real larvae when encountering obstacles has not been analysed in detail, this
response of the simulated larva is broadly similar to our observations of real larvae.

The resulting complete controller is illustrated in the form of a state transition diagram in
Fig 1b.

Parameter setting
Twenty parameters need to be set for this model. Some can be taken from available data, but
the appropriate values for others were less clear. We discuss here how we chose each of our
parameters, with the final values used to generate the results in this paper summarised in table
1.

We take the forward movement speed vforward = 1mm/s from figure 2a in [19]. From analysis
of paths of larvae in a no-odour environment we estimate the base rate of transitions from runs
to turns at rrun_termination_base = 0.148s−1, that is, turns occur on average every 7 seconds. To
determine the corresponding base rate for turn to run transitions, we count the proportion of
turns which have a single associated head cast. We assume that this gives the probability of
transitioning from head casting to forward crawling behaviour during any given head cast
(making the implicit assumption that the distribution of number of head casts before a turn
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can be described by a geometric series). We then divide this probability by the duration of a
head cast in our model to give rcast_termination_base = 2.0s−1, that is, a probability of 0.7 of return-
ing to running after a single head cast.

Inspecting head casts from the no-odour larva data, we found that over 95% of casts did not
exceed 120°, and so we set θmax_head_cast = 120°. The speed of head casts needs to be fast enough
to allow up to 4 head casts within a 5 second window (as seen in the larval data), so has been
set to allow for a head cast (out and in) of maximal size in one second: y0

cast ¼ 2 � ymax head cast .
To make turns effective, head casts should only terminate beyond some minimum angle from
the centreline. We use the definition of head casts used to define turns in [19], i.e. θmin_head_cast

= 37°. The amplitude of weathervane casts was set to θmax_weathervane_cast = 20°, matching the
size of small head casts shown in figure 8c in [21]. Weathervane cast speed was set to a moder-

ate value, y0weathervane cast ¼ 60
�
.

The final parameters to be set are those defining the lengths and shapes of the kernels. As
we only use linear kernels, they can be described with three parameters, the duration and the
start and end values. We need a relatively long, negatively sloping kernel for the run termina-
tion kernel, and a short, positively sloping kernel for the cast termination kernel. On this basis
we found approximate values for the kernels by adjusting until the simulated larva displayed
navigation towards the odour source.

We then further adjusted kernel parameters by hand until our model matched larval behav-
iour across a range of behavioural statistics (see Results). This was achieved through gradual
adjustment of parameters and visual inspection of resulting behavioural statistics. Automated
optimisation of these parameters would have been possible in theory, however, defining a sin-
gle optimisation criteria when the goal was to match across several distributions would in itself
be a subjective process.

The kernel parameters chosen are reported in Table 1; these values are used throughout
unless otherwise noted.

Analysis methods
To establish a comparison between our model and experimental results from real larvae, we
apply a number of metrics from [19] to paths of wild type larvae and simulated larvae. These
metrics are constructed from the trajectories of larvae’s head, centroid and tail positions; note
that in this analysis no use is made of the internal state of the model. The metrics used are as
follows:

• Body angle, α, the angle of the larva’s body section (measured anticlockwise from the x-axis
of the arena)

• Reorientation speed, dadt , the rate at which the larva’s body orientation is changing

• Head angle, θ, the angle between the larva’s body and head sections

• Bearing, β, the relative angle between α and the local odour gradient, where 0 indicates the
larva’s body is aligned with the direction of maximal concentration increase.

We also extract times of turns and head casts from our simulations. These are defined as
follows:

• Turn, a period during which da
dt > 12

�
=s. Turns of less than 1s are discarded.

• Head cast, a period during which |θ |>37°.

Events are categorised as follows:

AModel of Drosophila Larva Chemotaxis
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• Turns to left / right. A turn is classified as a left turn if the change in body angle is positive,
and as a right turn if the change in body angle is negative. We assume turns are in the shorter
direction, e.g. a turn from 170° to −170° is assumed to be a change in bearing of +20°, not
−340°.

• Turns to high / low. A turn is classified as ‘to high’ if it is in the direction which decreases
bearing β. Thus for a larva travelling at a bearing between 1° and 180° a turn to the left counts
as ‘to high’, while for a larva travelling at a bearing between −1° and −180° a turn to the right
counts as ‘to high’. Note that a turn starting at 10° end ending at −20° is still counted as ‘to
high’ under this definition; even though the final bearing is further from up-gradient than
the initial bearing the direction of the turn was ‘correct’.

• Head cast direction. Head casts are also classified as ‘to high’ or ‘to low’, with a definition
matching that for turns.

• Head casts per turn. A head cast is classified as ‘belonging’ to a turn if the head cast falls
within the 5 seconds preceding the initiation of the turn, or between the end of the previous
turn and the initiation of the turn, whichever is the shorter interval.

Results

Matching behavioural statistics
Our aim when picking kernel parameters was to produce a simulated larva which matches the
behavioural statistics of real larvae (n = 42) chemotaxing in an odour gradient of ethyl butyrate,
as reported in [19].

Table 1. Parameters.

Parameter Value Description

dt 0.1s Simulation timestep

vforward 1mm/s Speed of forward crawling

tmin_run 1s Minimum run duration

θmax_head_cast 120° Head cast range

θmin_head_cast 37° Minimum angle for head cast termination

y0cast 240°/s Rotational speed of head casts

θmax_weathervane_cast 20° Weathervane cast range

y0weathervane cast 60°/s Rotational speed of weathervane casts

rrun_termination_base 0.148/s Run termination base rate

krun_termnation_start 2 Run termination kernel start value

krun_termnation_end −2 Run termination kernel end value

trun_termnation 20s Run termination duration

rcast_termination_base 2/s Cast termination base rate

kcast_termination_start 0 Cast termination kernel start value

kcast_termination_end 150 Cast termination kernel end value

tcast_termination 0.5s Cast termination duration

rweathervane_cast_termination_base 2/s Weathervane cast termination base rate

rweathervane_cast_resume 1/s Weathervane cast resumption rate

tweathervane_short_average 1s Weathervane kernel short average duration

tweathervane_long_average 10s Weathervane kernel long average duration

kweathervane_mult 30 Weathervane kernel multiplicitive factor

doi:10.1371/journal.pcbi.1004606.t001
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We produce behavioural statistics for the simulated larva as follows using the same odour
distribution as measured in [19], in a virtual arena of size 65x100mm. Note that the arena size
for the larval experiments was 80x120mm, however an estimate of the odour concentration
could not be experimentally made at the outer edges.

We run 500 simulated larvae in this arena, for 300s of simulated time each. Each simulated
larva begins the run with random starting orientation, at a random position within a 12mm
square centred on the odour source. The run of any simulated larva which touches the edge of
the arena is truncated at that point, consistent with the acquisition of experimental data.

From these simulated trajectories, we calculate various behavioural metrics (as described in
the previous section). These are used to produce the behavioural statistics shown in Fig 2.

Note that this process was repeated multiple times as we tuned kernel parameters; we
show here only the behavioural statistics obtained with our final set of parameters as
reported in Table 1.

Fig 2 shows two sample paths, and the match between real and simulated behavioural sta-
tistics. In the top panel of statistics it can be seen that the probability of initiating a turn (an
end-run transition) relative to the odour bearing shows the same form as for the real larva. In
the second panel, the probability of making a left turn is altered as expected relative to the
bearing of the odour, turning left more often if the odour is on the left. In the third panel, the
reorientation rate during runs shows a similar dependence on the bearing angle, and similar
amplitude.

These comparisons demonstrate that it is possible to choose kernel parameters which
result in our model producing very similar behavioural statistics to the larva, on the three
metrics which summarise the run termination, cast termination and weathervaning mecha-
nisms. Given that we tuned kernel parameters to match these statistics it is perhaps not sur-
prising that we achieve a close match; nonetheless, it is not trivially obvious that these
statistics would be possible to obtain using only linear kernels convolved with the relative
rate of change in odour concentration.

The lower panels present comparisons of additional behavioural statistics, which show a
number of emergent effects also match well between the model and the larva without addi-
tional tuning. The run termination mechanism produces distributions of turn initiation bear-
ings and run lengths similar to the larva. Similarly, the head cast termination mechanism
produces turn direction probabilities and numbers of pre-turn head casts comparable to the
larva. Both simulated and real larvae tend to be headed away from the odour (>90 degrees)
before a turn, and towards it (<90 degrees) after, but with a general undershoot, that is, only
a partial correction in orientation. They also both show a similar distribution of bearings that
result in correct (to higher concentration) rather than incorrect (to lower concentration)
turns, with wrong turns more likely when heading near to 180 degrees away from the odour,
a situation which produces the most ambiguous information during head casting.

In the bottom panel, the relative frequency of patterns of head casts towards the direction of
higher (H) or lower (L) concentration is shown. Overall the proportions are similar between
the larva and the simulations. The larva and the model both show a bias in the direction of the
first head cast, with a majority of head cast groups starting with a cast to high. The mechanism
by which the larva creates this bias is not yet understood, however, our model produces a simi-
lar bias by simply using the angle of its head at the moment of run termination to determine its
initial cast direction.

Having set parameters for our model such that it matches the larva on these low level beha-
vioural statistics, we go on to assess the model’s similarity to the larva by comparing its chemo-
taxis performance to the larva in three different environments.
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Fig 2. Behavioural statistics for the simulated larva compared to the real larva. Larval data from [19].
See text for full definitions of statistics. The first 3 statistics show that the three modelled chemotaxis
mechanisms—biasing of run termination bearing, turn direction, and run curvature—broadly match those of
larvae. The remaining statistics demonstrate that the same control mechanisms also produce behaviour
comparable to the larva on other metrics, namely distribution of run lengths, number of pre-turn head casts,
pre- and post-turn bearings, bearings before turns to the direction of higher and lower odour concentrations,
and direction of head casts.

doi:10.1371/journal.pcbi.1004606.g002

AModel of Drosophila Larva Chemotaxis

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004606 November 24, 2015 11 / 24



Matching near-source chemotaxis
Having tuned our model parameters to qualitatively match low level behavioural statistics of
the larva when chemotaxing around a point source of odour, we ask whether this leads to our
model quantitatively matching the larva on a higher-level metric, namely the distribution of
larvae around the the odour source.

Using the data described in the previous section, we computed the distance to the odour
source for 42 real and simulated larvae every second for 150s. For comparison, we repeated this
process for 19 real and simulated larvae in a ‘no odour’ condition; for the simulated larva this
means all behavioural transitions are made at their base rates, with no perceptual modulation.
Fig 3 shows sample paths, the temporal evolution of the distance to the source over time, and a
snapshot of distances to the source at 120s, for each of these groups.

In the absence of an odour source real larvae gradually disperse; the model performs simi-
larly to the larva in this condition.

With the odour source present, real and simulated larvae both remain located around the
source. We use the performance of simulated larvae at 120s as a quantitative measure to deter-
mine how closely our model, with parameters tuned to match larvae’s low level behavioural sta-
tistics, matches the larva’s chemotaxis performance. The larva and the model’s distances to the
source are not significantly different (Mann-Whitney U Test, p>0.05), although this does not

Fig 3. Near-source chemotaxis performance of real and simulated larvae. The first row shows performance of 42 real larvae and simulated larvae with
no odour source present, while the second row shows performance of 19 real and simulated larvae with a point odour source of ethyl butyrate, as described
in [19]. a) Sample paths of real and simulated larvae in this environment. The odour gradient is represented with black representing no odour and white
representing maximal odour. b) Temporal evolution of the mean distances to the odour peak. Shaded areas show 95% confidence intervals. We use the
odour peak position from the ‘odour’ condition to produce this metric for the ‘no odour’ condition. c) Boxplot of the distances to the peak after 120s. Boxes
show the median and first and third quartiles; whiskers extend to the most extreme non outlier points, where points are considered outliers if they are more
than 1.5 times the interquartile distance from the nearest quartile. Distances for the larva and model are not shown to be statistically different for either
condition (Mann-Whitney U Test, p>0.05).

doi:10.1371/journal.pcbi.1004606.g003

AModel of Drosophila Larva Chemotaxis

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004606 November 24, 2015 12 / 24



provide evidence for the null hypothesis that the medians of the groups are the same. However,
using bootstrapping, we can state with a 95% confidence level that the difference in median dis-
tance to the source for real and simulated larvae is between -2.4 and 1.9mm, around a single
larval body length.

Matching odour approach
Having confirmed that our simulated larvae show chemotaxis performance at a similar level to
real larvae when circling around the odour source, we consider how well they match the larva’s
directness of approach to a distant odour source.

For this experiment, we used a second odour gradient of ethyl butyrate (also from [19]),
with an odour source centred at one end of a rectangular arena.

Simulations were carried out as above, with a different odour landscape and different start-
ing positions; each simulated larva begins the run at a random position within a 20mm square
in line with the odour source on the short axis of the arena and 68mm distant on the long axis.
Starting orientations were chosen randomly from a distribution of plus or minus 30 degrees
relative to the direction of the odour source. Runs were truncated at the point at which they
came within 5mm of the odour peak; runs which did not reach this area were discarded.

For this condition we compare 43 real and simulated larvae. We calculated distances to the
odour source every second as above. Following [23], we also use a path tortuosity metric to
compare the efficiency of orientation in this landscape; a ‘straightness index’ is assigned to each
individual by calculating the ratio of the length of its path to the length of the vector travelled.
Paths leading directly to the odour peak will have a straightness index of 1, while paths which
follow a less direct route will have a lower straightness index.

Fig 4 shows sample paths, the temporal evolution of the distance to the source over time,
and boxplots of straightness indices for real and model larvae. We see a good match between
the larva and the model’s approach to the odour peak. The larva and the model’s straightness
indices are not significantly different (Mann-Whitney U Test, p>0.05), and using bootstrap-
ping, we can state with 95% confidence level that the difference in median straightness index
for real and simulated larvae is between -0.11 and 0.03.

Fig 4. Odour approach behaviour of real and simulated larvae. Performance of 43 real larvae and simulated larvae approaching a point odour source of
ethyl butyrate from a distance, as described in [19]. Paths are truncated when crossing the circle indicated around the odour peak. a) Sample paths of real
and simulated larvae in this environment. b) Temporal evolution of the mean distances to the odour peak. Shaded areas show 95% confidence intervals. c)
Boxplot of path straightness indices (i.e. straight line distance / path length). Straightness indices for the larva and model are not shown to be statistically
different (Mann-Whitney U Test, p>0.05).

doi:10.1371/journal.pcbi.1004606.g004
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Matching approach in exponential and linear slopes
We next consider the behaviour of the simulated larva in linear vs. exponential odour slopes.
We compared the model’s paths to paths of wild type larvae in gradients of isoamyl acetate
(landscapes from [16]). Runs were truncated at the point at which they came within a 15mm
zone at the peak end of the arena; runs which did not reach this area were discarded. Larvae
started within a 20mm square in line with the odour source on the short axis of the arena and
80mm distant on the long axis, facing towards the odour peak. We used the same number of
simulated larvae as real larvae in each condition: 20 for exponential, 14 for steep linear, and 11
for shallow linear.

Initial results suggested that with parameters set as described above (to match behaviour in
a single source environment of ethyl butyrate), simulated larvae performed significantly worse
than the real larvae in this condition. We therefore also tested whether we could improve the
performance of the model by scaling (i.e. changing the slope of) the model’s kernels, thereby
increasing the strength of the simulated larva’s behavioural biases. We show here results for the
model with default parameters, and with a scaling factor of 6 on all kernels.

Fig 5 shows sample paths, the temporal evolution of the distance to the source over time,
and boxplots of straightness indices for real and model larvae in each environment. These dem-
onstrate that the model (both with normal and scaled kernels) can successfully navigate up
both exponential and linear gradients. The ‘straightness index’ shows that the larva more
directly approaches the odour peak in an exponential gradient than in a shallow linear gradient;
this is also true for the model with either normal or scaled kernels.

However, both the sample paths and the straightness indices highlight the failure of the
model with default parameters; simulated larvae in this case follow paths which are clearly
more tortuous than the larva. However, by scaling the kernels by a factor of 6, we achieve a
much closer match between the model and the larva.

Why do we need to alter our model’s kernel parameters to replicate larval behaviour in this
situation? One possibility comes from the difference in the odour used in this condition; our
model’s parameters were set to match the behaviour of larvae in an ethyl butyrate gradient,
while these gradients were produced using isoamyl acetate. It is possible that the difference in
odourants leads to an difference in chemotactic performances for the larva. Alternatively, the
differences between model and larval performance in these gradients may be a result of our
simplified sensory processing (see discussion). In any case, the fact that the model does chemo-
tax successfully in this environment even with default parameters demonstrates its robustness
in a novel odour landscape.

Relationship to the preference index
A common measure of larval behaviour in odour experiments is the ‘preference index’ [12, 24].
In typical odour-based experiments, a number of larvae are allowed to freely explore a Petri
dish (typically 9cm diameter). One or both sides of the dish contain odour sources. At the end
of an allotted time period, the number of larvae on each side of the dish (excluding a 1cm cen-
tre region) are counted. A preference index is then calculated as:

PI ¼ #side1� #side2
#total

ð6Þ

Preference indices therefore range from 1 to -1, with a positive preference index indicating a
preference for side 1, and a negative preference index indicating a preference for side 2. Typical
median preference indices for innate chemotaxis range from 0 to close to 1, depending on the
odour and concentration used (Schleyer and Reid, pers. comm.).
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Unfortunately, the odour environments used in learning experiments are not as carefully
controlled and measured as the data we have used for comparisons so far. Odours are pre-
sented in the form of a point source, e.g. in a small cup or on a filter paper. Furthermore, the
enclosed nature of the Petri dish is likely to lead to non-uniform distribution of the odour,
which may also be changing over time. As there are no detailed recordings of odour gradients
in these conditions from which we can draw, we assume a very simple odour distribution; a cir-
cular Gaussian (σ = 30mm) distribution centred on the odour source.

Fig 5. Odour approach behaviour in exponential and linear gradients. Performance of real and simulated larvae in exponential (20 larvae), steep linear
(14 larvae), and shallow linear (11 larvae) gradients of isaomyl acetate [16]. A second version of the simulated larva is included for comparison, for which the
three behavioural kernels are scaled by a factor of 6. Paths are truncated when crossing the line indicated at the high end of the odour gradient. a) Sample
paths of real and simulated larvae in these environments. b) Temporal evolution of the mean distances to the odour peak. Shaded areas show 95%
confidence intervals. c) Boxplot of path straightness indices (i.e. straight line distance / path length). The simulated larva shows the same ordering of path
straightness indices between conditions, but lower straightness indices overall. Scaling the model’s kernel values produces straightness indices closer to,
but not as high as, the larva.

doi:10.1371/journal.pcbi.1004606.g005
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For these trials the simulation arena consists of a circular wall with a radius of 45mm, with
an odour source 5mm from the left hand side of the dish. For each odour condition, we ran
simulations for 400 individual larvae, each of which was allowed to explore the arena for 5 min-
utes. Each larva began at a random position on the vertical centre-line of the dish, at a random
orientation. At the end of 5 minutes, the position of each larva was recorded. The larvae were
split into 20 groups of 20, and for each of these groups a preference index was calculated.

Initial results, using the parameter settings described above, showed extreme PIs; all simu-
lated larvae ended the 5 minute run on the odour side of the arena, i.e. PI = 1. We therefore
proceeded to investigate how scaling (changing the slope of) the model’s kernels, thereby
reducing strength of behavioural biases and the efficiency of chemotaxis, changes the observed
PIs. Fig 6 shows the distribution of simulated larvae and the corresponding PIs for different
kernel scaling factors. Also shown is the the effect of the kernel scaling on the statistics for run
termination bearing, turn direction probability, and run reorientation in the original point
source environment (as for Fig 2). A scaling of 0.1 produces a strong PI score, and a scaling of

Fig 6. Preference indices for the simulated larvae for kernels of different strengths. Behaviour of 400 simulated larvae over 300s in a choice-assay
environment (a Gaussian odour landscape centred on the left side of the dish). Each column corresponds to a different scaling of the kernels used in the
model, leading to weaker, abolished, or reversed effects of sensory input on behavioural transitions. The first two rows show the distribution of simulated
larvae in the arena, directly through heatmaps and indirectly through the preference index (proportion of larvae on the odour side after 300s). Note that the
previously used kernel values (column 1) result in very high chemotaxis performance. The bottom three rows show the main behavioural statistics for these
variants of the model (obtained as in Fig 2). Small differences in these behavioural statistics equate to significant differences in spatial distributions in the
choice-assay environment.

doi:10.1371/journal.pcbi.1004606.g006
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0.05 a score still comparable to larval experiments. With scaling 0, the simulated larva has no
behavioural biases and indeed ends up equally distributed across the dish, with PI around 0.
Scaling by a negative value produces a negative PIs, that is, apparent repulsion from the odour.

We might expect that our model’s original parameter settings, which we have demonstrated
produce behavioural biases of the same magnitude as the larva’s, should produce larva-like PIs.
However, we had to considerably reduce kernel scaling, and therefore reduce behavioural
biases, to produce moderate PIs. There are several possible explanations for this requirement.
First, note that our model has access to a clear odour gradient across the whole arena, unper-
turbed by noise or sensory thresholds; real larvae may not encounter a consistent gradient far
from the source. Alternatively, moderate preference indices could coexist with high beha-
vioural biases if only a fraction of the larvae were displaying those biases, or if all larvae were
displaying those biases only a fraction of the time. In preference tests of relatively long dura-
tion, this does not seem unlikely. In either case, averaging some combination of strongly biased
and unbiased behaviour would result in seeing lower overall behavioural biases for larvae in PI-
type experiments, as our model suggests. Finally, there may be effects of group assays such as
random reorientations caused by collisions. Unfortunately, data to resolve larval behaviour at
an individual level during group assays is not available, restricting our ability to differentiate
between these explanations.

Effect of each control mechanism
Our model combines three sensorimotor mechanisms that appear to operate in the larva to
produce chemotaxis:

Biased run termination. increased probability of transitioning from running to head cast-
ing when the rate-of-change of concentration is gradually decreasing;

Biased cast termination. increased probability of transitioning from head casting to run-
ning when there is a sharp increase in the rate-of-change of concentration;

Weathervaning (wv). increased probability of pausing ‘weathervane casts’ during running
when there is an increase in rate-of-change of concentration relative to the recent average.

With our model, we can investigate the chemotaxis performance of simulated larvae that
use only subsets of these mechanisms, i.e. we can compare performance with all three biases,
each possible pair of biases, each single bias, or ‘random’ larvae with no biases. Note that it is
the modulation of the probabilities of behavioural transitions based on perceptual history
which is included or removed, not the behavioural transitions themselves; when a bias is
removed the larva makes the associated transition at its base rate, unaffected by the odour gra-
dient. Transitions cannot be removed altogether—a basal rate of run termination is necessary
to allow head casting to occur, similarly a basal rate of head cast termination is necessary to
allow transitions back to running.

We ran 500 simulated larvae for each combination of mechanisms in the single-source con-
dition using the same experimental set up described for Figs 2 and 3. Fig 7a shows sample
paths, evolution of the mean distance to the odour source, and boxplots of the mean distances
for all larvae in a group 120s after the start of the run.

It can be seen that the combination of all three mechanisms produces the tightest clustering
around the odour source. Removing the weathervaning bias leads to only a small reduction in
performance, but also eliminates the bias in run curvature observed in the larva (S1 Fig). Either
biased cast-termination or biased run-termination on their own, or combined with weather-
vaning, are sufficient to produce relatively close clustering to the odour source. Weathervaning
alone still produces clustering better than random behaviour. To check that these differences
are significant, we compare each group to the best performing group (all three mechanisms),
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Fig 7. Contribution of behavioural biases. Using an adjusted model in which only some of the three behavioural biases were active, we assess their
relative contribution to chemotaxis. a) For each combination of biases, we simulated 500 larvae using the same odour environment and protocol as for Figs 2
and 3. We report a selection of sample paths, the temporal evolution of the mean distances to the odour peak, and boxplots of the distances to the peak after
120s. Both run-termination and head cast termination are sufficient on their own to produce effective chemotaxis, but are more effective in combination, and
are improved by the addition of weathervaning. The model using all three biases remains more closely clustered around the peak than the model using any
other combination of biases (Mann-Whitney U Test, p<0.05 with Bonferri correction). Larva performance in this condition (previously reported in Fig 3) is
included for comparison. b) Same as in panel a), but with only single active biases, and kernels scaled to give best possible chemotaxis performance. Biased
run termination alone can produce very close clustering around the odour source.

doi:10.1371/journal.pcbi.1004606.g007
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and find that all other groups are significantly different (MannWhitney U Test, p<0.05 with
Bonferri correction).

Fig 7a shows the relative contribution to chemotaxis of each of the three mechanisms using
the parameters previously set to match larval statistics. However, we can instead ask what che-
motaxis performance can be achieved with each single mechanism when parameters are
adjusted to maximise chemotaxis instead of match larval behaviour. To this end, we repeated
the single mechanisms conditions (i.e. run termination only, cast termination only, or weather-
vaning only) of the above experiment while varying the scaling (i.e. the slope) of the kernel
being considered. This allowed us to determine the kernel parameters which led to the best che-
motaxis performance (as defined by mean distance to the odour source after 120s), see S2a Fig.
Fig 7b shows sample paths, the evolution of the mean distance to the odour source, and box-
plots of the mean distances after 120s, for larvae using single mechanisms with kernels tuned
to give maximal performance.

We see that run termination can be highly effective as the only mechanism, to the extent of
producing chemotaxis more effective than the larva when the kernel is scaled by 200. It is not
clear what constraint might have prevented evolution from finding this solution. By contrast,
chemotaxis performance with head cast termination is not improved with kernel scaling above
the level required to match larval behaviour. Note that in our model’s implementation of head
casting, increasing the slope of the kernel will increase the probability of terminating head casts
on the ‘correct’ side, but will also increase the probability of terminating head casts earlier in
their outward swing. This leads to shallower turns, and therefore less tight localisation around
the source. Increasing the scaling on the weathervaning kernel does slightly increase perfor-
mance, although still not to the level of run or cast termination alone.

While run termination alone can reproduce larva-like levels of chemotaxis, we unsurpris-
ingly see that there are mismatches between all the ‘single-mechanism’ variants of the model
and the larva when we look at the low level statistics of behaviour—for example the model
using only run termination fails to show a biasing of turn directions of a magnitude compara-
ble to the larva (S2b Fig).

Effects of noise on chemotaxis
Finally, we explored the performance of the model in a selection of distinctly different odour
landscapes (linear, Gaussian, and step), with different amounts of noise, and with different
combinations of the three behavioural biases. This provides a useful parallel to the analysis in
[25] for a model of C. elegans. We analyse each larva’s performance with a Chemotaxis Index
(CI); each larva is assigned a CI equal to the proportion of time spent in a region of interest
(ROI); note that due to the differences in ROI areas, direct comparisons of performance
between conditions cannot be made. The gradients used were all contained within a 9cm
diameter circular arena, with parameters as follows. Linear: Concentration varying linearly
from 0 at leftmost edge to 1 at rightmost edge. Region of interest is the rightmost 30mm of
dish. Gaussian: Gaussian odour distribution, centred at the centre of the dish, with peak con-
centration 1 and variance 16mm. Region of interest is a 25mm diameter circle around the cen-
tre of the dish. Step:Odour concentration of 0 on left side of the dish and 1 on right, with
5mm wide linear transition of concentration between the halves. Region of interest is the right
half of the dish.

For each combination of mechanisms (as in Fig 7) we ran 500 simulated larvae in each of
the three environments, starting at a random initial position and orientation. This was repeated
with multiplicative noise added to the environment by dividing the arena into an 0.08mm
square grid and multiplying the concentration in each square by a value picked from a normal
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distribution with mean 1 and variance 0.04 (low noise) or 0.1 (high noise). CIs for each condi-
tion are shown in Fig 8.

The results suggest that some mechanisms may make smaller or greater contributions
depending on the conditions. For example, including all three mechanisms seems to make a
difference for the Gaussian gradient but not the other conditions, where weathervaning makes
little contribution. CIs in the linear gradient are more affected by noise than the other condi-
tions. The run termination mechanism seems more effective than the cast termination in the
step gradient, and in general the contribution of cast termination is more affected by noise.

Discussion
Our aim in this paper was to implement a minimally complex model that captures the observed
odour taxis behaviour of Drosophila larvae. We show that larva-like behaviour can be achieved
using relative change of odour concentration at the tip of the head combined with simple linear
kernels to trigger transitions between behavioural states. Tuning the parameters of this model
to match the detailed observations of larvae reported in [19, 21] produces behaviour that also
matches the larva on other measures (such as proportions of head casts, under-correction of
the heading angle, behaviour on different odour gradients). However, to reproduce typical

Fig 8. Chemotaxis indices in different simulated gradients. Performance of 500 simulated larvae in three different odour environments (displayed on the
left), each with an appropriately defined region of interest (to the right of / inside the red line). Boxplots on the right show chemotaxis indices (proportion of
time spent in region of interest) for each environment. Each combination of model mechanisms is run with three different levels of multiplicative noise.

doi:10.1371/journal.pcbi.1004606.g008
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preference indices reported for en masse assays we needed to alter the parameters to substantial
weaken the effects of odour concentration on state transitions. This is discussed further below.

Our model combined three mechanisms, acting to modulate the probability of state transi-
tions between running and head casting. In the absence of odour, the simulated larvae exhibit
exploratory behaviour, making runs with regular small ‘weathervane’ head casts that are paused
on random occasions leading to shallow curves, and also randomly stopping the run and mak-
ing larger head casts, with random transition back to running, which can produce sharp turns.
If this behaviour occurs in an odour gradient, the probability of stopping a run is enhanced for
decreases and suppressed for increases in the change in odour concentration. The probability of
restarting a run is enhanced by sharp increases in odour concentration during head casting.
Small head casts during runs are also paused more often when the experienced odour concen-
tration increase is greater than that already occurring in the run, resulting in a ‘weathervane’
curve towards the odour. From our simulations, it appears that either of the first two mecha-
nisms would be sufficient to get the larva to an odour in a smooth gradient. Combining both
with weathervaning produces the best performance; the improvement is most apparent in a
Gaussian distribution, which is perhaps closest to the expected gradient for a point source of
odour. Run termination is more robust to noise, which might be expected as (at least in our
implementation) it averages input over a longer time scale than the other mechanisms.

The first mechanism (alteration in the rate of transitioning from running to head casting
depending on the change in concentration) is equivalent to bacterial klinokinesis or the modu-
lation of pirouette frequency observed in C. elegans [26] and is well-known to be sufficient to
ascend a gradient. The second mechanism (ending head casting and resuming running when
the head cast produces a sharp change in concentration) is klinotaxis, and we have shown it is
also sufficient for chemotaxis on its own, producing similar performance to pure klinokinesis
(when the latter is tuned to match larval behaviour). The combination of these two mecha-
nisms substantially improves the efficiency of odour localisation over either alone. However,
pure klinokinesis can potentially produce better chemotaxis if the parameters are tuned to opti-
mise its performance. The final mechanism, weathervaning, is seen to make marginal improve-
ments to chemotaxis performance, although it does not lead to robust chemotaxis without
additional biases in the other mechanisms. It has been hypothesised that biasing of larvae’s run
curvature is facilitated by low amplitude head casts made while running [21]. Our model con-
cretely implements this hypothesis by including continuous low-amplitude head casting,
which is temporarily paused by increases in the perceptual signal. We demonstrate that this
mechanism can produce biases in run curvature comparable to that of the real larva, but other
mechanisms, such alteration in the size of these casts, are also possible.

[19] show that larvae’s first head casts after terminating runs tend to be in the direction of
higher odour concentration. We suggest that this is possible due to the larva having informa-
tion about the lateral gradient from weathervaning during its run, and show that a similar level
of first headcast bias can be produced if the simulated larva simply casts in the direction of its
current head angle when terminating a run. This interaction of weathervaning and cast direc-
tion accords with the observation that the direction of run curvatures and subsequent turns are
correlated [21].

Although treated here as a distinct mechanisms, klinotaxis and weathervaning could be inter-
preted as the same underlying orientation algorithm, i.e., exploiting the lateral sweep of the head
through the gradient to obtain information about the odour direction, and altering the timing
or extent of the sweep to orient the animal up the gradient. In the case of C. elegans, their oscil-
latory forward locomotion naturally produces a substantial sweep (relative to body length) and
can be altered to produce relatively tight curves. In larvae, the peristaltic propulsion during runs
appears to be inconsistent with large head casts, so while biasing the production of small head
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casts can steer the animal up the gradient, direct approach is only possible by stopping to make
larger casts (or indeed, it may be that making a large cast forces a stop). It remains to be discov-
ered how independent are the neural mechanisms underlying these behaviours in the larva.

The majority of behavioural experiments on larvae report only preference indices (PI), i.e., a
binary classification of larvae as either within or without a designated region defined in relation
to the stimulus of interest. It is important to understand how such global measures relate to the
underlying behavioural control if the neural circuits involved in innate and learned sensorimo-
tor control are to be explained. An issue revealed by our analysis is the difficulty of interpreting
behavioural statistics that are derived by summing over many individuals, and over relatively
long time durations. It was necessary to make each of the behavioural biases around 20 times
weaker in a simulated larva to obtain ‘typical’ PIs. The discrepancy between the level of beha-
vioural bias required to match PI data and the low-level behavioural statistics reported in [19,
21] could have multiple sources: different larvae may have different innate capabilities or pref-
erences for particular odour sources; the attraction of an individual larva to an odour source
may change over time due to habituation or changing motivational state or competition from
other cues; or the odour gradient itself may vary substantially in the reliability with which it
corresponds to the actual odour direction, both over time and space, in a typical Petri-dish
experiment. It is clear that this issue can only be resolved by studies that track individuals over
time in well-controlled or measurable stimulus conditions.

It is important to note that both previous biological experiments [16] and our simulations
indicate that the larva can locate odours with a single point sensor on its head, and does not
need spatially separated sensors, even for weathervaning. Rather, gradient information is
gained through stereotypical movements over time. Nevertheless it is clear that the perceptual
response to the odour gradient used in the simulation, which performs perfect differentiation
and normalisation, is not realistic. In the majority of the behaviour analysed here the larva
spends a large proportion of its time close to the odour peak, and thus in a relatively limited
range of concentrations. As such, normalisation should not have a large impact on the model’s
global behavioural statistics. However, it is likely to play a significant part in the model’s ability
to localise the peak from a distance, by making the simulated larvae unrealistically sensitive to
small differences in areas of low odour concentration. In future work, it will be interesting to
incorporate more detailed olfactory receptor responses (such as described in [27]) into the
model, and see how these interact with both different odour gradients and the dynamics of the
motor actions to shape the overall behaviour, particularly in relation to approaching an odour
from a distance.

We have also used a highly simplified model of the larva’s motor system. Although ‘runs’ and
‘head casts’ are reasonable approximations to the main observable actions by the larva, further
analysis may reveal important subtleties. For example, the peristaltic pattern that produces the
run also imposes a pattern on the sensory input, as the head moves forward and pauses on each
cycle, and also changes its orientation with respect to the substrate. Similarly, the rather arbitrary
distinction between ‘small’ and ‘large’ head casts used in the simulation may need more detailed
representation of the form, size and location of body bends of which the larva is capable.

Finally it may be interesting to ask whether a simpler control scheme than the state transi-
tions illustrated in Fig 1b might give rise to qualitatively similar behaviour. It is interesting to
note that the mechanisms used to produce the different behavioural transitions in our model
are all fundamentally the same, involving differentiation, integration and a non-linear switch,
and differ only in their timescales and their weighting of the perceptual signal. Should we
assume the current characterisation will map onto distinct ‘decision’ circuits in the animal for
changing between runs and head casts? Or is it possible that these are emergent properties of
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lower level control that integrate the muscle contractions producing both peristalsis and body
bends and modulates them in response to sensory input?

Supporting Information
S1 Fig. Behavioural statistics for the simulated larva with no weathervaning bias. Produced
following the same procedure as Fig 2. With the weathervaning bias removed from the model,
the bias of run reorientation (row 3) towards the odour is lost.
(PDF)

S2 Fig. Single mechanism performance with optimised kernel scaling. All results were
obtained by collecting statistics from simulated larvae in the single odour source environment,
as described for Figs 2 and 3. a) Mean and standard error of distance to the odour peak after
120s for 200 larvae with only one behavioural bias, plotted against a range of kernel scaling val-
ues. We used these plots to determine the approximate kernel scaling which gave the closest
clustering around the source for each behaviour bias; scaling = 200 for run termination, scal-
ing = 1 for cast termination, and scaling = 20 for weathervaning. b) Low level behavioural sta-
tistics produced by each of the three single-bias model variants when the kernel is scaled by the
value determined in a). Behavioural statistics from the larva and the full model are included for
comparison. Note that the single-mechanism models fail to match the larvas statistics as well
as the full model, both due to the lack of the other mechanisms (e.g. the run-termination only
model shows low bias in left turn probabilities due to the lack of cast-termination bias) and the
excessive strength of the scaled bias (e.g. the run-termination only model shows a higher rate
of runs of length 0–10s due to high scaling of the run termination kernel).
(PDF)
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