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Maze solving using temperature-induced Marangoni flow  

Petra Lovass,a Michal Branickib, Rita Tóthc, Artur Braunc, Kohta Suzunod, Daishin Ueyamad, István 

Lagzia 

The pH-induced Marangoni flow has been recently shown to be of utility for analog computing of topological problems, such 

as maze solving. Here we show that the temperature-induced Marangoni flow can be also used to find the shortest path in 

a maze filled with a hot solution of a fatty acid, where the temperature gradient is created by cooling down the exit of the 

maze. Our method utilizes the fact that the temperature-induced Marangoni flow can transport dye particles at the liquid-

air interface added to the entrance of the maze which subsequently dissolve in water during their motion revealing the most 

likely paths. The most intense flow is maintained through the shortest path which is, therefore, marked by the most intense 

color of the dissolved dye particles. 

1. Introduction 

The so-called “unconventional computing” offers alternative 

approaches to solving some NP-hard mathematical problems in 

ways which are distinctly different in nature to those exploiting 

the established Von Neumann computer architecture.1 

Unconventional chemical computing provides methods and 

algorithms in which chemistry plays a key role in driving 

phenomena which leads to the desired solution.2 In this new 

framework, there are generally two strategies which can be 

followed. One relies on designing and building logic (AND, OR, 

NAND, NOR and INV) gates, and combining these building 

blocks into an “unconventional” computational device.3-7 The 

second strategy is quite different and global in nature and 

involves using a physical or chemical phenomenon instead of 

relying on an assembly of local computational units (logical 

gates).2,8-10 In the latter case the solution is derived by exploiting 

a physical phenomenon that drives the “computation”, for 

example the soap bubble computers.11 The analog nature of this 

approach has the potential to make it more robust in many 

practical situations due to the reliance on readily used in electric 

instrument technology which precedes the digital computing. In 

the last few decades several analogue computational 

techniques have been explored and used for maze solving, 

including finding the shortest path.12-29 These methods can be 

grouped as physical-, biological-, electronic- and chemical, 

depending on the phenomena utilized in obtaining the solution. 

Examples relevant for maze solving include applying a pressure 

difference in a channel network,15 glow discharge in a 

microfluidic chip14,27 or reconfiguration of an organism (slime 

mold) between two food sources within the maze.13,19 Other 

successful approaches to “analog” maze solving have also been 

presented based on artificial chemotaxis in a liquid phase 

induced by the gradient of either pH or salt concentration.16,23,26 

Recently, we showed that a pH-induced Marangoni flow in a 

millimeter sized channel network filled with an alkaline solution 

of a fatty acid provides a method for identifying the shortest 

path and, importantly, all existing paths through a maze in a 

parallel fashion.23 The Marangoni flow is established and 

maintained by the surface tension gradient at the liquid-air 

interface induced by pH. The resulting flow then drags 

chemically passive particles (dye powder particles) towards the 

exit of the maze following the shortest path. Marangoni flows 

are not limited to liquid-air interfaces; a successful realization 

of maze solving in a microfluidic maze has been presented using 

a submerged gel particle in a bulk liquid driven by the liquid-

mixing-induced Marangoni effect.21  

The aforementioned methods for non-conventional maze 

solving are all based on the presence of a gradient of a 

thermodynamical potential and thus confirm the universality of 

the principle. It is thus suggested that a gradient of any 

thermodynamic potential could be employed for this purpose. 

In our studies we found that, in addition to the hitherto known 

examples, also a temperature gradient can induce a Marangoni 

flow which can be used to solve the maze problem. Importantly, 

temperature gradients can be generated very easily with Peltier 

technology, and thus the results presented below may be of 

importance for future technological applications of Marangoni 

flow based analog computing.  
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2. Experimental 

In experiments, we filled a centimeter-sized maze (channel 

depth of 1 mm and channel width of 1.4 mm) with a hot 

aqueous solution of sodium hydroxide (Sigma-Aldrich) with the 

concentration of 0.05 M that contained 0.2 v% of 2-

hexyldecanoic acid (Sigma-Aldrich). Temperature of this 

solution was set to 373 K prior to transferring it (~ 250 µL) to 

maze that were designed by photo- and laser-lithography and 

made of polydimethylsiloxane (PDMS). In order to create a 

temperature gradient in the maze, a small stainless steel sphere 

(d = 4 mm and m = 0.435 g) was cooled down using dry ice, and 

it was placed at one entrance (exit) of the maze prior to 

experiments. Immediately after the addition of the cooled 

metallic sphere, a small amount of phenol red dye (Sigma-

Aldrich) powder (~ 0.3 mg) was placed at the liquid-air interface 

at the other entrance of the maze (starting point). Maze solving 

was monitored by an optical image processing system. Figure 1 

shows the experimental setup. 

 

 

Figure 1 The sketch of the experimental setup. 

3. Results and discussion 

3.1 Experimental findings 

Positioning of a cooled (cold) metallic sphere in the hot solution 

lowers the temperature in the proximity of the sphere and 

creates a temperature gradient through the channel network in 

the maze. This temperature gradient translates into a surface 

tension gradient at the liquid-air interface, which induces a fluid 

flow, the so-called the Marangoni flow.30 Thus dye particles 

located at the liquid-air interface are dragged by this flow and 

move passively and collectively towards the lower temperature 

region. During the transport, the dye particles dissolve in water 

phase, colorize it and visualize the shortest path. Figure 2 

presents this maze solving method using temperature induced 

liquid flow. The shortest path is found and visualized within ~ 20 

s.  

The Marangoni flow at the interface is always oriented 

towards the higher surface tension regions. The surface tension 

of a liquid is inversely proportional to temperature deviation 

from the critical temperature, so the lower the temperature is, 

the higher the surface tension is. Consequently, the flow at the 

liquid-air interface is directed from the region of higher 

temperature to the region of lower temperature (Figure 3). This 

simple physical phenomenon can be utilized for efficient maze 

solving. The most intense fluid flow is established along the 

shortest path in a maze, where the gradient of the surface 

tension at the liquid-air interface is the highest, thus the 

majority of dye particles move toward the exit on the shortest 

path. It should be noted that we tried several fatty acids (such 

as oleic acid) at various concentrations and pH (ranging from 1 

to 12), but among those tested, the most intense fluid flow can 

be established in case of 2-hexyldecanoic acid in highly basic 

solution. Therefore, we used this experimental condition for 

maze solving as described in the Experimental section. 

In order to illustrate the maze solving dynamics we measured 

the dependence of the surface tension of fatty acid solution on 

temperature using the pendant drop method. Increasing the 

temperature decreases the surface tension (γ) virtually linearly, 

( )c
k T Tγ ∝ − , where k and Tc are the Eötvös constant and critical 

temperature, respectively. We used a boiling solution to fill the 

maze. A potential complication stems from the unavoidable 

decrease of the temperature of the solution in narrow channels 

in the maze. We measured this temperature drop, and the 

temperature decreased typically to 333 K prior to starting the 

experiments (placing dye powder particles to the entrance). The 

addition of the metallic sphere cooled down with dry ice 

warrants that the temperature at the exit is 273 K at the 

beginning of the experiments. Consequently,  the temperature 

difference between the exit and the starting point is 60 K, which 

translates into 20.0 mN/m surface tension difference obtained 

from the pendant drop shape analysis (i.e., it is twice as large as 

the surface tension difference in the case of pure water.) A 

pendant drop’s shape depends on its surface tension and 

gravity. The degree of variation from the spherical shape was 

monitored with a camera at temperatures between 283 and 

333 K with 5 K steps. From the video images the surface tensions 

were calculated using the Young-Laplace equation. Surface 

tension gradient in our experiments is 470 mN/m2, which is 

estimated from the surface tension difference and the length of 

the shortest path, which is 4.25 cm measured from Figure 2. 

This surface tension gradient drives the flow at the liquid-air 

interface towards higher surface tension region (lower 

temperature). 

There are two important empirical and experimental issues 

that should be mentioned and discussed. First, in the case of 

fluid flows induced by a temperature gradient, the average 

velocity of the liquid at the liquid-air interface is smaller than 

that in pH gradient-induced flow. In other words, the 

temperature-induced Marangoni effect is relatively weak and 

can, therefore, be used to solve topologically simple mazes, 

where the length of the shortest path is reduced compared to 

pH-driven cases.23 This is attributed to the fact that pH can 
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change the surface tension of the solution of fatty acid in a more 

pronounced way than the temperature can.31 Another effect 

that needs to be taken into account arises from the fact that a 

horizontal temperature gradient between the entrance and the 

exit of the maze induces the Rayleigh-Bénard convection32 (near 

the cooled down metallic sphere the fluid moves downwards 

and continues its motion at the bottom of the channel towards 

the region of higher temperature, and due to inertia the fluid 

moves in opposite direction near the liquid-air interface, i.e., 

towards the lower temperature region). In effect, the flow 

responsible for maze solving is driven, in general, by both the 

Marangoni flow and the Rayleigh–Bénard convective cell 

established in the maze. We show below that the Rayleigh–

Bénard convection is insignificant for sufficiently thin fluid 

layers. 

 

 

Figure 2 Maze solving and finding the shortest paths in a maze filled 

with a hot alkaline solution of 2-hexyldecanoic acid at different times 

(a) t = 5 s, (b) t = 10 s, (c) t = 15 s and (d) t = 20 s. A cooled metallic 

sphere is placed at the exit (bottom). Phenol red dye particles are 

added at the entrance of the maze (top-right corner). Marangoni 

flow induced by temperature gradient carries particles towards the 

low temperature (higher surface tension) region at the liquid-air 

interface, and the shortest path is explored and visualized due to 

water solubility of the dye. 

 

 

Figure 3 The mechanism of the maze solving: temperature induced 

Marangoni flow. 

 

3.2 Theoretical investigation  

In order to estimate the importance of the two contributions 

driving the flow in the maze, we consider the simplest 

configuration in which a fluid flow is induced by a horizontal 

temperature gradient. We consider a situation when a horizontal 

fluid layer with a free surface is contained within a rigid container 

with the horizontal temperature gradient induced by imposing a 

constant temperature difference on two opposite walls. In order to 

capture the essential features of the dynamics we focus on the flow 

far away from the rigid boundaries and consider the contributions 

from the convective motions due to buoyancy and the surface-driven 

flow component due to Marangoni stresses arising due to the 

horizontal temperature difference. A significant difference between 

this setup and the classical problem with the vertical temperature 

gradient is that the unperturbed/reference fluid flow is non-trivial 

(i.e., there is no zero-velocity solutions even in the absence of 

perturbations). In what follows we only focus on determining the 

relative importance of the buoyancy versus Marangoni driven 

components in the unperturbed reference state in shallow fluid 

layers and do not consider potential instabilities of the reference 

flow which might arise in sufficiently deep layers with sufficiently 

strong temperature gradients.  

We consider a horizontal layer of a thermally conductive fluid 

with density ρ under the Boussinesq approximation with the 

governing equations given by 

( )
( )

0 0

1u
u u g u

T
p

t

ρ
ν

ρ ρ

∂
+ ⋅∇ = − ∇ − + ∆

∂
, (1) 

∇⋅ = 0u , (2) 

( ) κ
∂

+ ⋅∇ = ∆
∂

T
T T

t
u , (3) 

where ( )tu x, , ( )T tx,  are  the velocity and temperature fields, 

( )p tx, denotes the pressure field, g is the acceleration of gravity,   ν 

is the kinematic viscosity, and κ is the thermal diffusivity. The system 

is heated with a constant temperature gradient β imposed in the 

horizontal direction and the free surface is assumed horizontal and 

non-deformable. Consequently the temperature distribution on the 

bottom is given by ( ) β= = +
0

0T x y z t T x, , , , where T0 is the 

temperature of the ”cold” wall. The fluid density under the 
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Bousinessq approximation is given by the linear equation of state 

( ) ( )( )( )ρ ρ α= − −0 01t T t Tx, x,  with α the coefficient of thermal 

expansion and ρ0 the reference density at T0. The temperature-

dependent surface tension is given by ( ) ( )γ γ σ= − −
0 c

t T Tx, , 

where 
γ

σ
∂

= −
∂T

is a positive constant.  

The equations (1-3) can be non-dimensionalised by using the 

depth H of the fluid as the length scale, H2/κ for the time scale, ρ0 

νκ/H2  for pressure and βH for temperature. This leads to equations 

( ) ( )( )1

0

u
u u e u

z
Pr p Ra C T T

t

− ∂ 
+ ⋅∇ = −∇ − − − + ∆ 

∂ 
, (4) 

∇⋅ = 0u , (5) 

( )
∂

+ ⋅∇ = ∆
∂

T
T T

t
u , (6) 

with boundary conditions 

0
0u

z=
= , ( )

=
∂ + ∇ =

1
0

z x y
z

Ma T,u , 
00z

T T x
=

= + , (7) 

where ν κ=Pr /  is the Prandtl number, ( )4 /Ra H gαβ νκ=  is the 

Rayleigh number,  ( )2

0
/Ma Hαβ ρ νκ=  is the Marangoni number,  

and C = 1/(αβH).   

In the presence of the horizontal temperature gradient the 

stationary flow, representing the basic flow state, is given by  

( )( ) ( )( )1

0u u e u
z

Pr p Ra C T T
− ⋅∇ = −∇ − − − + ∆ , (8) 

∇⋅ = 0u , (9) 

( )⋅∇ = ∆T Tu , (10) 

with the same boundary conditions as above. 

We look for the steady solutions far away from the boundaries 

in the form 

( )( ),0,0u
T

u z= % , ( ) ( )= + + %
0

T z T x T z , (11) 

Substituting these into equations (8-10) and eliminating the pressure 

leads to 

∂
=

∂

%
3

3

u
Ra

z
,  (12) 

∂
=

∂

%
%

2

2

T
u

z
, (13) 

with boundary conditions 

( )= =% 0 0u z , 
=

∂ = −%
1z z

u Ma , ( )= =% 0 0T z , (14) 

with the constraint due to the incompressibility in (9) given by 

( ) =∫ %
1

0
0u z dz . (15) 

The solutions to (12) a satisfying the constraints (14-15) are obtained 

easily in the form 

( ) ( )2 3 215 3
2 3 2

4 12 4 2

Ma Ra
u z z z z z z

 
= − + − + 

 
% , (16) 

and the solutions of (13) are given by 

( ) 3 4 5 4 3

1

1 1 1 5 1

4 3 4 12 10 16 4

Ma Ra
T z z z z z z c z

   
= − + − + +   

   
% . (17) 

Note that there remains one free constant of integration in the 

solution for ( )%T z . This is due to the need for an additional boundary 

condition for ( )%T z  on the free surface (i.e., at z = 1). 

 

3.3 Competition between the buoyancy driven and Marangoni 

components in the steady solutions 

It is transparent, based on the steady solutions (16) and (17), 

that (i) there has to be a nontrivial fluid flow in the presence of 

a horizontal temperature gradient, and (ii) both the buoyancy 

driven effect and thermocapillary effect sustain the flow. Here, 

we illustrate the relative importance of these two effects on the 

flow in (16) as a function of the fluid depth H. In order to achieve 

a meaningful comparison, we note that Ra ∝ H4, Ma ∝ H2 and 

rewrite (15) by factoring out the dependence on H in the 

dimensionless numbers Ra and Ma 

( ) ( ) ( )

( )2 2 3 21 15 3
2 3 2

4 12 4 2

/ ; ;

,

u z Ma A z B z H

z z H z z z

= + Ω =

Ω  
− + − + 

 

%

 (18) 

where A and B represent the Marangoni and buoyancy driven 

components, respectively, and 0 /gαρ σΩ = . Therefore, for all 

other parameters constant, the Marangoni effects dominate 

the flow for sufficiently thin fluid layer. We show the profiles of 

the horizontal velocity (18) for different values of H in Figure 4. 

Figure 5 shows the two components of the flow (18) 

independently as a function of the fluid depth H. In the notation 

of (18) the Marangoni driven component is independent of H 

and shown in black; the buoyancy driven flow components are 

plotted in dashed lines for different values of H. Clearly, the 

importance of the buoyancy driven flow component quickly 

diminishes with decreasing fluid depth. 

 

 

Figure 4 Horizontal velocity profiles for the steady solution 

(Equation 18) of the flow driven by the horizontal velocity gradient 

as a function of the fluid depth H. (The plots show ( ) /u z Ma%  for Ω 
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= 6.2 × 103 m−2. The value of omega was calculated based on 

experimental parameters of the system.) 

 

 

Figure 5 The thermocapillary (A(z)) and buoyancy driven (B(z;H;Ω)) 

terms of the horizontal velocity profiles for the steady solution 

(Equation 18) of the flow driven by the horizontal velocity gradient 

as a function of the fluid depth H. (The plots show curves for Ω = 6.2 

× 103 m−2. The value of omega was calculated based on experimental 

parameters of the system.) 

 

4. Conclusions 
We presented a simple method for maze solving using the 

thermocapillary effect. We used a temperature gradient to 

drive the fluid flow, which is maintained by the non-uniform 

distribution of the surface tension (gradient of surface tension) 

at the liquid-air interface. Induced flow can drag passive tracers 

such as small dye particles, which dissolve in water phase thus 

visualizing the shortest path.  

It should be noted that the gradient of the surface tension 

to propel particles has been used in several cases.33-35 Even the 

camphor boats represent similar system.36,37 In these systems, 

the motion of particles is governed by a local gradient of the 

surface tension created by a chemical entity (e.g., polymer gel, 

camphor particles) emitting surface active substances, thus 

changing locally the surface tension near the chemical object at 

the liquid-air interface. This is in contrast to our system, in which 

the surface tension gradient is established globally 

(independently of tracer particles) and exists through the maze. 

In the formerly mentioned systems the velocity of the particles 

depends on the shape and size of the particles, and it can reach 

an order of 10 cm s−1, this value is greater that the velocities of 

passive tracer particles measured in globally induced 

Marangoni flows (0.1-1 cm s−1). In other words, in our system 

the particles do not contribute for their motion and for the 

generation of the globally existing Marangoni flow. An 

extension of our method would be using topographically 

controlled Bénard–Marangoni cells for maze solving, in which 

the motion of particles could be externally driven.38  

Additionally, we showed by simple theoretical calculations 

that in our setup (where the depth of the channel is negligible 

compared to its length), and provided that Ra<<Ma, the driving 

phenomenon for mass transfer is the thermocapillary effect. In 

this way, we provided an additional unconventional computing 

method for maze solving.  
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