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Folding uncertainty in theoretical models into Bayesian parameter estimation is necessary in order to
make reliable inferences. A general means of achieving this is by marginalizing over model uncertainty
using a prior distribution constructed using Gaussian process regression (GPR). As an example, we apply
this technique to the measurement of chirp mass using (simulated) gravitational-wave signals from binary
black holes that could be observed using advanced-era gravitational-wave detectors. Unless properly
accounted for, uncertainty in the gravitational-wave templates could be the dominant source of error in
studies of these systems. We explain our approach in detail and provide proofs of various features of the
method, including the limiting behavior for high signal-to-noise, where systematic model uncertainties
dominate over noise errors. We find that the marginalized likelihood constructed via GPR offers a
significant improvement in parameter estimation over the standard, uncorrected likelihood both in our
simple one-dimensional study, and theoretically in general. We also examine the dependence of the method
on the size of training set used in the GPR; on the form of covariance function adopted for the GPR, and on
changes to the detector noise power spectral density.

DOI: 10.1103/PhysRevD.93.064001

I. INTRODUCTION

The era of advanced ground-based interferometric gravi-
tational-wave (GW) detectors is here. The Advanced LIGO
detectors [1,2] in the USA started observing in September
2015, whilst the Advanced Virgo detector [3,4] in Europe is
expected to come online shortly afterwards [5]. The
principal target sources of GWs for these detectors are
the coalescences of pairs of compact objects, either neutron
stars or black holes. For all sources there is great uncer-
tainty in the quoted event rate estimates, at least an order of
magnitude in either direction [6], but regardless of the
astrophysical uncertainty, the prospect of a first detection is
imminent.1

The detection of GW signals is most efficient when we
have accurate waveform models that can be matched to any
signals in the (noisy) detector data.2 For parameter esti-
mation (PE), it is even more important that the template
faithfully matches the true signal, as otherwise we could
infer biased parameter values. Matching a template to GW

data requires that the model waveform remains accurate
over the entire duration of the signal; typically of the order
of hundreds of seconds for neutron-star binaries and tens of
seconds for black-hole binaries in the advanced-detector
era (with frequency sensitivity down to 10 Hz). Although
higher mass sources have shorter waveforms (in the
detector band), these present more of a challenge for
modeling as they have detectable merger and ringdown
components. In contrast, binary neutron stars only have the
(easier to model) inspiral part of the waveform in band. In
this paper, we are concerned with problems that arise from
inaccurate models; therefore, we focus our attention on
black-hole binaries where the issue of waveform uncer-
tainty is most acute. However, the techniques we develop
could equally be applied to neutron-star binaries or any
other uncertain signal. Inaccurate waveform models are
known to cause significant systematic errors when recov-
ering source parameters from observations with both
ground-based [11] and space-based GW detectors [12].
There are two problems that arise when using inaccurate

signal models: the detection problem, and the PE problem.
The detection problem is that the inaccurate model does not
perfectly match to the physical waveform, leading to a loss
of signal-to-noise (SNR) ratio and, hence, a lower chance of
detection (for the same false alarm probability). The PE
problem, which is the focus of this paper, is that the model
waveform which has the best overlap with the physical
signal in the data generally has parameter values offset from
the true source parameters, leading to a systematic error in
any parameter estimates.

*cjm96@ast.cam.ac.uk
†cplb@star.sr.bham.ac.uk
‡ajkc3@ast.cam.ac.uk
§j.gair@ed.ac.uk
1While this paper was in proof, the first detection was

announced [7].
2It is possible to detect GWs without templates by looking for

coherent excess power in the detectors, e.g., [8–10]. This is
effective for short-duration signals corresponding to high-mass
binaries.
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Recently, some of the authors proposed a novel method
of improving the detection and PE prospects of complicated
physical phenomena in noisy data [13]. The method applies
generally to any situation where accurate models of the
signal are available, but computational constraints mean
that routine detection and PE tasks must be carried out with
cheaper, less accurate, models.
In the case of binary black-holes, there are many

different physical effects that should be included in wave-
form models, such as the merger and ringdown phases
following the inspiral, the presence of generic spins and
precession, eccentricity and higher-order modes. All these
phenomena can, in principle, be simulated, thanks to recent
rapid progress in numerical relativity (NR) [14–16].
However, NR simulations are extremely expensive, only
a few hundred have been performed to date (see [17,18] and
references therein), and these typically consist of only the
final few tens of orbits (although, see [19]). Detection and
PE are therefore currently performed using less expensive
waveform approximants. The existence of NR waveforms
has permitted the calibration of analytic inspiral–merger–
ringdown approximants such as the effective-one-body–
NR (EOBNR) [20–23] or IMRPhenom [24] families, with
recent efforts concentrating on including the effects of
precession in these [25–27].3 For some recent PE work
with inspiral merger and ringdown waveform models see
[29–31]. Historically, PE has used models based on the
post-Newtonian formalism [32], such as the TaylorF2 and
TaylorT2 waveforms [33]. Despite these lacking some of
the relevant features, they are sufficiently quick to calculate
that they can be simply used in PE algorithms.
To include uncertainty in waveform templates whilst

minimizing computational expense, we use Gaussian
process regression (GPR) to estimate the effects of wave-
form errors. The method involves constructing a training
set of the waveform differences between an expensive,
accurate waveform and a cheaper, less accurate waveform.
For the accurate waveforms it might be necessary to use
some combination of NR and the NR calibrated approx-
imants discussed above, depending on the numbers and
length of the available NR simulations. The waveform
difference is evaluated at a relatively small number of
points in parameter space and stored for later use. GPR is
then used to interpolate the difference across parameter
space to give a best estimate and a corresponding uncer-
tainty at a general point in parameter space. This inter-
polation provides a prior probability distribution on the
waveform difference which is then used in marginalizing
the likelihood over waveform uncertainty. The result is an
expression for the likelihood in terms of the cheaper
waveform model, but with corrections coming from the
training set. This marginalized likelihood is negligibly

more complicated or computationally expensive to evaluate
than the standard expression, but provides a better estimate
of the true likelihood surface (and hence the posterior),
factoring in our imperfect knowledge of the waveform.
Therefore, we have not only built a relatively inexpensive
waveform approximant that can include additional physics,
but we have also accounted for (marginalized over) the
uncertainty in our new approximant.
If the standard likelihood with an approximate waveform

is used for PE then, in general, biased parameter estimates
are obtained.4 It has recently been shown by some of the
authors [36] that, under certain conditions, this bias is
completely removed by the marginalized likelihood, and,
more generally, that the bias is always reduced by the
marginalized likelihood.
The technique of GPR assumes that the data in the

training set have been drawn from a Gaussian process (GP)
on the parameter space with a mean and a covariance
function either specified a priori or estimated from the
training set itself. The interpolation is then achieved by
calculating the conditional probability for the GP at some
new parameter point given the known training set values,
the mean and the covariance. GPR provides a convenient
nonparametric way to interpolate the waveform differences,
and has the additional advantage that, by construction, it
provides a Gaussian probability distribution for the
unknown waveform difference which can be analytically
marginalized over. This is important because it means no
extra nuisance parameters are added to the PE task which
would slow down an already expensive process.
The outline of this paper is as follows. In Sec. II the

concept of the marginalized likelihood is introduced and
the use of GPR in its construction is described in detail; we
limit ourselves to interpolation across parameter space and
not across frequency. The main choice made in implement-
ing GPR is the specification of the covariance function;
Sec. III discusses how the properties of the covariance
function affect the properties of the corresponding GP, and
the effects of different choices of covariance function are
examined in a toy one-dimensional GPR problem. The
marginalized likelihood possesses several properties which
make it appealing for GW astronomy; Sec. IV presents
proofs of these and discussions of their significance. In
Sec. V the implementation of the marginalized likelihood is
described for an illustrative one-dimensional example;
here, properties of the interpolated waveforms are exam-
ined and PE results for the marginalized likelihood are also

3See [28] for a study of systematic error (or lack thereof) from
using EOBNR waveforms with NR injections.

4This is commonly assessed in the GW literature using
probability–probability (P–P) plots [34,35]; for a catalogue of
events, these plot the cumulative fraction of events where the true
parameter is found within the credible interval corresponding to a
given probability. If the posteriors are well calibrated, then a
proportion P should fall in the P credible interval, and the plot is
a diagonal line. Introducing bias means that the line sags below
the optimal diagonal.
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presented. Additional material on the effect of changing the
detector noise properties on the interpolated waveforms are
considered in Appendix B. Finally, concluding remarks and
a discussion of future directions for implementing the
marginalized likelihood are presented in Sec. VI.

II. THE METHOD

In this section we detail how we incorporate waveform
uncertainties into GW data analysis. The material presented
is an expansion of that in [13]. In Sec. II Awe introduce the
standard likelihood function and show how model uncer-
tainties can be treated like nuisance parameters that can be
integrated out (marginalized over). Performing this inte-
gration requires that a prior probability distribution is
specified for the model uncertainties, this is constructed
using GPR. This is introduced in Sec. II B, where we
briefly summarize some key results pertaining to GPR;
further details can be found in standard textbooks (e.g.,
[37–39]). The result of the integration is the marginalized
likelihood presented in Eq. (28) which accurately encodes
our state of knowledge of the signal parameters, given our
imperfect waveform models and the noisy data.

A. The marginalized likelihood

We consider the scenario where we can construct two
different waveform models, one accurate but computation-
ally expensive, the other less accurate but quick to
calculate. We use the parameters vector ~λ to fully character-
ize the GW signal; Latin indices from the beginning of the
alphabet (a; b;…) will be used to label the different
components of this vector, and repeated indices should
be summed over. The accurate waveforms will be referred

to as the exact waveform hð~λÞ, although the method does
not require that the accurate waveforms are perfect (see

Sec. III C). The cheaper approximate waveform Hð~λÞ is

related to hð~λÞ by the waveform difference

Hð~λÞ ¼ hð~λÞ þ δhð~λÞ: ð1Þ
The waveform templates may be calculated in either the

time domain hðt; ~λÞ or the frequency domain ~hðf; ~λÞ; the
dependence of the waveform on time or frequency is
suppressed in our notation for brevity.
In the context of modeling binary black-hole coalescen-

ces there are several highly accurate waveform approxim-
ants available, for example, NR waveforms [18] or spin
EOBNR (SEOBNR) models [22,23,40]. There are also
multiple possibilities for the approximate waveform family,
for example, the Taylor family of approximants [33]. For
the proof-of-principal numerical calculations in this paper,
we need to be able to perform mock PE runs with both
waveform families so that we can assess our marginaliza-
tion technique does indeed offer a significant improvement.

Therefore, we will pick both approximants to be quick to
compute, rather than selecting on accuracy: our choice of
waveform family is discussed in more detail in Sec. VA.
In a PE study, we wish to construct the posterior

probability distribution for the signal parameters given
the observed data (and any prior information we have about
the source) pð~λjsÞ. From Bayes’ theorem, the posterior is
given by

pð~λjsÞ ¼ L0ðsj~λÞπð~λÞ
Z0ðsÞ ; ð2Þ

where (keeping the notation of [13]) L0ðsj~λÞ is the like-

lihood, πð~λÞ is the prior distribution on the parameters and
Z0ðsÞ is the normalizing evidence

Z0ðsÞ ¼
Z

L0ðsj~λÞπð~λÞd~λ: ð3Þ

In a Bayesian analysis the evidenceZ0ðsÞ can be used as the
detection statistic (by comparing it with the evidence for
the null hypothesis to form the Bayes’ factor) [41], and the

positions and widths of peaks in the posterior pð~λjsÞ are
used to give the parameter estimates and associated
uncertainties [42]. For simplicity (although it is not

necessary to do so), we assume throughout that πð~λÞ is
flat within the relevant region of parameter space.
The single remaining challenge is to calculate the like-

lihood L0ðsj~λÞ.
For a detector with stationary, Gaussian noise with power

spectral density SnðfÞ [43], the likelihood is given by [44]

L0ðsj~λÞ ∝ exp

�
−
1

2
hs − hð~λÞjs − hð~λÞi

�
: ð4Þ

Here the noise-weighted inner product has been defined
as [45]

hxjyi ¼ 4ℜ

�Z
∞

0

df
~xðfÞ~yðfÞ�
SnðfÞ

�

¼ 4ℜ

�XM
κ¼1

δf
~xðfκÞ~yðfκÞ�
SnðfκÞ

�
; ð5Þ

where κ labels theM frequency bins with resolution δf. We
define the norm of a waveform as

∥x∥ ¼
ffiffiffiffiffiffiffiffiffiffi
hxjxi

p
; ð6Þ

for a signal this is equivalent to its SNR.
In practice it can be unfeasible to sample from the

likelihood distribution in Eq. (4) because it is prohibitively
expensive to calculate the exact waveforms hð~λÞ; instead,
we must reply on the approximate waveforms to calculate
an approximate likelihood,
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Lðsj~λÞ ∝ exp

�
−
1

2
∥s −Hð~λÞ∥2

�
: ð7Þ

For a good approximant

Lðsj~λÞ ≈ L0ðsj~λÞ; ð8Þ

the natural way to improve this agreement is to construct
(inevitably more expensive) approximants that have smaller

waveform differences δhð~λÞ. Instead, the proposal of this

paper is to replace Lðsj~λÞ with a new likelihood which
accounts for the uncertainty in the waveforms. The alter-
native likelihood is

Lðsj~λÞ ∝
Z

d½δhð~λÞ�P½δhð~λÞ�

× exp

�
−
1

2
∥s −Hð~λÞ þ δhð~λÞ∥2

�
: ð9Þ

This new likelihood has marginalized over the uncer-
tainty in the waveform difference using the (as yet
unspecified) prior on the waveform difference P½δhð~λÞ�.
The prior on the waveform difference should include the

information available from the limited number of available
accurate waveforms and could also encode our prior
expectations about the signal, for example, that the
approximate waveforms are most accurate at early times
(or equivalently at low frequencies) when the orbiting
bodies are well separated [32], but gradually become
inaccurate as the bodies inspiral. At most points in
parameter space, an accurate waveform is not available,
and so it is necessary to interpolate the waveform difference
across parameter space while simultaneously accounting
for the error this introduces. It would seem that the problem
rapidly becomes complicated, and even if a suitable prior
could be constructed the computational time needed to
evaluate Lðsj~λÞwould make it impractical in most contexts.
Fortunately, the technique of GPR provides a natural

way to interpolate the waveform differences across param-
eter space, incorporating all necessary prior information.
GPR also has the additional property that it naturally
returns an expression for P½δhð~λÞ� which is a Gaussian

in δhð~λÞ. Since the exponential factor in Eq. (9) is also

Gaussian in δhð~λÞ, the functional integral can be evaluated

analytically. This gives an analytic expression for Lðsj~λÞ
which can be evaluated in approximately the same com-

putational time as Lðsj~λÞ.
Henceforth, for brevity, the s dependence will be sup-

pressed in all likelihoods, i.e. L0ð~λÞ≡ L0ðsj~λÞ, Lð~λÞ≡
Lðsj~λÞ, and Lð~λÞ≡ Lðsj~λÞ.

B. Gaussian process regression

Assume that we have access to accurate waveforms at a
few values of the parameters fhð~λiÞji ¼ 1; 2;…; Ng and
can cheaply compute approximate waveforms at the same
parameter values. Our training set is the set of waveform
differences

D ¼ fð~λi; δhð~λiÞÞji ¼ 1; 2;…; Ng. ð10Þ

where necessary the Latin indices i; j;… will be used to
label the different components of the training set
(repeated indices are not summed over unless specified).
It is now necessary to interpolate the training set to
obtain the prior on the waveform difference first defined
in Eq. (9),

P½δh�≡ Pðδhð~λÞjD; IÞ; ð11Þ

where I is any other prior information we possess about
the waveforms. The simplest and most natural choice for
such a prior is to assume that the waveform difference is
a realisation of a GP (a Gaussian is the maximum-
entropy distribution given that we know a characteristic
range of variation [46]),

δhð~λÞ ∼ GPðmð~λÞ; kð~λ; ~λ0ÞÞ: ð12Þ

A GP can loosely be thought of as the generalisation of a
Gaussian distribution to an infinite number of degrees of

freedom. It is completely specified by the mean mð~λÞ and
covariance kð~λ; ~λ0Þ functions in the same way as a
Gaussian distribution is fully specified by a mean and
variance. More formally, a GP is an infinite collection of
variables, any finite subset of which are distributed as a

multivariate Gaussian. For a set of parameter points f~λig,
including, but not limited to, the training set D,

½δhð~λiÞ� ∼N ðm;KÞ; ð13Þ

where the mean vector and covariance matrix of this
Gaussian distribution are fixed by the corresponding
functions of the GP,

½m�i ¼ mð~λiÞ; ½K�ij ¼ kð~λi; ~λjÞ; ð14Þ

with probability density function (here correcting the
normalizing prefactor written in [13] which mistakenly
included a square root)
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Pðfδhð~λiÞgÞ

¼ 1

ð2πÞN jKj exp
�
−
1

2

X
i;j

½K−1�ijðδhð~λiÞjδhð~λjÞÞ
�
: ð15Þ

The round brackets denote a new inner product with
respect to some noise weighting S0nðfÞ, which we leave
unspecified for the moment;

ðxjyÞ ¼ 4ℜ

�Z
∞

0

df
~xðfÞ~yðfÞ�
S0nðfÞ

�

¼ 4ℜ

�XM
κ¼1

δf
~xðfκÞ~yðfκÞ�
S0nðfκÞ

�
: ð16Þ

In writing down Eq. (15) and stipulating that the

covariance function kð~λ; ~λ0Þ has no dependence on fre-
quency, we are effectively assuming that (i) the parameter
space structure of the model errors is frequency indepen-
dent; and (ii) the typical size of errors has a frequency
dependence proportional to

ffiffiffiffiffiffiffiffiffiffiffi
S0nðfÞ

p
. Under the

assumption that waveform model errors are uncorrelated
in frequency, the normalizing factor in Eq. (15) should be
raised to the power M; however, this assumption leads to
model errors that average to zero over frequency and have
only a small effect on the likelihood. The optimal means
of incorporating frequency dependence would be to
introduce an additional covariance function in frequency
as well as the covariance in parameter space. This
frequency covariance introduces a correlation length scale
in frequency which can be learned from the training set in
exactly the same manner as we describe below for

correlations in ~λ. This correlation length scale reduces
the number of independent frequencies from M to some
new effective number Meff.
Performing this double GPR interpolation in f and ~λ is

beyond the scope of the current paper. Instead, here we are
in effect settingMeff ¼ 1, giving the expression in Eq. (15);
this is analogous to assuming that all the frequency bins of
the noise-weighted waveform at a particular point in
parameter space are perfectly correlated. Setting Meff ¼1
gives the largest uncertainty of any fixed number of
independent frequencies and is therefore a conservative
choice. Despite these simplifications, our marginalized
likelihood has many desirable properties (which we discuss
and prove in Sec. IV), and performs well in the numerical
example presented in Sec. V. We will return to the more
general problem of performing the extended GPR including
frequency in the future.
Specifying how we compute the mean and variance for

the GP determines how the waveforms are interpolated and
fixes our prior for waveform uncertainty across parameter
space. Our GP has a zero mean as we have chosen to
interpolate the waveform difference rather than the wave-
form directly. By first subtracting off an approximate model

we leave a quantity which is uncertain, but has no known
bias. If we had some additional prior knowledge that the
approximate waveform was systematically wrong across
parameter space, then this should be added into the
approximate model so that the zero-mean assumption
becomes valid. Identical results for the marginalized like-
lihood could also be obtained by directly interpolating the
accurate waveforms using a GP with a mean equal to the
approximate waveforms; however, we choose to interpolate
waveform differences because zero-mean GPs are simpler
to handle numerically.
Specifying the covariance function is central to GPR as it

encodes our prior expectations about the properties of the
function being interpolated. Possibly the simplest and most
widely used choice for the covariance function is the
squared exponential (SE) [38]

kð~λi; ~λjÞ ¼ σ2f exp

�
−
1

2
gabð~λi − ~λjÞað~λi − ~λjÞb

�
; ð17Þ

which defines a stationary, smooth GP. In Eq. (17), a scale
σf and a (constant) metric gab for defining a modulus in
parameter space have been defined. These are called

hyperparameters and we denote them as ~θ ¼ fσf; gabg,
with Greek indices μ; ν;… to label the components of this
vector. If the available accurate waveforms contain some
uncertainty then this can also be included by adding a
diagonal matrix C to Eq. (17), where the element Cii (no
summation) is the uncertainty in the accurate simulation at
~λi; this is discussed further in Sec. III C.
The probability in Eq. (15) is referred to as the hyper-

likelihood, or alternatively the evidence (as in [13]) for the
training set; it is the probability that particular realization of
waveform differences was obtained from a GP with a zero
mean and specified covariance function. The hyperlikeli-
hood depends only on the hyperparameters and the quan-
tities in the training set, so we denote it as Zð~θjDÞ. The log
hyperlikelihood is 5

lnZð~θjDÞ ¼ −
N
2
lnð2πÞ

−
1

2

X
i;j

inv½kð~λi; ~λjÞ�ðδhð~λiÞjδhð~λjÞÞ

−
1

2
ln j det ½kð~λi; ~λjÞ�j: ð18Þ

For all subsequent calculations the values of the hyper-
parameters are fixed to their optimum values ~θop, defined as
those which maximise the hyperlikelihood:

5Unless explicitly indicated otherwise all the logarithms used
in this paper are natural logarithms.
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∂Zð~θjDÞ
∂θμ

				
~θ¼~θop

¼ 0: ð19Þ

Maximizing the hyperlikelihood with respect to ~θ is one of
many approaches which could be taken. For example, a
better motivated approach would be to consider the hyper-
parameters as nuisance parameters in addition to the source

parameters ~λ, and marginalize over them while sampling an
expanded likelihood,

Λexpandedð~λ; ~θjDÞ ∝ Lð~λj~θ;DÞZð~θjDÞ: ð20Þ

The disadvantage of this approach is that the hyperlikeli-
hood is much more expensive to compute than the standard
approximate likelihood and the inclusion of extra nuisance
parameters also slows down any PE. In contrast, our
proposed method of maximizing the likelihood is a
convenient heuristic which is widely used in other contexts
[47–49] and allows all the additional computation to be
done offline. It would be useful, in future work, to check
explicitly that the different ways of dealing with the
hyperparameters give consistent results in the context of
GW source modeling.
Having fixed the properties of the covariance function by

examining the training set, we can now move on to using
the GP as a predictive tool. The defining property of the GP
is that any finite collection of variables drawn from it is
distributed as a multivariate Gaussian in the manner of
Eq. (15). Therefore, the set of variables formed by the
training set plus the waveform difference at one extra
parameter point δhð~λÞ is distributed as

�
δhð~λiÞ
δhð~λÞ

�
∼N ð0;ΣÞ; Σ¼

�
K K�
KT� K��

�
; ð21Þ

where K is defined in Eq. (14) and the vector K� and scalar
K�� are defined as

½K��i ¼ kð~λi; ~λÞ; K�� ¼ kð~λ; ~λÞ: ð22Þ

On the right-hand side of Eq. (21) all the quantities are
known because the hyperparameters have been fixed to
their optimum values, and on the left-hand side all
the quantities are known (from the training set) except

for δhð~λÞ. Therefore, the conditional probability of the
unknown waveform difference given the known differences
in D can be found. This conditional probability is given by
(e.g., [37,38])

P½δhð~λÞ� ¼ 1

2πσ2ð~λÞQM
κ¼1S

0
nðfκÞ

×exp

�
−
ðδhð~λÞ−μðλÞjδhð~λÞ−μðλÞÞ

2σ2ð~λÞ

�
; ð23Þ

where the GPR mean and its associated error have been
defined as

μð~λÞ ¼
X
i;j

½K��i½K−1�ijδhð~λjÞ; ð24Þ

σ2ð~λÞ ¼ K�� −
X
i;j

½K��i½K−1�ij½K��j: ð25Þ

Furnished with the expression for P½δhð~λÞ�, the margin-
alized likelihood in Eq. (9) can now be evaluated. The
integrand in Eq. (9) is the product of two Gaussians and can
be calculated analytically,

Lð~λÞ ∝ 1

1þ σ2ð~λÞQM
κ¼1 ðS0nðfκÞ=SnðfκÞÞ

× exp

�
−
1

2
½s −Hð~λÞ þ μð~λÞjs −Hð~λÞ þ μð~λÞ�

�
:

ð26Þ

The square brackets denote a third inner product with
respect to the new noise weighting S00nðfÞ, where

S00nðf; ~λÞ≡ SnðfÞ þ σ2ð~λÞS0nðfÞ,

½xjy� ¼ 4ℜ

�Z
∞

0

df
~xðfÞ~yðfÞ�
S00nðfÞ

�

¼ 4ℜ

�XM
κ¼1

δf
~xðfκÞ~yðfκÞ�
S00nðfκÞ

�
: ð27Þ

For the remainder of this paper, for simplicity, we take
S0nðfÞ ¼ SnðfÞ so the three signal inner products we have

defined become h·j·i ¼ ð·j·Þ ¼ ½·j·�=ð1þ σ2ð~λÞÞ [13]. With
this simplifying assumption, the marginalized likelihood
becomes

Lð~λÞ ∝ 1

1þ σ2ð~λÞ
exp

�
−
1

2

∥s −Hð~λÞ þ μð~λÞ∥2
1þ σ2ð~λÞ

�
: ð28Þ

As mentioned earlier Eq. (15) issues that the waveform
model errors are uncorrelated in frequency. The assumption
that S0nðfÞ ¼ SnðfÞ additionally assumes that the typical
size of the waveform error at a frequency f is given byffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ

p
. This choice can be motivated to a certain extent

by examining the hyperlikelihood in Eq. (18) which is used
to train the GP. This hyperlikelihood contains the overlap

matrix ðδhð~λiÞjδhð~λjÞÞ. Choosing S0nðfÞ ¼ SnðfÞ acts to
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downweight the correlations at frequencies we are insensi-
tive to (ignoring errors we cannot measure) and hence the
resulting hyperparameters give an interpolant which is
tuned to better represent the waveform correlations at
the frequencies to which we are most sensitive: we weight
waveform errors based upon their impact on the likelihood.
The assumption of frequency-independent models errors
gives a value for the GPR uncertainty σ2 in Eq. (28) that is
also frequency-independent. This can be shown to be a
conservative choice in the sense that it gives broader and
less informative posteriors.
In a follow-on study we will provide a proof of the

conservative nature of this assumption and examine a
number of different choices for the weighting function
S0nðfÞ, but we use the simplifying assumption S0nðfÞ ¼
SnðfÞ throughout the current paper. Despite these simplify-
ing assumptions, we find that the resulting likelihood in
Eq. (28) performs well. In Appendix B we examine the
sensitivity of the method to small changes in the noise
curve SnðfÞ which will occur in real experiments.
In Eq. (28) the best fit waveform has shifted by an

amount μð~λÞ; this is the best estimate of the waveform

difference returned by the GPR. The quantity Hð~λÞ þ μð~λÞ
can be regarded as a new waveform approximant built from
the accurate and approximate waveforms with the aid of
GPR. However, a bonus of this way of including the
training set directly into the likelihood is that the extra
uncertainty associated with using the GPR as an interpolant
is automatically included via the broadening of the pos-

terior caused by σ2ð~λÞ ≥ 0.
In this section we have explained how uncertainty in

waveform models can be included in PE through use of a
marginalized likelihood. We defined such a likelihood in
Eq. (9), but the marginalization requires a prior probability
on the waveform uncertainty across parameter space.
We construct this from a training set using GPR; the
resulting prior is given in Eq. (23). Since this is of Gaussian
form, we can marginalize analytically to produce the new
likelihood Eq. (28). The properties of this marginalized
likelihood are explored extensively throughout the remain-
der of this paper.
In Secs. III and IV we discuss theoretical properties of

the GPR and marginalized likelihood respectively. A reader
who is primarily interested in the PE results obtained with
the likelihood in Eq. (28) may skip to Sec. V.

III. THE COVARIANCE FUNCTION

In the previous section we described how waveform
uncertainties could be marginalized out using a prior
constructed by using GPR on a training set. The only
aspect of this that is not prescribed by the training data is
the choice of the covariance function. This plays an
important role in determining the properties of a GP. In
this section, we discuss the properties of different choices

of the covariance function in GPR. The properties of the
covariance functions discussed in this section are known in
the GPR literature, but are included here as they are not
widely appreciated in the GW community. The material
presented in this section on the covariance function will be
used in the interpretation of our results in Sec. IV
and Sec. V.
The only necessary requirements we have of a covari-

ance function are that it is a positive definite; i.e. for any
choice of points f~λig the covariance matrix Kij ¼ kð~λi; ~λjÞ
is positive definite.
Throughout this paper, GPs are assumed to have zero

mean, and therefore be fully specified by the covariance
function kð~λ1; ~λ2Þ. However, the proofs regarding continu-
ity and differentiability of GPs discussed in this section,
and proved in Appendix A, are done without recourse to the
zero-mean assumption. The covariance encodes all infor-
mation available about the properties of the function being
interpolated by the GPR. It is central to the GPR and hence
also to the marginalized likelihood.
The covariance function (and the corresponding GP) is

said to be stationary if the covariance is a function only of

~τ ¼ ~λ1 − ~λ2, furthermore it is said to be isotropic if it is a

function only of τ≡ j~τj ¼ j~λ1 − ~λ2j.6 Isotropy of a GP
implies stationarity. All of the GPs used for numerical
calculations in this paper are isotropic (and hence sta-

tionary) kð~λ1; ~λ2Þ≡ kð~τÞ≡ kðτÞ, although the generaliza-
tion to nonstationary GPs is briefly discussed in Sec. III B.
An example of how the properties of the covariance

function relate to the properties of the GP, and hence the
properties of the resulting interpolant, is given by consid-
ering themean-square (MS) continuity and differentiability
of GPs. It can be shown that the first nd MS derivatives of a
GP are MS continuous (the GP is said to be nd-times MS
differentiable) if and only if the first 2nd derivatives of the
covariance function are continuous at the diagonal point
~λ1 ¼ ~λ2 ¼ ~λ�. For a stationary GP this condition reduces to

checking the 2nd derivatives of kð~τÞ at ~τ ¼ ~0, and for an
isotropic GP checking the 2nd derivatives of kðτÞ at τ ¼ 0.
A proof of this result, following [39], is given in
Appendix A. It is the smoothness properties of the
covariance function at the origin that determine the differ-
entiability of the GP. This result is used in Sec. III B when
discussing different functional forms of covariance for use
in GPR.
In this section, the effect of the choice of covariance

function on the GPR are explored. We consider three
aspects that enter the definition of the covariance function:
(A) specifying the distance metric in parameter

space gab;

6We have yet to define a metric on parameter space with which
to take the norm of this vector (see Sec. III A), but all that is
required here is that a suitably smooth metric exists.
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(B) specifying the functional form of the covariance with
distance kðτÞ,

(C) and whether or not to include errors σn on the
training set points.

Stages A and B cannot be completely separated; there
exists an arbitrary scaling, α of the distance τ → ατ which
can be absorbed into the definition of the covariance,
kðτÞ → kðτ=αÞ. However, provided the steps are tackled in
order, there is no ambiguity.

A. The metric gab
The first stage involves defining a distance τ between

two points in parameter space. One simple way of doing
this, and the way used in the SE covariance function in

Eq. (17), is to define τ2 ¼ gabð~λ1 − ~λ2Það~λ1 − ~λ2Þb, where
gab are constant hyperparameters. This distance is
obviously invariant under a simultaneous translation of
~λ1 → ~λ1 þ ~Δ and ~λ2 → ~λ2 þ ~Δ; therefore, this defines a
stationary GP. For a D-dimensional parameter space, this
involves specifying DðDþ 1Þ=2 hyperparameters gab.
More complicated distance metrics (with a larger

number of hyperparameters) are possible if the condition
of stationarity is relaxed, i.e. gab → gabð~λÞ. It was demon-
strated by [50] how, given a family of stationary covariance
functions, a nonstationary generalization can be con-
structed. A stationary covariance function can be consid-

ered as a kernel function centered at ~λ1; kð~λ1; ~λ2Þ≡ k~λ1ð~λ2Þ.
Allowing a different kernel function to be defined at each

point ~λ1, a new, nonstationary covariance function is

kð~λ1; ~λ2Þ ¼
R
d~uk~uð ~λ1Þk~uð~λ2Þ.7 Applying this procedure

to a D-dimensional SE function generates a nonstationary
analogue [50]

kð~λi; ~λjÞ ¼ σfjGij1=4jGjj1=4
				G

i þ Gj

2

				
−1=2

exp

�
−
1

2
Qij

�
;

ð29Þ

where

Qij ¼ ð~λi − ~λjÞað~λi − ~λjÞb
�
Gi
ab þ Gj

ab

2

�−1

; ð30Þ

and Gi
ab ¼ inv½gabð~λiÞ� is the inverse of the parameter-space

metric at position ~λi. Provided that the metric gabð~λÞ is
smoothly parametrized this nonstationary SE function
retains the smoothness properties discussed earlier.

For the interpolation of waveform differences, it is easy
to imagine the potential benefits of using nonstationary
GPs. For example, in the case of the spin parameter, it could
be imagined that the waveform difference considered as a
function of the effective spin of the compact objects δhðχÞ
would vary on long length scales in χ for small values of the
spin, but on much shorter scales for larger values of
the spin.
The generalization in Eq. (29) involves the inclusion of a

large set of additional hyperparameters to characterize how
the metric changes over parameter space; for example one
possible parameterisation would be the Taylor series

gabð~λÞ ¼ gabð~λ0Þ þ ð~λc − ~λc0Þ
∂gabð~λÞ
∂λc

				
~λ¼~λ0

þ… ð31Þ

with the hyperparameters gabð~λ0Þ, ∂gabð~λÞ=∂λc, and so on.
As we see below, the inclusion of even a single extra
hyperparameter can incur a significant Occam penalty [37]
which pushes the training set to favor a simpler choice of
covariance function. For this reason we only consider
stationary GPs. However, the generalization to a nonsta-
tionary GP (perhaps in only a limited number of param-
eters, e.g., spin) should be investigated further in the future.
In making this generalization, one would have to be guided
significantly by the prior expectations of which parameters
to include and how to parametrize the varying metric.
An alternative to considering nonstationary metrics is

instead to try and find new coordinates ~λ≡ ~λð~λÞ such that
the metric in these coordinates becomes (approximately)
stationary. There could be hope for this approach, as a
similar problem has been tackled in the context of template
placement for GW searches [51]. Here the problem is to
find coordinates such that waveform templates placed on a
regular grid in these coordinates have a constant overlap
with each other. The waveform match can be viewed as
defining a metric in parameter space, and hence the desired
coordinates make this metric stationary. For a post-
Newtonian inspiral signal, a set of chirp-time coordinates
were proposed by [52] which make the metric nearly
stationary. Metrics have also been calculated for inspi-
ral–merger–ringdown models, for example IMRPhenomB
[53]. While it could be possible to adapt the parameter-
space metrics already calculated for different approximants
for use in template placement algorithms to help in
constructing our GPR training sets, we do not consider
this approach further here.
Throughout the remainder of this paper the metric

components gab are treated as constant hyperparameters
fixed to their optimum values, as discussed in Sec. II.

B. The functional form of kðτÞ
The second stage of specifying the covariance function

involves choosing the function of distance kðτÞ. In general
whether a particular function kðτÞ is positive definite (and

7To see that k is a valid covariance function consider an
arbitrary series of points f~λig, and the sum over training set points
I ¼ P

i;jaiajkð~λi; ~λjÞ; for k to be a valid covariance it is both
necessary and sufficient that I ≥ 0. Using the definition of k gives
I ¼ R

d~u
P

i;j aiajk~uð ~λiÞk~uð~λjÞ ¼
R
d~uðPiaik~uð ~λiÞÞ2 ≥ 0.
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hence is a valid covariance function) depends on the

dimensionality D of the underlying space (i.e. ~λ ∈ RD);
however, all the functions considered in this section are
positive definite for all D. Several choices for kðτÞ are
particularly common in the literature. These include the SE
covariance function (which has already been introduced),
given by

kSEðτÞ ¼ σ2f exp
�
−
1

2
τ2
�
: ð32Þ

The power-law exponential (PLE) covariance function is
given by

kPLEðτÞ ¼ σ2f exp

�
−
1

2
τη
�
; ð33Þ

where 0 < η ≤ 2. The PLE reduces to the SE in the case
η ¼ 2. The Cauchy function is given by

kCauchyðτÞ ¼
σ2f

ð1þ τ2=2ηÞη ; ð34Þ

where η > 0. This recovers the SE function in the limit
η → ∞. And finally, the Matérn covariance function is
given by [54]

kMatðτÞ ¼
σ2f2

1−η

ΓðηÞ ð
ffiffiffiffiffi
2η

p
τÞηKηð

ffiffiffiffiffi
2η

p
τÞ; ð35Þ

where η > 1=2, and Kη is the modified Bessel function of
the second kind [55]. In the limit η → ∞, the Matérn
covariance function also tends to the SE.
Figure 1 shows the functional forms of the covariance

functions. They have similar shapes: they all return a finite
covariance at zero distance which decreases monotonically
with distance and tends to zero as the distance becomes
large. In the case of interpolating waveform differences this
indicates that the errors in the approximate waveform at
two nearby points in parameter space are closely related,
whereas the errors at two well separated points are nearly
independent. The PLE, Cauchy and Matérn function can all

be viewed as attempts to generalize the SE with the
inclusion of one extra hyperparameter η, to allow for more
flexible GP modeling. All three alternative functions are
able to recover the SE in some limiting case, but the Matérn
is the most flexible of the three. This can be seen from the
discussion of the MS differentiability of GPs given at the
beginning of this section.
The SE covariance function is infinitely differentiable at

τ ¼ 0, and so the corresponding GP is infinitely MS
differentiable. The PLE function is infinitely differentiable
at τ ¼ 0 for the SE case when η ¼ 2, but for all other cases
it is not at all MS differentiable. In contrast, the Cauchy
function is infinitely differentiable at τ ¼ 0 for all choices
of the hyperparameter η. The Matérn function, by contrast,
has a variable level of differentiability at τ ¼ 0, controlled
via the hyperparameter η [54]. The GP corresponding to the
Matérn covariance function in Eq. (35) is nd-times MS
differentiable if and only if η > nd. This ability to adjust the
differentiability allows the same covariance function to
successfully model a wide variety of data. In the process of
maximizing the hyperlikelihood for the training set over
hyperparameter η, the GP learns the (non)smoothness
properties favored by the data, and the GPR returns a
correspondingly (non)smooth function.

C. The inclusion of noise σn
Even the most accurate waveform models hð~λÞ still

contain some error with respect to the unknown true

physical signal h0ð~λÞ. This could be because the waveform
model does not include all of the physics or because it is
calculated using a method with finite accuracy. We can
account for the error in our training set points by adding a
noise variance term σ2fσ

2
n;i in the covariance function,

kð~λi; ~λjÞ → kð~λi; ~λjÞ þ σ2fσ
2
n;iδij; ð36Þ

which alters the covariance matrix in Eq. (14) correspond-
ingly, but not the expressions in Eq. (22). Here σn;i is the
fractional error ∥h − h0∥=∥δh∥ in each training set point,
where the norm is taken with respect to the inner product in

FIG. 1. Plots of the different generalizations of the SE covariance function discussed in Sec. III B. The left-hand panel shows the PLE
function, the center panel shows the Cauchy function, and the right-hand panel shows the Matérn function; in all cases the value of σf
was fixed to unity. In each panel the effect of varying the additional hyperparameter is shown by the three curves. For the PLE covariance
the case η ¼ 2 recovers the SE covariance, while for the Cauchy and Matérn covariances the case η → ∞ recovers the SE covariance.
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Eq. (5) and δh ¼ H − h. This ensures that σ2f is still an
overall scale for the covariance function.
We do not maximize the hyperlikelihood over σ2n;i; this is

because σn;i is related to ∥h − h0∥, which cannot be learned
from a training set containing the differences δh. The noise
error is instead fixed at some overall error estimate for the
accurate model, which is a conservative approach. We
consider the simple case σn;i ¼ σn in this paper; however, it
is not necessary for all training set points to have the same
error, as a training set might comprise different families
of waveform models (e.g., a mix of different variants of
(S)EOBNR or IMRPhenom waveforms, or NR waveforms
with different numerical resolutions).
If the overall noise error is σfσn, then the GPR

uncertainty at a training set point σð~λiÞ satisfies,

σð~λiÞ ≤ σfσn; ∀i ∈ f1; 2;…; Ng: ð37Þ
This is because the different points in the training set are
assumed to come from a correlated GP, and so nearby
measurements also act to decrease the error.
There is also a more practical motivation for the

inclusion of noise. Inversion of the covariance matrix in
Eq. (14) can pose issues of numerical stability for large
training sets. In general, as the number of points in the
training set increases, the determinant of the covariance
matrix decreases rapidly toward zero, such that the matrix
is nearly singular (and hence the matrix is difficult to
invert). The solution to this is to add a small fixed noise
σ2n ¼ J ≪ 1, or jitter, to each training set point as per
Eq. (36). The eigenvalues of the new covariance matrix are
then (approximately) the eigenvalues of the original matrix
plus J. This prevents the determinant, the product of the
eigenvalues, from becoming vanishingly small and dramati-
cally improves the stability of the inversion. In effect, we are
no longer requiring our interpolant to pass through every
training set point; instead,we only ask it to pass close to each
point (with the proximity determined by the value of J).

D. Compact support and sparseness

All of the covariance functions considered up until this
point have been strictly positive;

kðτÞ > 0 ∀ τ ∈ ½0;∞Þ: ð38Þ
When evaluating the covariance matrix for the training set
Kij this leads to a matrix where all entries are positive; i.e. a
dense matrix. When performing the GPR it is necessary to
maximize the hyperlikelihood for the training set with
respect to the hyperparameters. This process involves
inverting the dense matrix Kij at each iteration of the
optimization algorithm. Although this procedure is carried
out offline, it still can become prohibitive for large training
sets. A related problem, as pointed out in Sec. III C is that
for large training sets the determinant of the covariance

matrix is typically small which also contributes to making
the covariance matrix hard to invert.
One potential way around these issues is to consider a

covariance function with compact support,

kðτÞ > 0 ∀ τ ∈ ½0; T�;
kðτÞ ¼ 0 ∀ τ ∈ ðT;∞Þ; ð39Þ

where T is some threshold distance beyond which we
assume that the waveform differences become uncorre-
lated. This leads to a sparse, band-diagonal covariance
matrix, which is much easier to invert. Care must be taken
when specifying the covariance function to ensure that the
function is still positive definite (which is required of a GP):
if the SE covariance function is truncated, then the matrix
formed from the new covariance function is not guaranteed
to be positive definite.
Nevertheless, it is possible to construct covariance

functions which have the requisite properties and satisfy
the compact support condition in Eq. (39). These are
typically based on polynomials. We consider a series of
polynomials proposed by [56], which we will refer to as the
Wendland polynomials. These have the property that they
are positive definite in RD and are 2q-time differentiable at
the origin. Therefore the discrete parameter q is in some
sense analogous to the η hyperparameter of the Matérn
covariance function in that it controls the smoothness of the
GP. Defining β to be

β ¼


D
2

�
þ qþ 1 ð40Þ

and using ΘðxÞ to denote the Heaviside step function, the
first few Wendland polynomials kD;qðτÞ are given by,

kD;0ðτÞ ¼ σ2fΘð1 − τÞð1 − τÞβ; ð41Þ

kD;1ðτÞ ¼ σ2fΘð1 − τÞð1 − τÞβþ1½1þ ðβ þ 1Þτ�; ð42Þ

kD;2ðτÞ ¼
σ2f
3
Θð1 − τÞð1 − τÞβþ2½3þ ð3β þ 6Þτ

þ ðβ2 þ 4β þ 3Þτ2�; ð43Þ

kD;3ðτÞ ¼
σ2f
15

Θð1 − τÞð1 − τÞβþ3½15þ ð15β þ 45Þτ
þ ð6β2 þ 36β þ 45Þτ2
þ ðβ3 þ 9β2 þ 23β þ 15Þτ3�: ð44Þ

These are plotted in Fig. 2. Other types of covariance
function with compact support have also been proposed
and explored in the literature (e.g., [57–59]), but we do not
consider them in this paper.
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IV. PROPERTIES OF THE METHOD

In this section proofs of several useful features of the
marginalized likelihood are presented. In Sec. IVA we
derive the PE error in a linearized formalism, recovering
results of [12] as well as new results for our marginalized
likelihood; in Sec. IV B we use these results to show that
the marginalized likelihood should not exclude the true
parameter values even at large SNR, and in Sec. IV C, we
derive other limits of the marginalized likelihood at specific
points in parameter space.

A. The error at linear order

A more detailed understanding of the theoretical error
problem, and the solution offered by the marginalized
likelihood can be gained by examining the behavior of the
likelihoods in the vicinity of a maximum.
The exact likelihood, from Eq. (4), is given by

L0ð~λÞ ∝ exp

�
−
1

2
∥s − hð~λÞ∥2

�
; ð45Þ

and has a maximum at the best fit parameters, ~λbf , which
satisfy the equation

h∂ahð~λbfÞjs − hð~λbfÞi ¼ 0: ð46Þ

The measured data consist of noise and the physical signal

with the true parameters, ~λtr, that is s ¼ nþ hð~λtrÞ.
Therefore Eq. (46) becomes

h∂ahð~λbfÞjnþ hð~λtrÞ − hð~λbfÞi ¼ 0: ð47Þ

Expanding the difference in the signals to leading order in

Δ~λ ¼ ~λbf − ~λtr gives

h∂ahð~λbfÞjn − Δ~λb∂bhð~λbfÞi ¼ 0; ð48Þ

whence

Δ~λa ¼ ðΣ−1Þabhnj∂bhð~λbfÞi; ð49Þ

where Σab ¼ h∂ahð~λbfÞj∂bhð~λbfÞi. Therefore, at leading
order, the shift between the best fit and true parameters
for the exact likelihood consists of one term proportional to
n; we call this the noise error. The matrix Σab is the usual
Fisher information matrix (FIM) which characterizes the
random errors at leading order [60].
The approximate likelihood, from Eq. (7), is given by

Lð~λÞ ∝ exp

�
−
1

2
∥s −Hð~λÞ∥2

�
; ð50Þ

and has a maximum at the best fit parameters which satisfy
the equation

h∂aHð~λbfÞjs −Hð~λbfÞi ¼ 0: ð51Þ
Using s ¼ nþ hð~λtrÞ in Eq. (51) and expanding to leading

order in Δ~λ gives

h∂aHð~λbfÞjn − δhð~λtrÞ − Δ~λb∂bHð~λbfÞi ¼ 0; ð52Þ
thus

Δ~λa ¼ ðΓ−1Þabhnj∂bHð~λbfÞi − ðΓ−1Þabhδhð~λtrÞj∂bHð~λbfÞi;
ð53Þ

where Γab ¼ h∂aHð~λbfÞj∂bHð~λbfÞi. Therefore, at leading
order the shift between the best fit and true parameters for
the approximate likelihood consists of two terms: the noise
error as before (except with the FIM evaluated with the
approximate model) and what we call the model error,

Δmodel
~λa ¼ −ðΓ−1Þabhδhð~λtrÞj∂bHð~λbfÞi: ð54Þ

The model error is independent of the noise realization, and
hence represents a systematic error in the PE associated
with using inaccurate models.
The above treatment of the exact and approximate

likelihoods is a brief summary of part of the analysis done
by [12]. We now apply the same type of analysis to the new
marginalized likelihood to see how this reduces or removes
the model error.
The marginalized likelihood is given in Eq. (9). From

Eq. (25) it can be seen that the interpolated waveform
difference μð~λÞ is a linear combination of δhð~λiÞ from the
training set. We will assume, for this calculation only, that
the waveform difference is also a small quantity in the sense
that ∥δh∥ ≪ ∥h∥ with the norm from Eq. (6). Therefore,
μ ¼ OðδhÞ and σf ¼ OðδhÞ. We shall keep contributions
up to OðδhÞ.

FIG. 2. Plots of the first few Wendland polynomial covariance
functions. All these functions have compact support, kðτÞ ¼ 0 for
τ > 1. As the value of q increases the functions become smoother
near the origin.
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Under the twin assumptions that Δ~λ and ∥δh∥ are small,
the marginalized likelihood is approximately given by

Lð~λÞ ≈ exp

�
−
1

2
∥s −Hð~λÞ þ μð~λÞ∥2

�
: ð55Þ

This has a maximum at the best fit parameters ~λbf which
satisfy the equation

h∂aðμð~λbfÞ −Hð~λbfÞÞjs −Hð~λbfÞ þ μð~λbfÞi ¼ 0: ð56Þ

Using s ¼ nþ hð~λtrÞ, and expanding to leading order inΔ~λ
and δh gives

h−∂aðμð~λbfÞ −Hð~λbfÞÞjnþ hð~λtrÞ −Hð~λbfÞ þ μð~λbfÞi ¼ 0;

ð57Þ

h−∂aðμð~λbfÞ−Hð~λbfÞÞjn−δhð~λtrÞ−Δ~λb∂bHð~λbfÞþμð~λbfÞi
¼ 0: ð58Þ

This expression can be rearranged to find Δ~λ, dropping
all terms second order in small quantities,

Δ~λa ¼ ðΓ−1Þabhnj∂bðHð~λbfÞ − μð~λbfÞÞi
− ðΓ−1Þabhδhð~λtrÞj∂bHð~λbfÞi
þ ðΓ−1Þabhμð~λbfÞj∂bHð~λbfÞi: ð59Þ

Therefore, at leading order, the shift between the best
fit and true parameters for the marginalized likelihood
consists of three terms: the noise and model errors from
before, and a new shift arising from the marginalization,

Δmarg
~λa ¼ ðΓ−1Þabhμð~λbfÞj∂bHð~λbfÞi. The expression for

the model and marginalization errors are similar and appear
with opposite signs (as would be hoped since the margin-
alized likelihood was designed to remove the model error)

so the remaining model error is proportional to δhð~λbfÞ −
μð~λbfÞ (integrated inside the inner product).
If the training set is dense in the region of the peak, and

the hyperparameters have been correctly estimated, it is
reasonable to assume that the GPR interpolant of the
waveform difference performs well, and we have

hδhð~λÞ − μð~λÞj·i ≈ 0. Under these conditions the margin-
alized likelihood removes the systematic model error from
the parameter estimates. In reality the interpolation is not
perfect, and the method is limited by the available infor-
mation in the training set, so that a residual model error

proportional to hδhð~λbfÞ − μð~λbfÞj·i remains.

B. The limit of large SNR

As first pointed out by [12], the systematic error
associated with the inaccurate model used in the approxi-
mate likelihood is independent of the SNR, whereas the
random error associated with the noise realization
decreases with increasing SNR. Therefore, there exists a
critical SNR for the approximate likelihood above which
the systematic model error dominates the random noise
error. If the approximate likelihood is used to infer the
parameters of a source with an SNR close to or above this
critical value then the inferred parameters are significantly
and systematically biased. In this section we examine the
behavior of all three likelihood functions for large SNR and
show that the marginalized likelihood does not suffer from
this problem even in the limit of infinite SNR. Therefore,
parameter estimates obtained using the marginalized like-
lihood can always be trusted.
In this section in order to ease the process of taking the

limit of large SNR all waveforms are understood to be
normalized such that ∥hð~λÞ∥ ¼ 1, and the amplitude is

taken out as a prefactor, so the full signal is Ahð~λÞ. In
addition we will assume for simplicity that the measured
value of A is equal to the true value for the signal; this has
no effect on our final result.
The exact likelihood Eq. (4) is given by

L0ð~λÞ ∝ exp

�
−
1

2
∥s − Ahð~λÞ∥2

�
: ð60Þ

The measured data is given by s ¼ nþ Ahð~λtrÞ, and the

exact likelihood is peaked at ~λbf ¼ ~λtr þ Δ~λ, where [see
Eq. (49)]

Δ~λa ¼ 1

A
ðΣ−1Þabhnj∂bhð~λbfÞi: ð61Þ

In this section, the FIM Σab is defined in terms of the
normalized waveforms, i.e. Σab is independent of A; this is
done so that all of the dependence on A remains explicit.
The exact likelihood evaluated on the true parameters is
given by

L0ð~λtrÞ ∝ exp
�
−
1

2
∥n∥2

�
: ð62Þ

The exact likelihood evaluated on the best-fit parameters is
given by

L0ð~λbfÞ ∝ exp

�
−
1

2
∥nþ Aðhð~λtrÞ − hð~λbfÞÞ∥2

�
: ð63Þ

The ratio of these two likelihood values is denoted

Rexact ¼ L0ð~λtrÞ=L0ð~λbfÞ. Expanding the difference hð~λtrÞ −
hð~λbfÞ in the above equation to leading order in Δ~λ gives
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lnRexact ¼ −
1

2
ðΣ−1Þabhnj∂ahð~λbfÞihnj∂bhð~λbfÞi: ð64Þ

The quantity Rexact is the factor by which the likelihood of
the true parameters is suppressed with respect to the peak
likelihood. From Eq. (64) it can be seen that this factor is a
random variable dependent on the noise realization n; the
expectation of this random variable is given by [44]

lnRexact ¼ −
1

2
: ð65Þ

Both Eqs. (65) and Eq. (64) are independent of the signal
amplitude A, and hence are unchanged by taking the limit
of large SNR, A → ∞. Therefore (as one might have

expected) the exact likelihood evaluated at ~λtr remains
finite in this limit and the true parameters are never
completely excluded from the posterior at any value of
the SNR.
The approximate likelihood Eq. (7) is given by

Lð~λÞ ∝ exp

�
−
1

2
∥s − AHð~λÞ∥2

�
; ð66Þ

The approximate likelihood is peaked at ~λbf ¼ ~λtr þ Δ~λ,
where [see Eq. (53)]

Δ~λa ¼ 1

A
ðΓ−1Þabhnj∂bHð~λbfÞi

− ðΓ−1Þabhδhð~λtrÞj∂bHð~λbfÞi: ð67Þ
The FIM Γab is also here defined to be independent of A.
The approximate likelihood evaluated on the true param-
eters is given by

Lð~λtrÞ ∝ exp

�
−
1

2
∥nþ Aðhð~λtrÞ −Hð~λtrÞÞ∥2

�

∝ exp

�
−
1

2
∥n − Aδhð~λtrÞ∥2

�
: ð68Þ

The approximate likelihood evaluated on the best fit
parameters is given by

Lð~λbfÞ ∝ exp

�
−
1

2
∥n − Aðhð~λtrÞ −Hð~λbfÞÞ∥2

�

∝ exp
�
−
1

2
∥nþ Aðδhð~λtrÞ − Δ~λa∂aHð~λbfÞÞ∥2

�
;

ð69Þ

where, as before, the waveform difference has been

expanded to leading order in Δ~λ. The ratio of the two

likelihood Rapprox ¼ Lð~λtrÞ=Lð~λbfÞ can be evaluated from
Eq. (68) and Eq. (69), and taking the limit of large SNR
gives

lim
A→∞

lnRapprox ¼ −
A2

2
ðΓ−1Þabhδhð~λtrÞj∂aHð~λbfÞi

× hδhð~λtrÞj∂bHð~λbfÞi: ð70Þ

Unlike Rexact, this ratio does not depend on n. This is
because in the limit of large SNR, only the terms from the
exponents of Eq. (68) and Eq. (69) proportional to A2

contribute, and the noise-dependent terms are all propor-
tional to A. Also unlike Rexact, this ratio does depend on the
amplitude and Rapprox → 0 in the limit of large SNR.
Therefore, as anticipated above, the approximate likelihood
excludes the true source parameters with complete certainty

in the limit of large SNR (unless hδhð~λtrÞj·i ¼ 0, in which
case the exact likelihood is recovered).
The marginalized likelihood Eq. (9) is given by

Lð~λÞ ∝ exp

�
−
1

2

∥s − AHð~λÞ þ Aμð~λÞ∥2
1þ A2σ2ð~λÞ

�
: ð71Þ

The marginalized likelihood is peaked at ~λbf ¼ ~λtr þ Δ~λ,
where, by comparison with Eq. (59),

Δ~λa ¼ 1

A
ðΓ−1Þabhnj∂bðHð~λbfÞ − μð~λbfÞÞi

− ðΓ−1Þabhδhð~λtrÞj∂bHð~λbfÞi
þ ðΓ−1Þabhμð~λbfÞj∂bHð~λbfÞi: ð72Þ

The values of the marginalized likelihood evaluated on
the true and best-fit parameters are given by Eq. (73)
and Eq. (74), and the ratio of these two likelihoods is
denoted Rmarg,

Lð~λtrÞ ∝ exp

�
−
1

2

∥n − Aδhð~λtrÞ þ Aμð~λtrÞ∥2
1þ A2σ2ð~λtrÞ

�
; ð73Þ

Lð~λbfÞ ∝ exp

�
−
1

2

∥n − Aδhð~λtrÞ − AΔ~λa∂aHð~λbfÞ þ Aμð~λbfÞ∥2
1þ A2σ2ð~λbfÞ

�
; ð74Þ
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lim
A→∞

lnRmarg ¼ −
1

2σ2ð~λbfÞ
½ðΓ−1Þabhδhð~λtrÞ − μð~λbfÞj∂aHð~λbfÞihδhð~λtrÞ − μð~λbfÞj∂bHð~λbfÞi

− ∥μð~λbfÞ∥2 þ ∥μð~λtrÞ∥2 þ 2hδhð~λtrÞjμð~λtrÞ − μð~λbfÞi� ð75Þ

≈ −
1

2σ2ð~λbfÞ
ðΓ−1Þabhδhð~λtrÞ − μð~λbfÞj∂aHð~λbfÞihδhð~λtrÞ − μð~λbfÞj∂bHð~λbfÞi: ð76Þ

The approximation made in going from Eq. (75) to
Eq. (76) involves dropping terms which are products of
small quantities. Because the FIM is a symmetric, positive-
definite matrix, the numerator in Eq. (76) is a negative
number, and hence Rmarg < 1 as required to ensure ~λbf is
the peak of the likelihood.
As was the case with Rapprox, this expression for Rmarg

does not depend on the noise. However, unlike Rapprox the
expression for Rmarg also does not depend on the amplitude
A. Therefore, in the limit that the SNR becomes large Rmarg

tends to a constant value which depends quadratically on

hδhð~λtrÞ − μð~λbfÞj·i. As the SNR increases, the true param-
eters are not excluded from the marginalized likelihood,
instead the likelihood distribution tends to a constant
distribution (i.e. no dependence on n), and the ratio by
which the true parameters are disfavored compared to the
best fit parameters is set by the ability of the GPR to recover
the true waveform difference.
Intuitively, the reason the marginalized likelihood is

able to achieve this useful behavior, even if the true
waveform difference is not perfectly recovered by the
GPR interpolation (i.e. hδhð~λtrÞ − μð~λbfÞj·i ≠ 0), is due to
the way the hyperparameters in the covariance function are
chosen. The hyperparameters were fixed to their optimum
values by maximizing the hyperlikelihood for the training
set (as described in Sec. II). During this process the overall
scale hyperparameter σf gains a dependence on the
amplitude proportional to A2. Hence the GPR uncertainty

σ2ð~λÞ is also proportional to A2. As can be seen from
Eq. (71), in the limit of large SNR the amplitude depend-
ence cancels in the exponential and the marginalized
likelihood tends to a constant distribution. Therefore,
the marginalized likelihood never excludes the true source
parameters from the final posterior with complete
certainty.

C. Limits of the marginalized likelihood across
parameter space

In this section we examine the behavior of the margin-
alized likelihood in the limit of being far from any training
points and being at a training point.
First we examine the behavior of the marginalized

likelihood in the former case, at a large distance
(τ2 ≫ 1) from any of the points in the training set. From
Eq. (25) it can be seen that well outside of the training set

μð~λÞ → 0 and σ2ð~λÞ → σ2f. Therefore, from Eq. (28), the log
marginalized likelihood tends to

lnLð~λÞ → lnLð~λÞ
1þP

i;jKijhδhð~λiÞjδhð~λjÞi
: ð77Þ

Well outside of the training set the marginalized likelihood

lnLð~λÞ recovers the standard, approximate likelihood Lð~λÞ
up to a constant factor. This constant factor is one plus a
linear combination of the overlap integrals of all the
waveform differences in the training set. Since the denom-
inator in Eq. (77) is always greater than unity (this is
ensured by the positive-definite property of the covariance
matrix), it broadens any peak in the likelihood outside of
the training set. The amount of the broadening is set by the
magnitude of the waveform differences in the training set

via the overlap matrix hδhð~λiÞjδhð~λjÞi. This is the behavior
that would be expected; in the absence of any accurate
waveforms the parameter uncertainties obtained from the
approximate waveforms should be multiplied by a constant
factor depending upon our level of belief in the accuracy
of the approximate waveform model. In turn, our level of
belief in the accuracy of the approximate waveform is
learned from the training set in the process of training
the GP.
We now consider the behavior of the marginalized

likelihood evaluated at one of the training set points ~λl.
First, consider the case where σn ¼ 0. In this case, the

interpolated waveform difference, from Eq. (24), at ~λl
recovers the true waveform difference, and the GPR

uncertainty, from Eq. (25), vanishes at ~λl;

μð~λlÞ ¼ δhð~λlÞ; ð78Þ

σ2ð~λlÞ ¼ 0: ð79Þ

Therefore the marginalized likelihood in Eq. (28) recovers
the exact likelihood with no additional broadening.

Lð~λlÞ ¼ L0ð~λlÞ: ð80Þ

This is also the behavior that would be expected; at a point
in parameter space where the accurate waveform is known,
the accurate likelihood is recovered.
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If σn ≠ 0, then Eq. (78) and Eq. (79) become

μð~λlÞ ¼ δhð~λlÞ − σ2n
X
i

kð~λi; ~λlÞδhð~λiÞ þOðσ4nÞ;

σ2ð~λlÞ ¼ σ2n
X
i

kð~λi; ~λlÞkð~λi; ~λlÞ þOðσ4nÞ: ð81Þ

In this case any peak in the marginalized likelihood will be
slightly shifted and broadened relative to the peak in the
accurate likelihood by an amount consistent with the
uncertainty σn in the accurate waveform model.

V. IMPLEMENTATION

In this section we present an illustrative implementation
of our GPR approach. As a simple example, we consider
estimating a single parameter; a full multidimensional
application that would be appropriate for actual GW data
analysis will be investigated in future work. We begin in
Sec. VA by introducing the waveforms we use for this
study. In Sec. V B we describe the placement of the training
set points for the GPR; in order to investigate the effect of
training set on the GPR interpolant two sets were con-
structed with different numbers of points and grid spacings.
In Sec. V C we present results for maximizing the hyper-
likelihood to find the optimum hyperparameters, ~θop, for
the interpolation; this is done for a range of different
covariance functions on each of the training sets described
in Sec. V B. In Sec. V D we interpolate the waveforms
across parameter space for the different training sets and
different covariance functions described and compare the

interpolated waveforms Hð~λÞ − μð~λÞ to the accurate wave-

forms hð~λÞ. In Sec. V E we present results for the GPR

uncertainty, σ2ð~λÞ, for the different training sets and differ-
ent covariance functions considered. Finally in Sec. V F we

present results for the marginalized likelihood Lð~λÞ, and
compare with the results obtained using the approximate

likelihood Lð~λÞ, and the exact likelihood L0ð~λÞ.

A. Model waveforms

In order to implement the GPR, a choice has to be
made regarding which waveform models to use. The
method uses two waveform approximants; the accurate

hð~λÞ and the approximate Hð~λÞ waveforms. The accurate
waveform should be the most accurate available at a
computational cost that permits the offline construction
of the training set D. The criteria for choosing the
approximate waveform is less clear, a balance needs to
be struck between accuracy and speed. If the model is
computationally cheap but not accurate enough the wave-

form difference, δhð~λÞ ¼ Hð~λÞ − hð~λÞ, will be large and
vary on short length scales over parameter space; these are
the situations which will cause the GPR to perform worst.

On the other hand an accurate model which is too
computationally expensive could slow down any PE to
such an extent that there ceases to be any benefit in using
the marginalized likelihood instead of the accurate
likelihood.
We used two waveform models implemented in the

LIGO Scientific Collaboration Algorithm Library (LAL).8

As our intention here is to provide a proof of principle, we
choose the IMRPhenomC approximant [61] as the accurate
waveform and the widely used TaylorF2 approximant
[33,62,63] as the approximate waveform; both of these
models are sufficiently fast to evaluate that we can compute
and then compare the three likelihoods [accurate L0ð~λÞ,
approximate Lð~λÞ, and marginalized Lð~λÞ] and directly
assess the performance of the GPR.
Both of the approximants we have chosen to use here are

frequency-domain models, i.e. they naturally return the
waveform in the Fourier domain ~hðfÞ.9 The IMRPhenomC
waveform includes inspiral, merger and ringdown, while
the TaylorF2 waveform only includes the inspiral.
We investigate the merger of nonspinning circular

binaries. This limits the number of intrinsic parameters
describing the system to two, the masses of the two
component objects, ~λ ¼ fm1; m2g. To further simplify
the problem we place training set points only along a
one-dimensional subspace, which we choose to be a
surface of constant mass ratio, Q ¼ m2=m1 (with
m1 ≥ m2), parametrised by the value of the chirp mass
Mc ¼ ðm1m2Þ3=5=ðm1 þm2Þ1=5. This keeps the size of the
training set small, and hence the computational complexity
of the GPR to a minimum. This allows us to instead focus
our attention on the novel features of the marginalized
likelihood, and explore the effect of changing various
features of the method.

B. The training set

For simplicity we restrict the range of the coordinates
which we search over to reduce the computational com-
plexity. This is again to allow us to focus our attention on
the novel features of the method. The training sets cover the
chirp mass in the range Mc ∈ ½5; 5.6�M⊙ and the mass
ratio is fixed to the (nearly equal mass) Q ¼ 0.75. The
placement of training set points was done as a regular grid
in chirp mass with a step size between points of ΔMc.

8http://www.lsc‑group.phys.uwm.edu/lal
9In previous work [13] the marginalized likelihood has been

implemented with time-domain approximants. The method
works equally with frequency-domain or time-domain models
without the need to transform between them. In the offline stage
the waveforms enter only via the overlap matrix hδhð~λiÞjδhð~λjÞi,
and in the online stage the waveforms enter only in the linear
combination for μð~λÞ in Eq. (24), which commutes with the
operation of taking the Fourier transform.
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The chirp-mass range has been chosen to demonstrate
the properties of the method. For lower masses, the signal is
dominated by the inspiral where both approximants agree
well. Therefore, interpolating these small differences would
not be a robust test. At higher masses, where the signal is
just merger and ringdown, the two approximants are
completely different; we get no useful information from
the TaylorF2 waveform and may as well interpolate
IMRPhenomC directly. We do not anticipate that in practice
we would consider waveform differences as significant as
the complete absence of merger and ringdown; hence, this
example, although only one-dimensional, should be a
rigorous test of what waveform uncertainties can be
successfully interpolated. Understanding if this continues
to be true for the interpolation of a more intricate waveform
difference across a higher-dimensional parameter space,
must wait for further studies to be completed.
To allow us to explore the effect that the density of points

in the training set has on the marginalized likelihood two
different values for ΔMc were considered. This leads to
two different training sets whose total number n of points
are different; the properties of these two training sets are
summarized in Table I. It is expected that the GPR
interpolation, and hence the marginalized likelihood, will
perform better when using the denser set D1.
Once the training set points f~λig were specified, both the

approximateHð~λiÞ and accurate hð~λiÞwaveforms discussed
in Sec. VAwere evaluated at each point, and the waveform

differences fδhð~λiÞg stored for use during the GPR inter-
polation. The matrix of waveform difference overlaps

Mij ¼ hδhð~λiÞjδhð~λjÞi was also evaluated and stored for
use during the hyperlikelihood maximization procedure.

C. The hyperparameters

Initially the training sets described in Sec. V B were
interpolated using the SE covariance function in Eq. (32).
This covariance function has just two hyperparameters,
~θ ¼ fσf; gMcMc

g. The one-dimensional metric gMcMc
can

be exchanged for a length scale in the chirp mass parameter
δMc ≡ 1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffigMcMc

p . A fixed noise term with σ2n ¼ 10−4

was used for all the covariance functions in this section, to
make the inverse of the covariance function numerically
stable as discussed in Sec. III C. The hyperlikelihood for
the training setD0 was maximized with respect to these two
hyperparameters. The optimum values for the hyperpara-
meters were found to be

σf ¼ 3.49 × 104; ð82Þ

δMc ¼ 1.11 × 10−2M⊙: ð83Þ

The hyperlikelihood is shown in Fig. 3. The hyperlikelihood
was also maximized for the training set D1 using the same
SE covariance function and those results are also shown in
Fig. 3. For the denser training set D1 the optimum length
scale was found to be smaller, δMc ¼ 6.31 × 10−3M⊙. For
both training sets, in the limit that the length scale becomes
much larger than the total width of the training set (0.6M⊙)
or much smaller than the grid point spacing (ΔMc), the
hyperlikelihood tends to a constant value. This behavior can
be understood by examining the expression for the hyper-
likelihood in Eq. (18).
In order to explore the effect that the choice of covari-

ance function has on the marginalized likelihood, the
training sets were also interpolated using the Matérn
covariance function in Eq. (35). This covariance function
has an additional hyperparameter, ~θ ¼ fσf; gMcMc

; ηg. The
hyperlikelihood for training set D0 was maximized for this
covariance function. It was found that the hyperlikelihood
surface did not possess a peak, instead a ridge was found
tending to a maximum at a value η → ∞, and values of σf
and gMcMc

were found to be the same as for the SE
covariance function. In Fig. 4 we plot the log-hyperlikeli-
hood (maximized over σf) against chirp-mass length scale
and the additional hyperparameter η.
As the Matérn covariance function recovers the SE

function in the limit η → ∞, there will be no difference
in the performance of the interpolants for this training set
when using the Matérn or SE covariance functions. If the
volume under the hyperlikelihood surface (the hyperevi-
dence) is used as a figure-of-merit for which covariance
function the data favors, then in this case the data is equally
well described by either covariance function, but the SE
covariance function is favored over the Matérn due to the
smaller prior volume (the Occam penalty).

TABLE I. The properties describing the positions of the
template waveforms for each of the three training sets used.

ΔMc N

D0 1.0 × 10−2M⊙ 60
D1 5.0 × 10−3M⊙ 120

FIG. 3. The hyperlikelihood, from Eq. (18), for the SE
covariance function, maximized over the scale hyperparameter
σf, plotted against the chirp mass length scale δMc. The
hyperlikelihood is shown for both of the training sets (normalized
to a peak value of 1). The denser training set D1 was found to
favor smaller length scales.
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The hyperlikelihood was also calculated for both training
setsD0 and D1 using the PLE covariance, see Eq. (33), and
the Cauchy covariance, see Eq. (34), considered in Sec. III.
In both cases a similar behavior was observed. For the PLE
covariance, a peak in the hyperlikelihood was found at
η ¼ 2, where the PLE covariance equals the SE covariance.
For the Cauchy covariance, a ridge in the hyperlikelihood
was found tending to a maximum for η → ∞ (similar to the
Matérn case shown in Fig. 4), in which limit the Cauchy
covariance also recovers the SE covariance. As with the
Matérn covariance, if the hyperlikelihood is used as a
figure-of-merit for selecting the covariance function then
the SE covariance is favored over both the PLE and Cauchy
functions due to the Occam penalty.
It is clear that interpolations of the training sets D0 and

D1 using any of the PLE, Cauchy, or Matérn covariance
functions, evaluated at the hyperlikelihood-maximizing
hyperparameters, would yield identical results to an inter-
polation using the simpler SE covariance. For this reason,
in the following sections we do not use the PLE, Cauchy, or
Matérn functions further and instead focus on the SE
covariance function. We will, however, also consider using
the Wendland polynomial function in the following sec-
tions as it reduces the computational cost.
The hyperlikelihood for the compact support Wendland

polynomial covariance functions are shown in Fig. 4, for
the cases q ¼ 0, 1, 2, 3. The compact-support functions can
develop multiple-peaks in the hyperlikelihood surface
associated with the length-scale of the training set: multi-
ples of the training-set grid spacing are indicated with

vertical blue lines in Fig. 4. These subsidiary peaks occur in
the δMc hyperparameter because as the size of the
compact-support region grows, the (integer) number of
training set points it contains changes discontinuously.
From Fig. 5 it can be seen that for the training set D0, a

value of q ¼ 1 is favored with a length-scale δMc ¼ 4.37×
10−2M⊙. In the following sections we will use Wendland
covariance functionwith all values of q (and their associated
peak hyperlikelihood length scales) to interpolate D0.
The optimum hyperparameters depend on the detector

noise power spectral density via the overlap matrix

hδhð~λiÞjδhð~λjÞi. In Appendix B, an investigation of the
sensitivity of the optimum hyperparameters to small
changes in the detector noise properties is described. It
was found that for any realistic changes to the noise curve,
the optimum hyperparameters were changed by an amount
too small to have any noticeable effect on the interpolant.

D. The interpolated waveforms

The GPR waveform Hð~λÞ − μð~λÞ could be viewed as a
new waveform approximant formed from the approximant
waveforms and the use of GPR on the training set of
accurate waveforms. It is then natural to ask how this new
approximant compares to the original ones. This can be
assessed by calculating the overlap between the different
waveforms, where the overlap is defined by

overlapða; bÞ ¼ hajbi
∥a∥∥b∥

; ð84Þ

using the inner product defined in Eq. (5).
Only considering the overlap misses the important extra

benefit which the marginalized likelihood approach brings.
Our method is not just supplying a new waveform
approximant, but also providing a way of modifying the
posterior to account for the uncertainties known to be in
the approximant. This extra information which modifies the

FIG. 5. The hyperlikelihood, from Eq. (18), for the training set
D0 using the Wendland polynomial covariance functions, maxi-
mized over the scale hyperparameter σf, plotted against the chirp-
mass length scale δMc. The vertical blue lines indicate multiples
of the training-set grid spacing ΔMc.

FIG. 4. The hyperlikelihood, from Eq. (18), surface for the
training set D0 using the Matérn covariance, maximized over the
hyperparameter σf, plotted against the chirp mass length scale
δMc and the hyperparameter, η. The hyperlikelihood does not
show a clear peak, instead a ridge in the hyperparameter space
favors the limiting case η → ∞, in which limit the Matérn
covariance function is equal to the SE covariance function. On
the near-side faces of the plot box we show the hyperlikelihood
sliced parallel to the coordinate axes though the point
ðδMc ¼ 10−1.9M⊙; η ¼ 10Þ. The solid black line on the near,
left-hand face of the box very closely matches the solid black
curve in Fig. 3 (up to an arbitrary additive constant).
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likelihood surface is included through σð~λÞ. Nonetheless, it
is still informative to temporarily treat Hð~λÞ − μð~λÞ as if it
were a new waveform approximant and see how it

compares with the approximants hð~λÞ and Hð~λÞ from
which it was built. Figure 6 shows the waveform overlap

between the interpolated waveform Hð~λÞ − μð~λÞ and the

accurate waveform hð~λÞ as a function of chirp mass near the
edge of the training set. Also shown in the dotted curve is

the overlap between the approximate waveform Hð~λÞ and
the accurate waveform hð~λÞ. The interpolated waveforms
have a much higher overlap than the approximate wave-
forms, as would be expected. Within the training set the
overlap is increased from ∼0.35 to no less than ∼0.985
even for the sparser training set D0. For the denser training
set D1 overlaps no worse than ∼0.999 were found inside
the range of the training set. Outside the training set the
interpolated waveform tends rapidly to the approximate

waveform Hð~λÞ.
The training set waveforms were also interpolated using

the Wendland compact support covariance functions dis-
cussed in Sec. III D. The cases q ¼ 0, 1, 2, 3 were
considered separately. The waveform overlap using these

interpolants is plotted in Fig. 7. The performance of these
interpolants should be compared with the results using the
SE covariance function in Fig. 6.
The least smooth of the Wendland polynomials, the

q ¼ 0 case, performs noticeably worse than the SE covari-
ance; inside the training set the overlap drops as low as
∼0.955 compared to ∼0.985 for the SE. However, even a
overlap of ∼0.955 is still a great improvement over the
overlap of ∼0.35 for the approximate waveform alone. For
the q ¼ 0 Wendland polynomial the interpolant has a
discontinuous first derivative, which can be seen in
Fig. 7 (this is expected and was discussed in Sec. III
and in detail in Appendix A). The higher values of q have
discontinuities in the higher ordered derivatives, but these
curves look smooth to the eye. The smoother Wendland
polynomials, with q > 0, all perform very similarly to the
SE covariance function; inside the training set the overlap
drops as low as ∼0.985 for the q ¼ 2 interpolant.

E. The GPR uncertainty

The GPR performs an interpolation of the points in the
training set and naturally returns a Gaussian error σð~λÞ, see
Eq. (25), for each interpolated point. In our present one-
dimensional interpolation this is simply a function of Mc.
A small section of this curve taken from the edge of the
training set is shown in Fig. 8. Inside the training set, the
error surface has a regular, periodic pattern with minima at
the training set points and maxima in between. This
regularity is because the GP used for the interpolation is
stationary, the training-set points used are regularly spaced,
and each point has an identical error (a jitter J ¼ 10−4). If
these conditions were to be relaxed, then the error surface

would become more complicated. In general, a larger σð~λÞ
indicates greater theoretical uncertainty and highlights
regions where we would benefit from additional accurate

FIG. 6. A plot of the overlap between the interpolated wave-
form Hð~λÞ − μð~λÞ and the accurate waveform hð~λÞ as a function
of the chirp mass Mc. The bottom panel is the same plot with a
different ordinate axis scale. The two black lines show the overlap
using both training sets, D0 and D1, interpolated using the SE
covariance function. The red line shows the overlap between the

approximate waveform Hð~λÞ and the accurate waveform hð~λÞ for
comparison. The vertical blue lines show the position of the
training set points for D0. In the bottom panel, it can be seen that,
for either interpolant, the overlap becomes one when evaluated at
the training set points.

FIG. 7. A plot of the overlap (or overlap) between the

interpolated waveform Hð~λÞ − μð~λÞ and the accurate waveform

hð~λÞ as a function of the chirp mass Mc. The different curves
correspond to using the Wendland polynomial covariance
functions with different values of q to interpolate the training
setD0. The vertical blue lines show the position of the training set
points for D0.
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waveforms (e.g., where it would be beneficial to perform
more NR simulations).
Near the edge of the training set the behavior becomes

less regular and well outside of the training set the error
tends to a constant value, σ2ð~λÞ → σf as ~λ → ∞. This
behavior is seen in Fig. 8 for all three training sets. The
training sets with smaller grid spacings have smaller
uncertainties everywhere in parameter space.
The GPR uncertainty was also calculated using the

Wendland polynomial covariance functions to interpolate
the training set D0; these are shown in Fig. 9. The GPR
uncertainty, expressed as a fraction of σ2f, is largest for the
smallest values of q; this can be traced back to the optimum
length scale for the Wendland polynomials increasing with
q (see Fig. 5). This means that the uncertainty grows more
slowly as the interpolating point moves away from the
training set points, and hence reaches a smaller maximum
value between training set points. The smoother (q > 0)
Wendland polynomials perform similarly to the SE covari-
ance function, in the sense that both the GPR interpolants

(which we quantify via the overlap) and the GPR uncer-
tainties are almost identical. Hence, in the following
sections we will only consider using the SE covariance
function; the high q Wendland polynomials would yield
identical results.

F. The likelihood

Finally we put together the interpolated waveform

Hð~λÞ − μð~λÞ and the GPR uncertainty σ2ð~λÞ to give the
marginalized likelihood in Eq. (28). We compare

the performance of the marginalized likelihood Lð~λÞ to

the approximate likelihood Lð~λÞ and the accurate like-

lihood L0ð~λÞ. For the injected signal we use the accurate

waveform hð~λÞ. We also consider the case where the noise
realization is zero (the most likely realization), this makes
comparisons easier.
We injected a signal at a chirp mass ofMc ¼ 5.045M⊙;

this is inside the training set D0 and midway between
training set points. Injecting the signal midway between the
points is conservative as this is the point at which we would
expect the marginalized likelihood to perform worst. The
three different likelihoods were evaluated as a function of
chirp mass (all other parameters set to the injected values).
This was done at a range of SNRs and the results are shown
in Fig. 10. The top row of panels in Fig. 10 show the
likelihoods renormalized to a peak value of one, this makes
the relative positions of the peaks clear and easy to
compare. The bottom row of panels shows the log-like-
lihood without any renormalization, this illustrates how the
approximate likelihood is suppressed relative to the true
likelihood (the detection problem discussed in Sec. I).
The exact likelihood L0ð~λÞ is always peaked at the

injected value of the chirp mass (because the injected
noise realization is zero) and the width of the peak
decreases with increasing SNR. The approximate like-

lihood Lð~λÞ is peaked way from the true value, indicating a
systematic error ofΔsysMc ¼ 5.2 × 10−3M⊙. The width of
the approximate likelihood peak also decreases with
increasing SNR and for SNR≳ 12 (which is also roughly
the detection threshold [5,35]) the true parameters are
excluded at increasing significance. The bottom row of
panels in Fig. 10 shows that the approximate likelihood
is suppressed by a significant amount, for a typical SNR
of 16 it is suppressed by 80 in log relative to the exact
likelihood; this reduces the Bayesian evidence for a
detection. The factor by which the approximate likelihood
is suppressed increases exponentially with SNR. Finally,
the marginalized likelihood is peaked much closer to
the exact likelihood: the systematic error is reduced to
ΔsysMc ¼ 9.0 × 10−4M⊙. However, as discussed in
Sec. IV B, the peak in the marginalized likelihood does
not continually narrow as the SNR increases; for SNR≳ 30
the width becomes constant. Consequently, the true

FIG. 9. A plot of the GPR uncertainty σ2ð~λÞ as a function of the
chirp mass parameter for the training set D0, using the Wendland
polynomial covariance functions. The vertical blue lines show the
position of the training set points.

FIG. 8. A plot of the GPR uncertainty σ2ð~λÞ as a function of the
chirp mass parameter for both of the training sets, using the SE
covariance function. The vertical blue lines show the position of
the training set points for D0. Outside of the training set the
uncertainty tends to a constant σ2f . Inside the training sets the
error is approximately periodic with minima at the training set
points. The maximum uncertainty inside the training set is
smaller for the denser training sets.
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parameters are never excluded at high significance; in the
limit of infinite SNR the true parameters lie at the ∼1σ
level. The bottom panel of Fig. 10 shows that the
marginalized likelihood is not suppressed relative to the
exact likelihood in the vicinity of the peak.
Comparing the properly normalized likelihoods, we see

that the marginalized and exact likelihoods roughly agree at
low SNR. As the SNR is increased, the marginalized
likelihood deviates from the exact likelihood and develops
oscillatory behavior with period equal to the training set
point spacing. In the limit of low SNR, all of the parameter
estimation uncertainty comes from the noise, but as the
SNR increases, the relative size of this statistical uncer-
tainty becomes smaller and at high SNR we are dominated
by model uncertainty. The marginalized likelihood cor-
rectly encapsulates this behavior, as can be seen in the
sequence from left to right in Fig. 10.

VI. SUMMARY

In [13], some of the authors suggested GPR as a means
of incorporating theoretical uncertainty into GW data
analysis. We have now thoroughly investigated the proper-
ties of this method, elucidating considerations for a
practical implementation. A detailed derivation of the
marginalized likelihood, and the use of GPR to interpolate
model error was presented in Sec. II. GPR is nonpara-
metric, in the sense that only the functional form of the
covariance function is specified by hand, with its hyper-
parameters then learned from the training set, making it
well suited to modeling theoretical uncertainty. The expres-
sion for the marginalized likelihood derived in Sec. II made
some assumptions about the frequency covariance of the
waveforms in the training set; in particular it was assumed
that at a particular point in parameter space, the model error
is highly correlated in frequency. These assumptions may

prove to be too restrictive in the future, and could be relaxed
by simultaneously performing GPR interpolation in fre-
quency (as well as in parameter space) on the training set
waveforms; this would have the added advantage of
allowing the inclusion of waveforms with different fre-
quency samplings, which may be beneficial when using
multiple waveform approximants and NR waveforms from
multiple sources.
The choice of covariance function is central to GPR as it

encodes our prior beliefs about the function space that we
are interpolating. We discussed various choices of covari-
ance function in Sec. III. We have found that the simple SE
covariance function (as used in [13]) performs as well as
more complicated alternatives, at least for the relatively
small one dimensional training sets considered here. The
compact-support Wendland covariance functions with large
qwere found to perform comparably to the SE, but offer the
additional advantage of reduced computational cost. This
makes them appealing for future work involving larger
training sets.
We proved a number of properties for our marginalized

likelihood in Sec. IV, in particular its limiting behavior for
large signal amplitude (where the theoretical errors are
known to be most significant [12]) and its limiting behavior
both far from and near a point in the training set. In the
discussion of the latter, the linearized results previously
obtained in [12] were recovered. All of these properties
demonstrate the suitability of GPR for making robust
inferences. The marginalized likelihood successfully
describes our belief in our inferences, including our
uncertainty in waveform templates.
In Sec. V, we presented a one-dimensional implementa-

tion of our marginalized likelihood and demonstrated that it
offers an improvement in PE accuracy. For this, we chose
two inexpensive waveforms to aid computation; in real data
analysis situations, we expect more accurate waveforms

FIG. 10. A plot of the different likelihoods for a variety of SNRs. Vertical lines indicate the position of training set points. The top row
of panels show the likelihood normalized to the same peak value; this makes the peak positions clear and shows how the marginalized
likelihood tackles the parameter estimation problem associated with the inaccurate models. The bottom row of panels shows the log-
likelihood; this makes the suppression of the peak value of the approximate likelihood clear and shows how the marginalized likelihood
could be used to tackle the detection problem.
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(including those calculated using NR) to be used in the
training. However, this choice of waveforms does illustrate
the efficacy of the new marginalized likelihood. In par-
ticular we find that even when using qualitatively different
waveforms (inspiral-only TaylorF2 compared to inspiral–
merger–ringdown IMRPhenomC), waveform matches as
high as ∼98.5% can be obtained in the mass range we
considered. Restricting ourselves to the simple case of one-
dimensional PE, we explored various possibilities for GPR.
In particular, the effect of different training set sizes was
examined; as expected, the performance of the margin-
alized likelihood is improved by using denser training sets.
Additionally, the impact of varying the SNR of the injected
waveform was studied. In the standard likelihood model,
errors become more severe as the SNR is increased, but we
confirmed that even in the limit of large SNR, the
marginalized likelihood remained consistent with the
injected parameters. We expect these results to carry over
to a full multidimensional analysis, which is the next step in
developing this technique.
A possibly complementary use for the GPR approximant

is as a less expensive alternative to the accurate waveform
for more expedient PE; however, there exist other means of
constructing computationally inexpensive waveforms, such
as reduced-order modeling [64,65]. The advantage of GPR
is that it not only supplies an interpolant, but also gives an
uncertainty, which can be used to gauge accuracy away
from training points. A second, related feature is that GPR
naturally allows for uncertainty to be included in the
accurate models that the interpolant is calibrated against.
It is the ability of GPR to include theoretical uncertainty
that makes it attractive for GW astronomy, that this can be
done without significant online cost is a welcome bonus.
In conclusion, marginalizing over waveform uncertainty

is a robust and effective method of accounting for theo-
retical error in both PE and detection problems. GPR is a
natural and effective means of performing this marginali-
zation. The marginalized likelihood is naturally inferior to a
likelihood calculated with more accurate (but inevitably
more computationally expensive) waveforms, but it offers
significantly improved performance over the standard
likelihood calculated with cheap waveforms. In addition,
the marginalized likelihood is almost as quick to evaluate
online as the standard likelihood, although there is addi-
tional offline computation required to construct the training
set and train the Gaussian process.
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APPENDIX A: CONTINUITY AND
DIFFERENTIABILITY OF GPS

In this appendix we give proofs of the results stated in
Sec. III concerning the continuity and differentiability of
GPs, following the approach of [39]. Let ~λ1; ~λ2; ~λ3… be a
sequence of points in parameter space which converges to a

point ~λ�, in the sense liml→∞j~λl − ~λ�j ¼ 0, where, as in
Sec. III, j~xj denotes the norm with respect to the metric on

parameter space, as discussed in Sec. III A. The GP Yð~λÞ is
said to be MS continuous at ~λ� if

lim
l→∞

E½ðYð~λlÞ − Yð~λ�ÞjYð~λlÞ − Yð~λ�ÞÞ� ¼ 0; ðA1Þ

where E½…� denotes the expectation of the enclosed
quantity over realisations of the GP. For notational con-
venience, we denote this MS limit as

Yð~λ�Þ ¼ l:i:m:
l→∞

Yð~λlÞ; ðA2Þ

where l:i:m. stands for limit in mean [66]. MS continuity
implies continuity in the mean,

lim
l→∞

E½Yð~λlÞ − Yð~λ�Þ� ¼ 0: ðA3Þ

This follows from considering the variance of the quantity

Yð~λlÞ − Yð~λ�Þ, and the fact that variance is non-negative.
There are other notions of continuity of GPs used in the
literature, but the notion of MS continuity relates most
easily to the covariance. The mean and the covariance of a
GP are defined as

mð~λÞ ¼ E½Yð~λÞ�;
kð~λ1; ~λ2Þ ¼ E½ðYð~λ1Þ −mð~λ1ÞjYð~λ2Þ −mð~λ2ÞÞ�: ðA4Þ

Using these, Eq. (A1) can be written as

lim
l→∞

fkð~λ�; ~λ�Þ − 2kð~λl; ~λ�Þ þ kð~λl; ~λlÞ

þ ðmð~λ�Þ −mð~λlÞjmð~λ�Þ −mð~λlÞÞg ¼ 0; ðA5Þ

and using the continuity of the mean in Eq. (A3) gives

lim
l→∞

½kð~λ�; ~λ�Þ − 2kð~λl; ~λ�Þ þ kð~λl; ~λlÞ� ¼ 0: ðA6Þ

IMPROVING GRAVITATIONAL-WAVE PARAMETER … PHYSICAL REVIEW D 93, 064001 (2016)

064001-21



This condition is satisfied if the covariance function is

continuous at the point ~λ1 ¼ ~λ2 ¼ ~λ�. Therefore, we arrive
at the result that if the covariance function is continuous in

the usual sense at some point ~λ�, then the corresponding GP
is MS continuous at this point. In fact, a GP is continuous in
MS if and only if the covariance function is continuous
[39], although this is not proved here. In the special case of
stationary covariance this reduces to checking continuity of
kð~τÞ at ~τ ¼ 0, and in the special case of isotropic covari-
ance, continuity of kðτÞ at τ ¼ 0.
We now move on from continuity to consider differ-

entiability. In the spirit of Eq. (A1), the notion of taking the
MS derivative of a GP is defined as

∂Yð~λÞ
∂~λa ¼ l:i:m:

ϵ→0
Xað~λ; ϵÞ; ðA7Þ

where Xað~λ; ϵÞ ¼
Yð~λþ ϵêaÞ − Yð~λÞ

ϵ
ðA8Þ

with parameter-space unit vector êa. This definition can be
easily extended to higher-order derivatives [39]. The MS
derivative of a GP is also a GP; this follows simply from the
fact that the sum of Gaussians is also distributed as a

Gaussian. The covariance of Xað~λ; ϵÞ is given by

Kϵð~λ1; ~λ2Þ ¼ E½ðXað~λ1; ϵÞ − Ξð~λ1; ϵÞj
Xað~λ2; ϵÞ − Ξð~λ2; ϵÞÞ� ðA9Þ

where Ξað~λ; ϵÞ ¼ E½Xað~λ; ϵÞ�. It then follows that

Kϵð~λ1; ~λ2Þ ¼
kð~λ1 þ ϵ; ~λ2 þ ϵÞ − kð~λ1; ~λ2 þ ϵÞ

ϵ2

−
kð~λ1 þ ϵ; ~λ2Þ − kð~λ1; ~λ2Þ

ϵ2
: ðA10Þ

Substituting this into Eq. (A8), the limit in MS becomes
a normal limit, and the result is obtained that the
MS derivative of a MS continuous GP with covariance

function kð~λ1; ~λ2Þ is a GP with covariance function

∂2kð~λ1; ~λ2Þ=∂~λa1∂~λa2 . In general the covariance function
of the nd-times MS differentiated GP

∂ndYð~λÞ
∂~λa1∂~λa2…∂~λand ; ðA11Þ

is given by the 2nd-times differentiated function

∂2ndkð~λ1; ~λ2Þ
∂~λa11 ∂~λa12 ∂~λa21 ∂~λa22 …∂~λand1 ∂~λand2

: ðA12Þ

From the above results relating the MS continuity of GPs to

the continuity of the covariance function at ~λ1 ¼ ~λ2 ¼ ~λ�, it
follows that the nd-times MS derivative of the GP is MS

continuous (the GP is said to be nd-times MS differ-
entiable) if the 2nd-times derivative of the covariance

function is continuous at ~λ1 ¼ ~λ2 ¼ ~λ� [54]. So it is the
smoothness properties of the covariance function along
the diagonal points that determines the differentiability
of the GP. (It can also be shown that if a covariance function

is continuous at all diagonal points ~λ1 ¼ ~λ2 then it is
everywhere continuous.)

APPENDIX B: THE EFFECT OF SMALL
CHANGES IN THE NOISE PSD ON

THE GPR INTERPOLANT

In the offline stage of the method, the GP was trained
using the hyperlikelihood in Eq. (18). The result of this
process was an interpolant which enabled fast online PE.
However, this splitting into offline and online stages also
has a potential problem, because the training process makes
use of the overlap matrix Mij ¼ hδhð~λiÞjδhð~λjÞi which, in
turn, depends upon the detector noise PSD SnðfÞ. The
noise PSD is not constant; it changes on short timescales as
the noise drifts in the instrument (e.g., [67]), on longer
timescales it changes more dramatically as the instrument is
gradually upgraded [5]. There are also differences between
different detectors, for example between the aLIGO and
AdV instruments (or even between the two aLIGO inter-
ferometers). It would be a significant drawback if the
offline training stage of the process had to be repeated for
every single candidate signal because of small differences
in the detector PSD.
We do not expect small changes in the noise curve to

have a significant effect on the resulting interpolant. First,
the noise can be rescaled by an overall constant and have no
effect on the position of the peak in the hyperlikelihood;
this can be seen from Eq. (18). Second, the peak in the
hyperlikelihood is typically wide, and using the hyper-
parameters from anywhere in the vicinity of the peak still
gives reasonable, if not perfect, interpolation. Accordingly,
when the PSD changes, some of the difference can be
absorbed by an overall scaling, which has no effect on the
results, and the remaining change shifts the peak of the
hyperlikelihood away from the previously optimised val-
ues, but not enough to limit their applicability. If this is the
case, then GPs trained on slightly different noise PSDs
perform nearly identically to each other and there is no need
to retrain for the new PSD.
To assess the sensitivity of our results to changes in the

noise curve, we considered three different noise curves
chosen to represent the range of possibilities in the
advanced-detector era. These are: an estimate of the
observing run 1 (O1) aLIGO sensitivity (the early curve
of [68]); the zero-detuned high-power (ZDHP) design
sensitivity of aLIGO [2,69], and the design sensitivity of
AdV [3,70]. As an additional check, we also considered
an inverted top-hat noise curve. All of these noise curves
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are plotted in the left-hand panel of Fig. 11. We then took
the training set D0 and trained the SE GP to find the
optimum hyperparameters. Shown in the center panel of
Fig. 11 is the hyperlikelihood surface as a function of
chirp mass length scale for the different noise curves. As
expected, for the range of realistic noise curves the peak
in the hyperlikelihood only shifts by a small amount.
Finally we used the optimum hyperparameters from
each of these hyperlikelihood surfaces to interpolate
the training set and calculated the overlap to the accurate
waveforms using the ZDHP noise curve; the results of

this are shown in the right-hand panel of Fig. 11. For the
range of realistic noise curves, the overlap is equally
good (cf. [54]). Although the inverted top-hat noise curve
gives noticeably lower overlaps, even in that case the
drop in the overlap is still less than 0.1%, which is
smaller than the difference between the approximate and
GPR likelihoods.
This suggests it is safe to train a GP with a fixed noise

curve (typical for the instruments considered). The result-
ing interpolants can be used to analyze all signals without
worrying about small drifts in the noise.
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