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Evidence for the stability of the West Antarctic Ice
Sheet divide for 1.4 million years
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Stewart P.H.T. Freeman5, Finlay M. Stuart5, Kate Winter2, Matthew J. Westoby2 & David E. Sugden1

Past fluctuations of the West Antarctic Ice Sheet (WAIS) are of fundamental interest because

of the possibility of WAIS collapse in the future and a consequent rise in global sea level.

However, the configuration and stability of the ice sheet during past interglacial periods

remains uncertain. Here we present geomorphological evidence and multiple cosmogenic

nuclide data from the southern Ellsworth Mountains to suggest that the divide of the WAIS

has fluctuated only modestly in location and thickness for at least the last 1.4 million years.

Fluctuations during glacial–interglacial cycles appear superimposed on a long-term trajectory

of ice-surface lowering relative to the mountains. This implies that as a minimum, a regional

ice sheet centred on the Ellsworth-Whitmore uplands may have survived Pleistocene warm

periods. If so, it constrains the WAIS contribution to global sea level rise during interglacials

to about 3.3 m above present.
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T
he West Antarctic Ice Sheet (WAIS) is pinned on an
archipelago with its central dome situated over subglacial
uplands and bedrock basins, the latter more than 1,500 m

below sea level (Fig. 1). For over four decades there has been a
fear that this topography could lead to marine instability, since
retreat of the ice margin into the basins would enhance ice calving
and ice-mass loss, leading to loss of the WAIS and a rapid rise in
global sea level of 3–5 m (refs 1–3). Recent studies have suggested
that such a collapse may already be underway in the Pacific-facing
sector of the ice sheet4,5. Constraining the past ice behaviour
would allow a more confident assessment of its potential
contribution to past and future sea level change. Marine
biological evidence based on diatoms and the similarity of
octopus and Bryozoa between the Pacific and Atlantic sectors
suggests that much of the ice sheet disappeared during
interglacials, creating an open seaway between these sectors6–8.
Such a conclusion is reinforced by estimates of higher-than-
present global sea levels during interglacials9,10. Efforts to
constrain the minimum configuration of the ice sheet in the
past have relied on numerical ice-sheet models, each with its own
set of assumptions on boundary conditions, internal dynamics
and external forcing (for example, climate and sea level)3,11,12.
The models suggest that most upland areas could have remained
glaciated even during the warmest interglacials, but whether as
individual mountain glaciers or as larger regional ice sheets
remains uncertain, and there is no direct evidence from the
continent to constrain this.

The Heritage Range, situated in the heart of the Weddell Sea
embayment, lies within 50 km of the interface between the
grounded ice sheet and the floating Filchner-Ronne Ice Shelf in
Hercules Inlet (Fig. 1). Two component massifs, Patriot Hills and
Marble Hills are summits of a 15-km-wide upland bounded by
troughs excavated to below sea level13. At present, ice from
the central WAIS flows around and between these mountains to
the grounding line. The WAIS divide forms a broad saddle
between the main dome 300 km to the west and another 200 km
to the northwest. Katabatic winds flow down the ice slope from
the divide towards Hercules Inlet crossing the mountains and
creating blue-ice areas in their lee (Fig. 1). The winds cause
ablation of surface ice that in turn causes a compensating upward
flow of ice that brings basal debris to the ice-surface as blue-ice
moraines14,15. This ice-marginal, basally derived material is
deposited higher on the mountain flanks and records past
changes in ice thickness.

The use of cosmogenic nuclide dating on bedrock and glacially
transported material on nunataks in Antarctica has provided
much quantitative data on the history of ice thickness changes
over time16–23. Initial work in the Heritage Range revealed a
scatter of ages of up to 400 ka in elevated blue-ice moraines24,25.
These data led to the untested hypothesis that the spread in ages
represented the continuous presence of an ice sheet that
fluctuated in thickness in response to glacial–interglacial
cycles14. The range of ages reflects preservation of some erratics
and deposition of others during successive glaciations. An
alternative possibility is that the moraines represent composite
features formed by multiple ice-sheet inundations interspersed
with periods of local mountain glaciation or deglaciation.

The combination of geomorphological analysis of landforms
and measurement of multiple cosmogenic nuclides can provide
rare insight into ice-sheet history. The advantage of measuring
multiple cosmogenic nuclides in single samples is that both the
age and exposure history can be constrained22. For example, if a
previously exposed clast is buried by ice long enough for the
shorter lived of two nuclides to decay preferentially, the signal will
be observed in the isotopic ratio26. In the case of cosmogenic
26Al/10Be, it takes several tens of thousands of years for the burial

signal to become evident. By measuring multiple isotopes in three
adjacent erratics at each specific sampling site, the degree of
scatter and extent to which the erratics have shared the same
history of exposure can be determined. Thus, one can gain
information on the age of deposition and possible subsequent
overriding and disturbance by ice.

Here we use geomorphological analysis of landforms and
deposits supported by in situ cosmogenic 26Al, 10Be and 21Ne
from newly collected, quartz-bearing erratics to investigate
elevated blue-ice moraines. Our evidence reveals several relict
ice-marginal blue-ice moraine deposits as old as 1.4 Ma. The
isotopic evidence indicates that the highest deposits have not been
disturbed by ice since deposition, but lower deposits have
experienced subsequent burial. All geomorphic and cosmogenic
nuclide data are consistent with an ice sheet that thickened and
thinned in response to quaternary glacial–interglacial cycles. We
find no evidence to suggest a change in glaciological conditions
that would accompany the loss of the entire ice sheet and the
build-up of individual mountain glaciers. We interpret this
consistency as evidence for continuous ice-sheet conditions in
this part of the Weddell Sea sector. The minimum configuration
that maintains strong katabatic winds is a regional ice sheet
centred on the Ellsworth-Whitmore block. This interpretation,
where the WAIS shows dynamic equilibrium about a continuous
ice divide, supports numerical models that indicate a maximum
WAIS contribution to sea level of about 3.3 m (refs 3,11),
consistent with low-end estimates of global sea level during past
interglacial periods9. Such an interpretation is also consistent with
marine biological evidence indicating an open seaway in West
Antarctica during some interglacials6–8.

Results
Geomorphology. The geomorphological analysis of landforms
and deposits reveals currently active blue-ice moraines at the edge
of glaciers at the eastern foot of the mountains (Supplementary
Figs 1–4). Striated, basally derived clasts occur in the moraines
and in folded debris bands in the adjacent glacier surface.
Airborne radio echo sounding (RES) data reveals that the debris
sequences originate B800 m below at the glacier base at a depth
close to present sea level (Fig. 2). Above the ice margin are two
formerly glaciated zones marked by an upper erosional
trimline (Fig. 1d), the latter recognized throughout the Ellsworth
Mountains27. The upper weathered zone occurs up to 650 m
above the present ice-surface and is covered by iron-stained,
quartz-rich erratics and till patches on an ice-eroded limestone or
marble bedrock surface. Lower down in this zone, the weathered
erratics and till have been disturbed by eastward flowing ice. This
is demonstrated by erratics preferentially trapped in irregularities
in the bedrock and the preservation of till patches in basins and
on the eastern side of bedrock bumps, leaving the western slopes
and summits relatively free of debris. The weathered deposits
represent former ice-marginal blue-ice moraines. This conclusion
is borne out by the location and concentration of till patches at
the foot of a mountain escarpment athwart katabatic winds, their
proximity to a former ice margin and the lack of erratics above
the trimline (Supplementary Fig. 4). Moreover, the shape and
lithology of the erratics is the same as the quartz-rich lithologies
in the moraines at the current ice edge. The lower unweathered
zone is characterized by fresh erratics, perched boulders and ice-
cored tills; it is thought to reflect deposition by ice during the Last
Glacial Maximum24 and is not considered here.

Cosmogenic nuclide data. We measured in situ cosmogenic 26Al,
10Be and 21Ne on newly collected quartz-bearing erratics
(see Methods and Supplementary Tables 1–3). The exposure ages
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of the weathered erratics decline with decreasing elevation towards
the glacier surface (Fig. 3). Three adjacent erratics from each of two
sites in the upper weathered zone in the Marble Hills have 10Be
exposure ages of 1.2–1.4 Ma, and at a slightly lower elevation above
the ice, 0.6–0.7 Ma. The samples at both sites yield tightly clustered
ages for each isotope with ratios that do not indicate prolonged
burial (see Methods and Supplementary Fig. 5). Lower down,
erratics have younger 10Be exposure ages of 0.5–0.6 Ma with some
isotopic evidence of burial. Comparable erratics from a patch of
weathered till in the Patriot Hills have similarly clustered 10Be
exposure ages of 0.4–0.5 Ma and isotopic ratios indicating more
than 300 ka burial (Supplementary Fig. 6). Seven samples emerging
from the ice today in front of both the Marble and Patriot Hills
have exposure ages of o1.5 ka and thus total inheritance is low.
The striking feature of the data from the high elevation samples is
that they reflect a shared origin and exposure history. Rather than
the scatter of ages one might expect with repeated episodes of
burial by ice, there is a consistent pattern of decreasing age of
exposure and increasing degree of burial towards the present
glacier margin. This suggests that any subsequent burial at the
different sites was by cold-based ice that did not move existing
material or deposit new material in the process.

Discussion
The simplest explanation of the pattern of cosmogenic nuclide
data is that an ice margin fluctuated in elevation on the mountain
flank (Fig. 4). The highest erratics are exposed for the longest
time, while progressively lower erratics are exposed for increas-
ingly shorter periods of time. This explains both the younging
trend and evidence of increased burial with decreased altitude.
The implication of exposure ages of up to 1.4 Ma at higher
elevations is that ice thickening and blue-ice moraine formation
also occurred during earlier glacial cycles in the Pleistocene.
Given the mountains are situated near the grounding line of
today, increases in ice thickness near the mountains would
accompany any seaward migration of the grounding line as ocean
temperature cooled and global sea level fell28. Over millions of
years one would expect glacial erosion to lower the ice-sheet
surface relative to the mountains29,30 and thus the cyclic changes
in ice thickness would be superimposed on a trajectory of
lowering relative to the mountains. This scenario is consistent
with the great ages and minimal burial of the highest erratics.

It could be argued that the scenario above should produce a
scatter of exposure ages of up to 1.4 Ma, rather than clustering at
certain ages. Indeed, such scatter has been measured in tills
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within the lower unweathered zone in the Marble Hills, which
ranged from 15 to 250 ka (ref. 24). The clustering may reflect
episodes in the past when conditions were particularly favourable
for the formation of blue-ice moraines at those particular
locations, just as the modern concentration of blue-ice material
varies with local topography and ice-surface elevation. In
addition, clustering would be an expected artefact of the
sampling, which was concentrated on sites at specific altitudes.

The implication of the evidence above is that the WAIS divide
and associated katabatic winds have also been present for at least
1.4 Ma. The blue-ice moraines form because of strong katabatic
winds and these in turn are strongest and most consistent when
they flow downslope for hundreds of km. The loss of the ice
divide would diminish both katabatic winds and blue-ice moraine
formation.

Could such an assemblage of deposits survive loss of the
WAIS? The recorded ages leave adequate intervals of time for the
ice divide to disappear. If the ice sheet disappeared, ice caps and
glaciers would likely build up on mountain massifs in a fjord
landscape. Each massif would have a different and locally radial
pattern of flow depending on the type and scale of the topography
(Fig. 4c). We found none of the features characteristic of such a
scenario. Rather than radial flow from the mountain axis, Marble
and the Patriot Hills bear geomorphologic evidence of eastward
ice flow (Supplementary Fig. 4). In other fjord areas of the world,
glacial deposits typically include marine traces, such as diatoms,
shells and glaciomarine muds31. Examination of the Heritage
Range tills, that RES shows are sourced from deep within the
glacier troughs (Fig. 2), revealed no traces of marine diatoms or
other biogenic silica in either present-day or elevated blue-ice tills
(R. Scherer, personal communication, 2014). Local glaciation
typically produces deposits associated with local corrie glaciers, as
in the Asgard and Olympus ranges in the Transantarctic
Mountains32. Rather than corrie glacier deposits, concentrations
of material with a local origin in the study area are restricted to
wind-drift glaciers that merged local rocks with exotic material in
blue-ice moraines. Indeed, the very existence of former wind-drift
glaciers supports the existence of the ice sheet and associated
katabatic winds.

The lack of evidence of marine and local glaciation cannot
on its own rule out short periods of complete deglaciation.
The cosmogenic nuclide data alone are not a direct test of this
hypothesis. It is possible that some evidence may remain
preserved beneath the ice sheet or that the characteristic
geomorphology is missing or poorly developed. Corrie and
wind-drift glaciers could produce geomorphology that may be
indistinguishable, while cold-based glaciers may leave no mark at
all. Furthermore, interglacial periods are relatively short lived.

While we recognize the above possibility of complete deglacia-
tion, there are arguments in favour of persistent glaciation. Recent
atmospheric modelling of the Antarctic climate response to a
collapse of the WAIS indicates significant warming would occur in
the Atlantic sector of the WAIS33. Any such warming in an
Antarctic maritime environment would cause an increase in
snowfall and the growth of mountain glaciers. The re-glaciation of
the WAIS would begin on upland areas such as the Heritage
Range. Moreover, modelling suggests the increased temperature
and accumulation relative to today would favour the formation of
warm-based local glaciers that are efficient at removing sediment
from their beds12. However, even if re-glaciation involved cold-
based glaciers, which can move sediment selectively32,34, one
would expect more scatter in the exposure age results, especially in
the highest samples on Mt Fordell; these samples are situated high
on the mountain and within 40 m of the present wind-drift glacier
margin. Instead of scatter, the exposure ages are tightly clustered.
In summary, while we acknowledge the limitations of our
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evidence, it seems significant to draw attention to the nature of the
cosmogenic and geomorphological evidence from the inner
reaches of the Weddell Sea embayment, which point to ice-sheet
glaciation for 1.4 Ma.

One possible explanation for persistent ice-sheet conditions for
at least 1.4 Ma is that the whole WAIS survived intact. Our
evidence is compatible with this view, but the evidence for
substantial increases in eustatic sea level during past interglacial
periods9,35 and the evidence of marine connectivity between the
Pacific and Atlantic marine sectors6–8 argues against the idea.
Instead, we suggest our evidence points to the survival during
interglacials of a smaller regional ice sheet centred on the upland
of the Ellsworth-Whitworth massif to the south and west of the
Ellsworth Mountains; an ice divide survived on the upland, while
ice was lost from surrounding marine basins. Such a scenario
during interglacials at 1.2 Ma and 205 ka has been simulated with
an ice-sheet model, based on the assumption that ocean-driven
melting at the ice-sheet margins is the primary determinant of
changes in the WAIS11 (Fig. 5). The catchment area and fetch for
katabatic winds crossing the Heritage Range remains
approximately the same. Further, because the regional ice-sheet
centres on a topographic high, the ice-surface altitude at the
divide decreases by just a few hundred metres during interglacials
and remains essentially the same in the vicinity of the Heritage

Range (Fig. 5b). The preservation of a high WAIS divide would
help explain the B7 Ma record of continuous high polar
conditions in the adjacent Transantarctic Mountains, inferred
from some of the lowest bedrock erosion rates in Antarctica20.
This reconstruction also permits marine interaction between the
Weddell Sea and the Amundsen Sea as suggested based on the
analysis of diatoms, Bryozoa and octopus6–8; indeed, it physically
constrains the open seaway to a position north of the Ellsworth
Mountains. There are two further implications. First, the
agreement of our evidence with models driven by ocean
temperature supports the long held view of the sensitivity of
the WAIS to marine forcing. Second, our field results support
numerical ice-sheet models that imply a WAIS contribution to
global sea level of no more than B3.3 m above present3,11.

In conclusion, our results point to the continuous presence of
an ice sheet in the southern Ellsworth Mountains sector of the
WAIS for 1.4 Ma. The ice divide adjusted to accommodate the
loss of marine-based portions of the main ice sheet during some
interglacials, but a regional ice sheet based on the Ellsworth-
Whitmore uplands was sufficient in size and altitude to maintain
katabatic winds and form blue-ice moraines in the Heritage
Range throughout the Pleistocene. Here, near the grounding line,
the ice sheet has experienced a long-term trajectory of lowering
relative to the mountains, one that is marked by modest
fluctuations in thickness as it responded to glacial–interglacial
climate and sea level cycles.

Methods
Geomorphology. Landforms were mapped in the field using differential global
positioning satellite and satellite imagery. This formed the basis for detailed work
on sediment morphology, lithology, weathering and cosmogenic isotope analysis.
Selected areas, such as complex debris accumulations, were mapped with a laser
scanner as well as high-resolution vertical aerial photographs taken from an
unmanned aerial vehicle. The British Antarctic Survey Polarimetric-radar Airborne
Science Instrument ice-sounding radar was used to image deeper englacial
reflections (data collected during an airborne survey of the Institute Ice Stream,
austral summer 2010/2011 (ref. 36)). A differential global positioning satellite
system, mounted on a snowmobile, traversed along the ice margin of both
massifs to provide a reference surface from which to normalise sample elevations.
Topographic control on the ice margin introduces variability in elevation and
therefore uncertainties in the normalization process are estimated at±15 m.
Supplementary Fig. 1 shows the general ice flow configuration around the southern
Heritage Range. Supplementary Fig. 2 shows a geomorphologic map of the Marble
Hills massif. Supplementary Fig. 3 shows sample locations from the Patriot Hills.
Supplementary Fig. 4 illustrates the nature of the glaciated upland surface and the
type and distribution of weathered debris.

Cosmogenic nuclide analysis. The cosmogenic nuclide data are presented in
Supplementary Tables 1–3 and Supplementary Figs 5–6. All exposure ages
discussed are based on 10Be ages because the production rate is better constrained;
26Al and 21Ne are used to constrain exposure histories. The measurement of 21Ne
was completed because, as a stable isotope, it gives a measure of the total exposure
time (assuming no erosion) irrespective of subsequent burial, and because it can
potentially record longer periods of exposure than is generally possible with
radioactive isotopes.

The sampling strategy for cosmogenic nuclides was designed to reduce the
chance of nuclide inheritance, and exclude the possibility of nuclide loss through
erosion. We targeted subglacially derived clasts with striated surfaces and
subangular to subrounded shapes. We sampled the freshest appearing,
quartz-bearing, brick-sized clasts resting on flat bedrock to minimize problems of
post-depositional movement and self-shielding. It is crucial to be convinced that
the exposure ages reflect the time since deposition of a freshly exposed clast rather
than a signal inherited from the past. To test whether clasts emerging on the glacier
surface in blue-ice areas have no inherited cosmogenic nuclides, we analysed seven
clasts on the present ice margin. All had negligible amounts of both 10Be and 26Al,
implying that they were first exposed to cosmic rays when they emerged at the
ice-surface. In view of the similar lithologies, and thus origin, of quartz-rich erratics
at higher elevations, it is reasonable to argue that they too were deposited with no
significant pre-exposure. This is reinforced by the clustering of multi-isotope
exposure ages from each sampled site. Thus, we conclude that the cosmogenic
nuclide concentration in the erratics accurately reflects their exposure history since
deposition.
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between the main dome of the WAIS and Hercules inlet. (b) cross-section

along A-A’ showing the same present ice and bed topography57 used in

Fig. 1c and the modelled minimum ice-sheet surface (red line)11. The

regional ice-sheet surface remains at a similar elevation as the WAIS today.

The latter surface was generated by taking the difference between the

modelled present-day and minimum (205 ka) ice thickness and then

subtracting this value from the present-day ice-sheet surface elevation.

Small isostatic changes in bedrock elevation are accounted11 but are

not shown.
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Laboratory and analytical techniques. Whole-rock samples were crushed and
sieved to obtain the 250–710 mm fraction. Be and Al were selectively extracted from
the quartz component of the whole-rock sample at the University of Edinburgh’s
Cosmogenic Nuclide Laboratory following established methods37,38. 10Be/9Be and
26Al/27Al ratios were measured in 20–30 g of quartz at the Scottish Universities
Environmental Research Centre Accelerator Mass Spectrometry (AMS) Laboratory
in East Kilbride, UK. Measurements are normalized to the NIST SRM-4325 Be
standard material with a revised39 nominal 10Be/9Be of 2.79� 10� 11 and half-life
of 1.387 Ma (refs 40,41), and the Purdue Z92-0222 Al standard material with a
nominal 26Al/27Al of 4.11� 10� 11, which agrees with the Al standard material of
Nishiizumi42 with half-life of 0.705 Ma (ref. 43). Scottish Universities
Environmental Research Centre 10Be-AMS is insensitive to 10B interference44 and
the interferences to 26Al detection are well characterized45. Process blanks (n¼ 6)
were spiked with 250 mg 9Be carrier (Scharlau Be carrier, 1,000 mg l� 1, density
1.02 g ml� 1) and 1.5 mg 27Al carrier (Fischer Al carrier, 1,000 p.p.m.). Samples
were spiked with 250mg 9Be carrier and up to 1.5 mg 27Al carrier (the latter value
varied depending on the native Al-content of the sample). Blanks range from 3.3 to
9.3� 10� 15 [10Be/9Be] (o1% of total 10Be atoms in all but the ice-margin
samples); and 1.6–7.5� 10� 15 [26Al/27Al] (o1% of total 26Al atoms in all but the
ice margin samples). Concentrations in Supplementary Table 1 are corrected for
process blanks; uncertainties include propagated AMS sample/lab-blank
uncertainty and a 2% carrier mass uncertainty and a 3% stable 27Al measurement
inductively coupled plasma optical emission spectrometry uncertainty.

Neon isotopes were measured in B250 mg of leached quartz (250–500 mm).
Samples were wrapped in aluminium foil and loaded into a Monax glass tree and
evacuated too10� 8 torr for 48 h before analysis. Samples were successively heated
for 20 min to 1,200 �C in a double-vacuum resistance furnace with a tungsten
heating element and a molybdenum crucible. The extracted gas was cleaned on two
hot SAES TiZr getters. The heavy noble gases (Ar, Kr and Xe) were absorbed onto a
charcoal trap cooled with liquid nitrogen. Neon was then absorbed on to a charcoal
trap at � 228 �C for 20 min, and the residual He was removed by a turbomolecular
pump. The Ne was released from the charcoal at � 173 �C, and the isotopic
composition analysed using a MAP 215–50 noble gas mass spectrometer. All Ne
isotopes were measured in 11 peak jumping cycles using a Burle channeltron
electron multiplier operated in pulse-counting mode. Neon abundances were
determined by peak height comparison with Ne from 95.2±0.5 mcc STP air. The
reproducibility of Ne abundances was better than ±1.5%, and isotopic ratios of
replicate calibrations were better than ±0.5%. Interference corrections and
detailed analytical procedure is presented elsewhere46. The 20Ne blank at 1,200 �C
was typically B1� 10� 11 ccSTP and were indistinguishable from the atmospheric
isotopic composition after correction for interfering species. Consequently no
blank correction is made to the data in Supplementary Table 2. The consistency
of procedures is demonstrated by the reproducibility of the cosmogenic 21Ne
concentration in replicate analyses of MH12–27 (Supplementary Table 2).
In all samples Ne isotope compositions are consistent with binary mixture
of air and cosmogenic Ne. The 21Ne concentrations in Supplementary Table 2
include a correction for nucleogenic 21Ne (that is, non-cosmogenic 21Ne) of
7.7±2.4� 106 at g� 1. This is the value estimated by Middleton et al.47 for Beacon
Sandstone; we use this value as a best estimate based on the similar lithology and
thermal history of the rocks. This value is close to the mode of the range of
nucleogenic 21Ne measured in Antarctic rocks (see Balco and Shuster48 for a
review). However, there is likely variability in the nucleogenic 21Ne concentrations
that could impact the youngest samples. The conclusions are insensitive to
uncertainty in burial time.

Exposure age calculations. For exposure age calculations we used default settings
in Version 2.0 of the CRONUScalc programme49. This is the product of the
CRONUS-Earth collaboration that allows for all commonly used nuclides to be
calculated using the same underlying framework, resulting in internally consistent
cross-nuclide calculations for exposure ages, erosion rates and calibrations.
The CRONUS-Earth production rates50 with the nuclide-dependent scaling of
Lifton-Sato-Dunai51 were used to calculate the ages presented in the paper. Sea
level and high latitude production rates are 3.92±0.31 atoms g� 1 a� 1 for 10Be and
28.5±3.1 atoms g� 1 a� 1 for 26Al. However, the use of Lal/Stone26,52 scaling does
not change the conclusions of the paper despite the B3 and 8% older exposure
ages for 10Be and 26Al, respectively. Rock density is 2.7 g cm� 3 and the attenuation
length used is 153±10 g cm� 2. No corrections are made for rock surface erosion
or snow cover and thus exposure ages are minima. Finally, we make no attempt to
account for production rate variations caused by elevation changes associated with
glacial isostatic adjustment of the massif through time53. This is justified because
the samples have been exposed for multiple glacial cycles and thus any variations in
elevation associated with ice loading and unloading, which has been of similar
magnitude (maximum elevation difference 170 m), are likely to have been averaged
out to the point of being smaller than other sources of uncertainty.

The CRONUScalc code for 21Ne was modelled after the existing code for 3He
and only includes spallation production. The 21Ne production rate is tied to the
total CRONUScalc 10Be production rate (assuming 1.5% production from
muons49) with a 21Ne/10Be ratio of 4.08±0.37 (ref. 48), resulting in a 21Ne
production rate of 16.26±1.96 atoms g� 1 a� 1 at sea level, high latitude scaled
according to nuclide-dependent Lifton-Sato-Dunai48,50,51. There are several other

alternative 21Ne production rates (all converted to be consistent with Lifton-Sato-
Dunai scaling): 14.5 (Amidon et al.54, 18.0 (Vermeesch et al.55) and 18.9
(Niedermann et al.56). The Balco and Shuster48 rate was used because it is based on
ratios tied to 10Be instead of 26Al, it uses a relatively large dataset compared with
other 21Ne studies, it was performed using Antarctic samples, and the resulting rate
falls in the middle of the production rate range. The differences in age using the
other production rates given above range from 12% older to 14% younger than
those given in the paper. While these changes are significant, the exposure ages are
consistently similar or older than the corresponding 10Be and 26Al ages so the exact
choice of 21Ne production rate does not affect the conclusions presented in the
paper. For comparison, Lal/Stone26,52 scaling in CRONUScalc was used in
conjunction with the production rate from Balco and Shuster48and produced 21Ne
exposure ages that were approximately 3% younger than those produced using the
nuclide-dependent Lifton-Sato-Dunai scaling scheme with the Balco and Shuster48

production rate.
Supplementary Figs 5 and 6 show plots of the isotopic ratios of 26Al/10Be and

21Ne/10Be. Samples should plot within the erosion island if they have been
continuously exposed and eroding, and within the complex zone if they have been
buried for a significant period of time, long enough for the shorter lived nuclide to
preferentially decay. The 26Al/10Be system should be more sensitive to recent burial
than the 21Ne/10Be system because of the shorter half-life of 26Al (0.705 ka). In our
samples, the burial signal implied by the 21Ne/10Be ratios is greater than that
implied by 26Al/10Be ratios. There are a few possible explanations. First, this may
partly reflect the uncertainties on 21Ne production rates as discussed above.
Second, it is possible that the samples contain additional nucleogenic 21Ne that has
not been corrected for. A final explanation is that 21Ne, which is stable, is recording
a period of exposure that is not evident in the 26Al/10Be system. At present it is not
possible to discriminate between the above scenarios. In any case, our conclusions
are not sensitive to these minor discrepancies.

Till analysis for marine traces. Scherer (R. Scherer, personal communications,
2014) examined four till samples from both current and elevated blue-ice moraines
and found no evidence of diatoms or biogenic silica.
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