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a b s t r a c t

The experimental validation of a real-time optimization (RTO) strategy for the optimal operation of
a solid oxide fuel cell (SOFC) stack is reported in this paper. Unlike many existing studies, the RTO
approach presented here utilizes the constraint-adaptation methodology, which assumes that the
optimal operating point lies on a set of active constraints and then seeks to satisfy those constraints in
practice via the addition of a correction term to each constraint function. These correction terms, also
referred to as “modifiers”, correspond to the difference between predicted and measured constraint
values and are updated at each steady-state iteration, thereby allowing the RTO to iteratively meet the
optimal operating conditions of an SOFC stack despite significant plant-model mismatch. The effects of
the filter parameters used in the modifier update and of the RTO frequency on the general performance
of the algorithm are also investigated.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In the recent decade, fuel cells have received growing attention
as viable energy alternatives, and have been advocated as a cleaner
andmore efficient energy source. However, despite this trend there
still remains a number of open problemswith fuel cell technologye
problems that must be resolved before the technology can be put
into widespread use and become a practical, capable supplement or
substitute for current methods. One of these issues lies in the life of
a cell, which may be shortened significantly if the system does not
successfully adhere to certain safe operating regions, which may be
qualified by constraints on certain manipulated and output vari-
ables. In addition to the safety criterion, there is also the criterion of
optimality, which states that the cell must be able to operate at the
highest efficiency for any immediate power demand. As a direct
consequence of these two criteria, the areas of control and opti-
mization have been increasingly called upon for improved fuel cell
performance. Unfortunately, despite a large number of theoretical
contributions e the majority of which have focused on control
[1e4], and only a few on optimization [5,6] e there still remains
þ41 216932574.
vin).

All rights reserved.
a significant gap between simulation studies and reported experi-
mental results. To the best of the authors’ knowledge, all experi-
mental studies so far have been limited to proton exchange
membrane (PEM) cells [3,4,7]. In these, many have sought effi-
ciency based on specific criteria that were already known in
advance. While this sort of ad hoc approach is certainly sufficient in
many cases, it often misses the extra degrees of optimality that
could be attained by casting the problem into the traditional opti-
mization framework.

In this paper, a previously developed and simulated constraint-
adaptation methodology [8] is validated experimentally for a 6-cell
solid oxide fuel cell (SOFC) stack. Unlike some previously used
methods [5,6], the constraint-adaptation methodology discussed
here works on the very simple e yet often true e premise that the
optimum (or optimal region) of the problem lies somewhere on the
constraints. Therefore, if the proper set of constraints can be met in
practice, then the optimality of the process can be largely guaran-
teed as well. Because of plant-model mismatch, the values of the
constrained quantities given by the model will rarely match those
provided by the real system, and so an adaptation e carried out by
adding a correction term to the modeled constraints e is used to
ensure that the constraints used by the optimizationmatch those of
the real system. In doing so, the real-time optimization (RTO)
iteratively drives the system to the true constraints, with the speed

mailto:dominique.bonvin@epfl.ch
www.sciencedirect.com/science/journal/03605442
http://www.elsevier.com/locate/energy
http://dx.doi.org/10.1016/j.energy.2011.04.033
http://dx.doi.org/10.1016/j.energy.2011.04.033
http://dx.doi.org/10.1016/j.energy.2011.04.033


Nomenclature

a radiative transfer factor
D _Hgas enthalpy change for the gases (J/min)
DGreaction free energy change for reaction (J/mol)
_nH2

hydrogen flux into the anode (ml/(min$cm2))
_nO2

oxygen flux into the cathode (ml/(min$cm2))
_Q loss radiative heat loss from stack to furnace (J/min)
h electrical efficiency
n fuel utilization
nadj fuel utilization adjustment factor
s0,e pre-exponential factor for the ionic conductivity of the

electrolyte (1/(U$cm))
si,e ionic conductivity of the electrolyte (1/(U$cm))
sSB StefaneBoltzmann constant (W/(cm2$K4))
3 modifiers
Ac total active area of the cells (cm2)
Astack total active area of the cells (cm2)
cP specific heat capacity of the stack (J/(kg$K))
Ee activation energy for electrolyte conductivity (J/mol)
Eact,c energy for reaction activation at the cathode (J/mol)
Edis,c activation energy for oxygen dissociation at the

cathode (J/mol)
F Faraday’s constant (J/(V$g))
he thickness of the electrolyte (cm)
I current (A)
i current density (A/cm2)
i0,c exchange current density at the cathode (A/cm2)
K filter parameter for the modifier update

k0,c pre-exponential factor for activation overpotential at
the cathode

ne charge number of reaction
Ncells number of cells in the stack
p subscript denoting a measured value
p0 reference ambient pressure (Pa)
pel power density (W/cm2)
pO2;in partial pressure of oxygen entering the cathode (Pa)
QL lower heating value of the fuel (J/mol)
R ideal gas constant (J/(mol$K))
R0,c pre-exponential factor for O2 dissociation at the

cathode (U cm2)
RMIC,1 resistance of first interconnect (U)
RMIC,2 resistance of second interconnect (U)
Tfurn temperature of the furnace (K)
Tstack temperature of the stack (K)
UN Nernst potential/reversible cell voltage (V)
Uact,c cathode activation overpotential (V)
Ucell cell potential (V)
Udif,a anode diffusion overpotential (V)
Udis,c cathode oxygen dissociation overpotential (V)
Ui,e ionic conductivity overpotential (V)
UMIC interconnect overpotential (V)
q vector of uncertain parameters
m mass of the stack (kg)
S superscript denoting a setpoint
u vector of manipulated variables (inputs)
u* set of nominal optimal inputs
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of convergence dictated by the way this correction term is up-
dated. Past studies [9] have demonstrated the robustness of this
method to uncertainty, and its ability to reject long-term system
degradation.

This paper will be structured as follows. In Section 2, the
description of the experimental apparatus and a summary of the
model used for the SOFC stack will be given. In Section 3,
the constraint-adaptation methodology will be discussed in detail.
Its application to the real system will then be outlined and the
tested scenarios explained. Section 4 will focus on the results e

looking not only at the general performance of the experimental
stack, but also at the effects of altering the correction term filters
and optimization frequency. Section 5 will conclude the paper.
Fig. 1. The setup of a typical stack (Industrial Energy Laboratory of the EPFL in
Lausanne).
2. System description

2.1. Experimental setup

The study presented in this article was done on an SOFC short-
stack developed at the Industrial Energy Laboratory of the EPFL in
Lausanne for HT ceramix-SOFC power [10,11].

The stack consists of planar anode-supported cells with an active
area of 50 cm2, pressed between gas-diffusion layers (SOFConnex�)
andmetallic interconnector plates. The anodes aremade of standard
nickel/yttrium-stabilized-zirconia (NieYSZ) cermet, while the thin
electrolyte consists of dense YSZ. The cathodes are made of screen-
printed (La, Sr)(Co, Fe)O3, allowing standard operation tempera-
tures between 650 �C and 850 �C. A detailed description of its
construction is available in the literature [10], with a photo of
a typical assembly given here in Fig. 1. A stack of 6 cells was used for
this study.



Fig. 2. The diagram of the SOFC system. A fuel feed that is 97% hydrogen, 3% water is
sent through the anode, while air is fed through the cathode. The stack is polarized
with an exogenous current.
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The stack was placed in a high-temperature furnace at 775 �C
and connected to a testing station providing controlled flow rates of
air and preheated fuel (w770 �C). Additionally, an active load was
used to control the delivered current. The control of the testing
station was ensured by a LabVIEW interface, in which the RTO
algorithm was implemented via a MATLAB Script function.

2.2. Steady-state SOFC model

The steady-state model used to optimize the stack is largely
similar to that which has been previously reported [8]. As modeling
does not comprise a significant contribution in this paper, only the
fundamental aspects of the model used are presented here. For
a more comprehensive treatment, the interested reader is referred
to previous work [8], while the relevant parameter values used in
this study are provided in Table 1.

The SOFC is a system fed with O2 (air stream) and H2 (fuel
stream), which react electrochemically to produce electrical power
and heat. The fuel cells are assembled in stacks in order to reach the
desired voltage, and require an exterior load to operate (Fig. 2).

The hydrogen and oxygen fluxes, as well as the current, are the
three manipulated variables used to optimize the stack:

u ¼
2
4 _nH2

_nO2

I

3
5: (1)

As will be shown in the following section, the three outputs of
interest are the power density, the cell potential, and the electrical
efficiency. The cell potential may be seen as the base component to
be modeled, as the other two are direct functions of it. Here, an
equivalent-circuit approach is taken [12]:

Ucell ¼ UN � Uact;c � Ui;e � Udis;c � Udif ;a � UMIC: (2)

The components that make up Ucell are modeled as follows:

UN ¼ �DGreaction
neF

(3)

Uact;c ¼ RTstack
F

sinh�1
�

i
2i0;c

�

i0;c ¼ RTstack
F

k0;ce
�Eact;c
RTstack

(4)
Table 1
Nominal model parameter values.

Parameter Value Units

a 0.67
nadj 0.15
s0, e 1.63� 102 1/(U$cm)
Ac 300 cm2

Astack 243.47 cm2

Ee 7.622� 104 J/mol
Eact, c 1.533� 105 J/mol
Edis, c 1.489� 105 J/mol
he 1� 10�4 cm
k0, c 4.103� 107 1/(U$cm2)
p0 101,325 Pa
QL 2.7� 105 J/mol
R0, c 9.225� 10�10 U$cm2

RMIC, 1 9.872� 10�3 U
RMIC, 2 9.872� 10�3 U
Ui;e ¼ i
he
si;e

si;e ¼ s0;ee
�Ee

RTstack

(5)

Udis;c ¼ R0;c

ffiffiffiffiffiffiffiffiffiffiffiffi
p0

pO2;in

s
e

Edis;c
RTstack i (6)

Udif ;a ¼ �RTstack
2F

ln
h
1�

�
nþ nadj

�i

n ¼ NcellsI
2 _nH2

F

(7)

UMIC ¼ �
RMIC;1 þ RMIC;2

�
I: (8)

The values of pel and h follow as functions of Ucell:

pel ¼ UcellNcellsI
Ac

h ¼ pelAc
_nH2

QL
:

(9)

From Eqs. (2)e(8), it is clear that Ucell, and thus also pel and h,
depend substantially on the temperature of the stack. A dynamic
energy balance is therefore required, and is expressed as:

mcP
dTstack
dt

¼ �D _Hgas � pelAc � _Q loss

_Q loss ¼ AstackasSB

�
T4stack � T4furn

�
:

(10)

As a means of finding steady-state values for the outputs, the
equations in (10) are solved first to obtain the steady-state



Fig. 3. Powerecurrent (PI) curve for _nH2
¼ 5 ml=ðmin$cm2Þ, lair¼ 4.
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temperature, which is then used to calculate the steady-state
values of the potential, power, and efficiency. In general, the
response of these quantities to changes in the inputs is practically
instantaneous, as most of the response comes on the electro-
chemical time scale. However, the true steady state of the system is
ultimately governed by the temperature as it gradually reaches its
new value on the significantly slower thermal time scale [13].
While some SOFC systems may have additional dynamics
depending on their setup [14], it is assumed that, for the system at
hand, these two time scales e one instantaneous and one on the
magnitude of approximately 30 min e are the only important ones.

In testing this model against the real SOFC stack, one can see
a divergence between the predicted potential and the actual value
when the current is increased (Fig. 3 illustrates this for one specific
set of fluxes, but similar divergence was noted for others). This is
particularly crucial for the current range 18e25 A, which is used
throughout many of the experiments (Section 4), and which would
likely be encountered in application.

2.3. System constraints

Twokeyconstraints limit the efficiency in an SOFC.While the cell
may deliver a desired electrical power at several different operating
conditions (different fuel flows and currents), the maximum elec-
trical efficiency is usually found close to the highest achievable fuel
utilization (70e90%)e defined as the percentage of the fed fuel that
reacts. However, to prevent damages to the stack by local fuel star-
vation and reoxidation of the anode [10], a conservative maximum
fuel utilization of 75% is set. In addition, it is known that significant
internal losses occurring at lower cell voltages are detrimental to
SOFC stacks. Other phenomena that only occur at lower voltages
may also contribute to accelerated cell degradation [10]. For these
reasons, a conservative minimum cell voltage of 0.75 V is set as the
second major constraint for the system.

Furthermore, the oxygen-to-hydrogen excess ratio (or simply
the “air ratio”), defined as the ratio between the oxygen fed to the
system and the oxygen stoichiometrically needed to react with the
fuel:

lair ¼ 2
_nO2

_nH2

(11)

must be kept within certain bounds so as to avoid steep thermal
gradients. For this setup, the ratio is kept between 4 and 7. A
lower bound of 3.14 ml/(min$cm2)1 is also placed on the fuel feed
rate so as to avoid local (or widespread) fuel starvation, and an
upper bound of 30 A is placed on the current to avoid excessive
heating [8].

To avoid steep gradients in the stack, limits on the rate of input
changes are defined as 0.54 ml/(min2$cm2), 1.37 ml/(min2$cm2),
2.0 A/min for the hydrogen flow, oxygen flow, and current,
respectively. Conditional laws are written into the LabVIEW code so
that any of these rates can be set to 0 in the case of a prolonged fuel
utilization or air ratio violation.

3. RTO via constraint adaptation

3.1. Methodological overview

Process optimization typically involves the minimization of
a cost (or the maximization of a profit) that is subject to certain
equality and inequality constraints. This results in a nonlinear
1 All flux values, given in ml/(min$cm2), are calculated under normal conditions.
programming (NLP) problem which, for the system described in
Section 2, may be written in standard optimization form as2:

u* ¼ argmax
u

: hðu; qÞ

s:t: pelðu; qÞ ¼ pSel
Ucellðu; qÞ � 0:75 V
nðuÞ � 0:75
4 � lairðuÞ � 7
u1 � 3:14 ml=

�
min$cm2�

u3 � 30 A;

(12)

with the electrical efficiency h acting as the profit function to be
maximized, and pel

S acting as the power demand setpoint to be
tracked (this latter effectively gives the optimization a second role
as a load-following controller).

Furthermore,wedefine the followingvectorofmodel parameters:

q ¼ �
Eact;c; k0;c; Ee; s0;e; Edis;c;R0;c;a

�
: (13)

Essentially, this corresponds to all the key model parameters
that are known, but with a certain degree of uncertainty. With the
steady-state model described in Section 2.2, the NLP problem (12)
may be solved to obtain an optimal set of inputs that theoretically
maximizes the cell efficiency while satisfying all of the constraints.

As will be seen, for the system presented in this article, the
optimization is actually very intuitive and conforms to the
following general rules.

(a) At lower power demands, maximize n to maximize efficiency,
i.e. n¼ 0.75 is the active constraint.

(b) For higher power demands, Ucell¼ 0.75 V becomes the active
constraint, and pushing n to 0.75 is no longer optimal as doing
so would damage the stack.

Real systems, however, cannot be optimized this way due to
modeling errors. Part of this error generally comes from the
uncertainty in the parameters q, while another part comes from the
erroneous structure of the model (all real processes are of infinite
order and cannot be perfectly modeled even with the perfect
parameter estimates). The nominal optimal solution obtained by
(12) is thus unlikely to be optimal for the actual SOFC stack.

It should be said that the issue does not appear with regard to
the fuel utilization (n) constraint. This is because n is independent of
q and its structure is given by definition. As such, it is known with
certitude and may be satisfied exactly in (12). However, the same is
not true for the cell potential, which cannot be modeled perfectly
2 The “arg” operator is one that returns the solution of the optimization problem.



Fig. 4. Qualitative comparison of the standard “two-step” algorithmwith the modifier-
adaptation algorithm used in this work. The main difference lies in how the main
optimization problem is updated to account for measured model errors. In the two-
step approach, the parameters of the original model are re-estimated at every itera-
tion, resulting in a parameter estimation problem that may not be tractable or that
may yield poor results. For the modifier-adaptation scheme, the original model is left
alone, and the parameter estimation is replaced by a simple calculation of the
modifiers.
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and is often susceptible to uncertainty (and, by consequence, so is
the power e as demonstrated in Fig. 3). Therefore, it is possible for
the nominal problem to either underestimate or overestimate the
0.75 V value, resulting in “optimal” inputs that will, in practice,
either violate the constraint or reach an early limit by assuming that
it is active when it is not.

A common approach to solving problems that deal with this
type of uncertainty is to collect the measurements of the real
process and to use these to re-identify the original model. In the
iterative optimization literature, this is known as the “two-step”
approach [15] e the first step consists of solving the identification
optimization problem, and the second involves solving the main
optimization problem with the updated model parameters. This is
an approach that is very intuitive and is thus widely accepted, but
which suffers from the fact that estimating the parameters is, in
many cases, a nontrivial problem (generally because it is nonconvex
andwill converge to a local minimum). Potential model inadequacy
[16] also makes convergence of this algorithm unlikely from
a theoretical point of view.

A simpler alternative, and the one used here, is the resolution of
this problem with the use of “modifiers”[8], or correction terms
that are added to the uncertain constraint quantities to correct the
model values. From a modeling perspective, these are “tailored
parameters”, as they often don’t have any physical significance and
are introduced for a specific role e here, they are used to collect all
the lumped modeling error and to thereby yield good optimization
results, without requiring a potentially difficult identification.
Moreover, the convergence of such algorithms to the correct
operating point follows from some assumptions that are often
acceptable in practice [8]. The qualitative comparison between the
two methods is given in Fig. 4.

Applying the modifier methodology to the SOFC problem in (12)
requires adding modifiers to the power demand and the cell
potential3. As the modifiers are generally unable to converge to the
optimal values in a single iteration for the nonlinear case (due to
varying error at different operating points), convergence is sought
over a few iterations, using low-pass filtering [17]. At the kth iter-
ation, the following optimization problem is solved for uk using the
modifiers 3pel

k�1 and 3Ucell
k�1 from the previous iteration:

uk ¼ argmax
u

: hðu; qÞ

s:t: pelðu; qÞ þ 3pel
k�1 ¼ pSel

Ucellðu; qÞ þ 3Ucell
k�1 � 0:75 V

nðuÞ � 0:75
4 � lairðuÞ � 7
u1 � 3:14 ml=

�
min$cm2�

u3 � 30 A:

(14)

Then, the modifiers are updated as follows:

3pel

k ¼ �
1� Kpel

�
3pel

k�1 þ Kpel

h
pel;pðukÞ � pelðuk; qÞ

i

3Ucell
k ¼ �

1� KUcell

�
3Ucell
k�1 þ KUcell

h
Ucell;pðukÞ � Ucellðuk; qÞ

i (15)

At the optimum (for k/N), the modifiers will have converged
and will simply be the error between the actual and estimated
values:
3 Note that, in principle, a modifier should be added to the efficiency as well,
since it is prone to parametric (and structural) uncertainty. However, from an
optimization perspective, the addition of a correction term to the cost does not
affect the solution, and so this addition is unnecessary and is thus omitted.
3pel
N ¼ pel;pðuNÞ � pelðuN;qÞ
3Ucell
N ¼ Ucell;pðuNÞ � UcellðuN;qÞ: (16)

With the addition of the modifiers, the solution given by the
optimization is guaranteed, upon convergence, to satisfy the
constraints of the plant [8]. The general algorithm proceeds as
follows:

(1) Set k : ¼ 1 and choose initial values for the modifiers 3pel
0 and

3Ucell
0 .

(2) Solve the modified optimization problem (14) to obtain new
input values uk.

(3) Apply these input values and let the system converge to a new
steady state.

(4) Update the modifiers according to (15). If kuk� uk�1k � d

(where d is a user-specified threshold), assume convergence. If
not, set k : ¼ kþ 1 and return to Step 2.

The block diagram of the algorithm is presented in Fig. 5.
3.2. Application to the real stack

To test the effectiveness of the proposed methodology, a preset
power demand profile,

pSelðtÞ ¼
8<
:

0:30 W=cm2 t � 90 min
0:38 W=cm2 90 min < t � 180 min
0:30 W=cm2 t > 180 min

(17)

is chosen to demonstrate how the change in active constraints
(from n to Ucell) may occur. Note that the power demand profile
pel
S (t) acts as a disturbance: in other words, it is not known in

advance when and how the power demand may change in appli-
cation. An RTO frequency of one iteration per 30 min is used, as this
is the time needed for the actual system to reach steady state.



Fig. 5. Constraint-adaptation RTO scheme.
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The initial (sub-optimal) steady-state inputs are 5 ml/(min$cm2),
12.77 ml/(min$cm2), and 20 A for the fuel flux, oxygen flux, and
current, respectively.

4. Results and discussion

4.1. Optimal power tracking with different filters

The scenario described in Section 3.2 is tested in the SOFC
system for different values of the filter parameters. For this set of
scenarios, KUcell

is set equal to Kpel , and the two are varied together.
Three different filter values of 0.4, 0.7, and 1.0 (the latter corre-
sponding to full adaptation, i.e. no filtering) are investigated. The
results are presented in Figs. 6e8.

It is observed that the optimizer immediately seeks tomaximize
the air ratio for all cases (note the relative values of the hydrogen
and oxygen fluxes). This is because, without any parasitic losses to
the air blower in the objective function (which may be accounted
for in simulations [8]), there is no reason for the optimizer to keep it
at low levels. The fuel utilization also seems extremely sensitive to
small disturbances in the hydrogen flux, which leads to occasional
fluctuations and violations in this constraint. Finally, there is a “dip”
in the fuel utilization during power changes, which is due to the
Fig. 6. RTO performance w
fact that the system must keep the air ratio below its upper limit
during the transient and, for this reason, does not decrease the
hydrogen flux quickly enough to match a decrease in current. What
results is a temporarily low fuel utilization.

Otherwise, as expected, the filter parameters affect the speed of
convergence to the optimum. With a low filter gain, as in Fig. 6,
convergence is slow and damped, and a significant offset between
the desired value and what is actually observed persists even after
two iterations. For the medium-sized filter gain in Fig. 7, it is
quicker but still damped. For the full adaptation case in Fig. 8,
convergence is fast but oscillatory, as the errors between the
modeled power and real power switch signs during convergence. In
some cases, it may be possible that the oscillatory behavior noted
for the no-filtering case would not converge, thus leading to
divergence and instability. In such scenarios, a more careful design
of the filter is needed [8,17], but this is not the case here.

Of great interest is the way the algorithm handles the
constraints. There are no algorithmic issues for fuel utilization, as
there is no uncertainty in the model. Noise in the lower-layer
controllers does appear to be an issue, as sporadic violations
occur during the tracking of the constraint. This is, however, a likely
flaw of the control system rather than of the optimization
algorithm.
ith Kpel ¼ KUcell
¼ 0:4.



Fig. 7. RTO performance with Kpel ¼ KUcell
¼ 0:7.
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Algorithmic issues do occur with the constraint on the cell
potential, as it is initially violated when the algorithm tries to use
the modifiers obtained for a low power demand to compute the
optimum for a higher one. Subsequent iterations bring this closer to
the appropriate value, but the initial violation proves problematic.
With the steady-state RTO alone, there seems to be no readymeans
to solve this problem without resorting to conservative constraint
backoffs, as the converged modifiers from the low power level
always lead to this sort of violation in the higher one.

Better performance and faster convergence may be achieved by
tuning the filters in an ad hoc manner (see Fig. 9). However, this
does not provide a systematic solution to the problem of constraint
violations. In the next section, the use of RTO at high frequency is
proposed, and it is shown that this method may successfully
resolve the aforementioned problems.

4.2. Fast RTO

Although SOFCs with the capability to track constant power
demand profiles may be of great use, many applications involve
power demand changes that occur much more frequently than on
the scale proposed in the preceding experiments. For this reason,
Fig. 8. RTO performance w
the use of “fast” RTO is also investigated. Instead of waiting for the
system to reach the true steady state with constant temperature
(w30 min) before implementing the RTO, it is assumed thatmost of
the output response takes place at the electrochemical scale (<1 s).
With this assumption, the temperature dynamics can be ignored
and treated like a slow-scale parametric drift, and the RTO
frequency is increased to an action every 10 s. Filter values of Kpel ¼
0:85 and KUcell

¼ 1:0 are used. A power-demand profile spanning
1 h of operation is generated, with a new random power demand
between 0.30 and 0.38 W/cm2 being specified every 5 min.
Towards the end of the experiment, a 15 min stretch is used to
manually test the ability of this algorithm to meet the maximum
power without violating the constraint. A converged system at
pel
S ¼ 0.30 W/cm2 is used as a starting point. The results are pre-

sented in Fig. 10.
The outcome is very promising. Owing to the fact that there is

a very large difference between the two time scales, the optimizer
does not suffer from the lack of knowledge of the true steady-state
bias and is able to also act as a very effective controller e quickly
tracking the appropriate power demand without needing any
extensive tuning. Via its role as an optimizer, it maintains the
efficiency at near-optimal levels throughout the course of
ith Kpel ¼ KUcell
¼ 1:0.



Fig. 9. RTO performance with Kpel ¼ 0:85 and KUcell
¼ 1:0.

Fig. 10. Performance of the fast RTO.
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operation. Finally, unlike in the previous cases where the slow
updates allowed prolonged violations, the potential constraint is
approached and met, rather than violated, with this method. One
does notice, however, that new power demands cannot be met if
the change in the demand is too large (the last iteration in Fig. 10),
but this is again a limitation of the physical system at hand, rather
than that of the algorithm.

5. Conclusions

An RTO with constraint adaptation has been investigated for an
experimental SOFC stack. It is shown that, despite significant plant-
model mismatch, the adaptive optimization algorithm is able to
successfully drive the SOFC stack to its true optimal region,
converging to the specified power demand and to the proper active
constraint. Additional studies demonstrate the effects of the filter
values on the convergence rates. A high-frequency RTO is also
attempted, and it is shown that ignoring the transient effects of the
temperature does not harm the performance of the algorithm. As
a result, the RTO acts as both an optimizer and a controller in this
case, and is able to converge quickly and safely to the optimum.
Though not addressed in this paper, this mechanism still has
open issues that must be looked at. A more rigorous theoretical
treatment of the filter tuning is still needed. Furthermore, it is also
important to note that the high frequency RTO approach used in
this study may not be possible for more complicated systems,
where higher-dimensional input spaces and increased likelihood of
local extrema in the model structure may make converging to
a good optimum too time-consuming to be implemented on such
a fast scale. In these cases, other approaches may be needed to
guarantee safe convergence. As such, the efficacy of the proposed
method for more complicated SOFC problems, such as those
involving steam reformers, cost criteria with parasitic losses, or
heat-demand following with co-generation, is a topic of great
interest that is yet to be studied.
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