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Sleep spindles are thalamocortical oscillations in nonrapid eye movement sleep, which play an important role in sleep-related neuroplasticity
and offline information processing. Sleep spindle features are stable within and vary between individuals, with, for example, females having a
higher number of spindles and higher spindle density than males. Sleep spindles have been associated with learning potential and intelligence;
however, the details of this relationship have not been fully clarified yet. In a sample of 160 adult human subjects with a broad IQ range, we
investigated the relationship between sleep spindle parameters and intelligence. In females, we found a positive age-corrected association
between intelligence and fast sleep spindle amplitude in central and frontal derivations and a positive association between intelligence and slow
sleep spindle duration in all except one derivation. In males, a negative association between intelligence and fast spindle density in posterior
regions was found. Effects were continuous over the entire IQ range. Our results demonstrate that, although there is an association between sleep
spindle parameters and intellectual performance, these effects are more modest than previously reported and mainly present in females. This
supports the view that intelligence does not rely on a single neural framework, and stronger neural connectivity manifesting in increased
thalamocortical oscillations in sleep is one particular mechanism typical for females but not males.
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Introduction
Sleep spindles are typical features of nonrapid eye movement
(NREM) sleep, arising as an interaction of thalamocortical, cor-
ticothalamic, and reticular neurons due to the absence of cholin-
ergic activation during NREM sleep (Steriade and Deschenes,
1984; Amzica and Steriade, 2000; Steriade, 2000; Fogel and
Smith, 2011). These oscillations provide excellent conditions for
long-term synaptic changes (Buzsáki, 1989; Rosanova and Ul-
rich, 2005; Fogel and Smith, 2011), and the interplay of spindles
and hippocampal ripples plays an important role in neuroplas-
ticity (Clemens et al., 2007; Genzel et al., 2014). Specifically, spin-
dles deafferent the cortex from the hippocampus, enabling local
processing of increased firing rates in the cortex in response to
hippocampal firing during ripples (Peyrache et al., 2009; Wier-
zynski et al., 2009; Genzel et al., 2014). Spindle activity indeed

correlates with memory consolidation in both declarative (Gais et
al., 2002; Clemens et al., 2005; Genzel et al., 2009) and procedural
(Fogel and Smith, 2006; Fogel et al., 2007; Morin et al., 2008)
tasks.

Sleep spindles also reflect trait variables of cognition. Spindle
parameters show strong intraindividual stability and are impor-
tant components of the individual sleep EEG fingerprint (De
Gennaro et al., 2005). Individual profiles in spindling reflect the
microstructural properties of white matter tracts as measured by
diffusion weighted MRI, with high levels of spindling being re-
lated to high axial diffusivity in white matter structures (Piantoni
et al., 2013). Sleep spindle density correlates with measures of
verbal memory (Lafortune et al., 2014), visuospatial memory
(Bódizs et al., 2008), selective attention (Forest et al., 2007;
Limoges et al., 2013), and fluid intelligence (Bódizs et al., 2005).
Intelligence also correlates with the absolute number of spindles
(Fogel et al., 2007), and sleep spindle duration and amplitude
(Schabus et al., 2006; Fogel et al., 2007), suggesting that the effi-
ciency of thalamocortical tracts reflected by prominent spindle
activity is essential for overall cognitive ability.

However, previous studies were performed on relatively small
and homogeneous samples (mainly university students of aver-
age to moderately high intelligence), rendering interpretation of
correlation strength difficult. It is also unclear whether correlates
of intelligence are similar throughout the entire IQ range (Fogel
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and Smith, 2011) and whether intelligence continues to correlate
with spindle parameters within the extreme range, as correlates of
intelligence often decrease with the distance from the average, a
phenomenon known as the law of diminishing returns (Spear-
man, 1927; Tucker-Drob, 2009). Moreover, increased spindle
activity has been reported not only in high IQ subjects, but also in
children with mental retardation (Gibbs and Gibbs, 1962; Bixler
and Rhodes, 1968); and, based on these findings, a U-shaped
association between intelligence an sleep spindle activity has been
proposed (Fogel et al., 2007; Fogel and Smith, 2011).

Sex differences were reported for the number of sleep spin-
dles, spindle density, and EEG � power (Gaillard and Blois, 1981;
Carrier et al., 2001; Huupponen et al., 2002; Genzel et al., 2012) as
well as functional correlates of spindles, namely, learning-related
increases in spindle activity, which was only present in males and
females in their mid-luteal menstrual phase (Genzel et al., 2012).
Sex differences were also repeatedly shown for brain structures
and neural correlates of cognitive performance (Cahill, 2006;
Jazin and Cahill, 2010). Females generally show stronger values in
various connectivity measures (Gong et al., 2009; Tomasi and
Volkow, 2012; Ingalhalikar et al., 2014; Satterthwaite et al., 2014)
and stronger association between white matter and intellectual
performance than males (Gur et al., 1999; Haier et al., 2005). We
therefore hypothesized that the sleep spindle–IQ relationship is
characterized by sexually dimorphic aspects, with females show-
ing stronger correlations between intelligence and spindle activ-
ity than males.

Materials and Methods
We investigated the relationship between sleep spindle parameters and
performance in tests of fluid reasoning, controlling for the effects of age
and sex in a large sample. A total of 160 subjects (72 females, 88 males)
participated in this study, in a cooperation between the Max Planck
Institute of Psychiatry (Munich, Germany) and the Psychophysiology
and Chronobiology Research Group of Semmelweis University (Buda-
pest, Hungary). Mean age of subjects was 29.7 years (SD 10.7 years, range
17– 69 years). The sleep spindle database was created using previously
existing polysomnography recordings with available IQ scores, which has
never been used in publications addressing the relationship between
sleep spindles and intelligence, either in its entirety or in part. We further
added new recordings specifically to increase the IQ variability within the
sample, as our aim was to include subjects from a broad intelligence
range. To avoid a masking of potential correlations between spindle
parameters and intelligence through the inclusion of subjects with po-
tentially pathological processes, we aimed to widen the intelligence dis-
tribution of our sample toward the upper extreme of the IQ range. We
therefore recruited a considerable number of subjects among the mem-
bers of the high-IQ society Mensa. The overall distribution of IQ scores is
illustrated by Figure 1.

The research protocols were approved by the Ethical Committee of the
Semmelweis University (Budapest, Hungary) or the Medical Faculty of
the Ludwig Maximilians University (Munich, Germany) in accordance
with the Declaration of Helsinki. All subjects signed informed consent
for the participation in the studies. According to semistructured inter-
view with experienced psychiatrists or psychologists, all subjects were
healthy, had no history of neurologic or psychiatric disease, and were free
of any current drug effects, excluding contraceptives. Consumption of
small habitual doses of caffeine (maximum 2 cups of coffee before noon),
but no alcohol, was allowed. Six male and 2 female subjects were light
to moderate smokers (self-reported), and the rest of the subjects were
nonsmokers.

Based on their availability, all subjects completed one or two standard-
ized nonverbal intelligence tests. The tests used in the study were the
Culture Fair Test (CFT) (Weiss and Weiss, 2006) and Raven Advanced
Progressive Matrices (Raven APM, (Raven et al., 2004). Both the CFT
and Raven APM are nonverbal intelligence tests where subjects are re-

quired to complete abstract patterns by finding their organizing rules.
Performance in these tests was shown to correlate strongly and to be a
particularly good measurement of the general factor of intelligence (Cat-
tell, 1973; Duncan et al., 2000; Prokosch et al., 2005). A total of 113
subjects completed the CFT and 89 subjects completed the Raven APM
test; 42 subjects completed both tests.

Sleep spindle parameters were expected to change as a factor of age,
and IQ scores derived from intelligence tests are age-corrected, whereas
raw scores of different intelligence tests are on different scales. Therefore,
a composite raw intelligence test score was calculated, expressed as a
Raven equivalent score. Raven equivalent scores for Raven APM tests
were equal to the actual raw test score. For CFT raw scores, Raven equiv-
alent scores were equal to the Raven APM score corresponding to the IQ
percentile derived from CFT performance and the age of the subject, in
other words, the Raven APM score that would have yielded the same
population percentile score as the actually completed CFT test. If both
Raven APM and CFT scores were available for a subject, the two Raven
equivalent scores were averaged. Raven APM was chosen as a basis of
standardization because of the availability of detailed norms. For this
study, norms from the 1993 Des Moines (Iowa) standardization (Raven
et al., 2004) of APM were used. Mean Raven equivalent score was 26.8
(SD 6.2, range 10.5–36). There was no difference in age (F � 1.16, p �
0.9) or Raven equivalent scores (F � 1.36, p � 0.1) between males (mean
age 29.5 years, SD 10.4 years; mean Raven 27.5, SD 5.7) and females
(mean age 29.3 years, SD 11.2 years; mean Raven 26.0, SD 6.7).

Sleep was recorded for two consecutive nights by standard polysom-
nography, including EEG according to the 10 –20 system (Jaspers, 1958)
(common recording sites across the studies and laboratories were as
follows: Fp1, Fp2, F3, F4, Fz, F7, F8, C3, C4, Cz, P3, P4, T3, T4, T5, T6,
O1, and O2), electro-oculography, bipolar submental electromyogra-
phy, as well as electrocardiography. EEG electrodes were rereferenced to
the mathematically linked mastoids. Impedances for the EEG electrodes
were kept �8 k�. Signals were collected, prefiltered, amplified, and dig-
itized at different sampling rates using different recording apparatus in
the different subsamples (Table 1).

Sleep EEG recordings for the second nights spent in the laboratory
were manually scored on a 20 s basis by applying standard criteria (Iber,
2007). Epochs with artifacts were removed on a 4 s basis by visual inspec-
tion of all recorded channels (including polygraphy). The individual
adjustment method (IAM) of sleep spindle analysis was applied for N2
and N3 sleep (Bódizs et al., 2009). The IAM procedure considers the
individual spectral peaks as starting points for the sleep spindle analysis.
In short, the second-order derivatives of 9 –16 Hz amplitude spectra (4 s,
Hanning tapered Fast Fourier Transform) of NREM sleep EEGs were
averaged over EEG derivations and frequencies corresponding to the
zero crossing points encompassing those two negative peaks with the
largest absolute amplitudes were defined as frequency criteria for slow
and fast sleep spindles. In cases of uncertainty (lack of zero crossing
points indicating slow spindles or partial overlap between slow and fast
sleep spindles in some cases), frequencies with predominance of power in
averaged frontal (Fp1, Fp2, F3, F4, Fz, F7, F8) over averaged centro-
parietal (C3, C4, Cz, P3, P4) amplitude spectra were considered as slow
spindle frequencies (N � 18). There was no case of uncertainty related to
the frequency boundaries of fast spindles. Resulting slow and fast spindle
boundaries were used as frequency limits for slow and fast spindle band-
pass filtering (FFT-based, Gaussian filter, 16 s windows) of the EEGs.

Thresholding of the envelopes of the bandpass filtered EEGs were
performed by using individual- and derivation-specific amplitude crite-
ria: means of the amplitude spectral values (�V) at the frequencies cor-
responding to the lower and upper limits of sleep spindling were
considered after multiplying by the number of bins making up the band.
The envelope of the bandpass filtered signal had to exceed the threshold
for at least 0.5 s to be considered a sleep spindle. Slow and fast sleep
spindles defined in this way were counted and characterized by the fol-
lowing sleep spindle parameters:

1. Slow and fast sleep spindle density (spindles/minutes of N2 or N3
sleep, spindles min �1);
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2. Slow and fast sleep spindle durations (mean duration of sleep spin-
dles detected, seconds);

3. Slow and fast sleep spindle amplitudes (mean maxima of the in-
traspindle envelopes of bandpass filtered EEGs, �V);

4. The peak frequencies and upper/lower frequency limits of slow and
fast spindles for each subject.

To correct for the different analog EEG filter characteristics of our
machines, we connected an analog waveform generator to the C3 and C4
electrode inputs (with original recording reference, rereferenced for
A1-A2 common references for further analysis) of all EEG devices and
applied 40 and 355 �V amplitude sinusoid signals of various amplitudes
(0.05 Hz, every 0.1 Hz between 0.1–2 Hz, every 1 Hz between 2–20 Hz,
every 10 Hz between 10 Hz-100 Hz).

We determined the amplitude reduction rate of each recording system
by calculating the proportion between digital (measured) and analog
(generated) amplitudes of sinusoid signals at typical sleep spindle fre-
quencies (10, 11, 12, 13, 14, and 15 Hz) for both inducing (40 and 355 �V
amplitude) signals. Machine-specific amplitude reduction rates were
given as the mean amplitude rate between digital and analog values at the
two amplitudes and six measured frequencies (for the reduction rates, see
Table 1). Sleep spindle amplitudes were corrected by dividing their cal-
culated values by the amplitude reduction rate of the recording system.

Given the individual- and derivation-specific adjustment inherent to
the procedure, sleep spindle densities and durations are amplitude-
insensitive measures (for an empirical demonstration, see Bódizs et al.,
2005). Thus, there is no need for the compensation of the different re-
cording systems in these values. Group comparisons (male vs female)
were performed by independent samples t tests. Partial Pearson correla-
tion coefficients were calculated to test the relationship between sleep
spindle parameters and Raven equivalent scores, controlling for the ef-
fects of age. This was deemed necessary because of the potential effects of
age on both sleep spindle parameters (De Gennaro and Ferrara, 2003;
Fogel and Smith, 2011) and intelligence test performance (Tucker-Drob,
2009). To control for multiple comparisons across electrodes, we per-
formed the Benjamini–Hochberg procedure (Benjamini and Hochberg,
1995) controlling for the false discovery rate for each sleep spindle pa-
rameter. This correction procedure was selected because sleep spindle
parameters at different electrodes are expected to correlate positively,
rendering a Bonferroni correction overly conservative. The Benjamini–
Hochberg procedure, on the other hand, is valid for both independent
and positively correlated tests.

To allow for a better comparison with previous studies, the correla-
tions that were strongest using the IAM method were recalculated with
spindle measures using a fixed-criterion spindle detection algorithm as
common in related research (e.g., Schabus et al., 2007) with fixed thresh-
old frequencies 11–13 Hz for slow spindles and 13–15 Hz for fast spin-
dles. Of note, a fixed-criterion method is inherently less sensitive than
IAM because it does not take into account individual variations in sleep
spindle frequency, instead analyzing a relatively broad frequency band. It
is also noteworthy that the fixed-criterion method used somewhat arbi-
trary detection frequencies, classifying anything �13 Hz as a slow spindle
and completely missing sleep spindles slower than 11 Hz. This might lead
to incorrect classification of spindles in some subjects as well as missed
detections of the slowest spindles. However, fast spindle amplitude on a

prominent fast-spindle generating site (Cz) is a feature salient enough to
be reliable detected even with a less sensitive spindle detection method.

Results
In general, slow spindle amplitude was highest at frontal deriva-
tions (maximum amplitude on Fz), whereas fast spindles were
most prominent on central and parietal derivations (maximum
amplitude on Cz). Mean peak frequency was 11.43 Hz (SD 0.76
Hz, range 9.59 –13.28 Hz) for slow spindles and 13.72 Hz (SD
0.59 Hz, range 12.5–15.38 Hz) for fast spindles.

Age was in significant negative correlation with all sleep spin-
dle parameters on all electrodes, except for slow spindle ampli-
tude on all electrodes, slow spindle duration on Cz, Fz, and T5,
and fast spindle amplitude on O1 and O2. Positive correlations
between age and slow spindle amplitude were significant on O2
(median amplitude only) and P4 (both median and maximum
amplitude). A significant positive correlation with fast spindle
peak frequency and significant negative correlation with Raven
equivalent raw scores was also found.

Sex differences were found in various sleep spindle parameters.
Women had significantly higher fast spindle amplitudes in deriva-
tions F3, F4, Fz, C3, C4, Cz, P3, P4, T6, O1, and O2, and higher peak
frequencies both in case of slow and fast spindles. Men had signifi-
cantly higher fast spindle densities on derivations P3, P4, O1, and
O2, and significantly higher fast spindle durations on O2.

Sex differences were found in various sleep spindle parame-
ters. Women had significantly higher fast spindle amplitudes in
derivations F3 (Meanmale � 4.61, Meanfemale � 5.13, t � �2.18,
p � 0.03), F4 (Meanmale � 4.66, Meanfemale � 5.3, t � �2.66, p �
0.008), Fz (Meanmale � 5.29, Meanfemale � 5.99, t � �2.39, p � 0.02),
C3 (Meanmale � 5.20, Meanfemale � 5.82, t � �2.55, p � 0.01), C4
(Meanmale � 5.24, Meanfemale � 4.92, t � �2.83, p � 0.005), Cz
(Meanmale � 6.81, Meanfemale � 8.02, t � �3.55, p � 0.0005),
P3 (Meanmale � 5.43, Meanfemale � 6.2, t � �2.99, p � 0.003), P4
(Meanmale � 5.22, Meanfemale � 5.91, t � �2.66, p � 0.009), T6
(Meanmale � 2.97, Meanfemale � 3.28, t � �2.07, p � 0.04),
O1 (Meanmale � 3.81, Meanfemale � 4.36, t � �2.51, p � 0.01), and
O2 (Meanmale � 3.77, Meanfemale � 4.22, t � �2.14, p � 0.03), and
higher peak frequencies (Hz) in case of both slow (Meanmale �
11.28, Meanfemale � 11.61, t � �2.82, p � 0.005) and fast
(Meanmale � 13.55, Meanfemale � 13.92, t � �4.13, p � 0.00006)
spindles. Men had significantly higher fast spindle densities (no./
min) on derivations P3 (Meanmale � 7.64, Meanfemale � 7.34, t �
2.00, p � 0.04), P4 (Meanmale � 7.60, Meanfemale � 7.30, t � 2.00,
p � 0.04), O1 (Meanmale � 7.24, Meanfemale � 6.84, t � 2.35, p �
0.02), and O2 (Meanmale � 7.29, Meanfemale � 6.76, t � 3.08, p �
0.002), and significantly higher fast spindle durations on O2
(Meanmale � 1.09, Meanfemale � 1.03, t � 2.57, p � 0.01).

Strong sex differences were found in correlations between
sleep spindle parameters and Raven equivalent scores. In females,

Table 1. Details of the recording procedures in different subsamples

N EEG recording sites (10 –20 system) Polygraphic channels Electrodes used
Effective sampling rate/
sampling rate (Hz)

Budapest–I 31 Fp1, Fp2, F3, F4, Fz, F7, F8, C3, C4, Cz, P3, P4,
T3, T4, T5, T6, O1, O2

Left and right EOG, bipolar submental EMG,
ECG, thoracic and abdominal respiration

Au coated Ag/AgCl fixed with EC2 Grass
electrode cream

249/249

Budapest–II 16 Fp1, Fp2, F3, F4, Fz, F7, F8, C3, C4, Cz, P3, P4,
Pz, T3, T4, T5, T6, O1, O2

Bipolar EOG, bipolar submental EMG, ECG Au coated Ag/AgCl fixed with EC2 Grass
electrode cream

4096/1024

Munich–I 93 Fp1, Fp2, Fpz, AF1, AF2, F3, F4, Fz, F7, F8, C3,
C4, Cz, P3, P4, Pz, T3, T4, T5, T6, O1, O2

Bipolar EOG, bipolar submental EMG, ECG Ag/Ag-Cl, with EC2 Grass electrode cream for
EEG and Nihon Kohden ELEFIX for EMG

250/250

Munich–II 20 Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2 Bipolar EOG, bipolar submental EMG, ECG Ag/Ag-Cl, with EC2 Grass electrode cream for
EEG and Nihon Kohden ELEFIX for EMG

250/250
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age-corrected partial correlations were significant between Raven
equivalent scores and fast spindle amplitude (central, frontal, and
parietal derivations, rmax � 0.412 on Cz) and slow spindle dura-
tion (all derivations with the exception of C3, rmax � 0.379 on
T3). In males, age-corrected partial correlations revealed a nega-
tive association between Raven equivalent scores and fast spindle
density (posterior derivations, rmax��0.337 on O1). After cor-
rection for multiple testing, partial correlation coefficients were
significant between Raven equivalent scores and fast spindle am-
plitude (electrodes Cz, C3, C4, and Fz) and slow spindle duration
(electrodes F7, F8, T3, T4, T5, T6, Cz, and Fz) in females, as well
as fast spindle density (electrodes O1, O2, P3, P4, and T5) in
males.

Table 2 gives an overview of the partial correlations found in
females. Table 3 gives an overview of the partial correlations
found in males. Table 4 gives an overview of partial correlations
in all subjects. Figure 1 illustrates the most prominent partial
correlations between Raven equivalent scores, fast spindle ampli-
tude, slow spindle duration, and fast spindle density in both
sexes.

Sex differences in the correlations between Raven equivalent
scores and sleep spindle parameters were confirmed by statistical
comparison of the maximal significant correlations illustrated in
Figure 2. Using Fisher’s r to z transformation method, correlation

coefficients found in males and females were significantly differ-
ent for fast spindle amplitude on Cz (z � 3.2, p � 0.001), slow
spindle duration on T3 (z � 3.23, p � 0.001), and fast spindle
density on O1 (z � 2.23, p � 0.02).

Sleep spindle peak frequencies were not correlated with Raven
equivalent scores in either sex and in either slow or fast spindles
(age-corrected partial correlation with slow spindle peak fre-
quency is 0.17 [p � 0.160] in females, �0.06 [p � 0.539] in males;
correlation with fast spindle peak frequency is �0.04 [p � 0.744]
in females, 0.095 [p � 0.379] in males).

Similar results were seen if individual intelligence test raw
scores (CFT or Raven) were used instead of the combined score.
Correlations were also not exclusively driven by either subgroup
(Budapest or Munich) used in the study (for details, see Fig. 2,
scatterplots). Inclusion or exclusion of the 8 smoking subjects did
not change the results of the study.

To replicate our main findings with 90% statistical power, a
sample size of n � 48 would be required for fast spindle ampli-
tude on Cz (r � 0.41), a sample size of n � 56 would be required
for slow spindle duration on T3 (r � 0.371), and a sample size of
n � 72 would be required for fast spindle density on O1 (r �
�0.337). Given that these sample sizes are meant for subjects
from the same sex due to sex differences in the relationship

Table 1. Continued

Precision Hardware prefiltering (Hz)
Amplitude attenuation
10 –15 Hz (mean �SD�) Recording apparatus Recording software

Budapest–I 12bit 0.5–70 0.9705 �0.0036� Flat Style SLEEP La Mont Headbox, HBX32-SLP
preamplifier (La Mont Medical)

DataLab (Medcare)

Budapest–II 12bit 0.33–1500 (�450 Hz antialiasing digital
filtering before undersampling)

0.9356 �0.0021� Brain-Quick BQ 132S (Micromed) System 98 (Micromed)

Munich–I 8bit 0.53–70 0.9693 �0.0016� Comlab 32 DigitalSleep Lab Brainlab, version 3.3

Munich–II 8bit 0.53–70 0.9693 �0.0016� Comlab 32 DigitalSleep Lab Brainlab, version 3.3

Table 2. Partial Pearson correlation coefficients (corrected for age) between sleep spindle parameters and Raven APM scores in female subjectsa

Slow spindles Fast spindles

Density Duration
Median
amplitude

Maximum
amplitude Density Duration

Median
amplitude

Maximum
amplitude

N df R p r p r p r p r p r p r p r p

Fp1 72 69 0.273 0.036 0.271 0.038 �0.075 0.570 �0.081 0.540 0.114 0.391 0.056 0.672 0.285 0.029 0.292 0.025
Fp2 72 69 0.291 0.026 0.262 0.045 �0.086 0.516 �0.094 0.480 0.140 0.290 0.089 0.505 0.265 0.042 0.267 0.041
Fz 60 57 0.286 0.028 0.338* 0.009 �0.187 0.156 �0.188 0.155 0.089 0.503 0.050 0.709 0.334 0.010 0.335* 0.010
F3 72 69 0.265 0.042 0.260 0.047 �0.076 0.568 �0.083 0.533 0.107 0.421 0.101 0.447 0.274 0.036 0.277 0.034
F4 72 69 0.261 0.046 0.262 0.045 �0.102 0.441 �0.108 0.417 0.127 0.336 0.120 0.364 0.277 0.034 0.281 0.031
F7 60 57 0.328 0.011 0.368* 0.004 �0.162 0.220 �0.166 0.208 �0.012 0.930 �0.019 0.889 0.183 0.167 0.185 0.160
F8 60 57 0.328 0.011 0.374* 0.004 �0.165 0.213 �0.167 0.207 0.059 0.656 0.015 0.910 0.234 0.075 0.231 0.078
C3 72 69 0.247 0.060 0.254 0.052 �0.110 0.408 �0.117 0.379 0.082 0.537 0.133 0.316 0.365 0.004 0.367* 0.004
C4 72 69 0.259 0.047 0.259 0.048 �0.131 0.324 �0.135 0.308 0.134 0.310 0.130 0.327 0.371 0.004 0.371* 0.004
Cz 60 57 0.295 0.023 0.356* 0.006 �0.194 0.142 �0.194 0.142 0.083 0.533 0.092 0.488 0.412 0.001 0.410* 0.001
P3 72 69 0.231 0.078 0.268 0.040 �0.148 0.264 �0.150 0.256 0.036 0.788 0.135 0.308 0.281 0.031 0.283 0.030
P4 72 69 0.241 0.066 0.270 0.039 �0.136 0.305 �0.140 0.290 0.084 0.528 0.126 0.340 0.282 0.030 0.284 0.029
T3 60 57 0.314 0.015 0.379* 0.003 �0.172 0.193 �0.176 0.183 0.027 0.837 0.019 0.887 0.210 0.110 0.203 0.123
T4 60 57 0.306 0.018 0.374* 0.004 �0.214 0.104 �0.214 0.104 �0.017 0.898 �0.010 0.940 0.030 0.819 0.027 0.842
T5 60 57 0.288 0.027 0.372* 0.004 �0.226 0.085 �0.223 0.089 �0.019 0.886 0.070 0.598 0.152 0.251 0.154 0.245
T6 60 57 0.312 0.016 0.363* 0.005 �0.282 0.030 �0.278 0.033 0.033 0.806 0.045 0.737 0.059 0.656 0.064 0.629
O1 72 69 0.258 0.049 0.263 0.045 �0.173 0.191 �0.173 0.189 0.027 0.841 0.116 0.380 0.158 0.233 0.160 0.225
O2 72 69 0.273 0.036 0.261 0.046 �0.190 0.149 �0.194 0.141 0.089 0.503 0.122 0.359 0.129 0.330 0.133 0.316
aIn the first two columns, the number of available subjects and the corresponding degrees of freedom are given for each electrode.

*Correlations that remain significant after multiple comparisons correction.
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between IQ and spindles, previous studies appear to have been
underpowered.

The correlations that were strongest using the IAM method
were recalculated with sleep spindle parameters calculated by a
fixed amplitude detection method. In this method, we filtered
data for the individual IAM frequencies and applied a fixed am-
plitude threshold set at 4 �V for slow spindles and 6 �V for fast
spindles. These amplitude criteria were defined based on the 12
�V amplitude limit of the Somnolyzer SIESTA fixed amplitude
spindle detection method (Anderer et al., 2005) but reduced be-
cause of the narrower frequency bands used in IAM. The ampli-
tude criteria were kept intentionally high to reduce false-positive

detections in subjects with high baseline EEG voltage: therefore,
depending on the electrode, 1– 8 female and 2–12 male subjects
provided zero detections and were not considered for the analysis
of spindle parameters on the given electrode.

Data from this alternative approach successfully replicated
our main finding: the age-corrected partial correlation between
intelligence and fast spindle median amplitude on Cz was signif-
icant after correction for multiple testing in females (N � 71, r �
0.41, p � 0.001), but not in males (N � 79, r � 0.005, p � 0.965).
Furthermore, we found a significant positive correlation between
intelligence and fast spindle density on C4, Cz, and Fz in females
(N � 71 for C4, N � 59 for Cz and Fz, rmax � 0.373 on Cz, p �

Table 3. Partial Pearson correlation coefficients (corrected for age) between sleep spindle parameters and Raven APM scores in male subjectsa

Slow spindles Fast spindles

Density Duration
Median
amplitude

Maximum
amplitude Density Duration

Median
amplitude

Maximum
amplitude

N df r p r p r p r p r p r p r p r p

Fp1 88 85 �0.016 0.890 �0.100 0.379 �0.102 0.370 �0.101 0.374 �0.182 0.106 �0.123 0.278 �0.173 0.126 �0.177 0.117
Fp2 88 85 0.005 0.963 �0.102 0.366 �0.087 0.442 �0.077 0.500 �0.168 0.135 �0.090 0.429 �0.172 0.128 �0.165 0.145
Fz 81 78 0.045 0.690 �0.080 0.481 �0.038 0.741 �0.030 0.791 �0.241 0.032 �0.086 0.450 �0.110 0.330 �0.109 0.337
F3 88 85 0.043 0.707 �0.083 0.466 �0.065 0.565 �0.057 0.617 �0.241 0.031 �0.107 0.345 �0.124 0.274 �0.125 0.271
F4 88 85 0.012 0.917 �0.095 0.401 �0.078 0.493 �0.068 0.552 �0.211 0.060 �0.041 0.719 �0.136 0.228 �0.134 0.236
F7 81 78 0.045 0.694 �0.094 0.405 �0.036 0.754 �0.030 0.792 �0.172 0.128 �0.073 0.520 �0.093 0.413 �0.087 0.445
F8 81 78 0.027 0.815 �0.108 0.341 �0.078 0.492 �0.071 0.530 �0.167 0.139 �0.027 0.816 �0.145 0.199 �0.134 0.237
C3 88 85 0.096 0.395 �0.099 0.384 �0.073 0.518 �0.065 0.568 �0.238 0.033 �0.127 0.262 �0.114 0.316 �0.110 0.331
C4 88 85 0.064 0.573 �0.109 0.335 �0.093 0.411 �0.083 0.462 �0.219 0.051 �0.084 0.460 �0.128 0.259 �0.124 0.273
Cz 81 78 0.094 0.407 �0.106 0.350 �0.055 0.629 �0.050 0.661 �0.234 0.037 �0.090 0.426 �0.081 0.476 �0.079 0.489
P3 88 85 0.098 0.388 �0.135 0.232 �0.111 0.325 �0.102 0.367 �0.309* 0.005 �0.121 0.286 �0.189 0.093 �0.184 0.103
P4 88 85 0.122 0.282 �0.118 0.296 �0.059 0.602 �0.051 0.656 �0.312* 0.005 �0.128 0.260 �0.138 0.222 �0.134 0.236
T3 81 78 0.085 0.456 �0.124 0.272 �0.117 0.301 �0.117 0.302 �0.165 0.144 �0.066 0.563 �0.190 0.092 �0.182 0.107
T4 81 78 0.062 0.584 �0.121 0.285 �0.134 0.235 �0.125 0.271 �0.162 0.150 �0.055 0.626 �0.197 0.080 �0.163 0.148
T5 81 78 0.097 0.391 �0.132 0.244 �0.069 0.542 �0.065 0.565 �0.287* 0.010 �0.108 0.340 �0.063 0.577 �0.059 0.604
T6 81 78 0.074 0.512 �0.134 0.235 �0.121 0.286 �0.113 0.317 �0.266 0.017 �0.089 0.432 �0.144 0.204 �0.140 0.214
O1 88 85 0.083 0.462 �0.140 0.216 �0.081 0.477 �0.071 0.531 �0.337* 0.002 �0.140 0.216 �0.128 0.256 �0.125 0.268
O2 88 85 0.104 0.357 �0.126 0.265 �0.066 0.559 �0.054 0.634 �0.315* 0.004 �0.128 0.259 �0.143 0.207 �0.139 0.219
aIn the first two columns, the number of available subjects and the corresponding degrees of freedom are given for each electrode.

*Correlations that remain significant after multiple comparisons correction.

Table 4. Partial Pearson correlation coefficients (corrected for age) between sleep spindle parameters and Raven APM scores in all subjectsa

Slow spindles Fast spindles

Density Duration
Median
amplitude

Maximum
amplitude Density Duration

Median
amplitude

Maximum
amplitude

N df r p r p r p r p r p r p r p r p

Fp1 160 157 0.127 0.135 0.073 0.393 �0.083 0.327 �0.085 0.321 �0.039 0.650 �0.025 0.769 0.038 0.659 0.035 0.685
Fp2 160 157 0.144 0.089 0.066 0.441 �0.082 0.338 �0.079 0.354 �0.025 0.769 0.007 0.935 0.021 0.806 0.023 0.791
Fz 141 138 0.156 0.066 0.076 0.371 �0.075 0.381 �0.074 0.388 �0.071 0.406 0.007 0.937 0.052 0.544 0.053 0.535
F3 160 157 0.136 0.109 0.070 0.409 �0.096 0.257 �0.094 0.270 �0.049 0.567 0.050 0.561 0.038 0.652 0.040 0.636
F4 160 157 0.183 0.031 0.112 0.188 �0.107 0.207 �0.106 0.214 �0.100 0.242 �0.035 0.681 0.021 0.804 0.024 0.776
F7 141 138 0.168 0.047 0.106 0.211 �0.129 0.129 �0.126 0.137 �0.077 0.365 �0.001 0.995 0.011 0.902 0.015 0.861
F8 141 138 0.167 0.049 0.111 0.193 �0.127 0.135 �0.123 0.147 �0.084 0.327 �0.011 0.895 0.068 0.424 0.069 0.415
C3 160 157 0.173 0.041 0.064 0.452 �0.103 0.225 �0.102 0.229 �0.071 0.406 0.011 0.902 0.082 0.339 0.083 0.328
C4 160 157 0.160 0.059 0.060 0.481 �0.121 0.156 �0.118 0.165 �0.042 0.626 0.034 0.690 0.076 0.372 0.078 0.359
Cz 141 138 0.198 0.019 0.103 0.224 �0.143 0.093 �0.140 0.099 �0.078 0.360 0.005 0.954 0.094 0.269 0.095 0.264
P3 160 157 0.168 0.047 0.052 0.542 �0.141 0.098 �0.137 0.108 �0.111 0.190 0.021 0.804 0.010 0.907 0.015 0.864
P4 160 157 0.182 0.032 0.058 0.493 �0.111 0.191 �0.109 0.199 �0.093 0.277 0.014 0.868 0.034 0.687 0.037 0.661
T3 141 138 0.200 0.018 0.098 0.252 �0.154 0.070 �0.155 0.068 �0.064 0.453 �0.017 0.842 �0.035 0.678 �0.035 0.686
T4 141 138 0.179 0.035 0.096 0.261 �0.179 0.034 �0.174 0.040 �0.104 0.222 �0.030 0.725 �0.104 0.221 �0.090 0.292
T5 141 138 0.198 0.019 0.089 0.295 �0.171 0.044 �0.167 0.049 �0.127 0.134 �0.006 0.943 �0.003 0.974 �0.001 0.996
T6 141 138 0.192 0.023 0.083 0.329 �0.224 0.008 �0.219 0.009 �0.107 0.206 �0.011 0.902 �0.087 0.307 �0.083 0.328
O1 160 157 0.170 0.044 0.044 0.603 �0.145 0.087 �0.140 0.099 �0.122 0.152 0.004 0.964 �0.022 0.797 �0.020 0.814
O2 160 157 0.184 0.030 0.051 0.551 �0.147 0.083 �0.142 0.095 �0.062 0.468 0.017 0.839 �0.036 0.671 �0.033 0.697
aIn the first two columns, the number of available subjects and the corresponding degrees of freedom are given for each electrode. No correlations are significant after multiple comparisons correction.
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0.004) as well as a positive correlation between intelligence and
fast spindle duration on O1 and O2 in males (N � 81, rmax �
0.356 on O2, p � 0.002). Other spindle parameters did not cor-
relate significantly with intelligence scores after multiple testing
correction in either sex.

Discussion
Different sleep spindle parameters have repeatedly been associ-
ated with state and trait measures of cognitive variables (Fogel
and Smith, 2011). However, typical study samples consisted of a
rather small number of university students, leading to results that
rely on a restricted variance in intelligence scores. Testing the
stability of the correlates of intelligence over the entire intelli-
gence range requires the inclusion of a relatively high number of
subjects representing also the extremes of the IQ distribution. In
our study, we analyzed data of 160 subjects, including many sub-
jects with high and very high intelligence scores. Our findings did
not indicate decreasingly linear associations within the extreme
IQ ranges, suggesting that the functional and physiological sig-
nificance of sleep spindles is consistent across the entire intelli-
gence distribution. In contrast to the proposed U-shaped
association between intelligence and sleep spindle activity (Fogel
et al., 2007; Fogel and Smith, 2011), we found this association to
be linear.

In line with previous research (Principe and Smith, 1982; Dijk
et al., 1989; Landolt et al., 1996; Carrier et al., 2001; Nicolas et al.,
2001; Bódizs et al., 2009), our study revealed a generally negative
correlation between age and most measures of sleep spindle ac-
tivity, and a positive correlation between age and spindle fre-
quency. Slow spindles appeared to be less affected by aging, as for
these we found no negative correlation with amplitude (indeed,
there was a positive correlation on O2 and P4, which however did
not survive correction for multiple comparisons) and on some
electrodes (Cz, Fz, T5) no negative correlation with duration either.
This suggests that, whereas slow spindle density and (in most cases)
duration decrease with age, amplitude is preserved, supporting pre-
vious evidence about different neural mechanisms being involved in
slow and fast spindles (Schabus et al., 2007). The absence of correla-
tions with fast spindle amplitudes at occipital derivations probably
stems from an already low level of spindle activity on these non-
prominent spindle locations in a younger age.

Previous research has never specifically looked for sex differ-
ences in the sleep EEG correlates of intelligence. However, strik-
ing sex differences are known not only for brain anatomy in
general (Cahill, 2006; Gong et al., 2009; Jazin and Cahill, 2010;

Tomasi and Volkow, 2012; Ingalhalikar et al., 2014; Satterthwaite
et al., 2014) and sleep spindle activity (Huupponen et al., 2002),
but specifically for neural correlates of intelligence as measured
by waking EEG (Neubauer et al., 2002; Jausovec and Jausovec,
2005) or brain anatomy (Gur et al., 1999; Haier et al., 2005). In
addition, sleep spindle activity differentially affects memory
consolidation in males and females (Genzel et al., 2012). Most
notably, white matter microstructure was shown to be closely
associated with sleep spindle activity (Piantoni et al., 2013) and
intelligence in females, but not in males (Gur et al., 1999; Haier et
al., 2005). In line with these observations, our analyses revealed
marked sex differences in the association between intelligence
and sleep spindle activity: we found a correlation between Raven
equivalent scores and fast sleep spindle amplitudes in central
derivations in females, but not in males. Our findings suggest that
thalamocortical connections underlying EEG sleep spindle activ-
ity are associated with intelligence in females, but not in males.

The positive association between Raven equivalent scores and
slow spindle durations was generally present at almost all scalp
locations, most prominent in temporal derivations, and found
exclusively in females. Sleep spindles coalesce with cortical slow
oscillations (Steriade, 2003), and the strength of this temporal
synchrony between slow oscillation up-states and sleep spindles
was shown to be positively correlated with intellectual perfor-
mance (Bódizs et al., 2005). A positive relationship between slow-
wave upstate length and memory consolidation has also been
demonstrated (Heib et al., 2013). Based on these findings, our
results suggest that longer slow sleep spindle durations in more
intelligent females might reflect more precise coalescence be-
tween sleep spindles and cortical slow oscillations or easier elic-
itability of spindles by such oscillations.

The correlation between intelligence and slow spindle dura-
tion was maximal in temporal derivations. Regional sleep spin-
dles at a certain cortical location are not necessarily byproducts of
sleep spindles at more prominent locations but arise from the
activity of local corticothalamic oscillations (Nir et al., 2011), and
localized sleep spindles play a role in local synaptic plasticity and
subsequent sleep-related learning (Nishida and Walker, 2007).
Generally, strong neural activation increases related to slow spin-
dles have been demonstrated for the temporal lobe (Schabus et
al., 2007). The lateral frontal and temporal maximum of our
findings likely has functional importance, suggesting that, in fe-
males, longer sleep spindle durations are connected to intelli-
gence mainly in cortical areas responsible for higher-order visual
processing and language. Interestingly, structural imaging stud-
ies have found a positive correlation between intelligence in fe-
males and white matter volume in Broca’s area (Haier et al.,
2005), an overlapping and at least in part functionally similar
(language-related) brain region.

In males, a negative association between Raven equivalent
scores and fast spindle density was found, limited to posterior
scalp locations with a left occipital maximum. This finding con-
flicts with earlier research with samples, including both males and
females (Fogel and Smith, 2011), however, is in line with a study
of male rats that found learning potential to be negatively associ-
ated with spindle density (Fogel et al., 2010). Based on the topog-
raphy and locally limited nature of our findings, it might be
speculated that lower occipital fast spindle density in highly in-
telligent males is due to higher neural efficiency of the lower-level
visual areas. Of note, also in human waking EEG, evidence for
higher neural efficiency being associated with intelligence was
found in males only (Jausovec and Jausovec, 2005; Neubauer and
Fink, 2009).

Figure 1. Distribution of IQ scores in the sample.
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Figure 2. Scalp maps and partial regression plots for females (top half) and males (bottom half), for Cz fast spindle median amplitude (left), T3 slow spindle duration (middle), and O1 fast spindle
density (right). Scalp maps illustrate the topographical distribution of the strength of partial correlations between Raven equivalent scores and sleep spindle parameters. On the partial regression
plots, x-axes represent the residuals after regressing Raven APM scores against age. y-axes represent the residuals after regressing spindle parameters against age. Thus, these scatterplots
demonstrate the relationship between Raven APM scores and spindle parameters after pruning both variables for the effects of age. Standard Pearson correlation between the shown residuals
equals the age-corrected partial correlations between Raven APM scores and spindle parameters. Dots represent data points from the Budapest sample. Triangles represent data points from the
Munich sample.
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Table 5. Earlier studies reporting associations between sleep spindle parameters and intelligencea

Reference Test Age Sex Spindle parameter Electrode Correlation

Bodizs et al., 2005 RPMT: IQ 27– 67 years 5 f/14 m Density slow Fp1, Fp2, Fpz, F3, F4, Fz, F7, F8, C3, C4, Cz,
T3, T4,T5, T6, P3, P4, Pz, O1, O2, Oz

NS

Bodizs et al., 2005 RPMT: IQ 27– 67 years 5 f/14 m Density fast Fp1, Fp2, Fpz, F3, F4, Fz, F7, F8, C3, C4, Cz,
T3, T4,T5, T6, P3, P4, Pz, O1, O2, Oz

From r � 0.25, p � 0.33
at O2 to r � 0.79,
p � 0.0001 at Fp2

Clemens et al., 2006 RPMT: IQ 25– 47 years, mean 35, SD 7.7 15 m Total number Fp1, Fpz, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz,
C4, T4, T5, P3, Pz, P4, T6, O1, Oz, O2

NS

Schabus et al., 2006 APM: IQ 20 –30 years, mean 24, SD 2.6 24 f/24 m Activity slow C3 r � 0.40, p � 0.01
Schabus et al., 2006 APM: IQ 20 –30 years, mean 24, SD 2.6 24 f/24 m Activity fast C3 r � 0.44, p � 0.01
Schabus et al., 2006 APM: IQ 20 –30 years, mean 24, SD 2.6 24 f/24 m Density slow C3 r � 0.06, p � 0.68
Schabus et al., 2006 APM: IQ 20 –30 years, mean 24, SD 2.6 24 f/24 m Density fast C3 r � �0.01, p � 0.97
Schabus et al., 2006 APM: IQ 20 –30 years, mean 24, SD 2.6 24 f/24 m Duration slow C3 r � 0.09, p � 0.54
Schabus et al., 2006 APM: IQ 20 –30 years, mean 24, SD 2.6 24 f/24 m Duration fast C3 r � 0.34, p � 0.02
Schabus et al., 2006 APM: IQ 20 –30 years, mean 24, SD 2.6 24 f/24 m Amplitude slow C3 r � 0.39, p � 0.01
Schabus et al., 2006 APM: IQ 20 –30 years, mean 24, SD 2.6 24 f/24 m Amplitude fast C3 r � 0.35, p � 0.02
Fogel et al., 2007 MAB-II: VIQ 18 –29 years 10 f Total number C3, C4 r � 0.56, p � 0.09
Fogel et al., 2007 MAB-II: PIQ 18 –29 years 10 f Total number C3, C4 r � 71, p � 0.02
Fogel et al., 2007 MAB-II: FSIQ 18 –29 years 10 f Total number C3, C4 r � 0.76, p � 0.01
Fogel et al., 2007 MAB-II: VIQ 20 –25 years 12 f Total number C3, C4 r � 0.38, p � 0.10
Fogel et al., 2007 MAB-II: PIQ 20 –25 years 12 f Total number C3, C4 r � 0.79, p � 0.001
Fogel et al., 2007 MAB-II: VIQ 20 –25 years 12 f Total number Cz r � 0.01, p � 0.94
Fogel et al., 2007 MAB-II: PIQ 20 –25 years 12 f Total number Cz r � 0.05, p � 0.79
Fogel et al., 2007 MAB-II: VIQ 18 –26 years, mean 20, SD 5.3 29 f/6 m Density Cz NS
Fogel et al., 2007 MAB-II: PIQ 18 –26 years, mean 20, SD 5.3 29 f/6 m Density Cz NS
Fogel et al., 2007 MAB-II: VIQ 18 –26 years, mean 20, SD 5.3 29 f/6 m Duration Cz NS
Fogel et al., 2007 MAB-II: PIQ 18 –26 years, mean 20, SD 5.3 29 f/6 m Duration Cz NS
Peters et al., 2007 MAB-II: VIQ Mean 21, SD 2.4 12 f/12 m Density C3, C4 r � �0.26, p � 0.05
Peters et al., 2007 MAB-II: PIQ Mean 21, SD 2.4 12 f/12 m Density C3, C4 r � 0.05, p � 0.05
Peters et al., 2007 MAB-II: FSIQ Mean 21, SD 2.4 12 f/12 m Density C3, C4 r � �0.11, p � 0.05
Peters et al., 2008 MAB-II: VIQ 17–24 years, mean 20, SD 2.3 7 f/7 m Density C3, C4 NS
Peters et al., 2008 MAB-II: PIQ 17–24 years, mean 20, SD 2.3 7 f/7 m Density C3, C4 NS
Peters et al., 2008 MAB-II: FSIQ 17–24 years, mean 20, SD 2.3 7 f/7 m Density C3, C4 NS
Peters et al., 2008 MAB-II: VIQ 62–79 years, mean 70, SD 5.1 7 f/7 m Density C3, C4 NS
Peters et al., 2008 MAB-II: PIQ 62–79 years, mean 70, SD 5.1 7 f/7 m Density C3, C4 NS
Peters et al., 2008 MAB-II: FSIQ 62–79 years, mean 70, SD 5.1 7 f/7 m Density C3, C4 NS
Tucker and Fishbein, 2009 MAB-II: VIQ Mean 21 years 12 f/12 m Sigma power C3, C4 NS
Tucker and Fishbein, 2009 MAB-II: PIQ Mean 21 years 12 f/12 m Sigma power C3, C4 NS
Tucker and Fishbein, 2009 MAB-II: FSIQ Mean 21 years 12 f/12 m Sigma power C3, C4 NS
Geiger et al., 2011 WISC-IV: VIQ 9 –13 years, mean 10.5 6 f/8 m Spindle peak frequency C3, C4 NS
Geiger et al., 2011 WISC-IV: FIQ 9 –13 years, mean 10.5 6 f/8 m Spindle peak frequency C3, C4 NS
Geiger et al., 2011 WISC-IV: FSIQ 9 –13 years, mean 10.5 6 f/8 m Spindle peak frequency C3, C4 r � �0.56, p � 0.05
Geiger et al., 2011 WISC-IV: VIQ 9 –13 years, mean 10.5 6 f/8 m Sigma power C3, C4 NS
Geiger et al., 2011 WISC-IV: FIQ 9 –13 years, mean 10.5 6 f/8 m Sigma power C3, C4 r � 0.65, p � 0.05
Geiger et al., 2011 WISC-IV: FSIQ 9 –13 years, mean 10.5 6 f/8 m Sigma power C3, C4 r � 0.67, p � 0.01
Lustenberger et al., 2012 ZVT: IQ 18 –20 years, mean 19, SD 0.8 15 m Activity C4 r � 0.55, p � 0.05
Chatburn et al., 2013 SBIS: VIQ 4 –13 years, mean 8, SD 2.1 13 f/14 m Total number: all, fast, slow C3, C4 NS
Chatburn et al., 2013 SBIS: NVIQ 4 –13 years, mean 8, SD 2.1 13 f/14 m Total number: all, fast, slow C3, C4 NS
Chatburn et al., 2013 SBIS: FSIQ 4 –13 years, mean 8, SD 2.1 13 f/14 m Total number: all, fast, slow C3, C4 NS
Chatburn et al., 2013 SBIS: VIQ 4 –13 years, mean 8, SD 2.1 13 f/14 m Density: all, fast, slow C3, C4 NS
Chatburn et al., 2013 SBIS: NVIQ 4 –13 years, mean 8, SD 2.1 13 f/14 m Density: all, fast, slow C3, C4 NS
Chatburn et al., 2013 SBIS: FSIQ 4 –13 years, mean 8, SD 2.1 13 f/14 m Density: all, fast, slow C3, C4 NS
Chatburn et al., 2013 SBIS: VIQ 4 –13 years, mean 8, SD 2.1 13 f/14 m Duration C3, C4 NS
Chatburn et al., 2013 SBIS: NVIQ 4 –13 years, mean 8, SD 2.1 13 f/14 m Duration C3, C4 NS
Chatburn et al., 2013 SBIS: FSIQ 4 –13 years, mean 8, SD 2.1 13 f/14 m Duration C3, C4 NS
Chatburn et al., 2013 SBIS: VIQ 4 –13 years, mean 8, SD 2.1 13 f/14 m Frequency C3, C4 NS
Chatburn et al., 2013 SBIS: NVIQ 4 –13 years, mean 8, SD 2.1 13 f/14 m Frequency C3, C4 NS
Chatburn et al., 2013 SBIS: FSIQ 4 –13 years, mean 8, SD 2.1 13 f/14 m Frequency C3, C4 NS
Gruber et al., 2013 WISC-IV: FSIQ 7–11 years, mean 9, SD 0.9 14 f /15 m Density F3, F4, C3, C4, P3, P4, O1, O2 NS
Gruber et al., 2013 WISC-IV: FSIQ 7–11 years, mean 9, SD 0.9 14 f /15 m Amplitude F3, F4, C3, C4, P3, P4, O1, O2 NS
Gruber et al., 2013 WISC-IV: FSIQ 7–11 years, mean 9, SD 0.9 14 f /15 m Duration F3, F4, C3, C4, P3, P4, O1, O2 NS
Gruber et al., 2013 WISC-IV: FSIQ 7–11 years, mean 9, SD 0.9 14 f /15 m Frequency F3, F4, C3, C4, P3, P4, O1, O2 NS
Ward et al., 2014 MAB-II: VIQ 18 –29 years, mean 21, SD 3.0 21 f/9 m Density C3 r � 0.18, p � 0.05
Ward et al., 2014 MAB-II: PIQ 18 –29 years, mean 21, SD 3.0 21 f/9 m Density C3 r � 0.14, p � 0.05
Ward et al., 2014 MAB-II: FSIQ 18 –29 years, mean 21, SD 3.0 21 f/9 m Density C3 r � 0.22, p � 0.05
aRPMT, Raven Progressive Matrices; APM, Advanced Progressive Matrices; MAB-II, Multidimensional Aptitude Battery-II; SBIS, Stanford-Binet Intelligence Scale; WISC-IV, Wechsler Intelligence Scale for Children IV; WAIS-III, Wechsler Adult
Intelligence Scale III; ZVT, Zahlen-Verbindungs Test; VIQ, verbal IQ; PIQ, performance IQ; FSIQ, full-scale IQ; FIQ, fluid IQ; NVIQ, nonverbal IQ. Data are from Peters et al. (2007, 2008), Ward et al. (2014), and Peters K (personal communication).
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Earlier studies on the relationship between sleep spindle pa-
rameters and cognition (e.g., Schabus et al., 2006, 2008) have
used fixed-amplitude methods for sleep spindle detection (An-
derer et al., 2005). These methods do not correct for intraindi-
vidual differences in baseline EEG voltage, which on the one hand
renders them more sensitive to absolute differences in sleep spin-
dle amplitude, but on the other hand potentially introduces noise
due to the influence of non-neural effects (such as skull thick-
ness) on EEG signal amplitude. Despite these differences, our
results were successfully, though with weaker effects, replicated
using a fixed-amplitude spindle detection algorithm: Both fast
spindle amplitude and fast spindle density (technically speaking,
the proportion of fast spindles over the critical amplitude) are
significantly correlated with IQ in females, but not males.

Although our study is limited in its ability to reveal the precise
reason for such sex differences, previous research suggests genet-
ically determined differences in brain anatomy and endocrine
function to play a role. On the one hand, sleep EEG features are
known to be genetically determined (De Gennaro et al., 2008;
Landolt, 2011), and this genetic determination manifests itself
largely through variations in brain anatomy and structure (Smit
et al., 2012), in which there are notable variations between males
and females (Cahill, 2006; Gong et al., 2009; Jazin and Cahill,
2010; Tomasi and Volkow, 2012; Ingalhalikar et al., 2014; Satter-
thwaite et al., 2014). On the other hand, estrogen and progester-
one levels in females, as well as the 2– 4 digit ratio (a sensitive
correlate of female sex hormones) were shown to be directly as-
sociated with sleep spindle features and sleep-related cognitive
measures (Driver et al., 1996; Genzel et al., 2012).

Overall, our results only partially confirm previous literature
about the positive relationship between intelligence and sleep
spindle parameters: We found such positive associations with
intelligence for sleep spindle amplitude and sleep spindle length
only, and exclusively in females. The focus of many earlier reports
of the relationship between sleep spindles and cognitive processes
was originally on state markers of sleep-related memory consol-
idation and not on trait markers, such as intelligence or learning
capacity. Such publications of findings originally unintended in
the study design have recently been suggested to be prone to
publication bias, such as the file drawer effect: results consistent
with mainstream views are more probable to be submitted (and
accepted), whereas negative findings are mentioned less promi-
nently (Cordi et al., 2014). Indeed, a closer look into the literature
reveals a very mixed picture. An early study found fast, but not
slow, spindle density to be associated with intelligence (Bódizs et
al., 2005). In contrast, three more recent studies did not find
significant correlations between fast spindle density and intelli-
gence (Peters et al., 2007, 2008; Ward et al., 2014; K. Peters,
personal communication). Of note, however, the former study
observed the strongest correlations in frontal and frontopolar
regions, whereas the latter analyzed central derivations only.
Studies mainly with female participants reported a significant
correlation between the total number of sleep spindles and per-
formance IQ but not verbal IQ; however, in one of the samples,
this association held only for the upper IQ range (Fogel et al.,
2007), and a further study found neither full scale, nor perfor-
mance, nor verbal IQ to be correlated with sleep spindle � band
(Tucker and Fishbein, 2009). In contrast to these studies, a study
with a considerable sample size found spindle duration 	 ampli-
tude, but neither total spindle number nor spindle density to be
correlated with intelligence (Schabus et al., 2006). Of note, a
reanalysis of this study suggests that similar sex differences, as
presented here, with a much stronger age-corrected positive cor-

relation between IQ and fast spindle amplitude in females (M.
Schabus, personal communication). Although also mental speed
as an intelligence-related capacity has been found to correlate
with spindle duration 	 amplitude (Lustenberger et al., 2012),
two studies did not find any correlation between sleep spindle
activity and working memory (Limoges et al., 2013; Lafortune et
al., 2014), despite being closely associated with fluid intelligence
(Conway et al., 2003). Sleep spindle activity has been suggested as
a marker of normal intellectual development (Shibagaki et al.,
1982); however, in healthy children, a relationship between intel-
ligence and sleep spindles has only been reported for spindle peak
frequency (Geiger et al., 2011; Gruber et al., 2013), � power (Gei-
ger et al., 2012), or not at all (Chatburn et al., 2013).

In sum, only a minority of studies found significant correla-
tions between intelligence and spindle activity (for an overview,
see Table 5). Studies with positive results differed markedly in the
specific spindle parameters that were correlated with intelligence:
number, density, amplitude, length, power, or peak frequency are
considered of undifferentiated, slow, or fast sleep spindles (with
considerable variability in definitions); some studies further
differentiate between the whole night, night halves, thirds, or
quarters, and many studies differentially analyzed several EEG
derivations. Also, different spindle detection algorithms have
been used, with the less sensitive fixed-amplitude spindle detec-
tion being most common. In our study, a control analysis with
this method has yielded only partially similar results to the IAM
spindle detection method; it failed to replicate IAM findings re-
lated to slow spindles and spindles on less prominent spindle-
generating locations. All in all, the large number of potential
spindle variables found in the literature may have potentially led
to methodological problems due to multiple comparisons. The
above-mentioned publication bias applies in particular to studies
with smaller sample sizes and hence low statistical power. All of
these problems may have led to false positive or false negative
findings in earlier studies.

Most notably, none of the cited studies has targeted potential
sex differences, which might have obscured potential correla-
tions. Our results suggest that synaptic plasticity through sleep
spindle activity is only one, but not the only possible sleep-related
neural mechanism underlying intelligence, and it is mostly pres-
ent in females, possibly because of their more prominent and
functionally more important structural brain connectivity. The
general relationship between sleep spindles and intelligence may
have been overestimated in the previous literature. Future
studies should apply a theoretically grounded and well-
defined array of sleep spindle parameters and account for po-
tential sex differences.
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C, Carrier J (2014) Sleep spindles and rapid eye movement sleep as pre-
dictors of next morning cognitive performance in healthy middle-aged
and older participants. J Sleep Res 23:159 –167. CrossRef Medline

Landolt HP (2011) Genetic determination of sleep EEG profiles in healthy
humans. Prog Brain Res 193:51– 61. CrossRef Medline

Landolt HP, Dijk DJ, Achermann P, Borbély AA (1996) Effect of age on the
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patics S, Saletu B, Klimesch W, Zeitlhofer J (2006) Sleep spindle-related
activity in the human EEG and its relation to general cognitive and learn-
ing abilities. Eur J Neurosci 23:1738 –1746. CrossRef Medline

Schabus M, Dang-Vu TT, Albouy G, Balteau E, Boly M, Carrier J, Darsaud A,
Degueldre C, Desseilles M, Gais S, Phillips C, Rauchs G, Schnakers C,
Sterpenich V, Vandewalle G, Luxen A, Maquet P (2007) Hemodynamic
cerebral correlates of sleep spindles during human non-rapid eye move-
ment sleep. Proc Natl Acad Sci U S A 104:13164 –13169. CrossRef
Medline

Shibagaki M, Kiyono S, Watanabe K, Hakamada S (1982) Concurrent oc-
currence of rapid eye movement with spindle burst during nocturnal
sleep in mentally retarded children. Electroencephalogr Clin Neuro-
physiol 53:27–35. CrossRef Medline

Smit DJ, Boomsma DI, Schnack HG, Hulshoff Pol HE, de Geus EJ (2012)
Individual differences in EEG spectral power reflect genetic variance in
gray and white matter volumes. Twin Res Hum Genet 15:384 –392.
CrossRef Medline

Spearman C (1927) The abilities of man. Oxford, United Kingdom:
Macmillan.

Steriade M (2000) Corticothalamic resonance, states of vigilance and men-
tation. Neuroscience 101:243–276. CrossRef Medline

Steriade M (2003) The corticothalamic system in sleep. Front Biosci
1:d878 – d899.

Steriade M, Deschenes M (1984) The thalamus as a neuronal oscillator.
Brain Res 320:1– 63. Medline

Tomasi D, Volkow ND (2012) Gender differences in brain functional con-
nectivity density. Hum Brain Mapp 33:849 – 860. CrossRef Medline

Tucker MA, Fishbein W (2009) The impact of sleep duration and subject
intelligence on declarative and motor memory performance: how much is
enough? J Sleep Res 18:304 –312. CrossRef Medline

Tucker-Drob EM (2009) Differentiation of cognitive abilities across the life
span. Dev Psychol 45:1097–1118. CrossRef Medline

Ward MP, Peters KR, Smith CT (2014) Effect of emotional and neurtral
declarative memory consolidation on sleep architecture. Exp Brain Res
232:1525–1534. CrossRef Medline

Weiss R, Weiss B (2006) CFT-20R Grundintelligenzstest Skala, Revision 2.
Göttingen, The Netherlands: Hogrefe Verlag.

Wierzynski CM, Lubenov EV, Gu M, Siapas AG (2009) State-dependent
spike-timing relationships between hippocampal and prefrontal circuits
during sleep. Neuron 61:587–596. CrossRef Medline

16368 • J. Neurosci., December 3, 2014 • 34(49):16358 –16368 Ujma et al. • Sleep Spindles and Intelligence

http://www.ncbi.nlm.nih.gov/pubmed/18714787
http://dx.doi.org/10.1016/j.intell.2008.10.008
http://dx.doi.org/10.1016/S0160-2896(02)00091-0
http://dx.doi.org/10.1016/S1388-2457(00)00556-3
http://www.ncbi.nlm.nih.gov/pubmed/11222974
http://dx.doi.org/10.1016/j.neuron.2011.02.043
http://www.ncbi.nlm.nih.gov/pubmed/21482364
http://dx.doi.org/10.1371/journal.pone.0000341
http://www.ncbi.nlm.nih.gov/pubmed/17406665
http://dx.doi.org/10.1162/jocn.2007.19.5.817
http://www.ncbi.nlm.nih.gov/pubmed/17488206
http://dx.doi.org/10.1111/j.1365-2869.2008.00634.x
http://www.ncbi.nlm.nih.gov/pubmed/18275552
http://dx.doi.org/10.1038/nn.2337
http://www.ncbi.nlm.nih.gov/pubmed/19483687
http://dx.doi.org/10.1523/JNEUROSCI.2030-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23283336
http://www.ncbi.nlm.nih.gov/pubmed/7071453
http://dx.doi.org/10.1016/j.intell.2004.07.007
http://dx.doi.org/10.1523/JNEUROSCI.2149-05.2005
http://www.ncbi.nlm.nih.gov/pubmed/16221848
http://dx.doi.org/10.1016/j.neuroimage.2013.07.064
http://www.ncbi.nlm.nih.gov/pubmed/23921101
http://dx.doi.org/10.1111/j.1460-9568.2006.04694.x
http://www.ncbi.nlm.nih.gov/pubmed/16623830
http://dx.doi.org/10.1073/pnas.0703084104
http://www.ncbi.nlm.nih.gov/pubmed/17670944
http://dx.doi.org/10.1016/0013-4694(82)90103-1
http://www.ncbi.nlm.nih.gov/pubmed/6173198
http://dx.doi.org/10.1017/thg.2012.6
http://www.ncbi.nlm.nih.gov/pubmed/22856372
http://dx.doi.org/10.1016/S0306-4522(00)00353-5
http://www.ncbi.nlm.nih.gov/pubmed/11074149
http://www.ncbi.nlm.nih.gov/pubmed/6440659
http://dx.doi.org/10.1002/hbm.21252
http://www.ncbi.nlm.nih.gov/pubmed/21425398
http://dx.doi.org/10.1111/j.1365-2869.2009.00740.x
http://www.ncbi.nlm.nih.gov/pubmed/19702788
http://dx.doi.org/10.1037/a0015864
http://www.ncbi.nlm.nih.gov/pubmed/19586182
http://dx.doi.org/10.1007/S00221-013-3781-0
http://www.ncbi.nlm.nih.gov/pubmed/24317640
http://dx.doi.org/10.1016/j.neuron.2009.01.011
http://www.ncbi.nlm.nih.gov/pubmed/19249278

	Sleep Spindles and Intelligence: Evidence for a Sexual Dimorphism
	Introduction
	Materials and Methods
	Results
	Discussion
	References


