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a b s t r a c t

The context unification problem is a generalization of standard
term unification. It consists of finding a unifier for a set of term
equations containing first-order variables and context variables.
In this paper we analyze the special case of context unification
where the use of at most one context variable is allowed and
show that it is in NP. The motivation for investigating this subcase
of context unification is interprocedural program analysis for
programs described using arbitrary terms, generalizing the case
where terms were restricted to using unary function symbols. Our
results imply that the redundancy problem is in coNP, and that
the finite redundancy property holds in this case. We also exhibit
particular cases where one context unification is polynomial.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

There is an interesting link between unification and interprocedural program analysis. The goal of
interprocedural program analysis is to compute all simple invariants, typically of a specific form, of
imperative procedural programs. The process of computing a class of such invariants requires solving
a special case of context unification: one context unification. However, the application requires more
than just solving unification problems. It requires determining whether an equation is redundant in
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a set of equations w.r.t. unification and whether nonredundant sequences of equations are finite. We
answer all these questions in this paper.

1.1. Unification and context unification

In mathematical logic, in particular as applied to computer science, a unifier of two terms s and t
is a substitution σ for variables occurring in s and t such that σ(s) = σ(t). The classical first-order
term unification problem seeks to find solutions for term equations built over uninterpreted function
symbols and first-order variables. The input is a set of equations, S := {s1

.
= t1, . . . , sn

.
= tn}, over

terms si, ti containing some first-order variables. The term unification problem asks for the existence
of a substitution σ that maps the variables to first-order terms such that for all i, σ(si) and σ(ti) are
syntactically equal. For example, the set of equations {f (f (x2, x2), f (x3, x3))

.
= f (x1, x2)}has a solution

(called unifier) 〈x1 7→ f (f (x3, x3), f (x3, x3)), x2 7→ f (x3, x3)〉. First-order unification arises in many
areas, such as, automated deduction, type checking, deductive databases, logic programming, artificial
intelligence, information retrieval, and compiler design.
The term unification problem is known to be solvable in linear time (Paterson and Wegman,

1978; Martelli and Montanari, 1982; Baader and Snyder, 2001). However, its expressiveness is often
insufficient and hence, several variants and extensions have been considered in the literature. For
example, in unification modulo theories (Baader and Snyder, 2001) some function symbols are
interpreted and= is interpreted as semantic equality.
A generalization of the first-order unification problem is the context unification problem, where

apart from first-order variables, there are also context variables in the terms. Context variables can be
substituted by contexts, which are terms with a single hole. For example, consider the term equation
F(f (x, b)) .

= f (a, F(y)), where x, y are first-order variables and F is a context variable that can
be substituted by any context. This concrete equation has several solutions (i.e. unifiers), such as,
{F 7→ f (a, •), x 7→ a, y 7→ b} and {F 7→ f (a, f (a, •)), x 7→ a, y 7→ b}, where • denotes the hole of
the context.
Context unification is a special case of second-order unification. Second-order unification is un-

decidable, while the decidability of context unification is not known, although several decidable
subclasses have been identified (Levy, 1996; Schmidt-Schauß, 2002; Schmidt-Schauß and Schulz,
2002; Levy et al., 2005). Context unification has application in linguistics (Niehren et al., 1997a,b).
Schmidt-Schauß and Schulz (2002) showed decidability of the case where at most two distinct

context variables appear in the equations, but their algorithm is rather involved and they showed
no complexity bounds. Levy et al. (2006) recently showed that stratified context unification is NP-
complete. The main technical approach used to show membership of stratified context unification
in NP is based on the use of singleton tree grammars to succinctly represent large terms (Levy et al.,
2006), see also Busatto et al. (2008).
In contrast, in this paper we study the case where only one context variable appears in the input

set, and obtain an NP algorithm for this one context unification problem, which can be implemented
with moderate effort. The one context unification problem is not contained in the class of stratified
context unification problems.
Our algorithm for one context unification performs unification on special forms of terms with

iterations using integer exponents.More generally, Comon (1995) proved decidability of unification of
termswith iterations using integer exponents, but did not obtain complexity bounds. Schmidt-Schauß
and Schulz (1998) showed that a size-minimal unifier of a context unification problem implies some
bounds on repeated subparts: specifically, if there is an iterated occurrence of C . . . C︸ ︷︷ ︸

n

[•] of a context

C in the unifier, then the number n has at most a linear number of digits (Schmidt-Schauß and Schulz,
1998). In this paper, we achieve concise representations by using a simple exponent-based notation
for terms. We also show that the maximally required exponent is linear in the size of the problem,
which is far less than the bound for exponents of minimal solutions, which is exponential (Schmidt-
Schauß and Schulz, 1998). We also remark that unifiability of word equations with one variable is
a special case of context unification with one context variable. The decidability problem for word
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Fig. 1. Computing summaries of programs using context unification. The procedure computes the set of facts that should hold
at each line for x = F [y], where F [•] is unknown, to be an invariant at Line 5. The while loop gives rise to an unbounded
number of facts at Line 3. The negative sign− indicates that the facts hold before the program in that line is executed. Only the
‘‘nonredundant’’ equations are shown; the . . . symbol represents the ‘‘redundant’’ equations that can be eliminated.

equations is decidable (Makanin, 1977), and the special case with one variable was shown to be
solvable in O(nlog(n)) time (Dabrowski and Plandowski, 2002).

1.2. Motivation: Interprocedural program analysis

The one context unification problem is motivated by our attempt to solve the (open) problem
of interprocedural assertion checking (global value numbering). The assertion checking problem
asks if two given expressions evaluate to the same value on all paths of a given program. The
assertion checking problem is parameterized by the class of programs and the expression language. It
is decidable when we consider some simple classes of programs – such as programs that only contain
assignments, nondeterministic conditionals, and loops – and some simple expression languages —
such as uninterpreted symbols (Gulwani and Necula, 2004; Gulwani and Tiwari, 2007a) or linear
arithmetic (Karr, 1976; Gulwani and Tiwari, 2007a). Allowing conditionals in the programs makes
the problem undecidable (Müller-Olm and Seidl, 2004; Müller-Olm et al., 2005).
The assertion checking problem becomes significantly more difficult if the simple programming

model is extended with procedure calls. If we restrict our attention to programs with assignments,
nondeterministic conditionals, loops, and procedure calls, and the expression language of
uninterpreted symbols, then the general problem of deciding if terms s and t evaluate to the same
value on all paths of a program is open. This problem is related to the interprocedural global value
numbering problem, see Gulwani and Tiwari (2007b) for more discussion.
It was recently pointed out that in the absence of procedure calls, the assertion checking problem

is closely related to classical term unification and in the presence of procedure calls, it is related to
the one context unification problem (Gulwani and Tiwari, 2007b). This connection has led to many
new complexity results for assertion checking in the absence of procedure calls (Gulwani and Tiwari,
2007a). The study of one context unification will thus lead to new results on the decidability and
complexity of assertion checking in programs with procedure calls.
In the special case when the signature contains only unary function symbols, Gulwani and Tiwari

(2007b) showed that the class of one context unification problems — that arises in interprocedural
analysis of a class of programs where e.g. procedures are restricted to have at most one argument
– is decidable in polynomial time. This case exactly corresponds to word unification with only one
variable, which is decidable in time O(nlog(n)) time (Dabrowski and Plandowski, 2002). Using
procedure calls with more than one argument, variables correspond to contexts rather than words.
This leads to the generalization of the one context unification problem considered in this paper.
We only provide an example here to illustrate the connection of assertion checking with one

context unification. Consider the procedure in Fig. 1. Since the procedure P() could be called at
multiple locations in the program under different ‘‘contexts’’ (that is, different valuations for program
variables and procedure call stack), we compute a summary for P() by analyzing it for a generic
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context (Gulwani and Tiwari, 2007b). The exact form of the invariant guaranteed by P() (at Line 5)
depends on the form of the invariant that is given to it (at Line 1). Since we do not know the latter,
we assume that a generic invariant, x = F [y], where F is an unknown context, holds at Line 5, and
we try to compute the condition on F and x, y at Line 1 that will guarantee that x = F [y] is indeed
an invariant at Line 5. This condition is computed by propagating x = F [y] backwards. Across loops,
backward propagation is performed until a fixpoint is reached. The important point to note here is that
programs that contain only nondeterministic conditionals and assignments (such as the procedure
P() in Fig. 1) cannot distinguish between equation sets that have the same set of unifiers, such as
{f (x, z) = f (y, z)} and {x = y}. (In other words, for such programs, f (x, z) = f (y, z) will be an
invariant at a program point iff x = y is an invariant at that program point.) Thus, we can detect a
fixpoint by checking if a newly added equation is redundant — that is, it does not change the set of
unifiers. In the summary computation shown in Fig. 1, at Line 3, we can determine that adding the
equation f (f (f (x, z), z), z) = F [f (f (f (y, z), z), z)] to the set {f (x, z) = F [f (y, z)], f (f (x, z), z) =
F [f (f (y, z), z)]} does not change the set of unifiers, which is {F 7→ f (•, z)n, x 7→ F [y] | n = 0, 1, . . .}.
Hence f (f (f (x, z), z), z) = F [f (f (f (y, z), z), z)] is redundant. Finally, at Line 1, we can again see
that only the shown equations are non-redundant: the unifiers of f (gx, z) = F [gf (y, z)] are {F 7→
f (•, z), x 7→ f (y, z)} and {F 7→ f (gF ′, z), x 7→ F ′[f (y, z)]}; and using also the second equation, we
obtain only the unifier {F 7→ f (•, z), x 7→ f (y, z)}. This unifier also solves all the other equations and
is the required precondition that guarantees the postcondition x = F [y] at Line 5.

1.3. Overview of obtained results

The one context unification problem takes as input a set∆ of term equations containing atmost one
context variable F , and asks for the existence of a substitution σ (for the first-order variables and the
context variable F ) that is a unifier of all equations in∆.
The redundancy problem for one context unification takes as input a set∆ of term equations and an

equation s .= t ∈ ∆, where ∆ contains at most one context variable F , and asks whether for every
unifier σ of∆ \ {s .= t}, the equation σ(s) = σ(t) holds. If it does, then we say that s .= t is redundant
in∆.
The finite redundancy property for one context unification is the question whether any non-

redundant sequence e1, e2, e3, . . . of equations is finite, under the condition that terms are built using
a fixed finite set of first-order variables and a single context variable F . Here we say that a sequence
e1, e2, . . . is non-redundant if for every i, the equation ei is not redundant in {e1, . . . , ei}.
Note that redundancy notions for first-order unification were also discussed in Lassez et al.

(1988). There the relationship between disunification, redundancy and entailment of constraints are
investigated.
We prove the following main results in this paper.

Theorem 1.1. One context unification is in NP. Moreover, a complete set of unifiers can be computed that
is at most exponentially large, where every unifier can be represented in polynomial space, and this set can
be computed in at most exponential time.

Note that one context unification is finitary if our representation using exponent expressions is
used, but infinitary in the usual sense: the equation F [f (a)] .

= f (F [a]), which mimics the word
equation xa .= ax, has no finite complete set of unifiers.
We leave open the question about NP-hardness of one context unification. This appears to be

far from straightforward, since to our knowledge, there is also no NP-hardness proof for context
unification with a fixed number of context variables. In particular there is no known nontrivial lower
complexity bound for two context unification (Schmidt-Schauß and Schulz, 2002).

Theorem 1.2. The redundancy problem for one context unification is in coNP.

Theorem 1.3. The finite redundancy property for one context unification holds.

Our algorithm to solve the one context unification problem runs in two phases. In the first phase,
we nondeterministically guess the value of the context variable F to be either a fixed context C[•]
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or a context C |p|N [•] with unknown integer exponent N (where p is the position of the hole in C and
C |p|N denotes the context C[C[. . . [•] . . .]] obtained by iterating C until the hole is at depth |p|N). The
number |p| is polynomial in the input size of the equations. We replace F by C[•] or C |p|N [•] and thus
get a unification problem containing first-order variables and possibly the unknown N occurring in
exponent expressions C |p|N [x]. The second phase solves the unification problem over such exponent
expressions in polynomial time. We show that we only need to search for solutions that map N to
small values, linearly dependent on the size. Once N is fixed to a concrete integer value, the exponent
equation unification problem reduces to the classical first-order term unification problem.
The first phase may require search and is responsible for ‘‘in NP", whereas the second phase can be

performed in polynomial time. In special situations, the first phase can be done in polynomial time
too, and hence one context unification is polynomial in these cases.

Theorem 1.4. One context unification is solvable in polynomial time if the input contains an equation of
the form F(s) .= C[F(t)].

Theorem 1.5. If the number of first-order variables is fixed (say k), then one context unification is solvable
in polynomial time.

The proofs we give for these results, except for the last one (Theorem 1.5), are valid even if we
assume that the input is represented by a directed acyclic graph, i.e. terms of the input are already
represented by some compression. But in our proof of Theorem 1.5 we need to assume that the input
terms are given as trees without compression.

2. Preliminaries: Term equations and solutions

A signature Σ =
⋃
iΣi is a finite set of function symbols and constants indexed by their arity i. A

first-order term t is constructed over the signatureΣ using function symbols, constants and variables
in the usualway.We use the standard notation f (t1, . . . , tm) for a term. The set of variables that occurs
in a term t is denoted as V (t). A position is a string of non-negative integers. We use . as the string
concatenation operator and |p| to denote the length of the string p. The position p in a term, subterm
t|p of term t at position p, and the term t[s]p obtained by replacing t|p by s are defined in the standard
way. For example, if t is f (a, g(b, h(c)), d), then t|2.2.1 = c , and t[d]2.2 = f (a, g(b, d), d). The empty
sequence corresponds to the root position, wherewe sometimeswrite root(s) to denote the function
symbol at the root. The depth of a term t corresponds to the maximal length of a position in t .
A (first-order) context C , sometimes written as C[•], is a first-order termwith a single hole, where,

syntactically, the hole is treated like a distinguished constant from the signature. Sometimeswemake
the position p of the hole explicit by writing C[•]p. We use hp(C) to denote the position of the hole
(hole position) of C . When the hole is replaced by a given term t we represent it as C[t] (or C[t]p when
the position is to be made explicit).
We will also use second-order terms, generalizing first-order terms, where unary context variables,

written F , F ′, . . . are permitted in function positions. In the solution process, wewill also use extended
second-order terms, which allow exponent expressions of the form CaN+b[•] at function positions, where
C is a (first-order) context, a, b are integers andN is an integer variable. The notation Cm[•] is formally
defined in Definition 3.1. A substitution σ may replace first-order variables by terms, context variables
by contexts and integer variables by non-negative integers, with the implicit condition that exponents
must be non-negative. For example, {F 7→ f (•, g(x))} is a substitution. In the case of ground terms (i.e.
without occurrences of variables), we assume that the terms, in particular the exponent expressions,
are simplified to first-order ground terms.
An equation is a pair of terms, written as t1

.
= t2. The terms can contain variables. If terms are

restricted to be first order, second order or otherwise, this will be made explicit later. A solution for
t1
.
= t2 is a substitution σ for the variables satisfying σ(t1) = σ(t2) and such that σ(t1), σ (t2) are

ground terms.
Summarizing the notation, we use the symbols x, y, z, . . . for denoting first-order variables;

F , F ′, . . . for context variables; N,N ′, . . . for integer variables, f , g, h, . . . for function symbols in
Σ; C[•],D[•], . . . for contexts; s, t, t ′, u, . . . for terms; σ , θ, . . . for substitutions; k, n, . . . for non-
negative integers; p, q for positions in terms or of the hole in a context; and ∆ for representing a set
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of equations. The application of a substitution σ to a term s is denoted by σ(s) and σ ◦ θ denotes the
composition of the substitutions σ , θ , where (σ ◦ θ)(s)means σ(θ(s)).

3. The general scheme

Given a set∆ of equations over terms containing some first-order variables and atmost one context
variable F , we present an algorithm that determines if the set∆ has a solution. Wewill argue that our
procedure is in NP.
The algorithm is described as an inference system thatmanipulates the set∆. The inference system

runs in two phases. In a first phase, the inference rules deal with the context variable F . The first phase
ends when F is eliminated. At the end of the first phase, we obtain either a first-order term unification
problem, or a term unification problem containing subexpressions of the form C |p|N , where C is a
context, p is the position of the hole in C , and N is a variable ranging over non-negative integers. The
inference rules in the second phase deal with this new kind of expressions and eliminate them.
We use hp(C) to denote the position of the hole (hole position) of C and sp(C) to denote the list of

function symbols occurring on the path from the root to hp(C) (spine) in C . More formally, if hp(C) is
of the form i1.i2. · · · .i|hp(C)|, then sp(C) is root(C), root(C |i1), root(C |i1.i2), . . . , root(C |hp(C)−1).
The following definition clarifies the semantics of Cn.

Definition 3.1 (Rotation and Context with Exponent). Let C[•] := f (u1, . . . , ui−1,D[•], ui+1, . . . , um)
be a non-empty context. For any non-negative integer n ≥ 0 , we define rot(C, n) and Cn[•]
recursively as follows:

rot(C, 0) := C
rot(C, n) := rot(D[f (u1, . . . , ui−1, •, ui+1, . . . , um)], n− 1)

C0[•] := •
Cn[•] := f (u1, . . . , rot(C, 1)n−1[•], . . . , um)

For any non-empty context C and any n ≥ 0, note that rot(C[•]p, n) = rot(C[•]p, n mod |p|) and
|hp(C)| = |hp(rot(C, n))|. Also note that C1 need not be equal to C , but C |hp(C)| = C . Similarly, while
Cm[Cn[•]] need not be equal to Cm+n[•], it is the case that Cm[rot(C,m)n[•]] = Cm+n[•].

Example 3.2. If f and g are unary symbols and C[•] = f (g(•)), then rot(C, 0) = rot(C, 2) =
rot(C, 4) = C and rot(C, 1) = rot(C, 3) = g(f (•)). While C1(a) represents f (a), the notation
C5(a) succinctly represents the term f (g(f (g(f (a))))).

We next define unifiers and allow for exponent expressions to appear in unifiers.

Definition 3.3. Given a set∆ of equations of second-order terms (i.e. without exponent expressions),
a unifier σ is a substitution, possibly containing expressions of the form C |p|Np for some fixed single
integer variable N , such that for every substitution δ that instantiates N by a non-negative number
and for every equation s .= t ∈ ∆, we have δ(σ (s)) = δ(σ (t)). We speak of a ground unifier or a
solution, if the unifier maps all variables to ground terms, in which case no exponent expressions are
required.
A set S of unifiers, where we assume that only a single integer variable N is used, is a complete set

of unifiers of ∆, iff for every ground unifier γ of ∆ (i.e. for every solution), there is a σ ∈ S, and a
ground substitution ρ such that for all variables x occurring in∆, we have γ (x) = ρ(σ(x)). By abuse
of notations we will speak ofmost general unifiers for the elements of S.

4. PHASE1 inference system: Eliminating the context variable

The PHASE1 inference rules are given in Fig. 2. These inference rules are applied non-
deterministically to transform the current set∆ into one of the finitelymany possible sets∆1, . . . ,∆k.
The first phase ends when either a contradiction (⊥) is reached, or the context variable disappears.
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Fig. 2. PHASE1 inference system for eliminating a context variable. The inference rules are applicable only when the side-
condition holds.

For efficiency reasons we will use a DAG-representation of terms and contexts, but use a notation as
for terms.
The first two rules – Decompose and Var-Elim – are the standard rules to simplify a unification

problem and eliminate a first-order variable (Baader and Snyder, 2001). The rule Var-Elim2 partially
guesses the context variable F in terms of a new context variable F ′ and eliminates a first-order
variable x. The rule CVar-Elim eliminates F by (non-deterministically) guessing C[•] as a value
for F . Note that C[•] here means a (first-order) context, thus it cannot contain a context variable.
The rule CVar-Elim2 eliminates F by again (non-deterministically) guessing a position of length
0 ≤ k < |p| that determines the value of F using the exponent notation, cf. Definition 3.1. Note that
it introduces a new variable N ranging over the non-negative integers. The instantiation F 7→ C |p|N+k
introduces exponent expressions. The term C |p|N+k is actually represented as C |p|N [Ck], that is, only
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exponent expressions of the form C |p|N are introduced, and the term Ck is expanded (into a regular term)
according to Definition 3.1.

Example 4.1. Let ∆ := {f (F [f (y, z)], z) .
= F [f (f (y, z), z)]}. Rule CVar-Elim2 is applicable to ∆.

Here C = f (•, z) and hence |p| = 1. Therefore, k can only be 0 and we get the substitution
〈F 7→ f (•, z)N〉. Applying CVar-Elim2 using this substitution, we get the new set {f (f (y, z), z) .=
rot(f (•, z), 0)[f (y, z)]}, which is simply {f (f (y, z), z) .

= f (f (y, z), z)}. Fig. 5 contains a bigger
example.

The following correctness statements and their proof sketches provide further intuition for the
inference rules. Note that in each inference step, the new set ∆′ is obtained from the old set ∆ by
removing some equations, adding some new equations, and applying a substitution to all the terms.

Lemma 4.2 (Soundness). Let∆1 ` ∆2 be a PHASE1 inference step and let σ1 be the substitution used in
this inference step. If σ is a solution for∆2, then σ ◦ σ1 is a solution for∆1.

Proof. For each PHASE1 inference rule, we can write ∆2 as σ1(∆1 − ∆d ∪ ∆a), where ∆d are the
deleted equations and∆a are the added equations. If∆a 6= ∅, it is easily verified that if σ is a solution
for σ1(∆a), then σ ◦ σ1 is a solution of∆d. If∆a = ∅, as in the rules Var-Elim and Var-Elim2, it is
easily verified that σ1 is a solution of∆d, hence also σ ◦ σ1 is a solution of∆d.
Consider, for example, the rule CVar-Elim2. Let σ1 := 〈F 7→ C |p|N+k[•]〉 and suppose σ is a

solution of σ1(∆ ∪ {t
.
= rot(C, k)[u]}). Obviously, σ ◦ σ1 solves∆. We show that σ ◦ σ1 also solves

F(t) .= C[F(u)]p as follows:

σ ◦ σ1(F(t)) = σ(C |p|N+k)[σ ◦ σ1(t)] = σ(C |p|N+k)[σ ◦ σ1(rot(C, k)[u])]
= σ(C |p|N+k)[σ(rot(C, k)[σ1(u)])] = σ(C |p|N+k[rot(C, k)[σ1(u)]])
= σ(C[C |p|N+k[σ1(u)]]) = σ ◦ σ1(C[F(u)])

Apart from the definitions of σ and σ1, we also use the fact that C |p|N+k[rot(C, k)[•]] = C[C |p|N+k[•]]
above. Soundness of all other rules can be argued similarly. �

Lemma 4.3 (Completeness). Suppose that ∆ can be transformed to one of ∆1, . . . ,∆m by the PHASE1
inference system using substitutions σ1, . . . , σm respectively. If σ is a solution of ∆, then there exists a
solution θ of some ∆i such that σ(x) = θ ◦ σi(x), σ(F) = θ ◦ σi(F) and σ(N) = θ ◦ σi(N), for all
variables x, F ,N occurring in∆.

Proof. Suppose that the solution σ for∆ instantiates F by a contextD[•]p.We consider different cases
based on the form of the equations in∆. The interesting case is when∆ contains an equation F(t) .= s.
The choice of which inference rule to apply to ∆ to identify the required ∆i can be guided by D[•]p
and the form of s.
Case 1: p is a position of s. Then p is a prefix of all positions labeled with F in s, because, if not, then the
context Dwill properly contain D, which is not possible. Thus, s can be written as D′[u]p for a context
D′ not containing F , and such that σ(D′) = D. In this case, the rule CVar-Elim can be used to get the
desired∆i from∆.
Case 2: p is not a position of s. Then s contains a unique maximal position q that is a proper prefix of p,
such that the roots of s|q′ and D|q′ are identical signature symbols for all proper prefixes q′ of q. There
are two cases: s|q = x for some first-order variable x and s = C[x]q, or s|q = F(s′) and s = C[F(s′)],
and F does not occur in C: Otherwise, the context Dwould properly contain D, which is not possible.
If s|q = x is a first-order variable, then s is of the form C[x]q, and D is of the form σ(C)[D′] = σ(F).
A further equality is D[σ(t)] = σ(C)σ (x)]. In this case, the rule Var-Elim2 can be used: the
substitution ρ = 〈F 7→ C[F ′(•)]〉 replaces the equation F(t) .= C[x] by the equation C[F ′(ρ(t))] .=
C[x], which is equivalent to the F ′(ρ(t)) .

= x. Since the system is unifiable, x is not contained in
F ′(ρ(t)), hence the second part of the conditions of Var-Elim2 is satisfied. The second substitution
part is then 〈x 7→ F ′(ρ(t))〉, where x 6∈ FV (F ′(ρ(t))). We obtain the required ∆i where the required
θ is the same as σ except that θ(F ′) = D′.
Now, suppose s|q is F(s′). We know that F does not occur in C . Unifiability of the equations and the
fact that D cannot be a proper subcontext of itself enforce that p has to be of the form qnq′ for a prefix
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q′ of q, and if s is written as C[F(s′)]q, then D has to be of the form σ(C)|q|n+|q
′
|. This means that the

rule CVar-Elim2 can be used to get the required∆i.
For other choices of the solution σ and the set∆, we can argue similarly to complete the proof. �

Note that if∆ contains a context variable, then at least one of the PHASE1 rules can be used. Hence,
when no more rules can be applied, we are guaranteed to have eliminated all context variables. We
now argue that the use of directed acyclic graphs (DAGs) helps to keep efficiency; in particular that
(a) the size of the DAGs generated in the first phase is polynomially bounded, and (b) the first phase
terminates in a polynomial number of (non-deterministic) steps.
The representation of terms as DAGs is standard. Contexts are represented like terms (in the DAG)

with the hole • as a constant. A slight exception is C |p|N which is represented using a single node
labeled with the triple (C, |p|,N). Recall that C |p|N+k is always represented as C |p|N [Ck], where Ck is
represented as a regular term.
The only rules that may increase the number of nodes in the DAG are rules that instantiate the

context variable F , namely Var-Elim2, CVar-Elim, and CVar-Elim2. The rules CVar-Elim and
CVar-Elim2 can be applied at most once, since these rules eliminate all occurrences of context
variables. The number of additional nodes to create a context C is at most hp(C), which is bounded
by the current number of nodes in the DAGs. This implies that the application of CVar-Elim and
CVar-Elim2may cause atmost a quadratic blowup. Now consider the application of the substitution
〈F 7→ C[F ′(•)]p〉 in Var-Elim2. This causes an addition of l ∗ |p| new nodes in the DAG− l copies of
each node in sp(C) —where l is the number of occurrences of F in∆.
Note that an application of the rule Var-Elim2 implies (by the definition of contexts) that there

is no occurrence of F in C[x]p. Hence, an application of Var-Elim2makes a copy of a node only when
it has no context variable F below it. However, each newly added node will necessarily have a context
variable (F ′) below itself. The property that a node has a context variable below it is preserved by the
rules Decompose, Var-Elim, and Var-Elim2 for all nodes. Therefore, a newly created node will
never be copied again. Thus, the number of new nodes that can be added by Var-Elim2 is bounded
by l ∗ n, where n is the node count of the original DAG. It is easy to see that the current number of
nodes labeled with the context variable is also bounded above by n, since the sum of the number
of first-order variable nodes and of the nodes labeled with the context variable is not increased by
Var-Elim2. This proves that the size of the DAG created in the first phase is polynomially bounded.

Example 4.4. Consider ∆ := {F(t) .
= f (h(x), h(x)), F(a) .

= x}. Applying Var-Elim2 with 〈x 7→
F ′(t)〉(〈F 7→ f (h(x), h(F ′))〉) gives ∆′ := {f (h(F ′(t)), h(F ′(a))) .= F ′(t)}. The DAG representations of
(all terms in) ∆ and ∆′ are shown below. Note that the node representing F(a) in the original DAG
causes copying and the creation of two new nodes, marked with f and h. However, these new nodes
will never get copied in the future as they will continue to have a context variable F ′ below them.
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f

yy%%
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��
t h

��
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x

Var−Elim2
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ww''
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Lemma 4.5 (Termination). If directed acyclic graphs (DAGs) are used as a data-structure to represent
terms, any PHASE1 derivation terminates in a polynomial number of steps.

Proof. Any PHASE1 derivation is immediately terminated if we apply CVar-Elim, CVar-Elim2,
Var-Elim2 where the second part is Occurs-Check, Occurs-Check, or Fail. Single rule
applications together with their applicability checks can be done in polynomial time on DAGs using
standard techniques. The rules Var-Elim and Var-Elim2 eliminate a first-order variable, and hence
they can be applied at most a linear number of times. The rule Decompose preserves the number of
variables. Note that the maximal number of possible equations is quadratic in the number of nodes
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in the DAG. Sequences of applications that consist only of Decompose have an at most polynomial
length, since in every step at least one equation is processed that cannot occur again in this sequence.
Since the number of nodes in the DAG is polynomially bounded, termination is guaranteed in (non-
deterministic) polynomial time. �

Lemma 4.5 and the polynomial bound on the node count of the DAG show that the first phase runs
in non-deterministic polynomial time.We remark here that the rules Decompose and Var-Elim can
be applied eagerly (since they correspond to ‘‘don’t care’’ non-determinism). The rules Var-Elim2,
CVar-Elim, and CVar-Elim2 involve ‘‘don’t know’’ non-deterministic guesses.

Lemma 4.6 (Result of Phase 1). The first phase terminates either with Fail (i.e. ⊥), or with success and
the output is an empty set of equations or a set of equations including exponent expressions. If the output
is an empty set, then the unifier σ is the composition of the substitutions of the rule applications. The
unifier can be represented in polynomial space if the substitution is performed using DAGs. If the output is
a set of equations including exponent expressions, then the combined partial solution can be represented
in polynomial space, as well as the set of equations.

Proof. This follows from termination in Lemma 4.5 and the arguments on the polynomial number of
nodes in the DAG. �

5. PHASE2 inference system: Solving exponent equations

In this section we solve the unification problem for sets of equations containing terms constructed
over a signature Σ of uninterpreted function symbols, a set of first-order variables, and a special
expression C |p|N , where C is a context, p = hp(C) and N is a variable taking values in the set of non-
negative integers. Note that we may assume that terms are represented as DAGs (see below). For the
purposes of this section, we assume that C is fixed. Thus p is also fixed. The expression C |p|N may
occur several times, but it is unique. Equations over such terms are called initial exponent equations.
This form of equation corresponds to the output of the first phase, but the output of the first phase
has to be preprocessed to ensure efficiency, as explained below.
We prove that the unification problem for initial exponent equations is solvable in polynomial

time, and moreover, that an explicit description of a complete set of unifiers can be computed also in
polynomial time. This is done by splitting the solutions into small ones and big ones, depending on the
instantiation for N . We prove the following interesting property: A set of initial exponent equations
∆ has a solution if and only if it has a solution where N is replaced by a non-negative integer bounded
by nf(∆) + 2, where nf(∆) is just the number of occurrences of function symbols in ∆, without
counting the ones in expressions C |p|N . Thus, an efficient decision algorithm is directly obtained by
considering all these possible replacements and solving each of them with a fast algorithm for first-
order unification.
In order to prove this bound forN , we solve initial exponent equations∆using an inference system.

While the initial set ∆ only contains exponent terms of the form C |p|N , the sets derived using the
inference rules can, in general, contain special expressions (of arity 1) of the form D|p|N−k, where D is
a rotation of the original context C (after flattening, see the preprocessing step below), and k is a non-
negative integer. The interpretation of these expressions under substitution is analogous to before, but
now, |p|N− k ≥ 0 is an implicit condition for N . Hence, when N is replaced by a non-negative integer
n, it should be the case that |p|n − k ≥ 0 and D|p|n−k is then the corresponding context according
to Definition 3.1. A set of equations containing these kinds of expressions is called a set of exponent
equations.
Our inference system uses multi-equations instead of just equations. A multi-equation M is a set

of terms denoted as s1
.
= s2

.
= s3

.
= . . . sn−1

.
= sn. It has the same meaning as the set of

equations s1
.
= s2, s2

.
= s3, . . . , sn−1

.
= sn. But having multi-equations has some advantages from a

computational point of view. They avoid duplication of terms, in particular they avoid the substitution
of non-variable terms t for x, when an equation x .= t occurs.
Our inference system deals just with flattened terms, that is, terms with depth at most one, and

such that all the expressions of the formD|p|N−k satisfy thatD is a flattened context, i.e. a context whose
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subtermswithout the hole have depth 0. Since our original set of equations is not necessarily flattened,
we need to transform it into a flattened one, while preserving its set of solutions.

Definition 5.1 (Flattening). Consider∆ to be a set of equations with first-order terms including also
expressions of the form D|p|N−k. We define flatten(∆) to be the set of equations resulting from
applying the following transformation process to∆ as many times as possible.

• (Flattening step) Let t be either a proper (non-variable) subterm of a term in ∆ or a proper (non-
variable) subterm of a context D. In the latter case we assume that t does not contain the hole.
Then, we create a new variable z, replace t by z everywhere in∆, including the occurrences of t in
any expression of the form D|p|N−k, and add the equation z .= t to∆.

We say that a set of equations is flattenedwhen the flattening step can not be applied to it.

The output of the first phase is a set of equations, where the terms are represented by DAGs.
Applying the flattening to DAGs is exactly the same as for terms, and the results are terms, where
every term-node in the DAG is represented by a first-order variable. Flattening of contexts produces
contexts where every subterm not containing the hole is a first-order variable. Flattening causes an at
most linear space increase.
In order to describe the inference rules, we need the following concepts of compatible contexts

and of expansion of two compatible contexts.

Definition 5.2 (Compatible Contexts and Expansion). Two contexts C1 and C2 are compatible if hp(C1)
= hp(C2) and sp(C1) = sp(C2).
For compatible contexts C1 and C2, we recursively define the set expand(C1, C2) as follows: if

C1 := • and C2 := •, then expand(C1, C2) := ∅; and if C1 := f (u1, . . . , ui−1,D1[•], ui+1, . . . , un)
and C2 := f (v1, . . . , vi−1,D2[•], vi+1, . . . , vn), then expand(C1, C2) := {u1

.
= v1, . . . , ui−1

.
=

vi−1, ui+1
.
= vi+1, . . . , un

.
= vn} ∪ expand(D1,D2).

5.1. The PHASE2 inference system

The idea behind the PHASE2 inference system (shown in Fig. 3) is to simulate the usual decom-
position rules for term unification, but applied to terms that may also contain expressions D|p|N−k
of arity 1. For convenience, we define the inference system on ∆s;∆u, where the solved part ∆s is a
set of equations, and the unsolved part ∆u is a set of multi-equations. Initially, the solved part ∆s is
empty. The inference system operates essentially only on the unsolved part, except that certain rules
may move equations from the unsolved part into the solved part (Fig. 4).

Example 5.3. Consider∆ := {f (•, y)N−2[z2]
.
= f (•, z)N [x4]}. The inference rule NN is applicable with

C1 = f (•, y), C2 = f (•, z), |p| = 1, k1 = 2 and k2 = 0. The contexts C1 and C2 are compatible, and
expand(C1, C2) = {y

.
= z}. Thus, applying NN to∆ gives {y .= z, flatten(z2

.
= f (•, y)2[x4])}. Fig. 5

contains a bigger example.

The PHASE2 inference system is intended to compute only ‘‘big’’ unifiers, i.e. unifiers for which the
replacement for N is ‘‘big". The solutions with a small instantiation for N are computed by scanning
over all small instantiations of N and then using first-order unification for each. For a set of multi-
equations∆we define some measures on the unsolved part that will help in formally defining ‘‘big’’:

• nf(∆) denotes the number of occurrences of function symbols in∆u without counting the ones in
expressions D|p|N−k,
• nx(∆) denotes the number of occurrences of first-order variables in∆u, including the ones in the
contexts.
• nx0(∆) denotes the number of occurrences of first-order variables at depth 0 in∆u.
• nx1(∆) denotes the number of occurrences of first-order variables at depth 1 or more in ∆u,
including the ones in the contexts.
• nk(∆) denotes the sum of all the k’s for all the occurrences of expressions Dp|N|−k in∆u, and
• nc(∆) denotes the number of occurrences of expressions D|p|N−k in∆u.
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Fig. 3. The PHASE2 unification rules for multi-equations.

Fig. 4. The PHASE2 unification failure rules for multi-equations.

Let ∆0 be some fixed set of initial exponent multi-equations. Recall that C and p = hp(C) are fixed.
Define B(∆0) := 2+

nf(∆0)
|p| .

Definition 5.4 (Big Unifiers). Let ∆ be a set of exponent equations derived from the (implicitly
assumed) set∆0. We say that σ is a big unifier of∆ if σ is a solution of∆ and σ(N) ≥ B(∆0).

Example 5.5. Let ∆ be {f (x) .= y, (g(f (•)))2N−2(y) .= g(z) .= (g(f (•)))2N−5(w)}. Then, nf(∆) = 2,
nc(∆) = 2, nk(∆) = 7 and nx(∆) = 5. Here, C = g(f (•)) and |p| = 2.

We shall sometimes use themeasures nf, nx, nk and ncwithout explicitly showing their argument
(∆), which either means the measures are being used as functions, or the argument is unambiguous
and determined by the context.

Termination
We first show that any derivation using the above inference rules terminates in a polynomial

number of steps. The following lemma follows by inspecting the inference rules.

Lemma 5.6. Let∆1,∆2, . . . ,∆n be a PHASE2 derivation. Then, nf(∆n)+nk(∆n) ≤ nf(∆1)+nk(∆1).
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Fig. 5. Example illustrating the inference rules of the two phases. Some trivial applications are not shown, and we only show
the insertions into the solved part.

Proof. It suffices to see that nf+nk is either preserved or decreased after every rule application. This
is easy by inspecting the inference rules. Rules (xx), (xy) and (xM) preserve nf and nk. Rule (1-alone)
either preserves or reduces nf and nk. Rule (ff) reduces nf and preserves nk. Rule (Nf) reduces nf by
1 and increases nk by 1. For the case of rule (NN), note that expand(C1, C2) does not add any function
symbol. Note also that the addition of the term (rot(C2, k′1))

k1−k2(t2) increases nf by k1 − k2, while
nk is reduced by k1 since the term C

|p|N−k1
1 (x1) is removed. �

Corollary 5.7. Let∆0,∆1, . . . ,∆n be a PHASE2 derivation starting from the initial set∆0 (whosenk(∆0)
is 0). Then, nk(∆n)+ nf(∆n) ≤ nf(∆0), and 2+ (nk(∆n)+nf(∆n))

|p| ≤ B(∆0).

Lemma 5.8. The PHASE2 inference system terminates. The number of inference steps of a derivation
starting from a given starting set of flattened exponent equations∆ is bounded by (3 ∗ MaxArity ∗ nc ∗
(nf+nk)+nx0+2∗nx1)(∆), where MaxArity is themaximum arity of the function symbols occurring
in∆.
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Proof. For termination, it suffices to see that the tuple (nc, nf, nx) decreases after every rule
application, where tuples are compared using the lexicographic extension of the usual ordering on
integers. This is trivial by inspecting the inference rules. Rules (xx), (xy) and (xM) preserve nc and nf,
but they reduce nx. Rule (1-alone) reduces some of nc, nf, nx, and either reduces or preserves the
rest. Rules (ff) and (Nf) reduce nf and preserve nc and nx. For the case of rule (NN), we recall that
(rot(C2, k′1))

k1−k2 is a first-order context and not an expression of the form D|p|N−k. Hence, this rule
always reduces nc.
Now, for the termination measure, it is easy to see that (3 ∗ MaxArity ∗ nc ∗ (nf + nk) +

nx0 + 2 ∗ nx1)(∆) decreases after applying any of the inference rules. The most complicated case
is rule (NN), due to the application of the flattening process. In this process, the number of newly
added occurrences of variables at depth 1 is bounded by MaxArity ∗ nk, and this is bounded by
MaxArity ∗ (nf + nk). Similarly, the maximum number of newly added occurrences of variables
at depth 0 is bounded by nk, and this is bounded by nf + nk. Thus, since nc is reduced by 1 when
applying (NN), the expression (3 ∗ MaxArity ∗ nc ∗ (nf + nk) + nx0 + 2 ∗ nx1)(∆) decreases if
we only take into account the flattening process. But we must also take care of the expand process.
Note that the occurrences of variables at depth 1 or more in C1 disappear, but a double number of
occurrences of variables at depth 0 is added due to the expand process. Summarizing, we conclude
that (3 ∗ MaxArity ∗ nc ∗ (nf+ nk)+ nx0+ 2 ∗ nx1)(∆) decreases after applying (NN). �

Correctness
The following property of big unifiers will allow us to justify compatibility of contexts of certain

equations below.

Corollary 5.9. In any PHASE2 derivation∆0,∆1, . . . , if D|p|N−k occurs in any∆i and σ is a big unifier of
∆i, then σ(|p|N − k) ≥ 2|p|.

Proof. If D|p|N−k occurs in∆i, then note that σ(|p|N− k) = |p|σ(N)− k ≥ |p|(2+nf(∆0)/|p|)− k =
2|p| + nf(∆0)− k ≥ 2|p| + nf(∆i)+ nk(∆i)− k ≥ 2|p|, using Lemma 5.6 and Definition 5.4. �

The soundness of the PHASE2 inference system follows directly from inspecting the rules and
applying Corollary 5.9.

Lemma 5.10 (Soundness). Let ∆1 ` ∆2 be an inference step, and let σ be a big unifier of ∆2. Then, σ is
also a big unifier of∆1.

Proof. For all rules, a big unifier σ of ∆2 is also a big unifier of ∆1, by inspecting the rules. It is
crucial to take into account the solved part of ∆2 for the rules (xy) and (xM). The detailed proof
is straightforward, but tedious. We illustrate it for the rule (NN): Let σ be a big unifier of ∆ ∪
{C |p|N−k22 (x2)

.
= M} ∪ expand(C1, C2) ∪ flatten({x1

.
= (rot(C2, k′1))

k1−k2(x2)}) where C1,C2
are compatible, k1 ≥ k2 and k′1 = |p| − k1 mod |p|. We only need to prove that σ is a unifier of
C |p|N−k11 (x1)

.
= C |p|N−k22 (x2). Since σ is big, it follows from Corollary 5.9 that σ(|p|N − k1) > 0 and

σ(|p|N− k2) > 0. Since σ unifies expand(C1, C2) and C1 and C2 are compatible, we can conclude that
σ(C1) = σ(C2). Since σ is a unifier of x1

.
= (rot(C2, k′1))

k1−k2(x2), we see that σ is also a unifier of
C |p|N−k11 (x1) and C

|p|N−k1
1 (rot(C2, k′1))

k1−k2(x2). The term σ(C
|p|N−k1
1 (rot(C2, k′1))

k1−k2(x2)) is equal to
σ(C |p|N−k22 (x2)) using properties of rot and exponents, and the fact that σ(C1) = σ(C2). �

Completeness of the inference system of Phase 2 depends on the following lemma that shows
compatibility of two contexts C1, C2 that occur in exponent equations that are (roughly) of the form
C1[C1[. . .]]

.
= C2[C2[. . .]].

Lemma 5.11. Let C1, C2 be two flattened contexts such that each one is a rotation of the other. Let t1, t2 be
terms. Let k1, k2 be non-negative integers greater than or equal to 2|p|. If C

k1
1 (t1)

.
= Ck22 (t2) has a solution,

then C1 and C2 are compatible.

Proof. We prove this by contradiction, i.e. under the assumption of incompatibility of C1 and C2 we
prove that Ck11 (t1)

.
= Ck22 (t2) has no solution.
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Let q be the maximum position that is a prefix of hp(C1) and hp(C2). If |q| = |hp(C1)| = |hp(C2)|,
then hp(C1) = hp(C2). In this case, the incompatibility of C1 and C2 implies sp(C1) 6= sp(C2), from
which we conclude that Ck11 (t1)

.
= Ck22 (t2) has no solution. Hence, assume that q < hp(C1) and

q < hp(C2). If some q′ ≤ q satisfies root(C1|q′) 6= root(C2|q′), then C
k1
1 (t1)

.
= Ck22 (t2) has no

solution again. Therefore, assume root(C1|q′) = root(C2|q′) for all q′ ≤ q. The equation C
k1
1 (t1)

.
=

Ck22 (t2) has solvability of rot(C1, |q|)
k1−|q|(t1)

.
= rot(C2, |q|)k2−|q|(t2) as a necessary condition. We

write rot(C1, |q|) and rot(C2, |q|) more explicitly of the form f (x1, . . . , xi−1,D1[•], xi+1, . . . , xm)
and f (y1, . . . , yj−1,D2[•], yj+1, . . . , ym), respectively. Note that, by the maximality of q, the indexes
i and j are different. Any solution σ of Ck11 (t1)

.
= Ck22 (t2), and hence of rot(C1, |q|)

k1−|q|(t1)
.
=

rot(C2, |q|)k2−q(t2), makes σ(yi) equal to σ(D1[t1]). But since k1 is greater than or equal to 2|p| and
C1 is a rotation of C2, D1 properly contains the variable yi as well, and hence σ(yi) is a proper subterm
of itself, a contradiction. �

Lemma 5.12. Let∆ be a set of exponent multi-equations with∆u 6= ∅, such that (cycle), (clash), (clashfC)
or (clashCC) can be applied to it. Then∆ does not have any big unifier.

Proof. Assume that ∆ has a big unifier. We show then that (cycle) or (clash) cannot be applicable.
From Corollary 5.9, we know that the existence of a big unifier implies that for every expression
D|p|N−k(s), the exponent is at least 2|p|, and hence the context is at least D[D[. . . [•] . . .]].
For all multi-equations of the form s .

= t .
= M where s, t are rooted by function symbols, we

must have root(s) = root(t). Hence (clash) is not applicable. However, (cycle) is not applicable,
either. The reason is that the existence of equations x1

.
= t1

.
= M1, x2

.
= t2

.
= M2, . . . , xn−1

.
=

tn−1
.
= Mn−1, xn

.
= tn

.
= Mn in ∆ such that x2 occurs in t1, . . . , xn occurs in tn−1, and x1 occurs in

tn together with the existence of a big unifier would imply that σ(x1) is a proper subterm of σ(x1),
which is impossible. If there is a multi-equation of the form C |p|N−k11 (x1)

.
= C |p|N−k22 (x2)

.
= M , then by

Lemma 5.11 C1, C2 are compatible, hence (clashCC) is also not applicable. If there is a multi-equation
of the form f (. . .) .= (g(. . . ,D[•], . . .))|p|N−k(x) .= M , then the root of σ(g(. . . ,D[•], . . .))|p|N−k(x) is
g = f for every big unifier σ , hence (clashfC) is not applicable. From this contradiction, we conclude
that∆ cannot have a big unifier. �

Lemma 5.13 (Completeness for Big Unifiers). Let∆1 ` ∆2 be an inference step, and let σ be a big unifier
of∆1. Then there is an extension σ1 of σ that is also a big unifier of∆2.

Proof. For the case of rules (xx), (xy), (xM), (1-alone), (ff), and (Nf) the same σ serves as a big unifier.
For the case of rule (NN), the same σ serves for ∆ ∪ {C |p|N−k22 (x2)

.
= M}. It also serves for

expand(C1, C2), because, by Corollary 5.9, the replacement of N by σ(N) makes |p|N − k1 greater
than or equal to 2p, and hence, solvability of expand(C1, C2) is a necessary condition for solvability
of ∆1 by Lemma 5.11. But σ is not enough for flatten({x1

.
= (rot(C2, k′1))

k1−k2(x2)}), since it
contains new variables. We just need to extend σ in the following way. Whenever the occurrences
of a term t are replaced by a new variable z along the flattening process, we extend σ by {z 7→ σ(t)}.
The final extension of σ after the complete flattening process is a big unifier of the resulting set of
multi-equations. Finally, note that by Lemma 5.12, the remaining rules, (cycle), (clash), (clashfC) and
(clashCC), are not applicable, and this completes the proof. �

Combining the soundness and completeness results for big unifiers, we conclude that the inference
rules can be applied in a ‘‘don’t care’’ manner.

Corollary 5.14. If ∆1 ` ∆2 then every big unifier σ of ∆1 can be extended to a big unifier of ∆2, and
every big unifier of∆2 is a big unifier of∆1.

We finally show that the inference system is progressive, that is, if there is a solution and∆u 6= ∅,
then we can apply some rule.

Proposition 5.15. Let∆0 be a set of initial exponent multi-equations. Then the following are equivalent:
(A) there is a PHASE2 derivation∆0 ` ∆1 ` · · · ` ∆n with∆n,u = ∅,
(B)∆0 has a big unifier, and
(C) for all n ≥ B(∆0),∆0 has a solution σ with σ(N) = n.
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Proof. (A)⇒(C): If ∆0 ` ∆1 ` · · · ` ∆n is a maximal derivation with ∆n,u = ∅, then the final ∆n
has a solution: ∆n,s can be arranged in the form x1

.
= t1, x2

.
= t2, . . . , xm

.
= tm, such that all xi are

different and such that xi is not contained in any tj with j ≥ i. Hence a solution can be computed by
iterated instantiation. Since none of our inference rules instantiate N , we can set σ(N) := n′ for any
n′ ≥ B(∆0). By Lemma 5.10, each of these solutions for∆n are also solutions for∆0.
(C)⇒(B): This is obvious.
(B)⇒(A): If∆0 has a big unifier, then let∆0 ` ∆1 ` · · · ` ∆n be amaximal derivation. By Lemma5.13,
∆n has a big unifier. The assumption that (clash), (clashfC) and (clashCC) are not applicable implies
that for any s .= t ∈ ∆n,u such that s, t are not variables, one of the rules (ff), (NN), (Nf) could be
applied. Since these rules are not applicable, this implies that multi-equations in∆n,u must be of the
form x .= t , and the variable x occurs in t or somewhere else in∆n,u. Since (cycle) is not applicable, this
is in conflict with the non-applicability of the rule (xM). Hence the final set∆n,u must be empty. �

Complexity
An important consequence of Proposition 5.15 is the following corollary.

Corollary 5.16. A flattened set of initial exponent multi-equations ∆0 has a big unifier if and only if the
first-order problem {N 7→ dB(∆0)e}(∆0) is unifiable.

Proof. This follows from Proposition 5.15. �

Therefore, for deciding the existence of big unifiers of a given∆0, it suffices to ask for the solution
of the first-order unification problem {N 7→ d(nf)(∆0)/p + 2e}∆0, which can be solved efficiently.
Hence, for deciding the existence of any (big or small) solution we just need to consider several first-
order unification problems obtained by substituting N by 0, 1, 2, . . . , d(nf)(∆0)/p+ 2e.

Theorem 5.17. The unification problem for flattened exponentmulti-equations is solvable inO(n3log(n))
time.

Proof. By iteratively instantiating N by 0, 1, . . . , dB(∆0)e, and expanding the exponents in each case,
we get O(n) first-order unification problems of size O(n2) each. Since first-order unifiability of multi-
equations of size n is decidable in O(n ∗ log(n)) time (Martelli and Montanari, 1982; Paterson and
Wegman, 1978), we get the desired result. �

Combining Theorem 5.17 and the NP-process of Phase 1 gives the following.

Theorem 5.18. One context unification is in NP.

From the first phase, we know that any set of equations of one context unification containing
an equation of the form F(s) = C[F(t)] can be transformed into a unification problem of exponent
flattenedmulti-equations by guessing just once over a linear number of possibilities. Hence, we obtain
the following.

Theorem 5.19. The unification problem for one context term equations containing an equation of the form
F(s) = C[F(t)] is solvable in polynomial time.

We can also construct a complete set of unifiers for∆0 following a similar approach. In the second
phase, for unifiers σ where σ(N) < B(∆0), we simply solve the term unification problems obtained
by setting 〈N 7→ n〉 for every n < B(∆0); and for unifiers σ where σ(N) ≥ B(∆0), we use the PHASE2
inference system to compute ∆n. By Lemma 5.8, this runs in polynomial time. If ∆n,u = ∅, then ∆n,s
represents exactly all big unifiers of ∆0 since, by Corollary 5.14, we know that solutions are not lost.
We get the following analogues of Theorems 5.17 and 5.18.

Theorem 5.20. Let ∆ be a set of initial exponent equations. Then, a complete set of unifiers for ∆ with
polynomially many unifiers (representable in polynomial space) can be generated in polynomial time.

Theorem 5.21. Given a one context set of equations∆, a complete set of most general unifiers for∆ can
be generated in exponential time. Each unifier is represented in polynomial space using mappings from
variables to exponent terms.
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We will give a polynomial complexity bound, if the number of first-order variables is fixed.
Although all the claims and proofs we have given above are valid by assuming that the input is
already represented by a DAG structure, the following result requires the input to be given without
any compression, i.e. the terms are represented with a size proportional to the size of such terms (as
trees).

Theorem 5.22. If the number of first-order variables is fixed (say k), then one context unification is
solvable in polynomial time.

Proof. Assume for the purposes of this proof that we implement phase 1 without DAGS, i.e. no reuse
of equal subterms occurs. Then, an assignment for a variable produces as many copies of the assigned
term as the number of occurrences of this variable in the equations. If the number k of first-order
variables is fixed, then the size increase of the equations and terms by the algorithm in phase 1without
DAGs remains polynomial: Instantiation by rules Var-Elim and Var-Elim2 does atmost square the
size, which happens at most k + 1 times. That is, if n is the size of the input, then the size (as terms
without using DAGs) of the equations and substitutions during the whole phase 1 is at most n2

k+1
.

Now it is sufficient to argue that there is a polynomial upper bound for the maximal total number
of necessary guessing possibilities in phase 1, since we have already established polynomiality of
phase 2, and since phase 1 computation is in NP. The rules Decompose and Var-Elim are don’t care
non-deterministic and thus it is not necessary to explore alternatives. The possibilities of the rules
Var-Elim2, CVar-Elim, and CVar-Elim2 have to be counted. They are applied atmost k+1 times.
Every rule has atmost

(
n2
k+1)2

possibilities, due to the selection of the context C . Thuswe have shown
that there is a polynomial number of possibilities, and every possibility can be completely checked
including phase 2 in polynomial time. In summary, we have shown the claim of the theorem. �

6. Redundancy testing

Recall that the procedure for doing interprocedural program analysis, outlined in Section 1.2, is
guaranteed to terminate and compute finite summaries if every sequence of non-redundant equations
is finite. This motivates the need to solve the following two problems related to redundancy testing:
Redundancy of an equation: Given a set ∆ of equations and an equation s .= t ∈ ∆, check whether
every unifier σ of∆ \ {s .= t} is also a unifier of the equation s .= t .
Finite redundancy property: Is there an infinite sequence si

.
= ti, i = 1, 2, . . . of equations such that

only a fixed finite set of variables and one context variable F appear in the terms si, ti, and such that
for every n ∈ N, the equation sn

.
= tn is not redundant in the set {s1

.
= t1, . . . , sn

.
= tn}? If there is no

such infinite sequence, then we say that the finite redundancy property holds.

Theorem 6.1. For the one context unification problem, checking redundancy of equations is in coNP.

Proof. An equation s .
= t ∈ ∆ is non-redundant for ∆, if there is a unifier σ of ∆ \ {s .

= t},
such that σ(s) 6= σ(t). This is equivalent to the condition that there is a most general unifier σ ′
of ∆ \ {s .

= t}, such that σ ′(s) 6= σ ′(t). Since we can compute all most general unifiers using
an NP-algorithm, we can guess the most general unifier σ ′ in polynomial time. We need to argue
that checking σ ′(s) 6= σ ′(t) can be done in polynomial time. We only have to be careful in treating
the instantiation into the integer variable N . In the case that N 7→ n where n is a small positive
integer (n ≤ B), we can expand the expression, which causes only a polynomial size increase. If the
unifier does not instantiate N , then Corollary 5.16 and Proposition 5.15 show that it is sufficient to
check the instantiation N 7→ dB(∆) + 1e, which leads only to a polynomial blow-up. Since we can
check the equality of expressions by checking their syntactic equality, which again can be done in
polynomial time using standard methods, all operations can be done in polynomial time. Hence the
non-redundancy is in NP, and redundancy is in coNP. �

Now we show that the finite redundancy property holds. Intuitively, finite redundancy will hold
if, whenever we add a non-redundant equation sn

.
= tn to ∆n−1 := {s1

.
= t1, . . . , sn−1

.
= tn−1} and

compute a most general unifier σn of σn−1({sn
.
= tn}∪∆n−1), then we are always forced to instantiate

either a first-order variable, or N . The tricky case occurs when this does not happen, that is, when
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Fig. 6. Normalization rules for EEE-terms.

σn−1({sn
.
= tn} ∪ ∆n−1) is unifiable with a big unifier, but the big unifier does not instantiate any

first-order variable.
We first show, in Proposition 6.3, that exponent equations that are unifiable with a big unifier, but

without requiring instantiation of any first-order variable, are already solved. Using this result, we
then prove the finite redundancy property in Theorem 6.4.
Consider the exponent equation (fgf )3N−2(ga) .= f (gff )3N−2(a), where f and g are unary function

symbols. Every substitution N 7→ n, where n ≥ 1, is a unifier of this equation. For example, when
N 7→ 1, then (fgf )3N−2(ga) = (fgf )1(ga) = fga and f (gff )3N−2(a) = f (gff )1(a) = fga. We wish
to argue that the equation (fgf )3N−2(ga) .

= f (gff )3N−2(a) is already solved (i.e., redundant) — just
as fg(a) .

= fg(a) is redundant. Unfortunately, the exponent terms (fgf )3N−2(ga) and f (gff )3N−2(a)
are not syntactically equal. However, these two terms can be made syntactically equal if they are
both normalized by the rules in Fig. 6. Using rule (NC3) the term (fgf )3N−2(ga) can be rewritten as
(fgf )3N−1(a) and using rule (NC1) the term f (gff )3N−2(a) can also be rewritten into the same term
(fgf )3N−1(a).
An EEE-term (extended exponent expression term) is defined as a term that contains no first-order

variable, no context variable, but it can contain unary exponent expressions of the formDa|p|N−kwhere
a is a positive integer, |p| = |hp(D)|, N is the unique integer variable, and k is an integer. Given terms
s and t , if every substitution β = {N 7→ b}, where b ≥ k/(a|p|) for all exponents a|p|N − k in s or t , is
a solution for s .= t , then we denote this as s ≈ t . We let NFC(s) denote the normal form of s obtained
using the rulesNC1,NC2 andNC3 from Fig. 6 exhaustively, where application to subexpressions is also
permitted.

Lemma 6.2. If s rewrites to s′ by normalization rules from Fig. 6, then s ≈ s′. Hence, we also have
s ≈ NFC(s).

Proposition 6.3 (0-1-Property of Exponent Equations). Let∆ := {s .= t}, where s, t are EEE-terms that
are normalized using the rules NC1, NC2, and NC3. If the equation s .= t has a big unifier γ := {N 7→ n0}
with n0 ≥ nf(∆)+ nk(∆)+ 2, then s and t are syntactically equal.

Proof. We show by induction that s = t . For equation s .= t , the induction measure is a lexicographic
combination of (i) the sum of all a that occur in exponents a|p|N−k in s and t , (ii) the size of the terms
s and t , not counting the exponents, and (iii) the sum of |k| for all k occurring in exponents a|p|N − k
in s and t . We consider the following cases based on the form of s .= t:

f (s1, . . . , sn)
.
= f (t1, . . . , tn): In this case, for each i, the terms si and ti are normalized and the

measure of equation si
.
= ti is smaller than the measure of s

.
= t . Hence, by induction

hypothesis, we infer that for every i, it holds that si = ti. It follows that f (s1, . . . , sn) =
f (t1, . . . , tn).

f (s1, . . . , sn) = C
a|p|N−k
1 (t0): Wlog let C1 = f (t1, . . . , ti−1, C ′1, ti+1, . . . , tn). For j 6= i, we can

apply induction hypothesis to sj
.
= tj and conclude that sj = tj. Next consider si

.
=

rot(C1, 1)a|p|N−k−1(t0). Induction hypothesis can again be applied, since the number of
occurrences of function symbols is smaller here than in s .

= t and the existence of a big
unifier of s .

= t implies that there is also a big unifier of si
.
= rot(C, 1)a|p|N−k−1, using

Corollary 5.16. Using induction hypothesis, we get si = rot(C1, 1)a|p|N−k−1(t0). But if this is
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the case, then the ruleNC1 can be applied to f (s1, . . . , sn), contradicting the assumption that
normalization rules are not applicable on s.

Ca1|p|N−k11 (s1)
.
= Ca2|p|N−k22 (s2): By using the induction hypothesis on all the subterms occurring at

corresponding positions in the contexts C1, C2, as in the previous item and Lemma 5.11,
we get that C1 = C2. If 1 < a1 and 1 < a2, then we can apply induction hypothesis on
C (a1−1)|p|N−k11 (s1)

.
= C (a2−1)|p|N−k22 (s2), and conclude that s and t are syntactically equal. If 1 =

a1 < a2, then we can apply induction hypothesis to s1
.
= C (a2−1)|p|N−k2+k13 (s2), where C3 =

rot(C2, k′1) and k
′

1 = |p| − k1 mod |p|, and conclude that s1 = C
(a2−1)|p|N−k2+k1
3 (s2). But then

the rule NC2would be applicable on s, which leads to a contradiction. The case 1 = a2 < a1
is symmetric. If 1 = a1 = a2 and k1 = k2, then we can apply induction hypothesis to s1

.
= s2

and conclude that s1 = s2 and hence s = t . If 1 = a1 = a2 and k1 6= k2, then again induction
hypothesis can be used on the equation obtained by stripping away one exponent expression
and using a rotation on the other one. Since there are several very similar cases, we only
consider the one where k1 > k2 ≥ 0. We apply induction hypothesis to s1

.
= Ck1−k23 (s2)

where C3 = rot(C2, k′1) and k
′

1 = |p| − k1 mod |p| and conclude that s1 = C
k1−k2
3 (s2). This

is not possible, since otherwise rule NC3would apply on s, which is a contradiction.

In each case, we conclude that s and t have to be syntactically equal. �

Theorem 6.4. The finite redundancy property holds for one context unification.

Proof. Let V be a finite set of first-order variables and let si
.
= ti, i = 1, 2, . . . be a sequence of

equations that contain only variables from V and perhaps a context variable F . Furthermore, we
assume that for all n: sn

.
= tn is not redundant in ∆n := {s1

.
= t1, . . . , sn

.
= tn}. We show that

the sequence must be finite.
We build a sequence of multisets Mi, i = 1, 2, . . . , of unifiers where the multiset Mi contains

unifiers of∆i as follows:

M0 = {Id}

Mi+1 =
⋃
σ∈Mi

σ(si+1)6≈σ(ti+1)

Unifiers({σ(si+1
.
= ti+1)}) ◦ σ ∪

⋃
σ∈Mi

σ(si+1)≈σ(ti+1)

{σ }

where Unifiers(∆) is the complete set of unifiers computed using the PHASE1 and PHASE2 inference
rules (if ∆ contains F ) or only the PHASE2 rules (if ∆ does not contain F ). We will show that there
is a well-founded ordering � on these multisets such that M0 � M1 � · · ·, which proves the finite
redundancy property.
Let inst(σ , S) := {x ∈ S | σ(x) 6= x} be the subset of variables from S that are instantiated

by the substitution σ . We say σ � σ ′ if either (i) inst(σ , V ) ( inst(σ ′, V ), or (ii) inst(σ , V ) =
inst(σ ′, V ), and inst(σ , {F}) ( inst(σ ′, {F}), or (iii) inst(σ , V ) = inst(σ ′, V ), inst(σ , {F}) =
inst(σ ′, {F}), and inst(σ , {N}) ( inst(σ ′, {N}). Finally, for multisetsM,M ′, we sayM � M ′ ifM
is greater than M ′ in the multiset extension of the ordering � on substitutions (see Dershowitz and
Manna (1979)). Note that ifMi = ∅, i.e. there is no unifier for s1

.
= t1, . . . , si

.
= ti, then the sequence

is terminated, since si+1
.
= ti+1 will always be redundant. We now show that Mi � Mi+1. We first

show that Mi � Mi+1. Consider any σ ∈ Mi and consider the set S := Unifiers({σ(si+1
.
= ti+1)}) ◦ σ

or S := {σ } of substitutions in Mi+1 generated from σ . We argue that Mi � Mi+1 by showing that
{σ } � S. We have the following cases:

(1) S = {σ }: In this case, clearly {σ } � S.
(2) S = ∅: In this case, clearly {σ } � S.
(3) {σ(si+1

.
= ti+1)} contains F : Since the equation contains F , we use the PHASE1 system to compute

S. Since we assume that cases (1) and (2) do not apply, the equation σ(si+1
.
= ti+1) is unifiable

and it is not trivial, and hence, at least one of the rules Var-Elim or Cvar-Elim from PHASE1
inference systemmust have been applied. Hence, each member of S either eliminates at least one
first-order variable from V , or removes F and introduces N . This implies {σ } � S.
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(4) {σ(si+1
.
= ti+1)} does not contain F , but contains N: There are different cases for a unifier σ ′

in Unifiers({σ(si+1
.
= ti+1)}). If N is guessed as a small number, then clearly {σ } � {σ ′}. If σ ′

instantiates a first-order variable from V , then again {σ } � {σ ′}, because the intermediate first-
order variables introduced by flattening do not increase the measure — every new first-order
variable x introduced by flattening comes with an equation x = s, where s is not a variable, and
hence is instantiated. The remaining case is when σ ′ does not instantiate any first-order variable
in σ(si+1

.
= ti+1) and when it is a big unifier of σ(si+1

.
= ti+1). Now we can treat all the first-

order variables from V as constants (by simply instantiating them with fresh constants) and we
can apply Proposition 6.3, which tells us that σ(si+1

.
= ti+1) is solved by the identity unifier. But

this has been considered in Case (1).

Since in every case, {σ } � S and since Mi+1 is a union of all such S’s, we have Mi � Mi+1. Moreover,
since we have assumed that the sequence of equations is such that si+1

.
= ti+1 is non-redundant for

∆i, there is at least one σ inMi, such that σ(si+1) 6≈ σ(ti+1). Hence, there is at least one σ inMi that
is replaced by a strictly smaller multiset of unifiers inMi+1. This shows thatMi � Mi+1. �

7. Conclusion

This paper shows that one context unification, that is context unification over a single context
variable, is in NP. The algorithm is presented using inference rules in the style of standard term
unification algorithms. Contexts with exponents of the form |p|N − k are used to efficiently
represent large terms that may be generated in the process of solving a one context unification
problem. This gives upper complexity bounds for the redundancy problem that is required for solving
interprocedural program analysis problems.
We leave open the issue of a lower complexity bound of one context unification, and also

complexity considerations for the finite redundancy property, e.g. giving upper bounds for the
maximal length of a non-redundant sequence of terms, depending on the number of first-order
variables and a size bound of the possible sequences.
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