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Computational homogenisation approaches using high resolution images and finite element

(FE) modelling have been extensively employed to evaluate the anisotropic elastic properties

of trabecular bone. The aim of this study was to extend its application to characterise the

macroscopic yield behaviour of trabecular bone. Twenty trabecular bone samples were

scanned using a micro-computed tomography device, converted to voxelised FE meshes and

subjected to 160 load cases each (to define a homogenised multiaxial yield surface which

represents several possible strain combinations). Simulations were carried out using a

parallel code developed in-house. The nonlinear algorithms included both geometrical and

material nonlinearities. The study found that for tension-tension and compression-

compression regimes in normal strain space, the yield strains have an isotropic behaviour.

However, in the tension-compression quadrants, pure shear and combined normal-shear

planes, the macroscopic strain norms at yield have a relatively large variation. Also, our

treatment of clockwise and counter-clockwise shears as separate loading cases showed that

the differences in these two directions cannot be ignored. A quadric yield surface, used to

evaluate the goodness of fit, showed that an isotropic criterion adequately represents yield

in strain space though errors with orthotropic and anisotropic criteria are slightly smaller.

Consequently, although the isotropic yield surface presents itself as the most suitable

assumption, it may not work well for all load cases. This work provides a comprehensive

assessment of material symmetries of trabecular bone at the macroscale and describes in

detail its macroscopic yield and its underlying microscopic mechanics.

& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Exponential growth of older population implies that problems
associated with deteriorated mechanical capabilities of bone
need urgent attention. Computational modelling to examine
the mechanical response of musculoskeletal systems
requires the mechanical behaviour of bone to be defined
satisfactorily (Pankaj, 2013). A continuum description of bone
that can be related to its microstructure and includes its
anisotropy and its yield behaviour will go a long way in
predicting failure of bone and bone-implant systems.

The macroscopic elastic behaviour of bone has been
mostly modelled using isotropic linear elasticity. Often, bone
macroscopic properties are assumed to be homogeneous with
separate elastic properties being assigned to cortical and
trabecular bone (Completo et al., 2009; Conlisk et al., 2015).
Sometimes, subject specific macroscopic elastic properties
are assigned using computed tomography (CT) scans, which
permit inhomogeneity in the material properties on the basis
of CT attenuations (Helgason et al., 2008; Schileo et al., 2008;
Tassani et al., 2011). That said, since CT attenuations can only
provide scalar values, assumption of isotropy needs to be
made. However, it is well recognised that the macroscopic
behaviour of bone is not isotropic. For trabecular bone, which
resembles open cell foams, the anisotropy is largely a con-
sequence of its anisotropic microarchitecture (Odgaard et al.,
1997; Turner et al., 1990). An ultrasonic approach proposed by
van Buskirk et al. (1981) was shown to provide a good
approximation of nine orthotropic elastic constants if a
heterogeneity correction were included. In general, experi-
mental mechanical techniques are unable to provide the
complete stiffness tensor at the resolution required for
modelling (Odgaard et al., 1989).

Image based computational approaches have been success-
fully applied for the evaluation of the macroscopic stiffness
tensors (Donaldson et al., 2011; van Rietbergen et al., 1995). In
these, micro-CT (or micro-magnetic resonance imaging) scans
of bone are converted into high resolution 3D finite element
(FE) meshes, with a detailed geometry of its microstructure.
The solid phase (or bone tissue) is assigned isotropic elastic
properties and the volume element (VE) is then computation-
ally subjected to six strain/stress states (three normal and
three shear). The response enables evaluation of the full
macroscopic elastic stiffness tensor using the standard
mechanics methodology (van Rietbergen et al., 1996). Previous
studies have extensively employed these homogenisation
approaches, and relationships between stiffness and micro-
architectural indices (volume fraction and fabric tensor) have
also been established (Cowin, 1986; Turner and Cowin, 1987;
Turner et al., 1990; Zysset and Curnier, 1995).

While modelling bone as an elastic material may be
adequate for a few applications, a significant proportion of
applications requires evaluation of post-elastic response, e.g.
to evaluate implant loosening resulting in its failure. Many
studies still continue to employ elastic analyses to predict
arbitrarily post-elastic behaviour (Falcinelli et al., 2014).

Both stress- and strain-based criteria have been used to
describe the macroscopic yield surface of bone (Keaveny
et al., 1994; Keller, 1994; Kopperdahl and Keaveny, 1998). In
recent years a consensus appears to be emerging that strain-

based criteria are easier to apply as trabecular bone behaviour

in this space is “more isotropic” and density independent

than in stress space (Bayraktar et al., 2004; Chang et al., 1999;

Pankaj and Donaldson, 2013). There is also now some evi-

dence to suggest that failure of bone is strain-controlled

rather than stress-controlled (Nalla et al., 2003). However,

there is little consensus on the yield criterion that may be

suitable for this cellular material.
Homogenisation techniques, using micro-CT images and FE

analyses, that have been successful in the elastic domain,

require huge computational resources in the plastic regime

for a number of reasons: nonlinear homogenisation requires a

large number of load cases (unlike the linear elastic regime

which only requires six); nonlinear simulations require con-

siderably more computational effort; and to capture nonlinear

phenomena FE meshes need to be finer. As a consequence,

nonlinear homogenisation to obtain the macroscopic yield

criterion of bone requires high performance computing and

has been attempted only by a few previous studies (Bayraktar

et al., 2004; Sanyal et al., 2015; Wolfram et al., 2012). All these

studies used a simple bilinear criterion to represent the solid

phase of bone. Wolfram et al. (2012) used a limited number of

load cases which can lead to loss of information on physiolo-

gically possible complex load cases, while both Sanyal et al.

(2015) andWolfram et al. (2012) made a priori assumptions with

regard to macroscopic yield surface symmetries; the former

assumed it to be transverse isotropic and the latter orthotropic.
Nanoindentation experiments on bone suggest that the

solid phase of bone has a pressure-dependent yield surface

(i.e. its yielding depends on hydrostatic stress), which arises

because of bone's cohesive-frictional behaviour (Tai et al.,

2006). Due to this reason, bone tissue (or the solid phase) can

be modelled using classical criteria, such as Mohr-Coulomb or

Drucker-Prager (Carnelli et al., 2010; Tai et al., 2006).
On the macroscale, high density bone is prone to tissue

yielding, while low density bone is likely to fail via a mixture

of large deformation failure mechanisms and tissue yielding

(Bevill et al., 2006; Morgan et al., 2004; Stolken and Kinney,

2003). At the microscale, total strains can be large and a small

strain approximation may be invalid. It is important to note

that local yielding or buckling may not imply simultaneous

yielding of the homogenised structure; the latter results from

a significantly compromised stress carrying capacity.
The aim of this study is to characterise the macroscopic

yield surface of trabecular bone by using a numerical homo-

genisation approach, derived from multiscale theory (de

Souza Neto et al., 2015; Kruch and Chaboche, 2011;

McDowell, 2010): using high resolution FE meshes obtained

from micro-CT images; applying a range of load cases which

adequately describes the multiaxial behaviour of bone at the

macroscale (including complex normal and shear load com-

binations); incorporating both geometrical and material non-

linearities; and with a validated pressure sensitive yield

criterion for the solid phase. We consider a range of trabe-

cular bone densities and also examine the efficacy of quadric

surfaces as representatives for its macroscopic yield surface.
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2. Material and methods

The tensorial notation used in this study largely follows the
notation used by Schwiedrzik et al. (2013). A first-order tensor
(or vector) is denoted by a lowercase bold letter (e.g. m), a
second-order tensor is denoted by an uppercase bold letter
(e.g. A) and a fourth-order tensor is denoted by a double-
barred uppercase letter (e.g. A). The tensor operations which
will appear throughout the text are: single contraction of two
second-order tensors, e.g. AB (or AikBkj in indicial notation);
double contraction of two second-order tensors, e.g.
A : B ðAijBijÞ; double contraction of a fourth-order tensor and
a second-order tensor, e.g. A : B ðAijklBklÞ; double contraction
of a second-order tensor and a fourth-order tensor, e.g.
B : A ðBijAijklÞ; tensor product of two first-order tensors, e.g.
m � m ðmimjÞ; tensor product of two second-order tensors,
e.g. A � B AijBkl

� �
; and the symmetric tensor product of two

second-order tensors, e.g. A ��
�
B ð12 AikBjl þAilBjk

� �Þ .

2.1. Imaging and finite element meshing

Ten trabecular bone specimens were extracted from bovine
trochanters and femoral heads (young cattle, o2.5 years old).
Coarse micro-CT images of the central femoral head and
trochanter regions were taken for three specimens prior to
coring. All subsequent samples were then cored with respect
to the visually ascertained trabecular directions. The extracted
cylindrical specimens had a diameter of 10.7 mm and a length
of 29.9 mm. Diamond-tipped cores (Starlite Industries, Rose-
mont PA, USA) were used in the extraction of the specimens
and the top and bottom edges of the cores were cut with a
slow speed saw (Isomet 1000, Buehler, Düsseldorf, Germany)
by using a diamond wafering blade designed for bone. All
these procedures were performed under constant irrigation to
avoid excessive abrasion and overheating.

The specimens were submerged into phosphate buffered
saline and scanned using micro-CT (Skyscan 1172, Bruker,
Fig. 1 – FE meshes of the most porous sample (13.7% BV/TV) (le
samples are cubes of 5 mm edge length.
Zaventern, Belgium) with a resolution of 17.22 mm. The scan-

ning parameters were 94 kV, 136 mA and 200 ms integration

time; 4 scans in 720 equiangular radial positions which were

averaged. The grey scale images were binarised with an

automatic thresholding script (Gomez et al., 2013).
Twenty virtual cubes of 5 mm length were extracted from

the scanned and segmented cylinders. The Mean Intercept

Length (MIL) fabric tensor (Harrigan and Mann, 1984) was

evaluated using BoneJ (Doube et al., 2010) and then used to

align the coordinate axes of the images with the eigenvectors

of the fabric. This approach has been employed in a recent

study (Wolfram et al., 2012). After the 5 mm cubes were

cropped, the alignment was rechecked to ensure that there

was no misalignment larger than 81 (Sanyal et al., 2015;

Wolfram et al., 2012). MIL is known to approximate the elastic

orthotropic directions of trabecular bone (Odgaard, 1997). By

undertaking such alignment there was an expectation that

these axes may also represent the orthotropic directions of

the yield criterion if the criterion was orthotropic. The bone

tissue volume (solid phase) over total volume ratios (BV/TV)

had a range from 13.7% to 30.3%. The degree of anisotropy of

these cubes, which is the ratio between the largest and

smallest eigenvalues of the fabric tensor, ranged from 1.52

to 3.86. A 5 mm length Volume Element (VE) which has been

previously considered appropriate to capture the features of

trabecular bone (Harrigan et al., 1988; Sanyal et al., 2015; van

Rietbergen et al., 1995) was employed for all simulations.
2.2. Constitutive model and computational procedure

The twenty specimens were meshed using a voxelised mesh,

where every voxel corresponds to a trilinear hexahedron,

with an in-house developed script that meshes in parallel

using the Message Passing Interface (MPI) (Forum, 1994). The

meshing procedure was performed using 30 cores on a cluster

at The University of Edinburgh, which is called Eddie

(Edinburgh Compute and Data Facilities, ECDF). The largest
ft) and of the densest sample (30.3% BV/TV) (right). Both
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mesh had around 9 million nodes. FE models for two of the
twenty specimens are shown in Fig. 1.

The solid phase was modelled as an isotropic elastoplastic
material. It is important to mention that trabecular bone at
the tissue level is actually transverse isotropic or orthotropic
(Hellmich et al., 2004; Malandrino et al., 2012; Wolfram et al.,
2010). However, as pointed out by Cowin (1997), there is little
to no error in assuming tissue isotropy. This is because the
trabecula are composed of laminated material about their
axes, which implies transverse isotropy or orthotropy; since
the axis of the trabecula is the same as the loading axis, a
beam made of orthotropic material can be reduced to a beam
made of isotropic material.

The elastic regime was modelled using Hencky hyperelas-
ticity, which restricts this material model to isotropic, with a
Poisson's ratio of 0.3 and a Young's Modulus of 12700 MPa
(Wolfram et al., 2012). A quadric yield surface (Schwiedrzik
et al., 2013) given by

G τð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
τ:G:τ

p
þ G:τ�1¼ 0 ð1Þ

was employed, where τ is the Kirchhoff stress and G and G
are, respectively, a fourth-order tensor and a second-order
tensor defined by

G¼ �ζ0G
2
0 I � Ið Þ þ ζ0 þ 1

� �
G2

0 I ��
�
I

� �
ð2Þ

and

G¼ 1
2

1
sþ
0
� 1

s�
0

� �
I ð3Þ

where

G0 ¼
sþ
0 þ s�

0

2sþ
0 s

�
0

ð4Þ

and I is the second-order unit tensor, sþ
0 and s�

0 are the
tensile and compressive yield stresses, respectively, and ζ0 is
an interaction parameter.

Eq. (1) approximates a Drucker-Prager criterion when
ζ0¼0.49. Recent studies using indentation tests on bone
tissue have suggested that the solid phase of bone can be
represented using a Drucker-Prager type criterion (Carnelli
et al., 2010; Tai et al., 2006). Uniaxial yield strains of 0.41% in
tension and 0.83% in compression (Bayraktar and Keaveny,
2004) were converted to yield stresses by simply multiplying
Table 1 – Description of the load cases undertaken. Clockwise a
the off-diagonal terms of the homogeneous strain: clockwise c
corresponds to negative sign. If T and C represent tension and
clockwise and counter-clockwise shear in shear strain space, t
octants comprise of C-C-C, C-C-T, C-T-C, C-T-T, T-C-C, T-C-T,

Type of analysis

Uniaxial normal 3 tensile
Uniaxial shear 3 clockwi
Biaxial normal 3 planes,
Triaxial normal 8 octants,
Biaxial shear 3 planes,
Triaxial shear 8 octants,
Biaxial normal-shear 9 planes,
Biaxial normal-shear with different ratios 9 planes,

Total
them by the Young's modulus of the solid phase (Schwiedrzik
et al., 2015). Although there have been some experimental
studies that have evaluated hardening of the extracellular
matrix (Luczynski et al., 2015; Schwiedrzik et al., 2014), there
is no agreement on the solid phase hardening behaviour of
trabecular bone. Some studies have assumed linear hard-
ening (Bayraktar and Keaveny, 2004; Bevill et al., 2006). In this
study perfect plasticity was assumed (Carnelli et al., 2010),
though small hardening (0.02% of the Young's modulus) was
included to aid prevention of loss of ellipticity. In order to
ensure global convergence of the Newton-Closest Point Pro-
jection Method (Newton-CPPM) scheme, a line search proce-
dure was implemented as in the primal-CPPM algorithm
proposed by Perez-Foguet and Armero (2002).

Each cubic specimen was subjected to 160 strain-controlled
load cases as described in Table 1. The boundary conditions
used to constrain the VE were kinematic uniform boundary
conditions applied as described by Wang et al. (2009). It is
recognised that these boundary conditions provide an upper
bound for trabecular bone stiffness and also for yield
(Panyasantisuk et al., 2015; Wang et al., 2009). The simulations
were run on a Cray XC30 supercomputer hosted by ARCHER,
the UK National Supercomputing Service. The analyses were
carried out with an in-house parallel implicit finite strain
solver, developed within the context of ParaFEM (Margetts,
2002; Smith et al., 2014), which uses an Updated Lagrangian
formulation. This code uses MPI to perform the parallelisation
(Smith and Margetts, 2003, 2006). The high scalability of the
code has already been demonstrated in previous work (Levrero
Florencio et al., 2015; Margetts et al., 2015). Each of the 160
simulations per sample took approximately 12min using 1920
cores; therefore the total number of core hours employed in
this study is approximately 1.2 million.

A Newton-Raphson scheme was used as the solution
tracking technique and a preconditioned conjugate gradient
solver was used to solve the resulting linear algebraic sys-
tems. They are fast and if there are any convergence pro-
blems, they arise from the same origin (e.g. due to loss of
positive definiteness of the stiffness matrix). However, con-
vergence problems were only encountered in few of the
porous samples (in 20 out of 3200 simulations) and can be
related to a limit point or large-deformation related failure
mechanisms (Bevill et al., 2006; de Souza Neto et al., 2008).
nd counter-clockwise shear are differentiated by the sign of
orresponds to positive sign and counter-clockwise
compression respectively in normal strain space and
hen the quadrants comprise of C-C, T-T, C-T and T-C; and
T-T-C and T-T-T.

Number of analyses

and 3 compressive 6
se and 3 counter-clockwise 6
1 analysis per quadrant 12
1 analysis per octant 8
1 analysis per quadrant 12
1 analysis per octant 8
1 analysis per quadrant 36
2 analysis per quadrant 72

160
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These points were marked differently in the figures and

included in the fitting procedure as yield points.
The initial load increment size corresponded to 0.1%

macroscopic strain norm and could decrease to a minimum

of 0.001% if global convergence was not achieved in larger

load increments.
3. Theory and calculation

3.1. Definition of the macroscopic yield points

The yield points were described in the plane where the

abscissa is the Frobenius norm of the applied macroscopic

strain, which corresponds to the Green-Lagrange strain, and

the ordinate is the Frobenius norm of the homogenised

Second Piola-Kirchhoff stress (Fig. 2), described by

Shom ¼ 1
V0

Xnel
i ¼ 1

Xnip
j ¼ 1

widetJijSij ð5Þ

where there is no summation implied on repeated indices, V0

is the initial volume of the VE, nel is the number of elements

in the FE simulation, nip is the number of Gauss integration

points in a trilinear hexahedra, J is the Jacobian, S is the

Second-Piola Kirchhoff stress and w are the weights corre-

sponding to the specific Gauss integration point.
The 0.2% criterion was used to define the yield points

(Wolfram et al., 2012), as shown in Fig. 2, and the elastic slope

was obtained from the first two load increments, which were

always fully elastic.
Fig. 2 – Determination of the yield points by using the 0.2%
criterion for the tensile and compressive uniaxial load cases
of one sample. As it can be seen, the tensile and
compressive uniaxial cases have the same elastic slope
(dashed red line), as expected.
3.2. Formulation for macroscopic yield surface

Although a key aim of this study was to assess how different
bone samples yield when subjected to the wide array of 160
load cases, we also examined the macroscopic yield surface
fit using a quadric surface. The choice was based on its
simplicity, because it has been previously related to the fabric
tensor of bone (Cowin, 1986; Wolfram et al., 2012), and
because it is a smooth surface.

The quadric yield surface is described in strain space as

Y Eð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E : F : E

p
þ F : E�1¼ 0 ð6Þ

where E is the Green-Lagrange strain tensor, F and F are used
to define the shape, directionality and eccentricity of the yield
surface. F is a fourth-order tensor, which has major and
minor symmetries (Fijkl ¼ Fklij and Fijkl ¼ Fjikl ¼ Fijlk ¼ Fjilk),
allowing it to be defined on a symmetric matrix space
(Sym6), by 21 coefficients (Mehrabadi and Cowin, 1990). As
stated in Schwiedrzik et al. (2013), convexity of Eq. (6) is
ensured with positive semi-definiteness of F. F is a symmetric
second-order tensor, thus being described by 6 coefficients.

3.3. Different symmetries of the yield surface

Three different cases were investigated: isotropy, orthotropy
and full anisotropy. Details about isotropic and orthotropic
formulations can be found in (Schwiedrzik et al., 2013); only
anisotropy is discussed in the following.

In the case of full anisotropy, or triclinic symmetry, the
material can have different shear yield strains clockwise and
counter-clockwise. For an anisotropic quadric, normal strains
can interact with shear strains and shear strains can interact
amongst themselves (Theocaris, 1992; Tsai and Wu, 1971).
This means that in the triclinic case, F and F have 21 and
6 independent coefficients respectively.

By performing uniaxial strain load cases, several coeffi-
cients of F and all the coefficients of F can be determined. For
F, the coefficients are

Fij ¼
1
2

1
εþ
ij
� 1

ε�
ij

� �
if i¼ j

1
4

1
εþ
ij
� 1

ε�
ij

� �
if ia j

i; j¼ 1; 2; 3

8>>><
>>>:

ð7Þ

In the case of F, the six diagonal coefficients of the
projection of F onto Sym6 are

Fijij ¼

εþ
ij
þε�

ij

2εþ
ij
ε�
ij

� �2

if i¼ j

1
2

εþ
ij
þε�

ij

2εþ
ij
ε�
ij

� �2

if ia j
i; j¼ 1;2; 3

8>>>><
>>>>:

ð8Þ

The 15 remaining parameters to be determined corre-
spond to three normal strain interaction parameters, three
shear strain interaction parameters and nine normal-shear
strain interaction parameters. These parameters have
expressions in the coefficients of F which are related to the
previously stated diagonal coefficients, as shown in Table 2.

These, together with the six uniaxial normal strains and
six uniaxial shear strains, add up to a total of 27 parameters.
Calculating the determinant of 1�1 and 2�2 principal
minors of the projection of F onto Sym6 allows establishment



Table 2 – Interaction coefficients for the anisotropic
quadric.

Coefficient

Normal interaction F1122 ¼ ζ12
εþ11þε�

11
2εþ11ε

�
11

	 

εþ22þε�

22
2εþ22ε

�
22

	 


F1133 ¼ ζ13
εþ11þε�

11
2εþ11ε

�
11

	 

εþ33þε�

33
2εþ33ε

�
33

	 


F2233 ¼ ζ23
εþ22þε�

22
2εþ22ε

�
22

	 

εþ33þε�

33
2εþ33ε

�
33

	 

Shear interaction F1213 ¼ ζ45

εþ12þε�
12

2εþ12ε
�
12

	 

εþ13þε�

13
2εþ13ε

�
13

	 


F1223 ¼ ζ46
εþ12þε�

12
2εþ12ε

�
12

	 

εþ23þε�

23
2εþ23ε

�
23

	 


F1323 ¼ ζ56
εþ13þε�

13
2εþ13ε

�
13

	 

εþ23þε�

23
2εþ23ε

�
23

	 

Normal-shear interaction F1112 ¼ ζ14

εþ11þε�
11

2εþ11ε
�
11

	 

εþ12þε�

12
2εþ12ε

�
12

	 


F1113 ¼ ζ15
εþ11þε�

11
2εþ11ε

�
11

	 

εþ13þε�

13
2εþ13ε

�
13

	 


F1123 ¼ ζ16
εþ11þε�
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of basic restrictions on some of the coefficients to ensure that

F is positive semi-definite, which are

ε7ij Z0;jζkljr1; i; j¼ 1; 2;3; k; l¼ 1; 2;…;6 ð9Þ

The remaining restrictions on the coefficients are not

expressed analytically but checked after the minimisation

procedure to ensure positive semi-definiteness of F. For every

symmetry case and for every sample, the eigenvalues of the

projection of F onto Sym6 were checked to ensure they were

non-negative.
3.4. Evaluating goodness of fit

The macroscopic yield envelope was fitted by using a mini-

misation procedure in MATLAB (Mathworks, Natick MA, USA).

To evaluate the goodness of fit, the error was evaluated as

Fitting error¼ 1
N

XN
i ¼ 1

JEfitted�EFE J
JEFE J

ð10Þ

where ‖�‖ is the Frobenius norm of the corresponding macro-

scopic strain and N is the cardinality of a specific set of load

cases. This error was evaluated for four different sets: for all

the load cases; for the load cases which entirely lie on the

normal strain space; for the load cases which entirely lie on

the shear strain space; and for the strain cases that have one

component in the normal strain space and one component in

the shear strain space (which from now onwards will be

referred to as combined normal and shear strain space).
4. Results

4.1. Macroscopic yield strains

Macroscopic yield points in strain space for all twenty
considered samples in the normal-normal and shear-shear
planes are shown in Fig. 3. These represent 36 of the 160 load
cases analysed for each sample, and no projections have
been made, i.e. the yield strains only contain out-of-plane
components equal to zero. Results show that the macroscopic
yield surface of bone has a higher yield strain in compression
than in tension in the normal strain space. This is expected
due to the characteristics of its solid phase.

It can be seen that the tensile quadrant displays quasi-
uniform macroscopic yield strains across samples (upper
right quadrant of Fig. 3a, b, c). The compressive yield strains
have some variability across samples, as can be seen from the
spread of yield points in the lower left quadrant of Fig. 3a, b,
c. The largest variation in the normal-normal planes is in the
tensile-compressive quadrants (upper left and lower right
quadrants, Fig. 3a, b, c).

Macroscopic yield strains in the shear-shear planes show
a large variation of yield strains for different specimens
(Fig. 3d, e, f). It can also be observed that the shear yield
strains of bone are different in clockwise and counter-
clockwise directions, with these absolute differences ranging
from 0.0034% to 0.4463%. A statistical comparison between
these yield strains was performed for all pure shear cases
with a paired t-test. This test suggests that paired clockwise
and counter-clockwise shear yield strains are statistically
different (po0.01).

Macroscopic uniaxial (tensile, compressive and shear)
yield strains were related to BV/TV and fabric through multi-
linear regressions performed in log space. No relationship
between yield strains and BV/TV and fabric was found. Only
compressive uniaxial yield strains were mildly related to BV/
TV and fabric (R2¼0.44, p-0).

In order to examine macroscopic yield strains in tension-
tension, compression-compression and tension-compression
regimes, we evaluated the mean of the macroscopic Green
Lagrange strain norm for each of the above three regimes, as
shown in Fig. 4. As expected, the mean of the norms is the
lowest for tension-tension, highest for compression-
compression and in between for tension-compression. Fig. 4
also shows the standard deviation in the evaluated norms. It
can be observed that the deviation is relatively small for the
tension-tension regime, higher for compression-compression
regime and the highest for tension-compression regime.

4.2. Solid phase strains

We examined strains at the microscale (solid phase strains).
Under uniaxial macroscopic tension, more localised strains
were found to occur at the solid phase level, and there were
mostly no compressive solid phase strains anywhere in the
specimens. However, under uniaxial macroscopic compres-
sion, the compressive solid phase strains were more diffused
and found to occur throughout the geometry. Further, under
macroscopic compression, large tensile solid phase strains



Fig. 3 – Macroscopic yield points of the 20 specimens in normal strain planes (a, b, c) and in shear strain planes (d, e, f). In the
shear strain planes, clockwise shear is represented as positive and counter-clockwise shear is represented as negative.
Density of the samples is indicated by the colour-bar. Yield points obtained for a few cases from the loss of positive
definiteness of the stiffness matrix are marked with an empty circle.

Fig. 4 – Bar plot of the mean of the macroscopic Green
Lagrange strain norms for tensile cases (i.e. cases in the
normal strain space where all strain components are
positive), compressive cases (i.e. cases in the normal strain
space where all strain components are negative) and
tensile-compressive cases (i.e. cases in the normal strain
space where one component is positive and one component
is negative). The error bars correspond to the standard
deviation of these values.

Fig. 5 – Distribution of the Green-Lagrange solid phase strain
component E11 for a 0.5x5�5 mm slice of bone under
macroscopic uniaxial tension. Direction 1 is in the direction
denoted by the arrows.
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were found to arise, due to bending and buckling of trabecu-

lae. Fig. 5 and Fig. 6 show this for a slice from one typical

porous sample.



Fig. 6 – Distribution of the Green-Lagrange solid phase strain
under macroscopic uniaxial compression for a 0.5x5�5 mm
slice of bone. Tensile component E22 (top) and compressive
component E11 (bottom). Direction 1 is in the direction
denoted by the arrows and direction 2 is the orthogonal in-
plane direction.

Table 3 – Statistical evaluation of the parameters of the
anisotropic surface.

Coefficient Value (mean 7 standard deviation)

F1111 18391.875092.2
F1122 7801.171056.9
F1133 8492.171021.2
F1112 155.57866.8
F1113 306.671883.35
F1123 150.07684.1
F2222 17510.172826.5
F2233 8644.471713.2
F2212 �83.47800.1
F2213 84.07744.1
F2223 495.571619.2
F3333 20689.074299.2
F3312 12.27628.9
F3313 260.171616.6
F3323 538.971787.2
F1212 4557.37688.8
F1213 228.27374.2
F1223 287.87482.6
F1313 5016.17724.8
F1323 �3.57427.7
F2323 5200. 47844.0
F11 52.6714.3
F22 52.078.2
F33 60.9712.5
F12 0.472.5
F13 0.875.1
F23 1.874.6
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4.3. Macroscopic yield surface and fitting errors

A macroscopic yield surface was fitted for each of the 20

samples by using isotropic, orthotropic and fully anisotropic

quadric yield surfaces, using all of the 160 load cases. The

parameters for the anisotropic surface have been added as a

statistical evaluation in Table 3. Plots for the two samples

with the highest and lowest densities are shown in Fig. 7. The

lower density sample shows a higher level of anisotropy in

comparison to the higher density sample. Further, if con-

secutive macroscopic yield points of the porous sample are

joined up, then the homogenised yield envelope does not

always remain entirely convex in some of the planes (e.g.

Fig. 7i, k).
Mean fitting errors (Eq. (10) considering all samples and all

strain cases are shown in Fig. 8. It can be seen that the

isotropic assumption leads to the highest (�11%) error,

followed by the orthotropic (�10%) and the anisotropic

(�8%) assumptions. The standard deviation of the fitting

errors is also shown in the figure and it can be seen that the

error variation across densities with the isotropic assumption

is similar to the orthotropic case; the anisotropic assumption

produces the smaller variations across samples.
In general, the fitting errors were not found to correlate
with bone density (Fig. 9). In normal strain space (Fig. 9a), the
assumption of an isotropic quadric led to consistently higher
errors, while the orthotropic and anisotropic assumptions
resulted in smaller fitting errors. In the shear strain space
(Fig. 9b), in the combined normal and shear strain space
(Fig. 9c), and in the general strain space (Fig. 9d), the
assumption of anisotropic quadric had the smallest errors.
A mild trend of errors decreasing with increasing density was
observed for the isotropic and orthotropic assumptions in
shear strain space. In the general strain space, the errors and
the error differences between assumptions tend to reduce
with increasing density.
5. Discussion

Our study shows that the macroscopic yield surface of bone
in normal strain space is fairly uniform across a wide range of
samples; this confirms findings of previous research
(Bayraktar et al., 2004; Lambers et al., 2014; Pankaj and
Donaldson, 2013).

Our results also demonstrate that the full three-
dimensional macroscopic yield behaviour of trabecular bone
can be reasonably well described using the isotropic quadric
yield surface, though orthotropic and anisotropic surfaces
lead to smaller errors. This is in agreement with previous
studies in which the strain space yield surface was reported
to be isotropic (Bayraktar et al., 2004) and more recently
transversely isotropic (Sanyal et al., 2015) and orthotropic
(Wolfram et al., 2012). However, unlike the above studies, our



Fig. 7 – Macroscopic yield points for the densest and most porous samples and their corresponding isotropic, orthotropic and
anisotropic fitted quadric surfaces in the normal strain planes (a, b, c), shear strain planes (d, e, f), and combined normal and
shear strain planes (g–o). Yield points obtained for a few cases from the loss of positive definiteness of the stiffness matrix are
marked with an empty circle.
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treatment of clockwise and counter-clockwise shears as
separate loading cases showed that the differences in the
two directions are significant. This is probably because
trabeculae are not symmetrically aligned with respect to the
axes of the material, which in this case were assessed
through the eigenvectors of the MIL fabric tensor. It is
important to note that the assumption of identical
macroscopic yield points in clockwise and counter-
clockwise directions restricts the system to orthotropy at
best (Theocaris, 1992; Tsai and Wu, 1971). We also observed
predominance of tensile solid phase strains in pure macro-
scopic shear, which is consistent with Sanyal et al. (2012).

Multilinear regressions suggest that uniaxial yield strains
are not correlated with BV/TV and fabric (Matsuura et al.,



j o u r n a l o f t h e m e c h a n i c a l b e h a v i o r o f b i o m e d i c a l m a t e r i a l s 6 1 ( 2 0 1 6 ) 3 8 4 – 3 9 6 393
2008; Morgan and Keaveny, 2001; Panyasantisuk et al., 2015).

Only a mild dependence was found for the uniaxial compres-

sive yield strains (R2¼0.44, p-0), with a positive slope for

density and a negative slope for fabric, which suggests that

long trabeculae, i.e. associated with a high fabric eigenvalue,

have lower macroscopic yield strain, as suggested by

Matsuura et al. (2008). Since no clear relationship between a

fabric tensor and the yield strains was found, use of an

isotropic yield surface formulation in strain space is more

practical for real applications.
Fig. 8 – Bar plot of the mean of the fitting errors across all
samples for the isotropic quadric, orthotropic quadric and
anisotropic quadric. All the strain cases are taken into
account. The error bars correspond to the standard deviation
of these values.

Fig. 9 – Fitting errors as described in eq. 20 for the normal strain
strain space (c) and in general strain space (d).
In uniaxial macroscopic tension, solid phase strains are

almost exclusively tensile and independent of density

(Bayraktar and Keaveny, 2004; Lambers et al., 2014). The

highly oriented structure of trabecular bone results in the

yield strains at the solid phase and at the macroscale being

very similar in tension. When trabecular bone is loaded in

macroscopic compression, yield mechanisms are different: in

this case, yielding at the solid phase was found to occur both

due to tension (arising from bending and buckling of trabe-

culae) and compression. As expected, we found considerable

tensile strains in trabeculae for low density samples as has

been previously reported (Bevill et al., 2006; Morgan et al.,

2004; Stolken and Kinney, 2003). This density dependence

results in macroscopic yield variation being displayed via a

small spread of yield points in the compression-compression

quadrants (lower left quadrants of Fig. 3a–c), as shown by the

mild relationship between compressive uniaxial yield strains

and density and fabric. This also implies that solid phase

uniaxial yield strain asymmetry is not fully maintained at the

macroscale and generally reduces with increased porosity

and increased fabric eigenvalues. Our results are consistent

with the experimental results of Lambers et al. (2014) in the

sense that the number of microscopic yielded sites in macro-

scopic compression and in macroscopic tension are similar in

number, but in macroscopic tension, the microscopic yield

zones have more localised strains, which could be related to

microcrack propagation.
space (a), shear strain space (b), combined normal and shear
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The few previous studies that have evaluated the macro-
scale yield surface of bone from its microstructure have all
used a bilinear criterion, with yield strain asymmetry, to define
the solid phase of bone with a reduced stiffness beyond
defined tissue yield values (Bayraktar et al., 2004; Sanyal
et al., 2015; Wolfram et al., 2012). In our study, the solid phase
of bone was modelled using a Drucker-Prager type criterion
which has been validated via experimental studies (Carnelli
et al., 2010; Tai et al., 2006). Our study considered yield points
arising from 160 different load cases. Some recent studies have
been limited to 17 load cases (Panyasantisuk et al., 2015;
Wolfram et al., 2012). In order to compare our results we
considered 17 strain cases similar to those in the cited studies.
We found the errors to be 11.4% for the isotropic case and
10.3% for the orthotropic case for the 17 cases. The errors,
taking into account all 160 cases, are 11.2% for the isotropic
case, 10.4% for the orthotropic case and 7.8% for the aniso-
tropic case. In other words, the 17 load cases lead to errors of a
similar magnitude to those obtained using all 160 load cases.
To further examine the effect of the considered load cases on
the fitting error, we considered a single sample with different
load cases. We evaluated the fitting errors considering all
normal load cases proposed by Wolfram et al. (2012) (14 cases)
and all our shear cases (26 cases). The errors were 18.0%, 16.3%
and 7.6% for isotropic, orthotropic and anisotropic assump-
tions respectively. With the 17 load cases mentioned pre-
viously, the errors reduce to 9.8% and 6.5% for isotropic and
orthotropic assumptions respectively for this sample. With all
the 160 load cases, the errors are 13.3%, 12.9% and 9.2% for
isotropic, orthotropic and anisotropic assumptions respec-
tively. This illustrates that shear cases contribute importantly
to anisotropy, and that the fitting errors clearly depend on the
considered load cases, which illustrates the importance of
examining a large range of complex load cases. With respect to
the combined normal and shear strain spaces, the shear
component of the macroscopic yield strain is often found to
increase when there is a compressive normal component,
indicating typical cellular solid behaviour (Fenech and
Keaveny, 1999; Gibson and Ashby, 1997).

Our study has a number of limitations. We chose to use a
quadric due to its simplicity, because it has been used in
previous studies, because it requires fewer parameters than
higher order criteria, and because it is a smooth surface, not
requiring multiple plastic multipliers. Although our primary
aim was to examine the effect of material symmetry assump-
tions on the macroscopic yield surface, the fitting errors
clearly depend on the shape of the chosen surface and on
the considered load cases. While we examined full anisotropy
with a quadric surface, a previous study employed a higher
order polynomial surface, a quartic, but restricted it to
transverse isotropy (Sanyal et al., 2015); a restriction that is
not fully supported by our results.

Although the solid phase constitutive law has been vali-
dated (Carnelli et al., 2010; Tai et al., 2006), there is no
experimental validation for the macroscopic yield surfaces. In
fact, such a validation is impossible as samples tested once
cannot be retested and it is not possible to obtain numerous (or
even two) identical samples. There have, however, been some
attempts to on trabecular bone wherein the loading cases have
been limited to triaxial compression (Keaveny et al., 1999;
Rincon-Kohli and Zysset, 2009). Thus, the range of complex
strain cases we have tested can only be performed numerically.

We considered homogeneous tissue elastic properties
while some previous studies have assessed the effect of
heterogeneous mineral density on the macroscopic stiffness
of bone (Blanchard et al., 2013; Renders et al., 2008). Renders
et al. (2008) found a decrease of 21% in apparent stiffness
when considering mineral heterogeneity. However the effect
of heterogeneities at the solid phase on finite element models
with geometrical nonlinearities is still unclear. Since we
wanted to be able to compare our macroscopic yield strains
with previously published results, we kept our solid phase
elastic properties as homogeneous.

The study assumes that the solid phase of bone can be
modelled as a plastic material, which is not entirely true as
high localised strains can cause microcracks and eventual
fracture; effects that full plasticity based models may not be
able to capture. Furthermore, we did not consider hardening
(Carnelli et al., 2010) because there is no agreement on the
hardening law at the scale of the solid phase we are
considering. However, previous experimental and theoretical
studies such as Schwiedrzik et al. (2014), Luczynski et al.
(2015) and Fritsch et al. (2009) showed that the extracellular
matrix of bone has a hardening behaviour after yield.
6. Conclusions

Trabecular bone has fairly uniform macroscopic yield beha-
viour across samples in normal strain space. Thus, modelling
it by using strain-based plasticity makes sense. For tension-
tension and compression-compression quadrants in normal
strain space, the strain norm at yield shows little variation,
indicating an isotropic behaviour in these regimes.

In the tension-compression quadrants, pure shear and
combined normal-shear planes, the macroscopic strain
norms at yield have a relatively large variation, indicating a
possible absence of isotropy. Further, differences in yield
strain values in clockwise and counter-clockwise shear may
indicate a possible anisotropy for the macroscopic behaviour
of trabecular bone. However, due to the difficulties of for-
mulating a non-isotropic closed-form yield surface in strain
space due to the weak relationships between fabric and yield
strains, and due to the small difference in fitting errors
between isotropic and orthotropic or anisotropic considera-
tions, an isotropic criterion presents itself as the most
suitable approximation. However, for some load cases, con-
siderable differences between the closed-form yield criterion
and the actual yield strain may arise.

With respect to the yield surface, an eccentric-ellipsoid
may adequately represent the macroscopic yield surface of
bone as the fitting errors for all the considered symmetries
are reasonably small. However, it is important to be mindful
of the asymmetry in shear yield strains and that in the
normal-shear load cases, the quadric may not be able to
represent the macroscopic yield behaviour of trabecular bone.

This work provides a comprehensive assessment of mate-
rial symmetries of trabecular bone at the macroscale and
describes in detail its macroscopic yield and its underlying
microscopic mechanics.
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