

Edinburgh Research Explorer

Microkernel Architecture and Hardware Abstraction Layer of a
Reliable Reconfigurable Real-Time Operating System (R3TOS)

Citation for published version:
Iturbe, X, Benkrid, K, Hong, C, Ebrahim, A, Torrego, R & Arslan, T 2015, 'Microkernel Architecture and
Hardware Abstraction Layer of a Reliable Reconfigurable Real-Time Operating System (R3TOS)' ACM
Transactions on Reconfigurable Technology and Systems, vol. 8, no. 1, 5. DOI: 10.1145/2629639

Digital Object Identifier (DOI):
10.1145/2629639

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
ACM Transactions on Reconfigurable Technology and Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

https://doi.org/10.1145/2629639
https://www.research.ed.ac.uk/portal/en/publications/microkernel-architecture-and-hardware-abstraction-layer-of-a-reliable-reconfigurable-realtime-operating-system-r3tos(d74bce8d-5189-4862-b842-666a0e6ee190).html

39

Microkernel Architecture and Hardware Abstraction Layer of a
Reliable Reconfigurable Real-Time Operating System (R3TOS)

XABIER ITURBE, University of Edinburgh and IK4-Ikerlan Research Alliance
KHALED BENKRID, University of Edinburgh
CHUAN HONG, University of Edinburgh
ALI EBRAHIM, University of Edinburgh
RAUL TORREGO, IK4-Ikerlan Research Alliance
TUGHRUL ARSLAN, University of Edinburgh

This article presents a new solution for easing the development of reconfigurable applications using Field-
Programable Gate Arrays (FPGAs). Namely, our Reliable Reconfigurable Real-Time Operating System
(R3TOS) provides OS-like support for partially reconfigurable FPGAs. Unlike related works, R3TOS is
founded on the basis of resource reusability and computation ephemerality. It makes intensive use of re-
configuration at very fine FPGA granularity, keeping the logic resources used only while performing compu-
tation and releasing them as soon as it is completed. To achieve this goal, R3TOS goes beyond the traditional
approach of using reconfigurable slots with fixed boundaries inter-connected by means of a static commu-
nication infrastructure. Instead, R3TOS approaches a static route free system where nearly everything is
reconfigurable. The tasks are concatenated to form a computation chain through which partial results nat-
urally flow, and data is exchanged among remotely located tasks using FPGA’s reconfiguration mechanism
or by means of “removable” routing circuits. In this article, we describe the R3TOS microkernel architec-
ture as well as its hardware abstraction services and programming interface. Notably, the article presents
a set of novel circuits and mechanisms to overcome the limitations and exploit the opportunities of Xilinx
reconfigurable technology in the scope of hardware multitasking and dependability.

Categories and Subject Descriptors: C.1.4 [Computer systems organization]: Reconfigurable computing;
B.3.6 [Hardware]: Reconfigurable logic and FPGAs

General Terms: Design, Theory

Additional Key Words and Phrases: Hardware virtualization, Adaptable computing, FPGA architecture,
Runtime reconfiguration, Operating systems

1. INTRODUCTION
The dawn of 21st Century has brought a real revolution in reconfigurable hardware.
FPGAs have turned into sophisticated, flexible and extremely advanced compute fab-
rics which can change their own functionality on-the-fly thanks to their Dynamic Par-
tial Reconfiguration (DPR) capability. However, the lack of standard tools and inter-
faces to develop reconfigurable applications limits their user base, and makes their
programming difficult and unproductive. The necessity for tools and methods to ex-
ploit the advanced computation possibilities delivered by current FPGAs is now more
potent than any time before. This situation is indeed similar in concept to what oc-
curred during the infancy of electronic computers, when dealing with machine’s hard-
ware was direct and messy. Now, as then, the use of an Operating Systems (OS) is an
attractive proposition to make partially reconfigurable FPGAs ”programmer friendly”
[Brebner 1996].

A number of research efforts have been undertaken in the last decade to build a Re-
configurable OS (ROS) for FPGAs, such as OS4RS [Mignolet et al. 2003], BORPH [So
2007], FOSFOR [Muller et al. 2005], ReconOS [Lubbers 2010] and CAP-OS [Gohringer
et al. 2010b]. These are intended to provide support for dynamically swapping in and
out of the FPGA a battery of computation-specific circuits (“hardware tasks”) to hold
a continuous stream of input operands, computation and output results. Multitask-
ing, adaptation and specialization are key properties in ROSes, as multiple swappable

tasks can run concurrently at different positions on chip, each with custom data-paths
for efficient execution of specific computations.

R3TOS is our contribution to this body of research efforts. However, in addition to
the aspects listed above, R3TOS also addresses two important requirements currently
highly demanded by industry: reliability and real-time, hence its name, which stands
for Reliable Reconfigurable Real-Time Operating System. Notably, R3TOS deals with
these issues using an approach that consists in increasing the flexibility of the system.
Unlike most related work, R3TOS is aimed at exploiting most of the capabilities offered
by current reconfigurable technology (e.g. slotless reconfiguration [Sedcole 2006]) with
the objective of increasing performance, efficiency and reliability. For instance, hard-
ware tasks are allocated only to functional resources, circumventing damaged parts of
the chip.

While the general concepts of R3TOS have already been presented in [Iturbe et al.
2013b], this article explains its low-level implementation details. We think these are
relevant for two reasons. First, the proposed implementations either solve or signifi-
cantly reduce some of the currently existing problems attached to the predominantly
used technology in reconfigurable computing (Xilinx FPGAs). Second, they are generic
enough to be adopted in potentially any OS that uses this technology. Arguing that
R3TOS is innovative in the way it exploits the reconfiguration opportunities available
in Xilinx technology, we posit that most of the implementations described in this article
are novel.

The remainder of this article is organized as follows. After an overview of related
work in Section 2, Section 3 and 4 sum up the most important features and general ar-
chitecture of R3TOS, respectively. Then, Section 5 focuses on the R3TOS hardware mi-
crokernel (HWuK), while Section 6 describes the Hardware Abstraction Layer (HAL)
and Section 7 outlines the high-level Application Programming Interface (API). Sec-
tion 8 gives some insights into a R3TOS prototype implementation, demonstrates its
functioning in a Software Defined Radio (SDR) case-study application, and presents
the obtained results with an overall performance evaluation. Finally, concluding re-
marks are discussed in Section 9.

2. RELATED WORK
This section covers three of the aspects that are more extensively addressed in this
article: task switching, inter-task communications and synchronization. Some notions
on fault diagnosis and recovery are also pointed out. Finally, the section summarizes
the most important research efforts conducted to date to build a ROS on FPGAs.

2.1. Task Switching
Two main techniques have been proposed for switching hardware tasks in partially
reconfigurable FPGAs. The first method consists in providing task registers and mem-
ories with extra interfaces to enable access when saving and restoring task context
(e.g. [Ahmadinia et al. 2004; Kalte and Porrmann 2005; Jovanovic et al. 2007; Koch
et al. 2007]). These could be implemented as memory-mapping structures or as scan
chains with shadow registers [Tuan and Amano 2008]. The main advantages of this in-
trusive method are twofold: the fact it is largely independent of the underlying FPGA
configuration architecture, and data efficiency as only the required information needs
to be saved. On the other hand, its major problems are the area overhead introduced by
the added interface logic, which usually reduces the maximum usable clock frequency,
and the difficulty in designing standard generic interfaces for different type of tasks.
The second method consists in harnessing the reconfiguration port of the FPGA for
reading-back and later restoring the context information in the bitstream domain (e.g.
[Simmler et al. 2000; Ahmadinia et al. 2004; Kalte and Porrmann 2005; Jozwik et al.

2010]). While transparency is the key benefit of this method, it incurs significant time
overheads due to the limited access speed through the reconfiguration port and the ne-
cessity of accessing complete configuration frames, which include context information
together with other state independent configuration data such as routing information.
Furthermore, technical limitations also exist due to difficulties in individually access-
ing registers when resuming their state.

2.2. Inter-task Communications and Synchronization
The existing solutions for providing inter-connectivity to relocatable hardware tasks
are based either on Network-on-Chips (NoCs) [Bobda et al. 2005; Stensgaard and
Sparso 2008] or on-chip buses [Ahmadinia et al. 2005; Koch et al. 2008]. Especially
interesting is the work described in [Shelburne et al. 2008], where the authors propose
to emulate a NoC by harnessing the reconfiguration mechanism of the FPGA. The pos-
sibility of creating online routes among the tasks has also been proposed [Suris et al.
2008; Koch et al. 2010], but its acceptance is low due to the long time overheads when
creating the routes, and difficulties when dealing with FPGA configuration, whose for-
mat is not documented. Therefore, most of currently available ROSes rely on a static
communication infrastructure which interconnects all of the reconfigurable slots in
the system, where the hardware tasks are allocated, and the main processor, where the
software part of the OS runs, e.g. [Walder 2005; Lubbers 2010; Gohringer et al. 2010a].
With the dual objective of communicating between software and hardware tasks and
abstracting hardware management, most ROSes resort to wrap the hardware tasks
with software wrappers and then use existing mechanisms in standard software OS,
e.g. Linux [Williams et al. 2005; Bergmann et al. 2006] or eCOS [Lubbers 2010]. As
with inter-task communication, most of the existing solutions for synchronizing hard-
ware tasks rely on static signals, e.g. [Lubbers 2010].

However, the existence of static wires crossing the FPGA surface involves impor-
tant limitations in terms of relocatability of the tasks. Indeed, fully relocatable hard-
ware tasks with support for inter-communications and synchronization currently be-
long only to theory. We note that this is one of the major divergences between research
efforts that study the reconfigurable computing paradigm from an algorithmic per-
spective, usually targeting slotless reconfiguration, and the efforts that are aimed at
building real prototype solutions, which only target slotted reconfigurable systems. A
secondary problem is that the static communication and synchronization infrastruc-
ture occupies a significant amount of on-chip resources and usually leads to low us-
able clock frequencies. For instance, the NoC reported in [Bobda et al. 2005] consumes
nearly all of the resources on the FPGA chip, and the bus clock frequency reported in
[Sedcole et al. 2007] is only 50 MHz due to long routing delays.

2.3. Fault-Tolerance
Fault diagnosis and recovery in FPGAs is widely based on scrubbing [Heiner et al.
2009] and redundancy [Sterpone and Violante 2005; Iturbe et al. 2009]. Scrubbing
consists in rewriting the configuration memory of the FPGA to correct configuration
upsets. This can be done either periodically (e.g. blind scrubbing) or upon demand
when an upset has been detected in any of the configuration frames. In order to detect
configuration upsets, Xilinx FPGAs include a built-in logic (i.e. Frame ECC) that is
coupled to their configuration memory [Charmichael and Tseng 2009]. However, there
exists a coupling problem in Virtex-4 devices, namely the Frame ECC works one clock
cycle ahead of the configuration memory. In order to deal with this problem, Xilinx
have released the SEU controller macro [Chapman 2010]. Faults can also be detected
and diagnosed by using Built-In-Self-Tests (BISTs). These are specifically designed

circuits to test the correct functioning of the logic and routing resources [Abramovici
et al. 2004; Smith et al. 2006; Amouri and Tahoori 2011].

Finally, despite the fact that task isolation is a mandatory feature in dependable sys-
tems [Kopetz 2011], we have not found any dynamic partial reconfiguration solution
that addresses this important requirement. Most of existing commercial and academic
solutions do provide support for spatially isolating hardware modules within the FPGA
surface (e.g. Xilinx Isolation Verification Tool [Corbett 2012], Recobus builder [Koch
et al. 2008], OpenPR [Sohanghpurwala et al. 2011], GoAhead [Beckhoff et al. 2012]),
but there are no solutions for ensuring isolation in the configuration domain; i.e. to
ensure that the reconfiguration engine does not corrupt the system by writing config-
uration data in a wrong location.

2.4. Reconfigurable Operating Systems
The term ROS was coined by Dr Gordon Brebner [Brebner 1996] and it essentially
refers to a software OS augmented with functions to manage reconfigurable hardware
and execute hardware applications on it. The rationale of the ROS is to hide complexity
by offering a set of useful services to the application developer (e.g. task switching,
inter-task communication and synchronization). These services should be accessible
through an API and should provide runtime support for both task management and
FPGA resource management.

OS4RS was a very early ROS prototype developed by IMEC with the main focus of
giving runtime support for multimedia applications [Mignolet et al. 2003]. Unfortu-
nately, very little information is provided about its implementation and functioning.
Most of the information is related to the major innovation proposed: the possibility to
interrupt a hardware task and restart it in software, or vice versa. Notably, this idea
has inspired later work (e.g. [Zhou et al. 2005; Pellizzoni and Caccamo 2006]).

In [Blodget et al. 2003], Xilinx released the XPART API, which was intended to
ease the management of FPGA resources. Unfortunately, XPART was rapidly dis-
continued. In [Donlin et al. 2004], the authors wrote a Linux proc file system API
for such low-level manipulations and, in [Williams and Bergmann 2004], the authors
created a Linux driver for the ICAP and used it in an embedded Linux distribution,
namely uClinux, running on a Xilinx MicroBlaze processor. These two can be consid-
ered the first successful attempts to make reconfigurable hardware easily accessible
by a software-centric programmer, who indeed could use the ICAP from a shell script.
Later, the same authors completed their work with a Linux driver that allowed FIFO-
based data communications with reconfigurable hardware modules [Williams et al.
2005]. A similar ICAP driver is presented in [Donato et al. 2005]. This driver has been
used to develop a Linux-based ROS with capability to manage hardware tasks as stan-
dard devices located in the /dev/ directory [Santambrogio et al. 2008]. Finally, another
Linux-based ROS is reported in [Kosciuszkiewicz et al. 2007], where hardware tasks
are executed on Xilinx PicoBlaze processors and communicate with software tasks us-
ing FIFO buffers.

HybridThreads (HThreads) [Andrews et al. 2005] allows programmers to run soft-
ware and hardware threads simultaneously on a CPU and FPGA. Notably, scheduling,
communication and synchronization services are implemented in hardware, bringing
significant performance benefits. However, as the hardware threads remain allocated
on the FPGA even when they are idle (i.e. reconfiguration is not used), HThreads can-
not be considered a complete ROS as it fails to manage FPGA resources (i.e. FPGA
resources are not shared among threads).

BORPH [So 2007] is distributed among five Virtex-II Pro FPGAs: one of them acts
as master (control FPGA) and the remaining four implement some control logic (called
uK) and allocate user hardware tasks. Hence, in BORPH, hardware tasks are assigned

to user FPGAs in a one-to-one fashion, leading to a very inefficient exploitation of hard-
ware resources. Furthermore, the amount of concurrent tasks running on the system
is limited by the number of user FPGAs.

ReconOS can be seen as a porting of BORPH to a single FPGA, making special
emphasis on real-time performance [Lubbers 2010]. The user FPGAs of BORPH are
assigned separate reconfigurable slots in the same FPGA in ReconOS. These slots are
coupled with a control logic (called OSIF), which implements the same function as uK
does in BORPH. Being contained in a single FPGA, the user functions are configured
through ICAP, and communications are performed through an on-chip bus running at
100 MHz. In light of achieving real-time performance ReconOS offers an eCOS-based
API, which is extended with specific system calls to manage hardware tasks.

FOSFOR is very similar to ReconOS. The most significant differences to be noted
are the use of an RTEMS-based API and a NoC to interconnect the reconfigurable
slots [Muller et al. 2005].

A recent approach that is conceptually close to ReconOS is FUSE [Ismail and Shan-
non 2011]. It also relies on a slotted reconfigurable system which is implemented on
a Virtex-5 FPGA and provides an embedded Linux-based API with POSIX threads
running on a MicroBlaze core. Two features of FUSE are especially interesting. First,
shared memories are used to exchange data between the software and hardware tasks,
thus reducing data communication overheads. Second, each hardware task is associ-
ated a Loadable Kernel Module (LKM) that implements miscellaneous device driver
functionality, allowing to treat hardware tasks as memory-mapped I/O device periph-
erals.

Finally, CAP-OS is intended to handle a variety of processors and accelerators un-
der real-time constraints, using Virtex-4 FPGAs [Gohringer et al. 2010b]. The API
offered by CAP-OS is based on Message Passing Interface (MPI), which is a language-
independent communications protocol used to program parallel computers. As pro-
posed in OS4RS, the computations in CAP-OS are to be performed either in software
(i.e. by any of the processors), or in hardware (i.e. as a coprocessor). However, the
currently presented prototype only supports executing software tasks, which can be
loaded into the processor’s program memory either through a NoC or through the
ICAP. In the future, the authors expect to include the capability to configure hardware
tasks upon request by the processors as well as to modify the number of processors in
the system. Towards this end, bitstream relocation is pointed as necessary, leading us
to understand that the current CAP-OS prototype relies on a slotted architecture.

3. R3TOS IN A NUTSHELL
R3TOS is our solution to deal with some of the major challenges that are arising in
reconfigurable computing, namely to develop fault-tolerant, high-performance, (soft)
real-time, low-power and adaptable reconfigurable systems from high-level descrip-
tions.

R3TOS provides systematic OS-like support to Xilinx FPGAs, easing the exploitation
of some of the most advanced capabilities of this technology by inexperienced users.
Indeed, by wrapping reconfigurable hardware with a real-time software microkernel
(SWuK), R3TOS creates a unified hardware-software runtime execution environment,
whereby a software-centric application developer can easily use the underlying hard-
ware resources to reliably benefit from increased computing speed with lower power
consumption than achievable when using a conventional processor. In this context,
R3TOS can be seen in multiple ways beyond an OS: as an abstraction model; as an
interface; but above all, as an enabling solution towards mainstream usage of recon-
figurable hardware.

The most important capabilities of R3TOS are listed below:

— Real-Time: R3TOS gives the necessary support for exploiting the inherent pre-
dictability of pure hardware in light of achieving (soft) real-time performance; i.e.
good Quality of Service (QoS).

— Dependability: R3TOS gives the necessary support for exploiting the flexibility of
FPGAs to build systems able to configure their own resources with the objective of
maintaining their functionality in the presence of permanent defects and sponta-
neous faults. However, R3TOS is unable to recover from permanent damage affect-
ing its own engine. In order to prevent losing the reconfiguration capability, the two
ICAP instances available on FPGA are used in R3TOS so that they can diagnose and
fix each other in the event of either of them being affected by a correctable upset (e.g.
a SEU) [Ebrahim et al. 2012].

— High-Performance: R3TOS gives the necessary support for exploiting the flexibility
of FPGAs to load specialized circuits upon demand, each performing a specific type
of computation in an efficient way.

— High-Level Programming: R3TOS provides the means to make the aforementioned
capabilities easy-to-use without requiring any knowledge of low-level FPGA details.

3.1. General Functioning
What makes R3TOS special is its non-conventional way of exploiting chip resources:
these are used indistinguishably for carrying out either computation or communication
at different times. Indeed, R3TOS does not rely on any static infrastructure apart from
its own core circuitry, which is constrained to a specific region of the FPGA where it is
deployed. Thus, the rest of the device is kept free of obstacles (e.g. static routes), with
the resources ready to be used as and whenever needed. In this context, the partial bit-
stream relocation technique has been enhanced to allow hardware tasks to be mapped
to different chip locations on-the-fly, with the dual objective of improving computation
density, i.e. keep the tasks as compact as possible, and circumvent damaged resources.
Note that permanent damage may be caused by imperfections in the fabrication pro-
cess or it may emerge as the silicon ages, especially when working in extreme or harsh
environments.

R3TOS is able to exploit locality (i.e. functionally related logic and data) by im-
plementing multi-rate clocking capability [Iturbe et al. 2012]. Unlike in an ordinary
FPGA implementation, where data is moved among resources which may potentially
be located anywhere on the device, in R3TOS data is kept within a much smaller phys-
ical area, i.e. within hardware task boundaries, resulting in shorter paths and smaller
access times. R3TOS automatically takes advantage of the reduced access times as it
feeds each task with its maximum allowed clock rate to obtain the highest performance
from each portion of the design [Iturbe et al. 2012]. If required, the clock frequency de-
livered to each task can be dynamically chosen with the objective not to increase per-
formance, but to reduce power consumption and heat dissipation. Using this method,
dynamic power consumption is automatically reduced by clocking resources locally, i.e.
the resources which are not clocked only consume a leakage current. Finally, note that
by doing this, unnecessary wear of the resources which are not in use is also prevented.

In R3TOS, locality is combined with global communications. Input data is firstly re-
ceived in one of the edges of the hardware tasks, then processed as it flows through task
data-paths and, finally, the results are stored in another edge of the tasks. This pro-
motes the concatenation of tasks, as the input edge of one task can be placed next to the
output edge of the previously executed task in the pipeline [Iturbe et al. 2011b]. This
allocation strategy that leads to the creation of task chains across the device, as shown
in Fig. 1, is named as Snake. Hence, data is automatically moved as a consequence of
computing in space, i.e. data moves locally inside each task, and globally from task to
task. When task concatenation is not possible, two alternative communication meth-

ods are implemented. First, on-demand interconnection wires can be created using the
FPGA routing resources [Iturbe et al. 2011b]. The interconnection wires are grouped
together to form the so-called Data Relocating Tasks (DRTs), which remain configured
only while data is transferred between communicating tasks. In Fig. 1b, note that the
tasks are typically designed to fit horizontally between two BRAM columns, and DRTs
are used to vertically move data between neighbor rows. Second, the FPGA’s Internal
Configuration Access Port (ICAP) can be harnessed to establish on-demand “virtual”
channels among hardware tasks through the configuration layer, without using any
physical support [Iturbe et al. 2011a]. By using any of these methods, R3TOS is al-
ways able to provide a logical interface for the relocatable hardware tasks, regardless
of their physical location on the chip, enabling inter-task communications and syn-
chronization.

(a) (b)

Fig. 1: Snake: a) Application task graph and b) Task allocation scheme

R3TOS is capable of executing redundant instances of the same (critical) hardware
task in parallel at distinct positions within the FPGA (spatial redundancy) or at differ-
ent times (temporal redundancy). The capability of writing identical frames to multiple
configuration memory address locations provided by bitstream compression commands
(i.e. MFWR commands) is exploited with the objective of speeding-up the configuration
of three redundant instances of critical tasks, i.e. Triple Modular Redundancy (TMR).

Bitstream compression is also used to configure multiple identical task instances
(i.e. cloned tasks) with very small time overheads [Ebrahim et al. 2013]. This allows to
approach the building of dynamically customizable Single Instruction Multiple Data
(SIMD) computers, where not only the number of (cloned) tasks, but also their data-
path can be configured at any time to exploit both data and process level parallelism,
i.e. multitasking.

The speed-up factor measured when using the task cloning technique ranges from
1.5x, when configuring a single cloned task instance, to 3.5x, when cloning up to 7
cloned task instances. Namely, a 2x acceleration factor has been measured when con-
figuring three task instances, that is, when using TMR.

3.2. Flexibility vs. Performance
The limitations associated with R3TOS mainly come from the reconfiguration bot-
tleneck provoked by the ICAP, which is shared for task (re)configuration, inter-task
communications and synchronization. Nonetheless, the gained flexibility is absolutely

necessary to achieve the high fault-tolerance and adaptivity levels accomplished by
R3TOS.

It is true that the performance improvement due to more flexible use of FPGA re-
sources is constrained by the reduced communication bandwidth resulting from the
lack of any pre-routed communication infrastructure in the system. But, it is also true
that a communication infrastructure distributed across the entire FPGA chip and con-
strained within a static region usually results in large data path latencies and routing
congestion, ultimately leading to low usable clock frequencies and hence, limited com-
munication bandwidth [Sedcole et al. 2007].

Another important aspect derived from the flexibility achieved in R3TOS (i.e. slot-
less reconfiguration) is the possibility to exploit the entropy of the configuration in-
formation associated with hardware tasks, which results in smaller reconfiguration
time in most cases. R3TOS circumvents all unnecessary configuration data added to
tasks in slotted reconfigurable systems, e.g. static routes crossing the reconfigurable
slots and extra configuration information resulting from the enlargement of tasks to fit
the slots. This contrasts with what occurs in traditional reconfigurable systems, where
configuration data is likely to be distributed among a greater number of lightly-used
configuration frames.

Finally, we note there is a trade-off between inter-task communication bandwidth re-
quirement and task granularity, which ultimately influences the reconfiguration over-
heads and FPGA resource requirements of the application.

4. R3TOS GENERAL ARCHITECTURE
Fig. 2 shows the general block diagram of R3TOS, which basically comprises three
main parts: HWuK, main CPU and memory. The interface of the HWuK is standard
enough to ensure compatibility with the most common processors and memories. Ex-
ternal memory is necessary when developing large reconfigurable applications because
of the limited availability of on-chip storage resources in current FPGAs, but it is ex-
pected that R3TOS can be implemented on a single FPGA chip in the future.

4.1. R3TOS Hardware MicroKernel (HWuK)
The HWuK includes the configuration manager and two servers which run upon it:
scheduler and allocator. Each component is separately implemented to enable paral-
lelism in the execution of the HWuK processes; i.e. while the scheduler executes the
scheduling algorithm, the allocator can execute the allocation algorithm, and the con-
figuration manager can configure a task through the ICAP. The parallel cooperation of
simple components does not only result in low runtime overhead but also in acceptable
area overhead; i.e. the main core of all HWuK components is a tiny Xilinx PicoBlaze
processor, which requires only 96 slices in a Virtex-4 FPGA. Note that this architecture
promotes the core spirit of a microkernel: upgradability (e.g. the allocator and sched-
uler servers can be updated to run more efficient algorithms which might be designed
in the future without having to modify the rest of components in the HWuK) and scal-
ability (e.g. multiple instances of the allocator can be used to speed-up the allocation
process in very large FPGAs).

The cooperation among the HWuK components is mastered by the scheduler, with
the allocator and the configuration manager acting as slaves. The communication be-
tween the components follows a very strict set of rules which are supervised by two
monitors. These are capable of detecting any malfunctioning in each pair of communi-
cating components; i.e. scheduler-allocator and scheduler-configuration manager.

The internal architecture of the HWuK components is structured around a PicoBlaze
core. This executes an optimized assembly program which is based on interruptions to
reduce the response time. Furthermore, each PicoBlaze uses a dedicated data BRAM

 Parameters

A
ll
o

c
a

to
r

P
ic

o
B

la
z
e

(S
la

v
e

)

P
ro

g
ra

m

B
R

A
M

In
te

rr
u

p
t

C
o

n
tr

o
lle

r

S
c

h
e

d
u

le
r

P
ic

o
B

la
z
e

(M
a

s
te

r)

P
ro

g
ra

m

B
R

A
M

In
te

rr
u

p
t

C
o

n
tr

o
lle

r
F

P
G

A

S
ta

te

B
R

A
M

E
x
te

rn
a

l

M
e

m
o

ry

C
o

n
tr

o
lle

r

M
e

m
o

ry

A
rb

it
e

r

S
c
h

e
d

u
le

r
&

 A
llo

c
a

to
r

M
o

n
it
o

r

M
a

in
 C

P
U

M
ic

ro
B

la
z
e

S
W

u
K

 &

C
a

c
h

e

M
e

m
o

ry

C
o

n
tr

o
lle

r
D

M
A

T
im

e
r

In
p

u
t
D

a
ta

B
u

ff
e

r

O
u

tp
u

t
D

a
ta

B
u

ff
e

r

B
R

A
M

C
o

n
tr

o
lle

r

In
te

rr
u

p
t

C
o

n
tr

o
lle

r
R

S
2

3
2

F
S

L

F
S

L

T
a

s
k

B
R

A
M

(Q
u

e
u

e
s
)

F
ra

m
e

_
E

C
C

S
c
h

e
d

u
le

r
&

 I
C

A
P

M
o

n
it
o

r

A
rc

h
it
e

c
tu

re

C
h

e
c
k
e

r

C
o

n
fi
g

u
ra

ti
o

n
 G

u
a

rd
ia

n

(F
A

R
 C

h
e

c
k
e

r)

A
c
k
 A

llo
2

S
c
h

e

C
m

d
 S

c
h

e
2

A
llo

T
a

s
k
 B

o
u

n
d

a
ri
e

s

P
a

ra
m

C o n t r o l

D a t a & C o d e

F
P

G
A

 (
R

o
ta

te
d

 9
0
º)

R
3

T
O

S
 H

a
rd

w
a

re
 M

ic
ro

K
e

rn
e

l
(H

W
u

K
)

P
o

in
te

rs

to
 H

W
 ta

sk
’s

 b
its

tre
am

s

H
W

 T
as

k’
s

B
its

tre
am

s

H
W

 T
a

s
k
s

(D
a

ta
 S

e
g

m
e

n
t)

S
W

 T
a

s
k
s

(D
a

ta
 a

n
d

 C
o

d
e

 S
e

g
m

e
n

ts
)

 M

E
M

O
R

Y
 (

e
.g

.
S

R
A

M
)

T
a

s
k
 B

it
s
tr

e
a

m

C L K

B
R

A
M

B
R

A
M

B
R

A
M

B
R

A
M

IO
B

 &
 B

U
F

R

 D
a

m
a

g
e

D
a

m
a

g
e

D
a

m
a

g
e

d
 r

e
s
o

u
rc

e
 I
D

P
ri
v
ile

g
e

d
 m

o
d

e

 D
a

m
a

g
e

P
R

O
G

_
B

F
P

G
A

 p
in

O
P

B

B
it
s
tr

e
a

m

B
R

A
M

R
3

T
O

S
 A

P
I

E
rr

o
r

E
rr

o
r

Match

M
e

m
o

ry

R
e

q
 &

G
ra

n
t

R3TOS acess to Memory

(Take and Release)

Blank Scheduling

In
t.

M
a

n
a

g
e

r

R

3
T

O
S

 M
a

in
 C

P
U

Shift

H
W

 T
a

s
k

H
W

 T
a

s
k

H
W

 T
a

s
k

H
W

 T
a

s
k

H
W

 T
a

s
k

B
U

F
G

C
T

R
L

 &
 D

C
M

 &
 I
C

A
P

 &
 F

ra
m

e
_

E
C

C
 &

 I
O

B

O
u

tp
u

t
B

u
ff
e

r

In
p

u
t
B

u
ff
e

r
In

p
u

t
B

u
ff
e

r

O
u

tp
u

t
B

u
ff
e

r

O
u

tp
u

t
B

u
ff
e

r

In
p

u
t
B

u
ff
e

r

O
u

tp
u

t
B

u
ff
e

r

In
p

u
t
B

u
ff
e

r

In
p

u
t
B

u
ff
e

r

O
u

tp
u

t
B

u
ff
e

r

D
S

P
4

8

B
R

A
M

H
W

 T
a

s
k

R
3

T
O

S

O
u

tp
u

t
B

u
ff
e

r
In

p
u

t
B

u
ff
e

r

H
W

 T
a

s
k

O
u

tp
u

t
B

u
ff
e

r
In

p
u

t
B

u
ff
e

r

In
p

u
t
B

u
ff
e

r

O
u

tp
u

t
B

u
ff
e

r

 D
a

m
a

g
e

c
rc

c
e

B
U

F
R

B
U

F
R

B
U

F
R

B
U

F
R

C
lo

c
k

in
g

 M
a

n
a

g
e

r

C
lo

c
k

in
g

 M
a

n
a

g
e

r
IO

B
 &

 B
U

F
R

B
U

F
R

B
U

F
R

B
U

F
R

B
U

F
R

D
R

T
 B

it
s
tr

e
a

m
s

C
R

C
3

2

S
y
n

d
ro

m
e

E
rr

o
r

D
a

m
a

g
e

d
 r

e
s
o

u
rc

e
 I
D

Int.

D
iv

is
io

n

H
a

rd
w

a
re

(W
a

tc
h

-D
o

g
)

K
e

rn
e

l
T

im
e

r
t K

T

In
t.

ti
c
k

c
a

p
tu

re

IC
A

P

D
ri
v
e

r

A
liv

e

T
im

e
-o

u
t
e

rr
o

r

In
i_

F
F

Alter_Seq

G
S

RS
ta

rt
u

p

S
T

A
R

T
U

P

S
u

p
p

o
rt

 l
o

g
ic

T
a

s
k
 I
D

IC
A

Pc
e

S
ta

rt

E
n

d

E
m

p
ty

 A
re

a
 D

e
s
c
ri
p

to
r

U
p

d
a

te
r

B
R

A
M

 a
c
c
s
s

B
u

s
y

A
llo

c
a

ti
o

n

Q
u

a
lit

y

E
v
a

lu
a

to
r

Rst

Best

End

Allo/Task Info.

P
ro

g
ra

m

B
R

A
M

In
te

rr
u

p
t

C
o

n
tr

o
lle

r

Start

C
o

n
fi

g
u

ra
ti

o
n

M
a

n
a

g
e

r

P
ic

o
B

la
z
e

(S
la

v
e

) Ack ICAP2Sche

 Cmd Sche2ICAP

 Param

rs
t

b
u

s
y

Alter_Seq

C
lk

O
N

/O
F

F

F
ig

.2
:R

3T
O

S
bl

oc
k

di
ag

ra
m

to store the information associated with the corresponding HWuK process(es) it exe-
cutes. Hence, the scheduler manages the task queues in the Task BRAM, the allocator
keeps track of the available on-chip resources on the FPGA State BRAM, and the con-
figuration manager executes pre-defined sequences of configuration commands from
a Bitstream BRAM. The fact that these memories are dual-ported is conveniently ex-
ploited. For instance, the configuration manager can mark any detected damaged re-
source as non-usable directly in the FPGA State BRAM, and the main CPU can set in
ready state any triggered task directly in the Task BRAM.

Specific to the scheduler is a timer that generates the kernel ticks. This timer is also
used to supervise the correct functioning of the scheduler, which is critical as it masters
the HWuK. The scheduler’s PicoBlaze must generate at least one alive pulse within a
maximum number of kernel ticks, i.e. the kernel timer acts as watch-dog timer.

Specific to the allocator are three coprocessors: (i) an architecture checker to speed-
up the search for feasible allocations where the FPGA resource layout is compatible
with the internal architecture of the tasks to allocate, (ii) an empty area descriptor
updater to accelerate the intermediate computations required by the allocation algo-
rithm, and (iii) an allocation quality evaluator to accelerate the making of allocation
decisions.

The configuration manager interacts with the configuration-related FPGA logic. No-
tably, it is equipped with an finite state machine to drive the ICAP at the highest
possible clock frequency, and with a CRC32 module to compute the 32-bit CRC over
a set of data read from the ICAP. The finite state machine is coupled with a Config-
uration Guardian (CG) to ensure safe accesses to the configuration memory. Besides,
the configuration manager interacts with the Frame ECC logic to detect and localize
upsets in the configuration frames. Finally, the configuration manager has access to
the STARTUP primitive with the objective of initializing the hardware tasks’ flip-flops
with predefined values, i.e. INIT values. Since this is a very critical primitive which
allows accessing internal signals to the configuration logic of the FPGA, i.e. Global
Set/Reset (GSR), specific support logic is added to guarantee its safe functioning.

The HWuK also includes some extra functionality distributed across the device. This
includes the Task Control Logic (TCL), which is attached to the hardware tasks, and
circuitry to manage and diagnose the clocking resources, implemented next to the
rightmost and leftmost IOB/BUFR columns.

4.2. R3TOS Main CPU
In the current R3TOS implementation a Xilinx on-chip processor, namely a 32-bit Mi-
croBlaze soft-core, is used as the main CPU. This is coupled with a set of peripherals
which provide additional functionality (e.g. timer or interrupt controller), connection
to the external world (e.g. RS232 serial line or Ethernet), or increased performance
(e.g. DMA). The peripherals are interconnected by means of an On-chip Peripheral
Bus (OPB). FIFO-based high speed communications between the Input/Output Data
Buffers (IDB/ODB), where data is exchanged with the tasks, and the MicroBlaze are
achieved by connecting them using Fast Serial Links (FSLs). In addition, the data
buffers are also accessible through the OPB bus to allow individual access to random
positions. The interface with the HWuK is based on interrupts and shared memory.

The program executed by the main CPU is held in a directly accessible program
memory. In the specific case of the MicroBlaze, this memory is implemented using
dual-ported BRAMs and thus, it must be disabled and its clock must be stopped by the
HWuK prior to accessing the content of any other BRAM within the FPGA. Otherwise,
the program code executed by the MicroBlaze could get corrupted. Despite the fact
this can be circumvented when using processors which do not use dual-ported BRAMs
to store their program, the clock gating capability is still required when using the

STARTUP primitive. Indeed, while the GSR signal is active, the BRAMs cannot be cor-
rectly accessed and thus, any processor relying on BRAMs to store its program should
be stopped to prevent executing undesired instructions. Unfortunately, clock gating by
the HWuK cannot be predicted in the main CPU and therefore, may jeopardize the
system’s real-time performance when multiple ICAP and/or STARTUP accesses are
accumulated within a short period of time. In any case, clock gating is nothing more
than a work-around solution for a problem that may well be solved in newer FPGA
architectures.

4.3. Memory
The external memory chip is used to store: (i) the data and code segments of software
tasks, (ii) the data segments and bitstreams of hardware tasks, and (iii) the bitstreams
of DRTs. Moreover, there is a pointer table located in the lowest part of the memory,
which is used by the HWuK to know the exact location of each task bitstream. Aiming
at achieving the highest performance when accessing the external memory, a custom
memory controller capable of dealing with the pointers stored in the pointer table is
included in the HWuK. In Fig. 2 note that the white parts of the memory are accessed
exclusively by the HWuK while the black parts are accessed only by the main CPU.
The most typical case of a single port memory is assumed in the current R3TOS imple-
mentation and hence, HWuK includes an arbiter to coordinate access from the HWuK
itself and from the main CPU.

5. LOW-LEVEL HARDWARE SUPPORT FOR THE R3TOS HWUK
This section describes the most innovative circuitry developed in R3TOS, including: (i)
the logic to control the execution and synchronization of the hardware tasks, (ii) the
circuit to support and accelerate inter-task communications, (iii) the logic to command
task preemption, and (iv) the logic to trap erroneous accesses to the ICAP which could
violate the isolation of the hardware tasks in the configuration domain. Other parts are
not herein described either because they do not bring any novelty (e.g. similar ICAP
drivers to the one used in R3TOS can be found in [Kalte et al. 2005; Kalte and Por-
rmann 2006; Corbetta et al. 2009; Hansen et al. 2011]), or because they have already
been reported in previous publications (e.g. scheduling and allocation engines [Hong
et al. 2011; Iturbe et al. 2013a]). Finally, we propose a way to deal with the existing
coupling problem of Frame ECC logic in Xilinx Virtex-4 devices.

5.1. Task Execution and Synchronization: Task Control Logic (TCL)
Since a preliminary explanation of the TCL has already been published in [Iturbe
et al. 2011a], this section highlights only the aspects that are essential to understand
the R3TOS approach.

In R3TOS, the TCLs are attached to tasks’ circuitry, making them self-contained and
closed structures which are fully relocatable within the FPGA. They consist of: (i) a
Hardware Semaphore (HWS) to enable/disable computation; (ii) an Input Data Buffer
(IDB), from where data to be processed is read; and (iii) an Output Data Buffer (ODB),
where the results computed by the task are stored (see Fig. 3). The results remain
stored until they are required as input by a data consumer task. Hence, hardware
tasks leave a data trace when they finish. Note that temporarily buffering the partial
results along the entire chip, which is a result of the flexible allocation scheme used in
R3TOS, is the natural way to exploit the distributed nature of FPGA fabrics.

The implementation of a TCL depends on the type of task it is to be attached to. For
instance, large data buffers are implemented using high-density yet more scarce and
location-specific FPGA storage resources (namely BRAMs), while small data buffers
are implemented using low-density and more abundant storage resources (namely

Fig. 3: Simplified generic architecture of a TCL

LUTs). Likewise, while the TCL of a data-stream processing task is suited to han-
dle pipelined computation, the TCL of a hardware accelerator task is designed to deal
with random accesses to different positions in its data buffers.

TCLs provide a means to lock physical data and control inputs/outputs of the hard-
ware tasks to logical positions in the configuration memory of the FPGA. Since TCLs
are accessible through the configuration interface whichever memory positions they
are mapped to, the allocatability of the tasks is not constrained by the position of
communication interfaces decided at design time anymore. Furthermore, this scheme
improves multitasking capabilities as the number of tasks that can be concurrently
executed on the FPGA is not limited by the amount of communication interfaces. How-
ever, we acknowledge here that the achievable data and control throughput is limited
by the availability of the reconfiguration port(s) in the FPGA. In Fig. 3, the solid-line
arrows represent the logical access through the ICAP to the information stored in the
data buffers, and the broken-line arrows refer to the physical access through the func-
tional layer to BRAM-based data buffers in the Snake approach. The latter access is
performed either by DRTs or directly by data consumer tasks when reusing partial
results that are stored in TCL’s ODB.

The synchronization needed for coordinating access to data buffers is provided by
the HWS included in the TCL. The HWS is the same for all types of tasks and it is
implemented on a single LUT-RAM. This is set to ’1’ by HWuK through the ICAP to
start computation, and it is automatically set to ’0’ by the task itself when the results
are ready in the ODB [Iturbe et al. 2011a]. Hence, the HWS can be polled from the
HWuK through the ICAP to detect a computation completion. The HWS acts as local
reset for the registers of a particular hardware task while data transactions are car-
ried out to/from TCL’s data buffers. Note that a good practice for FPGA design is to use
a reset input in all of the registers to initialize them with a known state at startup. The
startup state of registers is coded in the SRMODE bits in the configuration bitstream.
In addition, hardware description languages also allow for initializing the registered
signals to specific values without using any reset. In the latter case, the specified ini-
tialization values are coded in the INIT bits in the configuration bitstream and loaded
in the actual registers by issuing a GRESTORE command when the configuration bit-
stream is transferred to the FPGA’s configuration memory. By using the STARTUP

primitive, and conveniently using the masking possibility of flip-flops, R3TOS is able
to perform a local GRESTORE operation exclusively affecting the registers contained
in a particular hardware task1. This mechanism is the basis for task preemption in
R3TOS.

5.2. Inter-task Communications: Data Relocation Tasks (DRTs)
DRTs include all the necessary circuitry to move data from a source BRAM-based ODB
to a target BRAM-based IDB through the functional layer of the FPGA. This includes
both the logic to drive the BRAMs and the wires to connect them. DRTs are managed
as if they were standard computing tasks, where their height (hy) and width (hx) are
equal to the vertical and horizontal distance between the source and target BRAMs
they connect. As standard computing tasks, they can be used only when the region
where they are to be allocated is completely free. The lack of flexibility of using DRTs
to communicate tasks when compared with online routing is to be compensated by
providing a set of differently sized and shaped DRTs to cover several source-target
BRAM interconnections, e.g. BRAMs located in the same column, two columns apart,
etc. In any case, the number of DRTs is limited in order to reduce both the amount of
memory necessary to store their bitstream configurations and the number of positions
to be evaluated when allocating a task.

The way that a DRT is attached to data producer and consumer tasks is depicted in
Fig. 4a. The stripped regions represent the routing of the BRAMs, which is dynamically
switched to permit access to the memories either from the computing tasks or from the
DRT. Note that BRAMs are the left and right boundaries for both DRTs and comput-
ing tasks. Indeed, DRTs and computing tasks are assigned different partially reconfig-
urable regions and synthesized following the Xilinx partial reconfiguration flow, thus
ensuring no routing conflicts occur when switching the BRAM interconnections, i.e.
the Programmable Interconnection Points (PIPs) that are active in computing tasks
are not active in DRTs and vice versa. In order to prevent corruption of the data stored
in memories due to unexpected early activity while switching BRAM interconnections,
the clock signal delivered to the BRAM column is first stopped.

Access to target BRAMs from the consumer task is automatically gained when con-
figuring its bitstream, i.e. BRAM interconnection frames are overwritten (see Fig. 4b).
It must be ensured that all data has been transferred by the DRT by the time the
consumer task is completely configured, as both processes are carried out at the same
time. In order to leave the FPGA in the same state as it was before using the DRT,
thus preventing future routing conflicts, two steps must be made: (i) the DRT must be
deallocated by blanking all the necessary configuration frames and, (ii) the TCL of the
temporarily modified data producer task must be restored by rewriting the original
BRAM interconnection configuration.

In order to control communications from the HWuK, a HWS-like LUT-RAM is in-
cluded in DRTs. This is named as Data Relocation Enable (DRE) and it is activated
through the ICAP only when the source and target BRAMs are correctly connected
by means of the DRT. Then, data is sequentially read from the producer task’s ODB
(source BRAM) and copied, one clock cycle later, to the consumer task’s IDB (target
BRAM). This process is repeated until the last data is copied. Afterwards, the DRE is
automatically disabled by the DRT’s own logic.

As shown in Fig. 5, the logic to drive the BRAMs is mapped to a single CLB col-
umn, namely to the CLB column located next to the source BRAMs. The rest of the

1Xilinx has made available a specific constraint from Virtex-6 onwards, RESET AFTER RECONFIG, to
automatically manage the flip-flop initialization masking bits in a partial bitstream so that only the registers
included within the reconfigurable area are initialized after reconfiguration

HWSHWS

ta
sk

_s
ta

rt

gl
ue

 lo
gi

c

PEsPEs

gl
ue

 lo
gi

c

PEsPEs

Data Consumer Task

DREDRE

COUNTERCOUNTER

1 clk
Delay
1 clk
Delay

addr_src (10)

en_tar
(n_bram)

addr_tar (10)

data_src
(8·n_bram)

data_tar (8)

ANDAND

Start Communications
(ICAP)

end

clk_comms

DRTData Producer Task

rd
_e
n

...

ENABLE
LOGIC

ENABLE
LOGIC

st
ar

t

w
r_
en

ODBODB

TCLTCL TCLTCL

IDBIDB

(a) DRT logic (the number between parentheses is the bus width)

Active Computation (producer)

Source BRAM: Access by DRT

Access by DRT Access by Consumer taskUndefined

Functional Layer:

DRT config.
Data Transfer
Consumer task config.

 Active Computation (consumer)
DRT removal

Access by Producer task

Configuration Layer:

Access by Producer task

OPERATIONS:

BRAM switch

BRAM switch

BRAM switch

Target BRAM:

t

TCL restore

(b) Management of DRTs: Timing diagram

Fig. 4: DRTs

DRT is free of logic, it only includes the wires to connect the source and target BRAMs
together. In order to reduce the amount of wires, and thus reduce configuration time,
the width of the BRAM port is set to 8-bit when using DRTs. Furthermore, an input
multiplexer is used to select the data delivered by only one of the source BRAMs at
any time, i.e. the DRT receives 8 · n bram input data wires, which are time-multiplexed
using only 8 wires. Hence, the total amount of wires to be routed to the target BRAMs
is: 19+n bram, where n bram are the BRAM enables, 11 are address and 8 are data. Us-
ing this scheme and working at 100 MHz, it is possible to transfer the content of up to
4 BRAMs within less than a hundred of microseconds. In any case, higher amounts of
data can be transferred within the same time by increasing the frequency of clk comms,
which indeed can be done as for the clock delivered to standard computing tasks.

The benefit of the above implementation is that the configuration information of
the DRT is mainly concentrated in the 20 interconnection frames associated to the
source and target BRAMs and the 22 frames of the CLB column where the logic is
implemented. The remaining configuration information of the DRTs consists of a set
of active PIPs, which can be grouped into a reduced number of frames by exploiting
the regularity of the FPGA routing structure (see Fig. 5) with the ultimate objective of
reducing the amount of time needed to configure the DRTs.

Fig. 6 shows the requirements imposed by DRTs in terms of occupied slices and
amount of frames necessary to be configured. Note that only DRTs that connect
BRAMs in the vertical direction are shown in this figure (i.e. hx = 1) as this is the

S
o
u
rc
e
B
R
A
M
s

T
a
rg
e
t
B
R
A
M
s

D
R
T
L
o
g
ic

(a) (b)

Fig. 5: DRT implementation: a) Bird-eye view and b) Detailed view

general use of DRTs (see Fig. 1). Similar results are expected for DRTs that connect
BRAMs in the horizontal direction as the FPGA routing pattern (e.g. hex and long
lines) is the same in both vertical and horizontal directions. Also note that the num-
ber of active PIPs do not significantly increase as the (vertical) distance between the
BRAMs to connect increases, i.e. as hy increases. This is the result of three factors: (i)
use only 8 multiplexed data wires, (ii) exploit the regularity of FPGA’s routing struc-
ture, and (iii) use hex lines when the BRAMs to connect are located in different rows.
On the other hand, the number of active PIPs and frames inevitably increases when
using a larger amount of data buffers (i.e. more BRAMs) as the DRT receives more
input data signals and also uses more slices to implement the input multiplexer and
the rest of its internal logic. Based on this figure, DRTs make it possible to accelerate

data transfers among BRAMs by an approximate factor of2: 128
85 (1.5x when n bram=4),

256
112 (2.3x when n bram=8) and 512

179 (2.8x when n bram=16).

020406080100120140160180
4 BRAM h_y=1 4 BRAM h_y=2 4 BRAM h_y=3 4 BRAM h_y=4 8 BRAM h_y=2 8 BRAM h_y=4 16 BRAM h_y=4# Resources Buffer Configuration SlicesPIPs/10Frames

Fig. 6: Resource and configuration requirement for different DRTs (hx = 1)

5.3. Task Preemption: STARTUP Support Logic
This section describes the logic that has been added to R3TOS in order to safely use
the STARTUP primitive; i.e. to avoid corrupting any part of the system when access-
ing the GSR signal. Namely, we have noticed that BRAMs give all zeros while the GSR
signal is active. A possible explanation for this might reside in the fact that BRAMs
are coupled with registers at their output. As a result, the STARTUP primitive cannot
be directly managed by one of the HWuK PicoBlazes, which relies on BRAMs to exe-
cute its program, but by a specific logic. This logic basically generates a 2 clock cycles
GSR duration pulse upon request (ini FF signal) from the configuration manager’s Pi-
coBlaze (see Fig. 2). Moreover, the latter PicoBlaze is also responsible for appropriately
configuring the flip-flop masking bits in order to restrict the initialization operation to
the flip-flops contained within the specific FPGA region.

It must be noted that all zeros read from BRAMs while enabling the GSR signal
are decoded as LOAD s0, 0 instruction by the PicoBlaze and hence, the value stored
in the s0 register must be saved and restored immediately before and after triggering
the GSR signal. As shown in Fig. 7, the code to perform these operations gives rise
to a specific Interrupt Service Routine (GSR ISR) in the R3TOS PicoBlazes. Therefore,
the ini FF signal is used as an interrupt in all of the PicoBlazes in the HWuK, and
the delay introduced by the STARTUP support logic when generating the GSR pulse
allows enough time for the PicoBlazes to enter the GSR ISR.

Besides, the zeros read from the BRAMs while enabling the GSR signal can lead to
undesired instruction execution in the main CPU (e.g. MicroBlaze), which might be
harmful to the system. In order to secure the main CPU, the configuration manager’s
PicoBlaze keeps its clock stopped while performing the GSR operation. Likewise, the

2The numerator is the sum of the frames that need to be read from the producer task’s ODB and written to
the consumer task’s IDB when DRTs are not used. Note that each BRAM column (4 BRAMs) has 64 data
frames. The denominator is the number of frames that need to be processed when using DRTs, which is
shown in Fig. 6.

Fig. 7: STARTUP support logic

clock delivered to the hardware tasks that use BRAMs is also stopped prior to acti-
vating the GSR signal. Both the clock delivered to the main CPU and to the tasks are
again resumed by the configuration manager’s PicoBlaze when returning from GSR ISR.

5.4. Task Isolation in the Configuration Domain: Configuration Guardian (CG)
The objective of the CG is to prevent the corruption of the system due to erroneous
accesses to the ICAP. Besides, the CG increases the error detection coverage as the er-
roneous ICAP accesses are typically the result of a wrong configuration state of R3TOS
itself. The CG prohibits access to the resources assigned to HWuK except when the
privileged mode is enabled, e.g. to scrub a dormant upset affecting the HWuK. There-
fore, the CG conceptually acts as the Memory Protection Unit (MPU) in a conventional

processor, playing a vital role to isolate the hardware tasks in the configuration do-
main.

The CG circuit stores in four (only readable) registers the coordinates of the upper-
left and bottom-right vertices of the region where the R3TOS circuitry is implemented
on the FPGA. The latter registers are initialized with the appropriate values at design
time. Since access to any frame within this region is only allowed in privileged mode,
any attempt to access them without having activated the privileged mode first is con-
sidered erroneous. Likewise, when in privileged mode, any access to a frame out of the
region assigned to R3TOS is considered erroneous. Besides, the CG circuit includes
four writable registers to load the coordinates of the upper-left and bottom-right ver-
tices of the FPGA region assigned to the task to be accessed. The CG snoops the data
transmitted through the ICAP data bus to detect any writing operation to the Frame
Address Register (i.e. 0x30002001 value), and to capture the subsequent frame ad-
dresses. If the ICAP access is to a frame out of the specified region in the coordinate
registers, then that access is considered erroneous, and a full FPGA reconfiguration
is triggered via its PROG B pin to fix the logic that has provoked the error. In the
unlikely case that the 0x30002001 value transmitted to the ICAP is a raw configura-
tion data and does not correspond to a FAR writing operation, the CG may produce a
false-positive error detection. To avoid false-positive error detections, the CG should
be able to process the header of the configuration data packets, which would make it
more complex and thus more prone to error, i.e. to produce false-negatives. We think it
is preferable to use a simpler CG as it currently fits in only 38 slices.

5.5. Fault Diagnosis
In order to overcome the existing coupling problem in the Frame ECC logic of Virtex-
4 FPGAs, the ICAP driver captures the ECC syndrome given by the Frame ECC
logic when reading the 40th frame word through the ICAP. Besides, the ICAP and
Frame ECC logic are synchronized prior to checking the ECC code of any frame. As
shown in Fig. 8, 41 − NRd words are read to re-synchronize both parts, where NRd is
the amount of read operations performed since the last synchronization and is reset
to 0 every time it reaches 41. We note that our solution permits to avoid the use of
the proprietary Xilinx SEU controller macro, allowing for the development of a sin-
gle centralized controller that could implement all of the reconfiguration-related func-
tionality. In the specific case of R3TOS, this results in a simpler and less error prone
configuration manager implementation.

6. R3TOS HARDWARE ABSTRACTION LAYER (HAL)
The HAL turns the vast and complex FPGA hardware into an easy-to-use computing
resource which can operate in connection with any CPU / software OS required by the
developer. It is mainly based on the basic functionality implemented by the configu-
ration manager, which is extended to build a set of more capable services. Namely,
the configuration manager implements up to six reconfiguration related functions: (i)
Partial Bitstream Relocation (PBR), (ii) Read-back Frames (RBF), (iii) Write Multi-
ple Frames to a Single location (WMF2S), (iv) Write Single Frames to Multiple loca-
tions (WSF2M), (v) Write Single Frames to a Single Location (WSF2S) and (vi) Blank
Frames (BlF). The configuration command sequences to be executed for each function
are stored as configuration templates in the Bitstream BRAM. These templates are
adjusted by the configuration manager’s PicoBlaze with the specific parameters of the
operation that needs to be performed at any time prior to sending them to the ICAP;
i.e. some of the positions in the Bitstream memory are editable while the others store
pre-defined configuration commands.

Fig. 8: Synchronizing Frame ECC logic and ICAP in Virtex-4

Note that there are up to three different writing functions, i.e. WMF2S, WSF2M and
WSF2S, in order to take advantage of bitstream compression (i.e. MFWR commands)
in different situations. Compression is used when writing single frames (e.g. enable
a HWS or scrub an upset), or when when writing the same set of frames to multiple
positions on the FPGA (e.g. when copying the BRAM content frames to three redun-
dant task instances). In the former case, compression is beneficial as there is no need
to add any extra pad information to the frame data, while in the latter case the benefit
comes from the possibility of writing the same frame to three locations at the same
time. However, the overhead due to the fact that MFWR commands apply in a frame-
by-frame fashion makes compression inefficient when writing a large set of frames to
a single position on the FPGA (e.g. when copying the BRAM content frames to a single
instance of a task). Additionally, the BlF function also uses bitstream compression to
write all-zeros in the configuration frames to be blanked. Note that this is possible to
be done in R3TOS as there are no static signals that must be preserved when blanking
any FPGA region.

An itemization of the functions which are triggered in the configuration manager
when executing each HAL service is shown in Table I.

Service PBR RBF WMF2S WSF2M WSF2S BlF
Task (Re)Allocation X X X X
Task Deallocation X
Task Preemption X X X X
Inter-task communication X X X X X
Clock Management X X X
Fault-Diagnosis X X X X

Table I: HAL services mapping to functions executed in the configuration manager

6.1. Task (Re)Allocation Service
The task allocation service allows for configuring a single instance of a task, a triple
instance of a critical task, or a set of cloned tasks, with TaskID=i in a target location
(X,Y) and running at a specific fCLK,i clock frequency. Once the partial bitstream of a
task is successfully uploaded to the FPGA’s configuration memory, other HAL services
are invoked to deallocate overlapping tasks (i.e. task deallocation service, see section
6.2), to deliver input data to the allocated task (i.e. inter-task communication service,
see section 6.3), and to set-up the appropriate clock frequency for the task (i.e. clocking
management service, see section 6.4). The HWS of the task remains disabled while
all these services are executed, i.e. the task is in reset state. Afterwards, the GSR is
toggled to force all registered signals in the task to be loaded with their INIT values,
which may be either the original initialization values or the context values previously
saved. Finally, the HWS is enabled and the task starts performing active computation.

6.2. Task Deallocation Service
Task deallocation is necessary to avoid routing conflicts when a task θi is allocated on
a location that overlaps with the footprint of a previously executed task θj . Note that
in this situation, some of the resources assigned to θi are likely to be connected to other
resources located out of its boundaries, but previously contained within the boundaries
of θj . These undesired connections might interfere with the normal operation of θi,
being a potential threat for the correctness of computation and might even damage
the FPGA by setting short circuit situations. In order to remove the latter connections,
the configuration information of θj that is not overwritten when loading the bitstream
of θi must be blanked prior to enabling θi’s HWS. The blanking operation, however,
does not affect the BRAM content frames or LUT content frames as the data traces
must still remain on FPGA after deallocating the producer tasks. These are blanked
when all consumer tasks have accessed them.

The task deallocation service is mainly based on the frame blanking function (BlF)
implemented by the configuration manager. While this function writes all-zeros to all
of the (minor) frames included in a specific FPGA column, the task deallocation ser-
vice gives the necessary support to blank a given rectangular region within the FPGA
surface. Hence, the BlF function is repeatedly executed with the appropriate frame
address and amount of minor frames in each consecutive resource column within the
region to be blanked. Since the latter information is obtained from an FPGA descrip-
tor held in the lowest part of the Bitstream BRAM, the only input parameters to this
service are the coordinates of the two corners of the region to be blanked, i.e. upper-left
and bottom-right corners.

6.3. Inter-task Communication Service
In general, the inter-task communication service is aimed at providing support for
reallocating the content of the ODB of a producer task θi to the IDB of a consumer
task θj . So far we have seen that this operation can be conducted in various ways in

R3TOS, requiring different functions to be triggered in the configuration manager in
each case.

The most generic communication method consists in reading-back the frames asso-
ciated to the ODB of the data producer task, and writing them to the IDB of the data
consumer task(s). This can be done either using the WMF2S function, when dealing
with non-critical consumer tasks, or using the WSF2M function, when dealing with
triplicated critical consumer tasks or cloned task instances. Unlike when saving the
context of a task for an undetermined amount of time, when carrying out inter-task
communications, the exchanged data is read-back and immediately written to the tar-
get location, using the Bitstream BRAM to temporarily buffer it.

The inter-task communication service envisages the possibility of exchanging data
among buffers implemented using different FPGA resources. This could be useful
when communicating tasks which have not been developed according to the R3TOS
guidelines (e.g. using flip-flops to store data) with tasks that do follow the R3TOS rec-
ommendations, and thus use exclusively LUTs and/or BRAMS.

In order to adapt the format of the data to the needs of different FPGA resources,
the read-back frames need to be processed in the Bitstream BRAM, resulting in longer
communication overheads. While LUTs and flip-flops store their content “in clear”, i.e.
the 16 data bits stored in a LUT occupy consecutive positions within the bitstream,
BRAM content data is distributed along a set of frames in a non-trivial way. We only
know that 256 consecutive data bits and 32 consecutive parity bits are mapped to the
same BRAM content frame. In light of this, exchanging data between LUTs and flip-
flops is trivial: 16 flip-flops are grouped together to form the content of a LUT and,
conversely, each of the 16 bits of a LUT are copied to the INIT bits corresponding to
separate flip-flops. However, exchanging data between LUTs or flip-flops and BRAMs
is more complicated, requiring to deal with the “obscured” data format used to store
the BRAM content in the bitstream. The easiest and fastest way to deal with this issue
is to use a coding-decoding BRAM, that can be the Bitstream BRAM itself. Hence, flip-
flop or LUT data is extracted from the original location within the read-back frames
and written-back “in clear” to 256-bit length segments within the Bitstream BRAM. Af-
terwards, the memory segments are read-back through the ICAP and finally written to
the target BRAMs, i.e. to the IDB of the data consumer task. The latter access through
the ICAP is necessary to convert the data “in clear” to the suitable format demanded
by the BRAMs. In order to exchange data in the opposite way, content frames are read-
back from the source BRAM, i.e. data producer’s ODB, and written again to frames
which correspond with different memory segments within the Bitstream BRAM. Note
that it is then possible to access data “in clear” through the latter BRAM’s ports. Fi-
nally data is rearranged to the suitable location within the frames prior to being copied
to the LUTs or flip-flops.

The remaining two communication methods are mainly based on the partial bit-
stream relocation function (PBR) implemented by the ICAP driver. The first method
consists in allocating the data consumer task in such a way that it has direct access
to the BRAMs where input data is stored. The second method requires the alloca-
tion of a DRT prior to configuring the data consumer task. The inter-task communica-
tion service automatically manages the DRTs, selecting the appropriate one for each
communication situation, retrieving its associated partial bitstream from the external
memory, and once it is uploaded to the FPGA’s configuration memory, invoking the
clocking management and the task deallocation services as needed.

6.4. Clocking Management Service
In R3TOS each task receives as many clock signals as clock regions it spans in the
FPGA. These clock signals are synchronized because they are derived from the same

(global) clock signal (i.e. BUFG). While all of the clock signals must be of the same fre-
quency, they can be routed through different regional clock nets in each clock region.
This depends on the occupancy of the FPGA as well as on any existing damage in the
clock-tree, and requires the capability to route the clock signals inside the tasks at run-
time. Indeed, R3TOS implements a complete online clock routing mechanism, where
some parts are autonomously managed based on reliability premises (e.g. BUFGC-
TRLs), and the others are managed by either the clocking management service (e.g.
BUFRs) or by the task allocation service (e.g. clock routing inside the tasks). This ap-
proach contrasts with the usually chosen option of using a single clock source per task.
Indeed, the vast majority of reported reconfigurable systems do not use regional clock-
ing resources, and most of the systems which do use them are not capable of routing
the regional clock signals inside the tasks (e.g. [Jara-Berrocal and Gordon-Ross 2010]).
The latter approaches include BUFRs as a component of the tasks and therefore, the
clock routing remains unchangeable inside them.

While the clocking adjustments are sequentially performed, i.e. only one frame can
be read or written through the ICAP at a time, the HWS allows to enable all of the
clock signals which feed the same task at a time, circumventing any potential synchro-
nization problem. For simplicity and predictability, the clock signals are not modified
during the execution phase of the tasks, neither their rate nor their routing.

When only one frequency is needed in a clock region, the other BUFR is disabled to
reduce the power consumption. Likewise, when the two BUFRs in a clock region are
damaged, a spare clock signal from any of the 4 BUFRs located in the top or bottom
neighbour clock regions is switched. This is done by appropriately configuring the PIPs
that select the input connection of the regional clock lines [Iturbe et al. 2012]. This
novel use of the branched clock-tree available in modern Xilinx FPGAs significantly
increases the reliability of the system.

6.5. Task Preemption Service: Context Save and Restore
Preemption is not currently allowed in the execution phase of the tasks. Instead, the
duration of execution is limited and usually known, i.e. the amount of time needed by
pure hardware to come up with the results can usually be predicted with precision.
As a result there are a set of pre-defined instants when the tasks finish a partial
computation and the results computed by them can be accessed. Note that when the
tasks are reentrant, accessing the partial results is conceptually similar to a context
save as the execution of these tasks can be later resumed by delivering the partial
results again to them, i.e. by restoring the task context. Unlike in a spontaneous task
preemption, where the state of all memory elements and registers included in the
task must be saved (see Fig. 9a), the amount of results to be saved in R3TOS is more
reduced and localized in specific configuration frames, limited to the data stored in the
task’s data buffers (see Fig. 9b).

Data buffers are implemented using either LUT-RAM/ROMs or BRAMs in R3TOS in
order to enable access to them directly in the FPGA’s configuration memory. However,
when the implementation of these buffers is not up to the application developer (e.g.
the tasks are developed by a third party company or a high-level design tool which
does not allow to specify the implementation details is used), it might happen that
part of the data to be exchanged is mapped to flip-flops or to disjoint, or even unknown,
resources within the tasks. In the latter case, there is a need to save the state of all
resources which could potentially store user information, including flip-flops, BRAMs,
SRL16s and LUT-RAM/ROMs.

The operation sequence to save the context of a task is as follows. First, the task is
stopped. This can be done by disabling the BUFR if the task spans a single row. Other-
wise, a HWS-like mechanism must be used to allow glitchless task stopping, namely an

(a) Traditional task context (b) Task context in R3TOS

Fig. 9: Task context

ICAP writable LUT-RAM connected to the clock enable inputs of all task’s sequential
components. Then, a GCAPTURE command is issued to make the content of flip-flops
accessible in the FPGA’s configuration memory. Finally, task’s configuration informa-
tion is read-back. This information includes both exclusively configuration data (i.e.
the task’s partial bitstream) and user data (i.e. the task’s context). Since the read-
back information is likely to be large, it should be temporarily stored in the external
memory. In some cases, e.g. when dealing with reentrant tasks, this information could
overwrite the original task’s partial bitstream stored in the latter memory. If this is
the case, the task allocation service presented in section 6.1 can be used to restore the
task context. Indeed, the state of BRAMs, SRL16s and LUT-RAM/ROMs is automati-
cally restored when loading the saved context without requiring any other action to be
taken, and the state of flip-flops is restored as a result of triggering the GSR signal.
Thus, the task preemption service enables writing only for a set of flip-flops contained
within a particular FPGA region where a task is to be allocated prior to restoring its
context, and disables it when finishing, prior to enabling the HWS of the task.

6.6. Fault-Diagnosis Service
R3TOS relies on the Frame ECC codes included in the configuration frames to period-
ically detect kernel configuration errors and to correct single upsets (e.g. SEUs). After
correcting an upset, the frame is read-back again to check whether the error contin-
ues to exist. If so, permanent damage is assumed and the system initiates a fail-safe
shutdown.

Computation errors are detected when any of the three redundant instances of a
critical task computes a different set of results (i.e. value domain errors), or when the
HWS of a task that should have finished its computation does not indicate so (i.e. time
domain errors). R3TOS diagnoses the source of computation errors and, in case they
are due to permanent damage on the chip, it prevents the future use of the damaged
resources.

Damage in the clocking infrastructure is detected by checking all of the diagnostic
circuits associated to the BUFRs that deliver a clock signal to the erroneous task in-
stance [Iturbe et al. 2012]. If this is not the cause of the error, R3TOS proceeds to carry
out an exhaustive test of all routing wires and logic resources included in the FPGA
region where the erroneous task instance was allocated, i.e. Region Under Test (RUT).
In order to do so, R3TOS relies on using Built-In-Self-Test (BIST) circuits. We note

that any BIST circuit, such as those described in [Abramovici et al. 2004; Smith et al.
2006; Dutt et al. 2008; Amouri and Tahoori 2011], is potentially amenable to be used
in R3TOS. The only requirement imposed by R3TOS is the necessity to command the
BIST circuit by means of a HWS and access the diagnosis results remotely through
the ICAP. Since the BIST circuits remain configured in the FPGA only for a limited
amount of time, i.e. while carrying out the diagnostic test, they are named as Resource
Diagnosing Tasks (RDTs). These are managed as standard tasks, that is, they are al-
located and provided with a clock signal using the previously explained HAL services.
With the dual objective of speeding-up the diagnostic test execution and covering all
potential different sizes and shapes of RUTs, R3TOS relies on a single basic BIST cir-
cuit that is replicated along the RUT using the task clonaing capability implemented
by R3TOS. The BIST circuit instances tiled in the RUT are then simultaneously acti-
vated in order to perform concurrently.

7. R3TOS APPLICATION PROGRAMMING INTERFACE (API)
R3TOS is completed with a POSIX-like API, which provides high-level software-centric
users with a familiar way to access the low-level services implemented by the HWuK,
i.e. HAL, and ultimately to exploit the FPGA resources. The HAL is thus wrapped with
a software OS layer, the SWuK, which is executed on the main CPU. On the whole,
the combination of R3TOS HWuK and SWuK results in a good framework to develop
hardware-software hybrid applications. However, the achieved higher abstraction level
is traded-off with a loss in performance and an increase in power consumption, as the
CPU needs to execute extra OS processes. Besides, the system becomes more complex,
and thus more error prone.

7.1. The R3TOS Main CPU
We will not go into implementation details of the MicroBlaze-based main CPU as we
have mostly used standard peripherals and design tools provided by Xilinx. We note
however the MicroBlaze soft-core implementation is customized to fit in a target FPGA
location where the amount and length of the static routes across the chip is minimal,
thus increasing the allocatability of hardware tasks. While the most important aspects
of the main CPU have already been outlined in section 4.2, this section will explain its
interaction with the HWuK. A block diagram highlighting the components that play
a role in this interaction is shown in Fig. 10. These are the IDB/ODB and memory,
through which data is exchanged between hardware and software tasks, and Task
BRAM, which is used to exchange control information between SWuK and HWuK.

Fig. 10: Block diagram of the main CPU

The data read from the CPU’s IDB, which has been generated by hardware tasks, is
copied either to the data segment of the corresponding consumer software task in the
external memory, or left in the cache for immediate use. Analogously, the data written
to the CPU’s ODB, which will be delivered to hardware tasks, is retrieved either from
the data segment of the corresponding producer software task in the external memory,
or directly from the cache memory. An advantage of this scheme is its compatibility
with most software compilation systems and most task memory mappings of software
OS.

The Task BRAM is used to exchange control information, such as control commands
(e.g. task management operation codes) and task parameters (e.g. TaskID, data re-
trieval time, configuration and execution times). Every time this memory is written to
by one of the parts (i.e. SWuK or HWuK), an interrupt is provoked in the other part,
and when this reads the written data, the interrupt is cleared. Communications can
be initiated either by SWuK, when marking a task as ready, or by HWuK, either when
indicating that a task has been scheduled and requires input data to be delivered, or
when a hardware task has completed its computation and results are ready in CPU’s
IDB. In the latter two situations, the passed parameter from HWuK is the TaskID of
the scheduled task or of the task that has completed its computation, respectively.

7.2. The R3TOS Software Microkernel (SWuK)
The R3TOS SWuK is currently based on FreeRTOS, which is an easy-to-use and open
source real-time microkernel specifically designed to have a small memory footprint.
Indeed, our FreeRTOS porting to R3TOS requires 29.8 KB, thus fitting in only 16
BRAMs. Two features of FreeRTOS are especially attractive to us. First, its high de-
pendability, which is supported by the fact that a microkernel derived from it, i.e.
SafeRTOS, has been certified for safety-critical applications. Second, its popularity,
which is confirmed by the 2013 EETimes embedded systems market study, where
FreeRTOS came on top in two categories: the kernel currently being used, and the
kernel being considered for the next project to develop. This is precisely our objective:
provide R3TOS with the most attractive software skin for application developers.

FreeRTOS implements message queues as well as binary, counting and recursive
semaphores and mutexes for communication and synchronization between real-time
tasks, or between real-time tasks and interrupts. Note that these mechanisms are
natively available for software tasks, and must be extended to be used with hardware
tasks. While the core part of FreeRTOS has been kept intact in our porting to R3TOS,
new ISRs have been programmed to enable communication with the HWuK. Likewise,
the scheduler included in the commercial distribution of FreeRTOS has been modified
to provide the necessary support for dealing with hardware tasks (e.g. preemption is
disabled for hardware tasks). Finally, new functionality has been developed to ease
common operations in R3TOS (e.g. DMA transfers between IDB, ODB and external
memory). We note that the kernel tick used in the SWuK, which is in the range of
milliseconds, is coarser than that in the HWuK. This reflects the low achievable time
precision when using software instead of hardware.

The application developer can indistinguishably use software and hardware tasks,
as both of them are managed in a uniform way by R3TOS. The major difference be-
tween them is that, while the body of a software task includes the computation to be
performed, hardware tasks have a “ghost software body” whose main objective is to
make them manageable in SWuK. Nevertheless, although the generic software body of
a pure hardware task typically includes only HWuK-related system calls, if needed, it
could also include other SWuK system calls and regular software code.

In order to reduce time overheads, hardware tasks are assigned the highest pri-
ority in SWuK and thus, they are immediately executed by SWuK’s scheduler when

they are ready. Immediately after a hardware task is inserted in the ready queue
of the Task BRAM (insert task() system call), it is blocked in the software level
(wait scheduling() system call) until either the HWuK’s scheduler selects it to be
executed on the FPGA or it misses its deadline. When the hardware task is scheduled
by HWuK scheduler, and once the allocator has found an allocation for it, the task is
awakened in the software level. After transferring the input data to be processed by
the task to the ODB (wr ODB() system call), the task is again blocked in the software
level (wait computing() system call), but starts computing in hardware. When the lat-
ter computation finishes, the software task is awakened and retrieves the computed
results from the IDB (rd IDB() system call). It is important to note that the aforemen-
tioned task blocking and awakening mechanisms in the software level are based on
binary semaphores provided by FreeRTOS. The semaphores are taken when execut-
ing wait scheduling() or wait computing() system calls, and they are released upon
reception of the suitable control commands from HWuK. The interaction between the
software and hardware levels during the life cycle of a task is shown in Fig. 11.

Fig. 11: Management of a hardware task in SWuK

8. PROOF-OF-CONCEPT IMPLEMENTATION OF R3TOS: SDR CASE-STUDY
A R3TOS prototype has been implemented on a Xilinx Virtex-4 XC4VLX160 FPGA.
This chip is very interesting as it includes a 28 CLB column wide homogeneous region
in the central part with the heterogeneous resources located in the edges; in the left-
most edge there are 3 BRAM columns and 1 DSP48 column, while in the rightmost
edge there are 4 BRAM columns.

As shown in Fig. 12, the R3TOS core circuitry is located in the upper-right quadrant
of the chip, leaving 3/4 of the FPGA free to allocate the hardware tasks, i.e. Partially
Reconfigurable Regions (PRRs). Note that only the clock distribution lines span across
the PRRs to reach the regional clocking resources (i.e. BUFRs), which are located in the
leftmost and rightmost IOB columns. Next to the BUFRs, and occupying only one CLB
column, are the associated diagnostic circuits to detect errors in the clocking resources.
The R3TOS core circuitry comprises two different parts: (i) the HWuK, which spans 2
FPGA rows in height, and (ii) the main CPU, which spans 4 FPGA rows. Both R3TOS
parts communicate with each other as well as with I/O device pins through a set of
Bus Macros (BMs) located in the rightmost 4 CLB columns of the chip. This modular
implementation of R3TOS favours adaptability and upgradability, as the main CPU
can be replaced without having to modify the HWuK. In addition, the HWuK includes
a set of BMs in the leftmost side to access the FPGA’s hard primitives which are located
in the central part of the chip (i.e. Frame ECC, ICAP, STARTUP and BUFGCTRLs).

The prototype consumes 4,401 slices and 30 BRAMs in the FPGA. Both the HWuK
and main CPU consume a similar amount of resources (HWuK: 2,003 slices and 6

MAIN CPU
(MicroBlaze)

PARTIALLY RECONFIGURABLE REGION A

R3TOS HWuK

PARTIALLY RECONFIGURABLE REGION B

ICAP &
FRAME_ECC &

STARTUP &
BUFGCTRLs

B
U
F
R
s
&
D
I
A
G
N
O
S
T
I
C
C
I
R
C
U
I
T
S

B
U
F
R
s
&
D
I
A
G
N
O
S
T
I
C
C
I
R
C
U
I
T
S

B
U
S
M
A
C
R
O
S
&
R
O
U
T
I
N
G
&
P
I
N
O
U
T

Clock Line

Clock Line

Clock Line

Clock Line

Clock Line

Clock Line

Clock Line

Clock Line

Clock Line

Clock Line

Clock Line

Clock Line Clock Line

Clock Line

Clock Line

Clock Line

Clock Line

Clock Line

B
M
s

Fig. 12: FPGA implementation of R3TOS proof-of-concept prototype

BRAMs; Main CPU: 2,392 slices and 24 BRAMs), with the configuration manager be-
ing the component that requires more logic in comparison with other components (829
slices and 2 BRAMs). We note that the design of this component is not optimized and
hence the margin for improvement is still considerable.

8.1. Prototype Functioning
The functioning and performance of the R3TOS prototype has been demonstrated in
the context of a SDR application. When used together, R3TOS and SDR permit to
build highly reliable systems with the capability to deal not only with “internal” haz-
ards emerging on chip (i.e. spontaneously occurring faults), but also with “external”
threats appearing in the environment where the chip is working (e.g. spontaneous in-
terferences). Furthermore, R3TOS permits to use system resources to perform either
communication (i.e. SDR), or computation related tasks at different times. Including
some computation capabilities in the SDR transmitter (i.e. data pre-processing) allows
for significant energy saving and more reduced communication bandwidth as only the
significant pieces of information are to be sent. This is especially useful for applications
with size, bandwidth, consumption and resource constraints which operate in inacces-
sible (and harsh) locations, such as remote sensor networks, deep space exploration
spacecraft, or offshore wind turbines.

In the SDR case-study, the R3TOS prototype is extended with a superheterodyne Ra-
dio Frequency (RF) front-end and a color CIF image sensor. Consequently, the R3TOS
implementation shown in Fig. 12 is coupled with some specific static logic to drive
the RF front-end (i.e. A/D and D/A controllers), and for receiving the RGB video sig-
nal from the CIF sensor to be transmitted. This logic is allocated below the R3TOS
core circuitry, in the bottom-right quadrant of the chip. Central to this logic is dou-
ble buffering, where two memories are alternatively switched between read and write.
While one of the memories in the D/A controller is written to by R3TOS, the content of
the other memory is transmitted through the RF front-end, and similarly, while one of
the memories of the A/D controller is read by R3TOS, the other memory is filled with
data received from the RF front-end.

Our SDR prototype implements a simplified version of three of the currently most
used communication standards: IEEE 802.11 WiFi, IEEE 802.16 WiMAX, and IMT-
2000 UMTS (also known as 3G). Notably, our prototype is able to switch the commu-
nication standards on-the-fly to achieve smooth transition of the service as the sys-
tem moves from one network connection to another. However, as we have not imple-
mented the communication standard detection functionality yet, standard switches
are forced by pushing some buttons in the prototype. Additionally, our SDR prototype
implements a “home-made” cognitive radio solution which is able to autonomously de-
tect and circumvent any interferences provoked in the transmission channel by using
spectral switches. The interferences are generated in selected spectrum bands with an
RF white noise source. The implemented modulation in our cognitive radio is Offset
Quadrature Phase-Shift Keying (OQPSK). Besides receiving the data to be transmit-
ted, the latter modulator also receives the output Intermediate Frequency (IF), which
is computed on-the-fly based on the availability of spectral bands in the transmission
channel (it can range between 5 to 10 MHz). Indeed, the Power Spectral Density (PSD)
in the transmission channel is periodically evaluated (with a period of 50 ms) using
Fourier transform methods to estimate any potential interferences and noise. Refer to
[Torrego et al. 2011] for further explanations on this.

The SDR functionality was firstly developed and validated using Xilinx System Gen-
erator tool. The natural partitioning of System Generator models into (data-stream
processing) tasks consisted in grouping all of the logic in-between consecutive mem-
ories together, using the data buffers included in the TCLs to implement the latter

ID Task Name Slices BRAMs DSP48s
θ1 JPEG Compressor 2,859 15 2
θ2 Randomizer 53 10 -
θ3 Reed-Solomon Encoder 196 10 -
θ4 Convolutional Encoder 46 10 -
θ5 Puncturer 39 12 -
θ6 Inter-leaver 468 12 -
θ7 Data Symbol Mapper 132 9 -
θ8 WCDMA Modulator 3,041 8 67
θ9 OFDM 64-carrier Builder 749 9 -
θ10 Training Sequence Inserter 1,771 18 -
θ11 64-tap IFFT 1,536 11 26
θ12 16-word Cyclic Prefix Inserter 59 11 -
θ13 OFDM 256-carrier Builder 3,332 9 -
θ14 256-tap IFFT 2,585 11 42
θ15 64-word Cyclic Prefix Inserter 903 11 -
θ16 OQPSK Modulator 596 11 70
θ17 PSD Estimator 1,573 11 32

Table II: Task-set in the SDR prototype

memories. However, some pieces of the logic were too large and thus needed to be de-
composed into a set of smaller tasks. Namely, the OFDM modulator was divided into
three or four smaller tasks: (i) the OFDM symbol builder which allocates the data
symbols to orthogonal sub-carriers, (ii) the Inverse Fast Fourier Transform (IFFT) to
translate the OFDM symbols to the time domain, (iii) the Cyclic Prefix Inserter (CPI) to
mitigate the inter-symbol interference due to multi-path propagation, and in the case
of WiFi, (iv) the Training Sequence Inserter (TSI). At this point, it is convenient to
clarify that the purpose of this demonstrator is not to come up with the most efficient
application partition, but to demonstrate the feasibility of developing R3TOS-based
SDR applications. Overall, the task-set listed in Table II was implemented.

The three communication standards implemented by our SDR prototype as well as
our cognitive radio solution were built using the aforementioned task-set. The tasks
are executed in a different order and with some minor changes in each case. For in-
stance, the generation polynomial used in the convolutional encoder is different in
WiMAX and UMTS standards, and the interleaving pattern and length changes from
one standard to the other. Therefore, the tasks were parameterized to allow small on-
line adjustments to be made in order to fulfil the requirements of each communication
standard. In order to ease this process the adjustable parameters were mapped to di-
rectly accessible FPGA resources, such as LUTs. On the other hand, different versions
of the same task were developed when the amount of circuitry varies significantly with
the values of the adjustable parameters. For instance, θ14 is capable of implementing
both 64 and 256 IFFT taps, but consumes a notably larger amount of FPGA resources
than θ11, which is specifically designed to compute 64-tap IFFT. In order to enable θ14’s
reuse to compute 64-tap IFFTs, the size of the IFFT is kept as a parameter in this
task. If θ14 is not already configured when a 64-tap IFFT is required, the system will
proceed to allocate θ11, which takes less time and consumes less FPGA resources.

Xilinx System Generator tool was used to translate the high-level task models into
synthesizable VHDL code, which was in turn adapted to the partial reconfiguration
design flow, i.e. non-reconfigurable resources were extracted (DCM, BUFG, etc.). The
modified VHDL was then combined with R3TOS specific logic (e.g. TCL) and place-
ment constraints (e.g. PRRs definition) prior to synthesizing it to obtain the partial

bitstreams of the tasks. Finally, the latter bitstreams were loaded to the external mem-
ory included in the R3TOS prototype.

An important point to be considered in our SDR application is the great differ-
ence between the input and output throughput of some of the tasks. For instance, the
WCDMA modulator used in cognitive radio (θ8) generates 1 Kb at its output for each
input bit due to the spread spectrum technique used by UMTS. Since the size of the
data buffers of the tasks is limited by the availability of BRAMs in the device, tasks
with high output-input throughput relation need to execute several times to process
all input data, i.e. the remaining input data in the IDB after each task execution must
be processed in the next execution.

In general, the execution time of SDR tasks is deterministic. It depends on the
amount of data to be processed, the input interface width, and the relation between
input and output clock rates. However, the different combinations of variable data pro-
duced by the tasks which operate in windows, i.e. the remaining data in the tasks’
buffers are accumulated for several executions until they eventually form another
data window, results in data transfers of different lengths with the D/A controller.
This makes the whole system functioning complex, making it necessary to use queue-
ing theory to gain a detailed knowledge of it, which is indeed mandatory to prevent
memory overflows in the data buffers.

In connection with the above concept, an important aspect to be considered in order
to approach real-time is how to model data transfers between hardware tasks and sys-
tem input/outputs that are carried out through the ICAP. In order to tackle this issue,
we resorted to creating a communication specific task, θ18, which does not consume
any on-chip resources and consists only of a configuration phase during which data is
transferred (i.e. execution time is equal to zero). θ18 is thus considered by the R3TOS
scheduler together with the standard SDR tasks.

Since the SDR application is highly sequential, the number of tasks that are ready
at the same time is limited and hence, scheduling efficiency is not so important. On the
other hand, task allocation is especially important in light of optimizing data transfers
among successive SDR tasks and promoting the reuse of already configured circuitry
in the chip. In line with these two objectives, data producer and consumer tasks are
preferably packaged into the same clock region. The central BRAM columns in the
clock region are thus used to directly exchange data between the tasks, while the bor-
der BRAM columns are switched between the tasks and DRTs, which move data to
contiguous clock regions. As there are 3 BRAM columns in the leftmost FPGA half, a
maximum of two tasks can be packaged in the same clock region.

We report the basic functioning of the SDR transmitter prototype. Namely, the pro-
totype was able to transmit data when required, circumventing injected interferences
in the transmission channel. The data buffers of the tasks were used as test points to
check the correct functioning of our prototype. More specifically, the content of these
buffers was read-back and compared against the data produced in the System Gener-
ator simulation environment (i.e. MATLAB/Simulink). Besides, we report large time
overheads in our prototype due to the fact that the execution phases of most of SDR
tasks are shorter than their configuration phases. As a result of these overheads,
the time needed to transmit an image ranged from less than a second (in WiFi and
WiMAX) up to some seconds (in UMTS and cognitive radio), which is not sufficient for
most applications (e.g. real-time video streaming).

As an ending note, we emphasize that this SDR case-study shows the feasibility of
using R3TOS for developing reconfigurable applications. However, most of the aspects
which play an important role in the achievable performance have been neglected (e.g.
codesign and application partition into tasks) and should certainly be revisited in a
next stage of research. For instance, SDR hardware tasks could be based on a small

processor (e.g. PicoBlaze) coupled with custom logic instead of relying exclusively on
custom hardware to perform the computation. By doing so, a more effective trade-off
between resource usage (task size would be smaller) and execution time (it would be
longer) could be achieved. As task configuration times would likely be smaller than
execution times, the situation where R3TOS is expected to achieve better results could
be approached. We believe that, although the execution speed of individual computa-
tions would decrease, the overall performance of applications with sufficiently large
computing demands could be improved due to better exploitation of the multitasking
capabilities delivered by the FPGA, i.e. the device could be kept more occupied with
tasks performing active computation for longer periods of time. This scenario is in-
teresting as other functionality could be executed using the saved on-chip resources,
enabling more sophisticated applications.

8.2. Performance Figures
Several performance figures were measured on the R3TOS prototype when invoking
the system calls from both the HAL and API in the context of the SDR case-study. The
most significant ones are shown in Table III. These results were obtained when clock-
ing the prototype at 100 MHz, with the HWuK tick equal to 100 µs and the SWuK tick
equal to 1 ms. It is clear to see the achievable efficiency improvement when directly
using the HAL instead of the API. In the worst-case, up to 183 µs are required due
to API’s own operations. This overhead includes: (i) the time needed to perform data
transfers to/from data buffers, (ii) the delay introduced by FreeRTOS when process-
ing interruptions, and (iii) communications between the main CPU and the HWuK. It
is important to note the achievable acceleration when exchanging data among tasks
using DRTs or directly accessing the data in the producer task’s ODB. While the time
needed to transfer the content of a BRAM-based data buffer using the ICAP is about 60
microseconds, the access to the BRAM can be switched between two tasks within only
10.03 microseconds (around 6x speed-up). In addition, 36.18 microseconds are needed
to configure a DRT (around 1.6x speed-up), which then requires 81.92 microseconds to
complete the data transfer through the functional layer. Note that the latter time does
not constrain the performance as it can be parallelized with the task configuration
phase.

9. CONCLUSIONS AND FUTURE WORK
This article has outlined the most important architectural and implementation aspects
of R3TOS microkernel and described its functioning principles. The proposed architec-
ture is highly modular and makes extensive use of process parallelism to achieve a
good performance, while keeping the area overheads at reasonable bounds. The main
focus of the article is on the hardware implementation of R3TOS which is amenable to
be used in similar research efforts. This includes: (i) a hardware interface for hardware
tasks that makes them self-contained within their boundaries and fully relocatable on
the chip (i.e. TCL); (ii) a logic to be attached to the aforementioned task interfaces in
order to speed-up the exchange of large amounts of data between tasks (i.e. DRT); (iii)
a solution to enable hardware task preemption, (iv) a circuit to ensure task isolation
in the configuration domain of the FPGA, and (v) a solution for the Frame ECC and
ICAP coupling problem existing in Virtex-4 devices.

Moving up the abstraction layer, the article presented a set of services which are
built upon the microkernel hardware. These exploit the reconfiguration possibilities
delivered by Xilinx technology for improving multitasking and dependability. The ar-
ticle also outlined a high-level FreeRTOS-based API intended to universalize the use
of reconfigurable hardware and increase productivity.

HAL API
Min. Max. Min. Max.

TASK MANAGEMENT
Task execution overhead - - 18 µs 18 µs
Read/Write from/to data buffer - - < 1 µs 165 µs

DEALLOCATION
Deallocation of a hardware task 2.3 µs 33.2 µs - -

TASK PREEMPTION
Disable writing to all flip-flops at start-up < 2.5 ms < 2.5 ms - -
Context save / restore 26.6 µs 26.6 µs - -

INTER-TASK COMMUNICATIONS
Transfer LUT data buffer (ICAP) 3.7 µs 3.7 µs - -
Transfer BRAM data buffer (ICAP) 60.18 µs 60.18 µs - -
Transfer BRAM data buffer (DRTs): Conf. 36.18 µs 39.9 µs - -
Transfer BRAM data buffer (DRTs): Func. 81.92 µs 81.92 µs - -
Switching BRAMs between neighbor tasks 10.03 µs 10.03 µs - -

INTER-TASK SYNCHRONIZATION
Polling of a HWS 1.6 µs 1.6 µs - -
Activation of a HWS 3.7 µs 3.7 µs - -

CLOCKING MANAGEMENT
Enable/Disable a BUFR ≈ 4 µs ≈ 4 µs - -
Adjust task clock frequency ≈ 4 µs ≈ 4 µs - -

RELIABILITY
Scrub a configuration frame 4.81 µs 9.34 µs - -

Table III: Performance figures in the R3TOS prototype

Finally, a R3TOS proof-of-concept prototype has been presented and evaluated in
the context of a SDR application. Specifically, the major implementation details and
performance measurements have been described.

It is important to note that RT3OS is currently being ported to Xilinx 7-series FP-
GAs, which include new opportunities for reconfiguration that are envisaged in the
future. Xilinx Zynq, with its embedded reconfigurable fabric and built-in ARM pro-
cessor cores, is another family of devices that we are planning to target in the near
future. Besides, we plan to explore other APIs commonly used in high-performance
parallel-computing, such as CUDA and OpenCL.

REFERENCES
M. Abramovici, C. E. Stroud, and J. M. Emmert. 2004. Online BIST and BIST-based Diagnosis of FPGA

Logic Blocks. IEEE Transactions on Very Large Scale Integration Systems 12, 12 (2004), 1284–1294.
A. Ahmadinia, C. Bobda, J. Ding, M. Majer, J. Teich, S.P. Fekete, and J. C. van der Veen. 2005. A Practical

Approach for Circuit Routing on Dynamic Reconfigurable Devices. In Proc. of the IEEE Intl. Workshop
on Rapid System Prototyping. 84–90.

A. Ahmadinia, C. Bobda, D. Koch, M. Majer, and J. Teich. 2004. Task Scheduling for Heterogeneous Recon-
figurable Computers. In Proc. of the Intl. Symposium on Integrated Circuits and System Design. 22–27.

A. Amouri and M. B. Tahoori. 2011. A Low-Cost Sensor for Aging and Late Transitions Detection in Modern
FPGAs. In Proc. of the Intl. Conference on Field-Programmable Logic and Applications. 329–335.

D. Andrews, W. Peck, J. Agron, K. Preston, E. Komp, M. Finley, and R. Sass. 2005. hthreads: A Hard-
ware/Software Co-Designed Multithreaded RTOS Kernel. In Proc. of the IEEE Conference on Emerging
Technologies and Factory Automation.

C. Beckhoff, D. Koch, and J. Torresen. 2012. GoAhead: A Partial Reconfiguration Framework. In Proc. of the
IEEE Symposium on Field-Programmable Custom Computing Machines. 37–44.

N. W. Bergmann, J. A. Williams, J. Han, and Y. Chen. 2006. A Process Model for Hardware Modules in
Reconfigurable System-on-Chip. In Proc. of the Intl. Conference on Architecture of Computing Systems.
205–214.

B. Blodget, P. James-Roxby, E. Keller, S. McMillan, and P. Sundararajan. 2003. A Self-reconfiguring Plat-
form. In Field-Programmable Logic and Application (Lecture Notes in Computer Science), Vol. 2778.
565–574.

C. Bobda, A. Ahmadinia, M. Majer, J. Teich, S. Fekete, and J. C. van der Veen. 2005. DyNoC: A Dynamic In-
frastructure for Communication in Dynamically Reconfigurable Devices. In Proc. of the Intl. Conference
on Field-Programmable Logic and Applications. 153–158.

G. J. Brebner. 1996. A Virtual Hardware Operating System for the Xilinx XC6200. In Proc. of the Intl.
Workshop on Field-Programmable Logic, Smart Applications, New Paradigms and Compilers. 327–336.

K. Chapman. 2010. SEU Strategies for Virtex-5 Devices (XAPP864). Technical Report. Xilinx Inc.
C. Charmichael and C. W. Tseng. 2009. Correcting Single-Event Upsets in Virtex-4 FPGA Configuration

Memory (XAPP1088). Technical Report. Xilinx Inc.
J. D. Corbett. 2012. The Xilinx Isolation Design Flow for Fault-Tolerant Systems (WP412). Technical Report.

Xilinx Inc.
S. Corbetta, M. Morandi, M. Novati, M. D. Santambrogio, D. Sciuto, and P. Spoletini. 2009. Internal and

External Bitstream Relocation for Partial Dynamic Reconfiguration. IEEE Transactions on Very Large
Scale Integration Systems 17 (2009), 1650–1654. Issue 11.

A. Donato, F. Ferrandi, M. D. Santambrogio, and D. Sciuto. 2005. Operating System Support for Dynamically
Reconfigurable SoC Architectures. In Proceedings of the IEEE Intl. System-on-Chip Conference. 233–
238.

A. Donlin, P. Lysaght, B. Blodget, and G. Troeger. 2004. A Virtual File System for Dynamically Reconfig-
urable FPGAs. In Proc. of the Intl. Conference on Field-Programmable Logic and Applications. 1127–
1129.

S. Dutt, V. Verma, and V. Suthar. 2008. Built-in-Self-Test of FPGAs With Provable Diagnosabilities and
High Diagnostic Coverage With Application to Online Testing. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 27, 2 (2008), 309–326.

A. Ebrahim, K. Benkrid, X. Iturbe, and Chuan Hong. 2012. A Novel High-Performance Fault-Tolerant ICAP
Controller. In Proc. of the NASA/ESA Conference on Adaptive Hardware and Systems. 259–263.

A. Ebrahim, K. Benkrid, X. Iturbe, and C. Hong. 2013. Multiple-Clone Configuration of Relocatable Partial
Bitstreams in Xilinx Virtex FPGAs. In Proc. of the NASA/ESA Conference on Adaptive Hardware and
Systems.

D. Gohringer, M. Hubner, L. Hugot-Derville, and J. Becker. 2010a. Message Passing Interface support for
the Runtime Adaptive Multi-processor System-on-Chip RAMPSoC. In Proc. of the IEEE Intl. Conference
IC-SAMOS. 357–364.

D. Gohringer, M. Hubner, E. N. Zeutebouo, and J. Becker. 2010b. Operating System for Runtime Reconfig-
urable Multiprocessor Systems. Intl. Journal of Reconfigurable Computing (2010).

S. G. Hansen, D. Koch, and J. Torresen. 2011. High Speed Partial Run-Time Reconfiguration Using En-
hanced ICAP Hard Macro. In Proc. of the IEEE Intl. Symposium on Parallel and Distributed Processing
Workshops and Phd Forum. 174–180.

J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb. 2009. FPGA Partial Reconfiguration via Configuration Scrub-
bing. In Proc. of the Intl. Conference on Field-Programmable Logic and Applications. 99–104.

C. Hong, K. Benkrid, X. Iturbe, A. Ebrahim, and T. Arslan. 2011. Efficient On-Chip Task Scheduler and
Allocator for Reconfigurable Operating Systems. IEEE Embedded Systems Letters 3, 3 (2011), 85–88.

A. Ismail and L. Shannon. 2011. FUSE: Front-End User Framework for O/S Abstraction of Hardware
Accelerators. In Proc. of the Annual IEEE Intl. Symposium on Field-Programmable Custom Computing
Machines. 170–177.

X. Iturbe, M. Azkarate, I. Martinez, J. Perez, and A. Astarloa. 2009. A Novel SEU, MBU and SHE Handling
Strategy for Xilinx Virtex-4 FPGAs. In Proc. of the Intl. Conference on Field-Programmable Logic and
Applications. 569–573.

X. Iturbe, K. Benkrid, T. Arslan, R. Torrego, and I. Martinez. 2011a. Methods and Mechanisms for Hardware
Multitasking: Executing and Synchronizing Fully Relocatable Hardware Tasks in Xilinx FPGAs. In
Proc. of the Intl. Conference on Field-Programmable Logic and Applications.

X. Iturbe, K. Benkrid, A. Ebrahim, C. Hong, T. Arslan, and I. Martinez. 2011b. Snake: An Efficient Strat-
egy for the Reuse of Circuitry and Partial Computation Results in High-Performance Reconfigurable
Computing. In Proc. of the Intl. Conference on Reconfigurable Computing and FPGAs.

X. Iturbe, K. Benkrid, C. Hong, A. Ebrahim, T. Arslan, and I. Martinez. 2013a. Runtime Scheduling, Alloca-
tion and Execution of Real-Time Hardware Tasks onto Xilinx FPGAs Subject to Fault Occurrence. Intl.
Journal of Reconfigurable Computing (2013).

X. Iturbe, K. Benkrid, C. Hong, A. Ebrahim, R. Torrego, I. Martinez, T. Arslan, and J. Perez. 2013b. R3TOS:
A Novel Reliable Reconfigurable Real-Time Operating System for Highly Adaptive, Efficient and De-
pendable Computing on FPGAs. IEEE Trans. Comput. 62, 8 (2013), 1542–1556.

X. Iturbe, K. Benkrid, R. Torrego, A. Ebrahim, and T. Arslan. 2012. Online Clock Routing in Xilinx FPGAs
for High-Performance and Reliability. In Proc. of the NASA/ESA Conference on Adaptive Hardware and
Systems.

A. Jara-Berrocal and A. Gordon-Ross. 2010. VAPRES: A Virtual Architecture for Partially Reconfigurable
Embedded Systems. In Proc. of the Conference on Design, Automation and Test in Europe. 837–842.

S. Jovanovic, C. Tanougast, and S. Weber. 2007. A Hardware Preemptive Multitasking Mechanism Based
on Scan-path Register Structure for FPGA-based Reconfigurable Systems. In Proc. of the NASA/ESA
Conference on Adaptive Hardware and Systems. 358–364.

K. Jozwik, H. Tomiyama, S. Honda, and H. Takada. 2010. A Novel Mechanism for Effective Hardware
Task Preemption in Dynamically Reconfigurable Systems. In Proc. of the Intl. Conference on Field-
Programmable Logic and Applications. 352–355.

H. Kalte, G. Lee, M. Porrmann, and U. Ruckert. 2005. REPLICA: A Bitstream Manipulation Filter for
Module Relocation in Partial Reconfigurable Systems. In Proc. of the IEEE Intl. Parallel and Distributed
Processing Symposium.

H. Kalte and M. Porrmann. 2005. Context Saving and Restoring for Multitasking in Reconfigurable Systems.
In Proc. of the Intl. Conference on Field-Programmable Logic and Applications. 223–228.

H. Kalte and M. Porrmann. 2006. REPLICA2Pro: Task Relocation by Bitstream Manipulation in Virtex-
II/Pro FPGAs. In Proc. of the Conference on Computing Frontiers. 403–412.

D. Koch, C. Beckhoff, and J. Teich. 2008. ReCoBus-builder - a Novel Tool and Technique to Build Stati-
cally and Dynamically Reconfigurable Systems for FPGAs. In Proc. of the Intl. Conference on Field-
Programmable Logic and Applications. 119–124.

D. Koch, C. Beckhoff, and J. Torresen. 2010. Obstacle-free Two-Dimensional Online-routing for Run-Time
Reconfigurable FPGA-based Systems. In Proc. of the Intl. Conference on Field-Programmable Technol-
ogy. 208–215.

D. Koch, C. Haubelt, and J. Teich. 2007. Efficient Hardware Checkpointing: Concepts, Overhead Analysis
and Implementation. In Proc. of the ACM/SIGDA Intl. Symposium on Field-Programmable Gate Arrays.
188–196.

D. Koch, C. Haubelt, and J. Teich. 2008. Efficient Reconfigurable On-Chip Buses for FPGAs. In Proc. of the
IEEE Symposium on Field-Programmable Custom Computing Machines. 287–290.

H. Kopetz. 2011. Real-Time Systems: Design Principles for Distributed Embedded Applications (2nd ed.).
Springer-Verlag.

K. Kosciuszkiewicz, F. Morgan, and K. Kepa. 2007. Run-Time Management of Reconfigurable Hardware
Tasks Using Embedded Linux. In Proc. of the Intl. Conference on Field-Programmable Tecnology.

E. Lubbers. 2010. Multithreaded Programming and Execution Models for Reconfigurable Hardware. Ph.D.
Dissertation. University of Paderborn, Germany.

J. Y. Mignolet, V. Nollet, P. Coene, D. Verkest, S. Vernalde, and R. Lauwereins. 2003. Infrastructure for
Design and Management of Relocatable Tasks in a Heterogeneous Reconfigurable System-on-Chip. In
Proc. of the Conference on Design, Automation and Test in Europe.

F. Muller, J. Le Rhun, F. Lemonnier, B. Miramond, and L. Devaux. 2005. A Flexible Operating System for
Dynamic Applications. Xilinx Xcell Journal Fourth Quarter 2010 (2005), 30–34.

R. Pellizzoni and M. Caccamo. 2006. Adaptive Allocation of Software and Hardware Real-Time Tasks for
FPGA-based Embedded Systems. In Proc. of the IEEE Real-Time and Embedded Technology and Ap-
plications Symposium. 208–220.

M. D. Santambrogio, V. Rana, and D. Sciuto. 2008. Operating System Support for Online Partial Dynamic
Reconfiguration Management. In Proc. of the Intl. Conference on Field-Programmable Logic and Appli-
cations. 455–458.

P. Sedcole. 2006. Reconfigurable Platform-Based Design in FPGAs for Video Image Processing. Ph.D. Dis-
sertation. Imperial College London, UK.

P. Sedcole, P. Y. K. Cheung, G. A. Constantinides, and W. Luk. 2007. Run-time Integration of Reconfigurable
Video Processing Systems. IEEE Transactions on Very Large Scale Integration Systems 15 (2007), 1003–
1016. Issue 9.

M. Shelburne, C. Patterson, P. Athanas, M. Jones, B. Martin, and R. Fong. 2008. Metawire: Using FPGA
Configuration Circuitry to Emulate a Network-on-Chip. In Intl. Conference on Field-Programmable
Logic and Applications. 257–262.

H. Simmler, L. Levinson, and R. Manner. 2000. Multitasking on FPGA Coprocessors. In Proc. of the Intl.
Workshop on Field-Programmable Logic and Applications. 121–130.

J. Smith, T. Xia, and C. Stroud. 2006. An Automated BIST Architecture for Testing and Diagnosing FPGA
Interconnect Faults. Journal of Electronic Testing: Theory and Applications 22, 3 (2006), 239–253.

H. K. H. So. 2007. BORPH: An Operating System for FPGA-Based Reconfigurable Computers. Ph.D. Dis-
sertation. University of California at Berkeley, USA.

A. A. Sohanghpurwala, P. Athanas, T. Frangieh, and A. Wood. 2011. OpenPR: An Open-Source Partial-
Reconfiguration Toolkit for Xilinx FPGAs. In Proc. of the IEEE Intl. Symposium on Parallel and Dis-
tributed Processing Workshops and Phd Forum. 228–235.

M. B. Stensgaard and J. Sparso. 2008. ReNoC: A Network-on-Chip Architecture with Reconfigurable Topol-
ogy. In Proc. of the ACM/IEEE Intl. Symposium on Networks-on-Chip. 55–64.

L. Sterpone and M. Violante. 2005. Analysis of the Robustness of the TMR Architecture in SRAM-based
FPGAs. IEEE Transactions on Nuclear Science 52, 5 (2005), 1545–1549.

J. Suris, M. Shelburne, C. Patterson, P. Athanas, J. Bowen, T. Dunham, and J. Rice. 2008. Untethered
On-The-Fly Radio Assembly With Wires-On-Demand. In Proc. of the IEEE National Aerospace and
Electronics Conference. 229–233.

R. Torrego, I. Val, and E. Muxika. 2011. QPSK Cognitive Modulator Fully FPGA-implemented via Dynamic
Partial Reconfiguration and Rapid Prototyping Tools. In Proc. of the European Conference on Communi-
cations Technologies and Software Defined Radio.

V. M. Tuan and H. Amano. 2008. A Method for Capturing State Data on Dynamically Reconfigurable Pro-
cessors. In Proc. of the Intl. Conference on Engineering of Reconfigurable Systems and Algorithms.

H. Walder. 2005. Operating System Design for Partially Reconfigurable Logic Devices. Ph.D. Dissertation.
Swiss Federal Institute of Technology Zurich, Switzerland.

J. A. Williams and N. W. Bergmann. 2004. Embedded Linux as a Platform for Dynamically Self-
Reconfiguring Systems-On-Chip. In Proc. of the Intl. Conference on Engineering of Reconfigurable Sys-
tems and Algorithms.

J. A. Williams, N. W. Bergmann, and X. Xie. 2005. FIFO Communication Models in Operating Systems for
Reconfigurable Computing. In Proc. of the Annual IEEE Symposium on Field-Programmable Custom
Computing Machines. 277–278.

B. Zhou, W. Qiu, and C. Peng. 2005. An Operating System Framework for Reconfigurable Systems. In Proc.
of the Intl. Conference on Computer and Information Technology. 788–792.

Received February 2007; revised March 2009; accepted June 2009

