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Abstract

Temperate forest 15N isotope trace experiments find nitrogen (N) addition-driven carbon (C) uptake is modest as little

additional N is acquired by trees; however, several correlations of ambient N deposition against forest productivity

imply a greater effect of atmospheric nitrogen deposition than these studies. We asked whether N deposition experi-

ments adequately represent all processes found in ambient conditions. In particular, experiments typically apply 15N

to directly to forest floors, assuming uptake of nitrogen intercepted by canopies (CNU) is minimal. Additionally, con-

ventional 15N additions typically trace mineral 15N additions rather than litter N recycling and may increase total N

inputs above ambient levels. To test the importance of CNU and recycled N to tree nutrition, we conducted a meso-

cosm experiment, applying 54 g N/15N ha�1 yr�1 to Sitka spruce saplings. We compared tree and soil 15N recovery

among treatments where enrichment was due to either (1) a 15N-enriched litter layer, or mineral 15N additions to (2)

the soil or (3) the canopy. We found that 60% of 15N applied to the canopy was recovered above ground (in needles,

stem and branches) while only 21% of 15N applied to the soil was found in these pools. 15N recovery from litter was

low and highly variable. 15N partitioning among biomass pools and age classes also differed among treatments, with

twice as much 15N found in woody biomass when deposited on the canopy than soil. Stoichiometrically calculated N

effect on C uptake from 15N applied to the soil, scaled to real-world conditions, was 43 kg C kg N�1, similar to

manipulation studies. The effect from the canopy treatment was 114 kg C kg N�1. Canopy treatments may be critical

to accurately represent N deposition in the field and may address the discrepancy between manipulative and correla-

tive studies.

Keywords: 15N labelling, C sequestration, canopy fertilization, canopy nitrogen uptake, isotope trace, Nitrogen deposition, Picea

sitchensis, soil fertilization
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Introduction

Large differences exist among some estimates of the

effect of nitrogen (N) deposition (NDEP) on temperate

forest carbon (C) uptake in the northern hemisphere.

These forests are a net C sink [0.6–0.7 Pg C yr�1

(Goodale et al., 2002)] and are also typically nitrogen

limited (Vitousek et al., 2002; Lebauer & Treseder,

2008). Anthropogenic inputs of N from the atmosphere

(Vitousek et al., 1997; Holland et al., 1999; Galloway

et al., 2004) may enable extra C uptake (Thornley &

Cannell, 1996) in these regions. However, estimates of

C uptake due to NDEP (henceforth referred to as DC/
DN) from N additions tend to be low. Stable isotope

tracer experiments where 15N is directly applied to the

forest floor find that soil, litter and microbial biomass

(SMB) are major sinks of N (70–80% of NDEP), while

only ~20% of this 15N can be traced into trees and even

less (< 5%) into woody components (Nadelhoffer et al.,

1999; Templer et al., 2012a). As little N is recovered

from high C/N biomass, the implied DC/DN is around

50 kg C kg N�1, which equates to only around 20% of

net C uptake (Nadelhoffer et al., 1999). Other method-

ologies scaling measurements such as canopy N bud-

gets or photosynthetic rates also tend to give low

estimates of DC/DN [e.g. De Vries et al., 2006; Fleischer

et al., 2013)], and one particular 15N amendment and

modelling synthesis from Harvard Forest (Currie et al.,

2004) found a DC/DN effect as small as

< 5 kg C kg N�1, with most N for forest growth
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derived from natural abundance mineral soil as

opposed to 15N deposition inputs applied to the soil.

Several correlational studies have since produced

higher DC/DN estimates based on relationships

between NDEP and various indices of forest productiv-

ity. This was first raised by Magnani et al. (2007) who,

from an estimate of C accumulation based on a compar-

ison of European forest net ecosystem productivity

found a strong influence of total (i.e. wet and dry) NDEP

at the continental scale, indicating an effect around

120–150 kg C kg N�1 (Magnani et al., 2008) when

revised. These findings have variously been attributed

to covariance of C uptake and N deposition with factors

such as soil N capital and site history (De Vries et al.,

2008; H€ogberg, 2012), climate or dry NDEP contributions

(De Vries et al., 2008; Sutton et al., 2008). Other studies

using similar methodologies at the continent (Thomas

et al., 2009) or country scale (Etzold et al., 2014; Ferretti

et al., 2014) using forest inventory data have since

implied similarly large effects. For such a large sink,

NDEP needs to be accumulated in trees and sequestered

in high C/N, long-lived bolewood (Townsend et al.,

1996), which contradicts the results of manipulative

experiments and 15N budgets.

An alternative explanation for these differences is that

important real-world processes included in correlative

studies are not accurately represented in conventional

deposition experiments. 15N amendment experiments

(e.g. Nadelhoffer et al., 1999) typically apply 15N directly

to the soil, and, while uptake of N by foliage has been

considered for some almost 30 years (see early work;

Garten et al., 1988; Hanson & Garten, 1992; Norby et al.,

1989), such studies assume interactions with the canopy

are of minimal importance. However, canopy N uptake

(CNU) is nowwell documented (Sparks, 2009) and if sub-

stantial amounts of N are obtainable across leaf or branch

surfaces this may substitute for, or supplement nutrition

by soil pathways. Soil-targeted studies could therefore

underestimate the total DC/DN effect due to their

assumption that only minimal amounts of N can be

acquired by the canopy. CNU may also increase alloca-

tion to wood to 10 or 15% of total NDEP (Sievering, 1999),

which may influence the strong woody response implied

by growth rates of some species across North America

(Thomas et al., 2009). When incorporated into a recent

modelling study, Dezi et al. (2010) found that forest man-

agement, CNU and induced changes in litter quality sig-

nificantly raised the predicted DC/DN effect up to

121 kg C kg N�1.

Various potential mechanisms for CNU have been

suggested, across both foliage and twigs, via ion

exchange (Bowden et al., 1989; Boyce et al., 1996;

Sparks, 2009) and simple diffusion (Klemm et al., 1989).

These may vary in their absorption of specific N species

(Wilson & Tiley, 1998) due to varying transport and

metabolic costs to reduce N for biological incorporation,

as well as internal cell N concentrations, and varying in

their degree of incorporation into actively cycling pools

within the plant (Sparks, 2009). In forests, estimates of

CNU can be high, and some canopy N budgets (NDEP –
throughfall) suggest 50–80% of NDEP is retained by the

canopy (e.g. Sievering et al., 2007). 15N tracer recovery-

based methods tend to suggest lower CNU, from 50%

maximum uptake across the canopy (MacKlon et al.,

1996) to 25–30% (Friedland et al., 1991; Ammann et al.,

1999) or as low as 2–5% (Lumme, 1994; Wilson & Tiley,

1998). These estimates are often difficult to interpret

because of varying application methods, experimental

systems, NDEP magnitudes (Chiwa et al., 2004) and

timescales, as well as species and site specific effects.

They are also rarely compared against equivalent soil-

targeted deposition, making the separation of causative

factors difficult [(see Lumme, 1994) for the only excep-

tion we could identify, albeit in an artificial microcosm].

Similarly, only a single study (Dail et al., 2009) reports a

field-scale 15N canopy fertilization. In their study, 15N

recovery was high in plants (31% of 15N-NH4, 61% of
15N-NO3), but the implied DC/DN was modest due to

high recovery in low C/N compartments such as bark

(apparent retention in this pool is also complicated by

the potential for abiotic retention on bark surfaces and

incorporation into bark surface mosses and lichens).

The C/N stoichiometry of this pool also varies between

species (Allison, 1965), and hence, C effects from reten-

tion in bark may vary. Finally, both 15N isotope trace

and unlabelled N addition experiments frequently

apply a total N concentration far in excess of ambient

NDEP concentrations. This means it is difficult to inter-

pret the effects of such experiments due to both positive

and negative concentration-dependent effects on

ecosystem health as cumulative N inputs move towards

N saturation (McNulty et al., 1996) as well as those

specifically on canopy physiology (Maurice & Crang,

1986; Wellburn, 1990; Sievering et al., 2007; Wortman

et al., 2012). Physiological effects on the canopy may

occur earlier under foliar N loads due to CNU, espe-

cially if N inputs are in rare, high concentration events.

A second limitation to conventional 15N deposition

treatments is that these typically apply a mineral 15N,

typically NH4NO3, over the short term. In the real

world, such inputs typically provide a minority of total

N nutrition to plants in natural systems. Even under

heavy NDEP, internal litter mineralization remains the

major source of N nutrition (Schulze, 2000; H€ogberg,

2012). Plant N uptake was historically thought to

require complex organic precursors to be decomposed

fully to NHþ
4 and NO�

3 , but there is now substantial evi-

dence [see N€asholm et al. (2009) for a review] for
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organic N uptake by plants. Therefore, we were also

interested if N from this source was partitioned in the

same way as N from deposition.

We designed an experiment utilizing Sitka spruce

[Picea sitchensis, (Bong.) Carr.] saplings, where a 15N

signal could be traced from CNU, from conventional

direct-to-soil mineral fertilization sources and also from

labelled litter. We aimed to apply sustained N deposi-

tion inputs more regularly and for a longer duration

than the few month durations and occasional inputs

typical of other foliar 15N experiments. We applied very

low total concentrations of N at high 15N enrichments

in order to study the system at close to background N

deposition levels. We utilized treatments with an artifi-

cial litter layer with high 15N enrichment and unla-

belled N deposition to trace 15N from the litter under

our deposition treatments.

We aimed to test the hypotheses that (i) the total

return of 15N from deposition in aboveground parts of

trees would be greater when 15N was applied to the

canopy, rather than the soil; (ii) the proportional recov-

ery of 15N in different tree organs (foliage, branches,

stems and roots) and soil pools (SMB and bulk soil)

would differ because of these two forms of application;

and iii) 15N released from litter mineralization would

have a greater recovery in plant pools compared to 15N

applied in soil fertilizer treatments due to increased

plant uptake of N from this source.

Materials and methods

Study site

Our study consisted of 3-year-old Sitka spruce saplings,

located at Forest Research Northern Research Station, Scotland

(55°860N, 3°200W). Thirty selected individuals from a cold-s-

tored (4 °C, lifted January 2011) batch of 2-year-old saplings

were potted in 60 L pots on a mix of 90% homogenized stag-

nohumic gley topsoil (Clement, 2004) and 10% low N/P/K

compost. The soil was collected from Griffin Forest, a Sitka

spruce plantation in central Scotland (56°370N, 3°470W) and

after mixing had a mean N content of 0.64% by dry weight.

The C/N ratio of the soil mix was 24:1. In June 2011, the seed-

lings were randomly arranged in a 0.5 m spaced grid of 5 by

six trees, surrounded in an overall 9 by 6 grid by an additional

60 trees which served to provide an edge around all treatment

groups, and left to establish until summer 2012. Annual pre-

cipitation at the site was 704 mm, while mean monthly tem-

peratures varied between 1 and 19°C. The trees remained in

the initial configuration for the duration of the experiment.

Experimental treatments

Individual trees were assigned to six treatments stratified

based on current basal diameter and height as well as a series

of soil CO2 efflux measurements made over spring and

summer 2012 with an a EGM-4 CO2 IRGA (PP Systems,

Amesbury, MA, USA), as a proxy for differences in below-

ground nutrient cycling potential. Due to an aphid infestation

in spring 2012, six trees had lost some of the 2011 cohort of

needles and were each assigned to different treatments to

avoid systematic biases. This stratification was designed to

ensure an even mixture of tree size and apparent health in

each treatment (n = 5 per treatment). In August 2012, we

assigned the trees to their treatment groups and applied a

layer of artificial litter to the soil. This artificial litter was

obtained from the Gisburn Forest tree species trial, Lan-

cashire, UK (54_01030″N, 2_22057″W) where 6–7 m tall Sitka

spruce trees had been stem injected with 13C and 15N double-

labelled aspartic acid (n = 3, see Churchland et al., 2012). The

labelled trees were felled in November 2010, and three natu-

ral abundance control trees were harvested from the same

site in January 2011. All biomass was dried in a 70 C oven

until needles were easily separated from the branches, then

stored in paper sacks in a dry polytunnel until deployment.

A random sample of 100 needles from each of the trees was

measured for 14/15N and 12/13C isotope ratios 1 month before

deployment, using the same methodology as later samples

(see below). In the control trees, d15N was at natural abun-

dance (0%). The labelled trees had mean foliar 15N atom %

excess of 0.263, 0.850 and 1.231% over natural abundance,

and a mean foliar N content of 1.12 � 0.2 (SD) % and foliar C

content of 48.88 � 5.3 (SD) %. Total N and C concentrations

were not significantly different (ANOVA) among the source

trees nor between injected and uninjected trees. Each potted

mesocosm tree received 0.8 kg of litter (either 15N enriched or

natural abundance), from a single randomly assigned source

tree [to reduce the potential for interactive effects of litter

mixing, for example Gartner & Cardon (2004); Smith & Brad-

ford (2003)], in a single 4–5 cm deep layer. This amount of lit-

ter was selected to provide a reasonably deep and mixable

litter layer across the pot surface. The six treatments (Table 1,

Fig. 1) were designed to test a unique combination of 15N

source and deposition type to the trees, varying in (a) litter

type; either natural abundance or 15N-enriched (indicated in

treatment names by the superscript LITTER); (b1) deposition

type; either, NDEP to the soil (SNU; soil nitrogen uptake) or

NDEP to the canopy (CNU; canopy nitrogen uptake); and (b2)

level of 15N enrichment of the deposition treatment; either

water control applied directly to the soil, (CONTROL), natu-

ral abundance 0.3663 atom % 15N (in the case of the LITTER

treatments) or 98 atom % 15N (the source of 15N in all treat-

ments without the LITTER prefix). All treatments had a single

enriched 15N source (e.g. the LITTERSNU treatment contained
15N-labelled litter paired with an unlabelled NDEP treatment

to the soil), with the exception of the water control on unla-

belled litter, which had no enriched 15N source.

The simulated N deposition applied to 4 of the 6 treatments

was equivalent to approximately 54 g N ha�1 yr�1 in excess

of background NDEP of either 98 atom % 15N as 15NH4
15NO3,

or unlabelled NH4NO3. We aimed to keep bulk NDEP

almost unaltered from ambient deposition and at the same

magnitude in all N amendment treatments to allow a direct
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comparison between the foliar-applied 15N label and the soil

wet 15N deposition treatment with minimal effect of total N

abundance relative to controls. Ammonium nitrate was cho-

sen for the simulated NDEP, as it contains both mineral ions

typically found in N deposition. This treatment was applied in

deionized (DI) water solution every 3–6 weeks from February

2013 until March 2014 as either a 0.5 L (SNU applications), or

a solution of 10–15 mL (CNU application), the canopy solu-

tion being increased in volume (but not in N or 15N content) in

summer 2013 to match increases in the canopy biomass of the

trees (based on observed growth). On average, each month,

each treatment tree receiving a labelled deposition treatment

(CNU and SNU) received 81 lg 15N and each treatment tree

with 15N-litter (LITTERCNU and LITTERSNU) received 81 lg N

at natural abundance. Soil treatments were sprayed onto the

litter surface using a pressurized hand sprayer, while foliar

applications were applied directly onto needles and twigs

using a brush presoaked with treatment solution. This began

at the top of the tree and continued on each branch in turn

down through the canopy until the solution was exhausted,

and visible drips of the solution onto the soil/litter during

application were not observed. The bottle was then washed

out with 10 ml rainwater and poured directly down the stem

of the tree. Control water treatments (CONTROL and LITTERC)

Table 1 Treatment descriptions for the six experimental treatments. Total NDEP for all deposition treatments was

54 g N ha�1 yr�1 applied as NH4NO3, and
15N-enriched treatments were 98 atom % 15N as 15NH4

15NO3

Treatment ID Litter Type of application to soil Type of application to canopy

CONTROL Natural abundance Water –
LITTERC 15N-enriched Water –
SNU Nat. abun. 15N-enriched NDEP –
CNU Nat. abun. – 15N-enriched NDEP
LITTERSNU 15N-enriched Nat. abun. NDEP –
LITTERCNU 15N-enriched – Nat. abun. NDEP

Fig. 1 Treatment descriptions for the six experimental treatments. Each treatment received 0–1 sources of enriched 15N, either no

enrichment (CONTROL), 15N-enriched litter (LITTERCONTROL, LITTERSNU, LITTERCNU) or 98% double-labelled 15N in deposition, that

is 15NH4
15NO3 (SNU, CNU). All deposition treatments received a total of 54 g N ha�1 yr�1 in deposition (as 15NH4

15NO3 or NH4NO3).

© 2015 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., 22, 875–888
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were applied directly to the litter surface in the same manner

and volume as the soil applications.

Routine biomass measurements and maintenance

Routine measurements of tree growth were made every

2 months during the growing season and every 3 months

outside the growing season. At each occasion, tree height was

measured with a plumbline marked in centimetres, and basal

diameter was measured as the mean of two calliper measure-

ments at right angles across the stem at the litter surface. At

each of these instances, deciduous leaf litter not derived from

the experimental trees was removed and weeds growing in

the pot were uprooted, manually shredded, and left on the

soil surface, so none of the 15N in their foliage was removed

from the potted system. The pots were free draining, so any
15N exported in flow through the pot was not retained.

Time series measurements

Twenty-five needles per tree were collected from the entire

canopy on 13 occasions between August 2012 and May 2014,

10 of these being after the deposition treatments began in

February 2013. This number of needles was chosen as a repre-

sentative sample to avoid detrimental effects of cumulative

defoliation on the trees. After bud burst in May 2013, a harvest

of the 2013 needle cohort was made alongside the general har-

vest, which specifically targeted the 2011–2012 cohorts of nee-

dles. In the first instance (May 2013), the 2013 cohort sample

was a single, entire bud, but subsequent harvests were taken

from the entire current cohort of biomass in the same manner

as the general needle harvest. For the May 2014 measurement

(when the trees were destructively sampled), this sample was

taken from the entire harvested needle biomass and contained

more (~100) needles. All samples were collected immediately

before application of the regular N deposition treatments, to

allow as much time as possible for movement of the assimila-

tion products within the tree (in contrast to short-term foliar
15N recovery (e.g. Wilson & Tiley, 1998), and to allow maxi-

mum system retention of the 15N remaining on leaf surfaces

by either canopy uptake or washing into the soil by rain

events. The harvested needles were immediately transported

to the laboratory and either immediately processed (see

below), or frozen at �4°C until it was convenient to dry them

(usually within 7 days).

Branch and twig samples were collected twice (October

2013 and at the end of the experiment in March 2014), but only

analysed in March 2014. In October, two random branches

were removed per tree from (i) the current year cohort and (ii)

the oldest age class of branches (which contained biomass

from the 2011, 2012, 2013 and 2014 growing seasons). In

March, three branches were selected from each of these two

sections from the total harvest mass of the whole tree. Three –
0.75-cm-diameter discs containing the entire radial section

(bark included) were cut from the entire length of each branch

and used for isotope analysis, while the whole branch was

dried to obtain dry weight. In March 2014, a similar method

was used, but radial discs were collected from three different

branches. Litter samples were collected every 3 months as a

scoop from the litter surface and were a small fraction (< 5%)

of the total litter in the pots.

Destructive sampling

The experiment was terminated at the end of March 2014,

prior to the commencement of the year’s growing season.

After recording basal diameter and height, the mainstem was

cut at the base to kill the tree and the branches immediately

removed with clippers at their junction with the stem, then

separated into the two age classes (2013 and older cohorts).

The stem was also separated into these two sections by cutting

at the divide between annual growth stages. This resulted in

sections which contained the vertical growth achieved during

each year but did not separate the radial growth occurring

across the whole stem length. All biomass was dried in paper

sacks inside a 80 °C oven until mass loss had ceased (3 days).

After drying, the needles were separated from the branches

and each section was weighed. The litter layer on the surface

of each pot was removed using a trowel and a 7-cm-diameter,

20-cm-deep (to the base of the pot) soil core was taken from

each pot at a random location between the main stem and the

edge of the pot. The soil cores were separated into root and

soil components while moist, and the soil was homogenized.

Roots were treated as a single pool irrespective of age class,

unlike above-ground biomass. Fifteen grams of homogenized

soil was dried in an 80 °C oven to prepare the soil for total
14/15N measurement as well as water content calculations

based on mass loss. A further 15 g dry weight, moist subsam-

ple was fumigated for 3 days with chloroform in a vacuum

oven, then extracted in 45 mL 0.05 M K2SO4 for 3 h on a

220 rpm shaker along with an unfumigated control. The

extract solution was freeze-dried, and subsamples of the salt

were analysed on a CN analyser for C and N content. The

remaining salt was rehydrated, if necessary adjusted in vol-

ume to deliver an appropriate amount of N for mass spec-

trometry when dried, and concentrated via diffusion using the

PTFE-enclosed acidified paper discs method (Stark & Hart,

1996). These discs were analysed on a SerCon Ltd. isotope

ratio mass spectrometer (University of Aberdeen) for 14/15N

ratio and N concentration.

Soil microbial biomass (SMB) N was calculated using N

content and a KEN conversion factor of 0.54 (Brookes et al.,

1985), where SMB N was (total N extracted from fumigated

soil/total N extracted) * KEN. Microbial 15N was calculated

from these measurements along with d15N of the control and

fumigated pools by:

d15NSMB ¼ d15Nfumigated �Nfumigated � d15Nunfumigated �Nunfumigated

Nfumigated �Nunfumigated

ð1Þ

Sample processing

All biomass samples (needles, wood and roots) were washed

in distilled water to remove remaining surface residues and
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dried in a 80 °C oven until mass loss had ceased (usually

1–2 days). Needles on the branches and twigs were removed

after drying and before milling. The samples were milled on a

Retch MM-200 ball mill, in metal capsules with a single ball,

until a fine powder was produced, except for the needle

samples between August 2012 and February 2014, which, due

to their small volume, were milled in plastic microtest tubes

with two small ball bearings. A subsample of this powder

(� 3 mg) was analysed for [N], 14/15N, [C] and 12/13C on the

isotope ratio mass spectrometer, along with standards of

known isotope abundance.

Experimental calculations and statistical analyses

We used the dry masses of the whole tree sections from

March 2014 to calculate growth metrics to compare trees and

to calculate an aboveground mass balance at the termination

of the experiment. Rather than compare raw mass of the tree

compartments, we calculated four metrics, bulking the

labelled and unlabelled N deposition type combinations

together to produce three treatments for bulk N regime with

n = 10 [water control (CONTROL), foliar deposition (CNU),

soil deposition (SNU)] to test these growth effects. The met-

rics calculated were above-ground biomass (AGB, the sum of

both the 2011–2012 and 2013 needle, branch and stem

cohorts), AGB % Canopy (the percentage of the total biomass

made up by the canopy), Canopy % Foliage (the percentage

of the canopy biomass that was foliage) and height increment

(length of leader at the end of the 2013 growing season as a

percentage of height of tree at the end of the 2012 growing

season).

The isotope analyses were performed on all six treatments

where the source of 15N enrichment differed, initially with five

replicates (i.e. n = 5 each, but reducing to 4 for the two treat-

ments (CONTROL and LITTERSNU) where one plant was

removed). Differences in d15N were analysed as linear mixed

effect models where the fixed effects were time and treatment

while individuals were random effects. We fitted an autore-

gressive moving average correlation structure to account for

autocorrelation of individuals through time, using the REML

method due to small sample sizes. We also allowed for a

greater variation in 15N concentration later in the experiment

(due to the greater cumulative application of N) by imple-

menting a variance structure. Comparisons between treat-

ments in these models were performed by the Tukey HSD

post hoc test, and models were compared with the modified

AIC (Akaike information criterion) for small sample sizes,

AICc.

The mass balance was calculated using the March 2014 bio-

mass [N], and 15N measurements, assuming that all enrich-

ment above natural abundance was derived from the

experimental treatments. Belowground compartments (litter,

soil, roots, microbial extracts) were not included in the mass

balance as they were not fully harvested at completion of the

experiment leaving some uncertainty over their absolute

masses. The mass balance calculation was made by subtract-

ing the atom % 15N in CONTROL from observed atom % in

the five 15N-enriched treatments, to calculate 15Nexcess, using

the total mass of 15N added in the deposition treatments, or

estimated to be released from the litter based on a separate lit-

terbag experiment (R.K.F. Nair et al., unpublished data),
15Nadded and the average N mass of the pool in question (N).

We used equation 2 to work out the total 15N recovery,
15Nrecovery (%), with uncertainty propagated fully to take into

account uncertainty in original measurements and averages.

15Nrecovery ð%Þ¼
15Nexcess �N

15Nadded
� 100 ð2Þ

Overall DC/DN calculations

To calculate DC/DN from our treatments, we modified the

calculations from the (Nadelhoffer et al., 1999) meta-analysis

of tracer studies. These calculations estimate an overall C

effect of Ndep by partitioning total NDEP inputs between dif-

ferent ecosystem pools based on observed 15N tracer return.

The NDEP assigned to each pool was multiplied by the C/N

ratio of the pool to generate an overall C effect due to the

Ndep inputs, which can be divided by the total Ndep to esti-

mate a DC/DN effect. We used the same C/N values as

(Nadelhoffer et al., 1999), which are generous towards tree

pools (tending to be high), and applied them to simple, gen-

eralized (woody, nonwoody and soil) biomass pools. We

altered the N assignment among tree and soil pools to match

the values we calculated in the mass balance for the canopy-

targeting (CNU) and soil-targeting (SNU) 15N deposition

treatments, defining woody biomass as all stem wood and

2011–2012 branches, and nonwoody biomass as all needles

and 2013 branches. We split the remaining N not acquired

by the tree in the same ratio (7:1) between soil, and leaching

and gaseous losses as found in Nadelhoffer et al. (1999). In

the case of the CNU treatment, this assumed that exposure

of the canopy to excess 15N did not affect soil partitioning of

the isotope (due to background ambient NDEP, all treatments

received a canopy load of N) and that expressed isotope

abundance in the tree in this treatment included contribu-

tions from both potential canopy uptake and via the roots

from the soil.

Results

Needle time series

Differences in 15N concentrations between the 15N-la-

belled NDEP treatments (CNU and SNU) and the water

control were apparent within 1 month of the deposition

treatments beginning (Fig. 2). The d15N of needles in

cohorts present before initiation of the experiment

(2011–2012) in the 15N deposition treatments increased

over time, to about 120% (CNU) or 38% (SNU) by April

2014, while the CONTROL treatment remained consis-

tently close to natural abundance (~�3.5%). Over this

period, the corresponding needles in the 15N litter treat-

ments (LITTERC, LITTERSNU, LITTERCNU) did not display

a trend in enrichment, although variability was very
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high in these treatments, especially early in the growing

season. Treatment, date and the treatment:date interac-

tion were all significant (P < 0.001) in explaining

changes in 15N enrichment. CNU (post hoc Tukey HSD,

P < 0.001) was significantly different than all other

treatments, and SNU (P < 0.05) was significantly differ-

ent from the CONTROL, but not the other 15N treat-

ments (Table 2). In the most parsimonious model, the

correlation structure did not improve the model fit.

N concentration of the 2011–2012 needles fluctuated

with an overwinter peak in N concentration in both

2013 and 2014, although peak [N] was not as great in

the second year. This periodicity was not observed in

the 2013 cohort of needles, which had their highest N

concentration (~0.75%) soon after budburst, but did not

peak over the winter (Fig. 3).

In the 2013 cohort of needles, the 15N enrichment was

greater than the CONTROL in both CNU and SNU

(Fig. 4a), and also in LITTERCNU (Fig. 4b), although in

this latter treatment this was due to a single individual

which consistently displayed a high needle 15N enrich-

ment. While this difference between treatments in the

2013 cohort of needles was significant (P < 0.05) along

with time (P < 0.0001), there was no interaction term or

correlation structure in the model with the lowest AICc,

and the high variation in 15N concentration meant that

only the SNU vs. CONTROL comparison was signifi-

cant (post hoc Tukey HSD, P = 0.008) (Table 3).

Destructive harvest

The two trees which died were in the CONTROL, and
LITTERSNU, reducing their sample size to 4 from

autumn 2013 until the destructive harvest. At harvest,

there were no significant differences among the group-

ings of N treatments (CONTROL LITTERCONTROL

n = 9, SNU/LITTERSNU n = 9, CNU LITTERCNU n = 10)

in any of the four above-ground biomass variables.
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Fig. 2 d15N (%) of needles older than the 2013 cohort from 15N-labelled deposition treatments (a) and 15N-labelled litter treatments (b).

CONTROL is shown on both plots (white circles); on (a), plot treatments are CNU (red circles) and SNU(orange circles); and on (b), plot

treatments are LITTERCNU (dark blue triangles), LITTERSNU (light blue triangles) and LITTERC (grey triangles). Error bars show standard

error of the mean (n = 5).

Table 2 Tukey HSD comparisons among treatments in the most parsimonious mixed effect model for the 2011–2012 cohort

needles 15N abundance over time

CONTROL LITTERC LITTERSNU LITTERCNU SNU

LITTERC 0.06 / / / /
LITTERSNU 0.16 �0.11 / / /
LITTERCNU 0.08 0.02 0.08 / /

SNU 0.42 * 0.36 0.25 0.33 /

CNU 1.08*** 1.02*** 0.91*** 0.99*** 0.66***

The numbers in the table give the mean difference between each set of treatments (columns–rows).

Significance at P < 0.05 level indicated by *, at P < 0.001 level by***.
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Across the whole experiment, above-ground biomass

was 370 � 119 g (SD) per tree, 74 � 5 (SD) % of this

being canopy, while the canopy was 38 � 2 (SD) % nee-

dles by mass. The trees gained on average 12.4 � 5.8

(SD) % of their initial height over the 2013 growing

season, while litter mass at the end of the experiment

was 65.5 � 33.3 (SD) % of the original dry mass

applied.

The 15N content of the major above-ground biomass

components (Table 4 and Table 5) varied among treat-

ments. There were significant treatment effects in both

2013 (P < 0.005) and 2011–2012 (P < 0.001) needle

cohorts, stem cohorts (P < 0.001, P < 0.001) and the 2013

branch cohort (P < 0.005), but not the 2011–2012 branch

cohort. CNU significantly differed from the other treat-

ments in the stem and branch sections (P < 0.001), as

well as the 2011–2012 needles (P < 0.001). In both the

2011–2012 and the 2013 needle cohorts, all five 15N

labelled treatments were significantly different from the

CONTROL (P < 0.001) at harvest.
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Fig. 3 N content by dry mass (%) of needles from all treatments from 2013 cohort (a) and 2011–2012 cohort (b). While a yearly cycle is

observed, this does not differ between treatments. Treatments are shown with same symbology as Fig. 2. Error bars show standard

error of the mean (n = 5).
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Fig. 4 d15N (%) of 2013 needle cohort from 15N-labelled deposition (a) and 15N-labelled litter treatments (b). CONTROL is shown on
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Root d15N was not statistically different among treat-

ments [mean N % was 0.55 � 0.15 (SD), mean d15N
40 � 36% (SD)], and although P was > 0.05, the lowest

mean d15N was found in the CONTROL [4 � 3% (SD)]

and the highest d15N in the N manipulation (SNU,

CNU, LITTERSNU, LITTERCNU) treatments (Table 4).

Likewise, total soil d15N did not statistically differ

among treatments [mean soil d15N was 38.1 � 37%

(SD)], but mean d15N % was lower in the CONTROL

[d15N 16.9 � 20 (SD)] than the labelled treatments

[combined mean d15N 42.9 � 39% (SD)]. Individually,

CNU d15N [41.4 � 48% (SD)] was lower than SNU d15N

[59.2 � 21% (SD)], but this difference was small and

nonsignificant.

There were no statistical differences in total N extrac-

table from 0.05 M K2SO4 unfumigated extracts between

treatments (mean = 0.010 mg g�1 dry soil), nor

between the N content of microbial biomass (P > 0.05),

which was highly variable and estimated at

0.041 � 0.03 mg g�1 soil. Microbial d15N calculated

from the fumigations was very variable and was not

related to treatment, and there was also no statistical

difference between treatments in bulk soil 15N.

Mass balance estimates of aboveground 15N recovery

The highest above-ground recoveries of the 15N label

from the mass balance were 60.14 � 5.7% (SD) in CNU

and 20.28 � 6.9% in SNU. These two treatments recov-

ered quantities of 15N significantly (P < 0.001 CNU,

P < 0.01 SNU, respectively) greater than CONTROL

(Table 6). 15N recovery was highest in the 2013 and

2011–2012 needles, and 2011–2012 stems in these treat-

ments.

When we calculated litter N release based on field lit-

terbag decomposition rates (R.K.F. Nair et al. unpub-

lished data) and total mass of litter applied, calculated
15N recovery was very low and never significantly dif-

ferent from the CONTROL. Even when we revised

Table 3 Tukey HSD comparisons among treatments in most parsimonious mixed effect 15N abundance model for 2013 cohort nee-

dle 15N abundance over time

CONTROL LITTERC LITTERSNU LITTERCNU SNU

LITTERC 0.003 / / / /
LITTERSNU 0.004 0.001 / / /
LITTERCNU 0.013 0.009 0.009 / /

SNU 0.023** 0.02a 0.020b 0.011 /

CNU 0.017 0.014 0.019 0.014 �0.006

The numbers in the table give the mean difference between each set of treatments (columns–rows).

Significance at P < 0.01 level indicated by**.
Borderline significant differences are represented by a, indicating P = 0.086, and b, P = 0.072.

Table 4 Mean d 15N % in 2011–2012 cohort tree compartments after 16 months

Needles Branches Stem Roots

CONTROL 0.2 � 2a 0.5 � 0a 27.5 � 5a 4.6 � 3
LITTERC 8.1 � 2b 13.6 � 13a 45.9 � 11a 27.4 � 4
LITTERSNU 36.5 � 12b 4.5 � 4a 268.2 � 8 6a 77.7 � 24
LITTERCNU 15.5 � 5b 8.7 � 5a 32.6 � 7a 41.1 � 46

SNU 36.4 � 13b 0.4 � 0a 111 � 25a 67.5 � 40

CNU 117.2 � 17b 18.1 � 13b 354.1 � 77b 22.8 � 10

Values shown � standard deviation (n = 5).

Lowercase letters indicate significant differences (Tukey HSD) among treatments for the same pool at the P < 0.05 level or higher.

Table 5 Mean d 15N % in 2013 cohort tree compartments

after 16 months

Needles Branches Stem

CONTROL 4.7 � 3a 4.2 � 3a 3.9 � 1a

LITTERC 9.5 � 3b 48.0 � 35a 19.7 � 21a

LITTERSNU 25.4 � 4b 48.5 � 26a 59.4 � 44a

LITTERCNU 53.4 � 25b 25.7 � 16a 23.9 � 10a

SNU 97.7 � 32b 32.5 � 32a 100.1 � 64a

CNU 74.9 � 9b 221 � 37b 569.1 � 167b

Values shown � standard deviation (n = 5).

Lowercase letters indicate significant differences (Tukey HSD)

among treatments for the same pool at the P < 0.05 level or

higher.
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these low rates based on more conservative literature

values (Titus & Malcolm, 1999; van Huysen et al., 2013),

these remained small, displaying a low gross above-

ground 15N return and high uncertainty (LITTERC

9.62 � 6.54%, LITTERSNU 12.59 � 6.4% and LITTERCNU

11.52 � 6.1%) and were not taken forward to calculate

DC/DN, nor shown in Table 6.

DC/DN calculations

When propagated, the overall C sink effect from SNU

was 44.2 � 18 kg C kg N�1, split between trees and

soil (Table 7). This sink was similar to that from Nadel-

hoffer et al. (1999) and had a large standard deviation

(18 kg C kg N�1), which was mainly due to the high

uncertainty on stem assignment in this treatment

(Table 6). In contrast, the DC/DN estimate from CNU

was 113.9 � 16 kg C kg N�1, more than double the

estimates from Nadelhoffer et al. (1999), and more than

2.5 times the one drawn from our soil treatment. This

was due to a high overall N return (46% of N in non-

woody pools and 18% in woody pools, Table 6), and an

assumption of correspondingly lowered 15N assign-

ment to the soil, resulting in a slightly smaller soil DC/
DN.

Discussion

In this controlled mesocosm study, we find canopy-tar-

geted N fertilization (and hence ambient rates of CNU)

can result in around three times as much 15N tracer

recovery aboveground as soil-targeted N fertilization.

Within trees, we find a four times higher 15N retention

in wood (Table 6), indicating that N from CNU may

favour this high C/N biomass. Otherwise, 15N recovery

in our soil-targeted treatment is similar to meta-analy-

ses showing about 20% above-ground 15N recovery,

with < 5% in wood in field experiments (Nadelhoffer

et al., 1999; Templer et al., 2012a) as represented in glo-

bal models which build on or closely reproduce such

isotope-derived data (e.g. Thomas et al., 2013). Thus,

our results show that by omitting canopy uptake of N

at ambient deposition rates, common methodologies

could substantially underestimate a woody response to

NDEP.

Contribution of canopy nitrogen uptake to DC/DN

We are aware of only one study (Dail et al., 2009) using

a 15N tracer in the field at the forest canopy scale.

Results from most other experiments must be carefully

interpreted as NDEP interacts with multiple leaves and

branches as it passes through the canopy (Boyce et al.,

1996), and N partitioning between biomass pools with

different C/N ratios may occur on alongside phenolog-

ical cycles in nutrient content (Millard & Grelet, 2010).

Many CNU experiments last less than a year (Bowden

et al., 1989; Eilers et al., 1992; Wilson & Tiley, 1998),

consider limited microcosm systems (e.g. Lumme,

1994) or single branches (e.g. Vose & Swank, 1990;

MacKlon et al., 1996). Elsewhere ‘natural experiments’

with an ambient 15N source (Friedland et al., 1991;

Ammann et al., 1999) may not recover 15N from the

whole tree, preventing inference of total 15N recovery.

Notably, Dail et al. (2009) found bark (including epi-

phytic mosses and lichen) to be a major sink (45%

Table 7 Values of calculated DC/DN effect following

(Nadelhoffer et al., 1999) and from the results of the two

labelled deposition treatments of this experiment

Meta-analysis

of soil 15

N applications

(Nadelhoffer

et al., 1999)

Soil deposition

(SNU)

Canopy

deposition

(CNU)

Tree 28.8 23.8 � 18 104.6 � 16

Soil 21 20.4 � 2 9.4 � 2

Total 49.8 44.2 � 18 113.9 � 16

The overall budgets presented in Nadelhoffer et al. (1999)

were adjusted by altering the woody and nonwoody pools to

match the values measured in our experiment (Table 6), with

additional N drawn proportionally from soil (forest

floor + mineral) and leaching + gaseous losses. Our woody

pools were both stem pools, and 2011–2012 branches, while

our nonwoody pools were the needle pools and 2013

branches. Errors are standard deviations from our study prop-

agated with C/N ratios of Nadelhoffer et al. (1999).

Table 6 15N recovery as % of total applied 15N in the above-

ground sections (n = 5 for each section) of the two labelled

deposition treatments

CNU SNU

2013 Needles 7.17 � 3.04% 9.50 � 3.40%

2011–2012 Needles 13.41 � 2.40% 3.94 � 2.66%

2013 Branches 20.77 � 2.86% 4.82 � 3.46%

2011–2012 Branches 3.12 � 0.14% 0.02 � 0.07%

2013 Stem 1.04 � 0.04% 0.21 � 0.02%

2011–2012 Stem 14.64 � 3.15% 2.78 � 4.04%

Total Woody Biomass 18.80 � 3.15% 3.01 � 4.04%

Total Above Ground 60.14 � 5.75% 21.28 � 6.85%

Also presented are total accountancy in woody sections (stem

and 2011–2012 branches, but not 2013 branches) and total 15N

recovery aboveground. Errors terms are standard deviation

obtained by propagating the error in measurements of differ-

ent pools while total recovery and error are obtained by sum-

ming the recovery and propagating the error of individual

pools making up the total.
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recovery of 15NO3), rather than higher C/N bolewood

and calculated a low C effect (8 kg kg N�1). We could

not reliably separate bolewood from bark due to the

size of our trees, but high 15N recoveries were observed

in the stem when most of the CNU treatment was

applied to the canopy. A small amount of the isotope

solution was washed down the stem by both the dilu-

tion of any residue left in the treatment bottles (to add

the entire 15N dose to the system) as well as from the

canopy by ambient rainfall, but we expect this to be

only a small part of the total 15N added. Therefore,

mobilization of N from CNU within the tree, rather

than bark surface absorption (c.f. Reiners & Olson,

1984; Dail et al., 2009) likely contributed to this stem

response.

Needle N dynamics and mobilization to the active

internal N cycling pool are phenologically controlled in

species such as Sitka spruce (Millard & Grelet, 2010). In

conifers, N is stored overwinter in the previous year’s

needles (Millard & Proe, 1992), while deciduous species

store N in stems and roots or inner bark (Millard &

Grelet, 2010). Remobilization of this N may contribute

9–46 % of N for new shoot growth (Millard & Proe,

1992), independent of soil N supply (Millard & Proe,

1993; Weatherall et al., 2006b). As our needle N was rel-

atively conserved over the 2013–2014 winter in both

needle age cohorts (Fig. 3), the high endpoint stem

recovery in CNU was unlikely to be due to seasonally

mobilized 15N in the phloem rather than actual assign-

ment to this pool. The high DC/DN from this treatment

(113.9 kg C kg N�1) assumes transport within the tree

and N attribution to wood growth where high C/N

ratios drive the response.

For our DC/DN calculations, we clumped canopy

interception and CNU together, assuming that all NDEP

was intercepted on canopy surfaces and could be

acquired across the canopy. N not acquired by the

canopy was assumed available for uptake via root path-

ways and allocated between soil and losses (leaching)

as in SNU. This discounted uptake of 15N washed out

of the canopy in the CNU treatment and subsequently

taken up the roots as we could not distinguish these

pathways via 15N isotope recovery. Total CNU would

scale with canopy cover and NDEP interception, which

in our canopy treatment was effectively ~ 100%, and so,

we may overestimate the DC/DN effect of wet deposi-

tion. Dezi et al. (2010) used 60% N retention by the

canopy (Chopping et al., 2008) and 80% uptake of this

N by CNU (Sievering et al., 2007) to incorporate CNU

into the G’DAY model, while Gaige et al. (2007)

calculated a canopy N retention of > 70%. The

114 kg C kg N�1 for CNU would drop to

78 kg C kg N�1 with 60% N retention by the canopy;

approximately 60% increase over SNU. Additional sen-

sitivity analyses of the 114 kg C kg N�1 DC/DN are

robust to the assumptions made in modifying calcula-

tions from Nadelhoffer et al. (1999) by changing the

gross 15N uptake observed and overall within-tree

partitioning, and are shown in supplementary materi-

als S1.

Soil system and litter 15N recovery

The canopy harvest at the close of the experiment indi-

cated that some litter 15N had been taken up by trees

as total 15N recoveries in both 2011–2012 and 2013 nee-

dles that were significantly greater than CONTROL in

all three LITTER treatments. However, over time the LIT-

TER 15N recovery above ground was low, with a large

heterogeneity early in the experiment. This did not cor-

relate with individual source trees nor treatment repli-

cates, but LITTER 15N may have been more

heterogeneously distributed between biomass age

classes than CNU or SNU and unable to be captured

by the lower number of needle replicates at this time

and lower cumulative 15N additions. Nonetheless,

Weatherall et al. (2006a) found only < 2.5% of N

released from litter was retained in Sitka Spruce seed-

lings and other experiments using labelled litter are

sparse (Hatton et al., 2012), but find similar above-

ground recoveries, for example 2% of Fagus sylvatica

litter 15N (Zeller & Colin-Belgrand, 2001) over 4 years.
15N-labelled litters from evergreen species cannot be

collected in a single seasonal litterfall event, and, in

this study, were harvested from felled trees labelled in

a previous experiment. This methodology produces lit-

ters that have not naturally senesced and hence may

have higher C:N ratios than natural litterfall. Our lit-

ters were harvested in November and may have also

been N enriched due to storage (Millard & Grelet,

2010). It is unknown how these differences in litter sto-

ichiometry may have affected systematic 15N recovery.

Similarly, despite strong aboveground 15N response

from CNU and SNU, our deposition 15N inputs were

not statistically detectable in the soil or roots. Between

SNU and CNU, this was particularly surprising as it

was expected that more 15N would have been taken up

by roots when applied directly to the soil. However,

plant N is usually transported as amino acids and is

present in the xylem because of remobilization from N

stores such as needles (Millard, 1996), senescence or

because of xylem–phloem–xylem recycling in the roots

(Marschnert et al., 1997). CNU-obtained N may there-

fore have been transported to the roots for recycling

leading to similar 15N concentrations in the CNU and

SNU treatments.
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How general are the results?

The low NDEP magnitude employed here was chosen to

match 15N release from litter and inorganic applications

and allowed a 15N trace at concentrations close to

ambient nitrogen deposition. Physiological effects of

NDEP are well known (Schaberg et al., 1997; Elvir et al.,

2006), but understanding the C response is difficult at

ambient NDEP levels. N manipulations usually raise N

inputs so a response can be detected, and even with

doses close to ambient total inputs, application rates

differ from ambient deposition (Lovett & Goodale,

2011; Thomas et al., 2013). Our treatment

(54 g N ha�1 yr�1) was several orders of magnitude

less than typical experimental N treatments (e.g. Wal-

lenstein et al., 2006; Gaige et al., 2007; Metcalfe et al.,

2013) and was designed to avoid physiological

responses to the treatment. Templer et al. (2012a) found

a negative correlation between N addition rate and 15N

recovery, but the sum of our total (ambient + manipu-

lation) N inputs is less than the smallest N amendment

in this study making comparisons difficult. This may

have led to our trees being N deficient; Binns et al.

(1980) suggest that healthy spruce needles are > 1.2% N

by dry mass, and needle N concentrations were lower

in the second winter of our experiment (Fig. 3),

although there were no signs of deficiency (such as nee-

dle decolouration) in most individuals. Hence, high

recovery of 15N under CNU could be a result of low N

availability and a relatively high ability to respond in

biomass N content without limits imposed by other fac-

tors (Fleischer et al., 2013). Conifers may also only

respond in photosynthetic capacity to N at deposition

rates up to 8 kg ha�1 yr�1 (Fleischer et al., 2013), which

if applicable to our trees, mean CNU could be replac-

ing, rather than supplementing ambient N nutrition.

We assumed that this response was not limiting in our

calculations, and even if a limit on photosynthesis

response is reached, DC/DNmay still increase via other

mechanisms. For example, below-ground C allocation

may decrease under N deposition (Nadelhoffer, 2000;

Janssens et al., 2010) as N scavenging becomes more

efficient. Testing differences in allocation would be pos-

sible using a CNU treatment where all throughfall is

removed before reaching the soil system so only a

canopy 15N source is available.

Both 15N studies (Templer et al., 2012a) and forest

inventory data (Thomas et al., 2009; Templer et al.,

2012b) also suggest that N effects on growth are species

specific, and potentially limited in evergreen needleleaf

trees (Thomas et al., 2009). This contrasts with the large

inferred effect of CNU the Picea sitchensis saplings in

our study. Proportion of woody biomass increases with

tree age (Helmisaari et al., 2002; Peichl & Arain, 2007),

but the annual growth increment is a progressively

smaller proportion of total biomass (Stephenson et al.,

2014). Thus, similar strong CNU DC/DN effects in

mature trees depend on sustained allocation in the

observed pattern as trees age.

Also, comparatively little is known about dry NDEP,

and it is also difficult to assess how CNU of wet and

dry forms of N additions may compare if they differ in

canopy interception and uptake capacity. Canopy

uptake of these forms is likely to depend both on type

of N input as well as individual species physiology; in

the case of diffusion of 15NHþ
4 or 15NO�

3 ions, this

depends on leaf cuticle charge and/or stomatal conduc-

tance [see Sparks (2009)]. Differing rates of incorpora-

tion among tissues, such as between needle age classes

in our experiment, could also be explained by differ-

ences in these factors. Future experiments with only

labelled cations or anions, physiological stresses or

alternate deposition methodologies could give further

insight over these mechanisms.

Implications for regional and global C sequestration

Aside from methodological concerns, we can still ques-

tion how accurately uptake rates from experiments on

single species can be scaled to compare with correlative

analyses (e.g. Magnani et al., 2007; Thomas et al., 2009)

and global models (e.g. Thomas et al., 2013). Most

research on CNU has focused on wet deposition on

evergreen conifers (e.g. Eilers et al., 1992; Lumme, 1994;

Dail et al., 2009) and often on young trees (Bowden

et al., 1989; Eilers et al., 1992; Lumme, 1994), and high

correlative DC/DN responses come from widely dis-

tributed forests containing both broadleaf and ever-

green trees, which may substantially differ in many

relevant physiological traits (Adriaenssens et al., 2010).

Process-based models provide a useful tool to

upscale physiological understanding of mechanisms.

Available global models representing the N effects on

C uptake differ in their representation of plant N acqui-

sition, with N uptake being driven by plant stoichiome-

try (Thornton et al., 2007), C assignment to roots

(Zaehle & Friend, 2010) and N availability in soil pools.

N uptake also occurs after soil immobilization demands

are met (Gerber et al., 2010; Thomas et al., 2013). Such

models are typically calibrated against long-term N tra-

cer and fertilization experiments where N is added to

the soil (e.g. Thomas et al., 2013). These models may

represent the fraction of N which reaches the soil sur-

face, but if CNU is as substantial as indicated in our

study, they may overestimate the size of NDEP inputs to

the soil, and simultaneously underestimate the total N

acquired by trees. If this is the case the expected root

uptake decreases (due to reduced soil N availability),

© 2015 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., 22, 875–888
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but total tree N uptake increases via CNU (as this N is

first available to trees). In addition, we showed that this

N may be assigned to high C:N wood, enhancing the C

sequestration effect from this alternative source of N

over conventional patterns of allocation. Aside from

variation due to species, deposition type and dosage

effects, constraints on CNU may be stoichiometric or

depend on physiological drivers (e.g. of ion exchange)

and require additional work to fully understand.

Nonetheless, our study demonstrates experimentally

that CNU may account for at least some of the

increased C effect of N deposition shown in correlative

studies (Magnani et al., 2007; Thomas et al., 2009; Fer-

retti et al., 2014) over conventional 15N experiments

(Nadelhoffer et al., 1999; Templer et al., 2012a) and

understanding N deposition purely in terms of its effect

on the soil system may substantially underestimate

ecosystem-level N effects. We recommend that CNU be

investigated at realistic levels and across representative

species to understand its potential importance in forest

C sequestration and the necessity to include this in

large scale models. To properly assess the impact of N

deposition on C sequestration, it is vital that real-world

conditions are represented in the experiments which

inform this understanding.
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