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ABSTRACT: The manner in which the extreme modes of droplet
evaporation (namely, the constant contact radius and the constant contact
angle modes) become indistinguishable on strongly hydrophobic substrates
is described. Simple asymptotic expressions are obtained which provide good
approximations to the evolutions of the contact radius, the contact angle, and
the volume of droplets evaporating in the extreme modes for a wide range of
hydrophobic substrates. As a consequence, on strongly hydrophobic
substrates it is appropriate to use the so-called “2/3 power law” to
extrapolate the lifetimes of droplets evaporating in the constant contact
radius mode as well as in the constant contact angle mode.

1. INTRODUCTION

As, for example, the recent review articles by Cazabat and
Gueńa,1 Erbil,2 and Larson3 demonstrate, the evaporation of a
fluid droplet on a solid substrate has been the subject of extensive
ongoing theoretical and experimental investigations by a wide
range of research groups in recent years.
As many authors have shown, after a short transient in which a

droplet deposited onto a substrate rapidly adjusts to a quasi-
equilibrium shape with initial contact radius R0 and initial contact
angle θ0, the droplet can evaporate in a wide variety of modes.
The most extreme modes of evaporation are the so-called
“constant contact radius” (CR) mode, in which the contact line is
always pinned and the contact angle θ = θ(t) decreases while the
contact radius R(t) = R0 remains constant, and the so-called
“constant contact angle” (CA) mode, in which the contact line is
always depinned and the contact radius R = R(t) decreases while
the contact angle θ(t) = θ0 remains constant, where t denotes
time. As the pioneering studies of Picknett and Bexon4 and
Bourges̀-Monnier and Shanahan5 and many subsequent works
have shown, in practice, droplets often evaporate in a “stick-slide”
(SS) mode, which involves some combination of “stick” (i.e.,
with a pinned contact line) and “slide” (i.e., with a depinned
contact line) phases. Recently Nguyen and Nguyen,6,7 Dash and
Garimella,8 and Stauber et al.9,10 have formulated and analyzed a
simple yet effective model for an idealized SS mode consisting of
a single stick phase followed by a single slide phase. Nevertheless,
understanding the extreme modes remains a key part of
understanding the evaporation of droplets.

The main aim of the present work is to show how the extreme
modes of droplet evaporation converge as the value of the initial
contact angle θ0 increases toward π, and so, in particular, to
describe the manner in which they become indistinguishable on
strongly hydrophobic substrates.

2. THE MATHEMATICAL MODEL

The widely used “diffusion-limited” model employed in the
present work is based on the assumption that the evaporation
from the droplet is quasi-steady and limited by the diffusion of
vapor in the quiescent atmosphere above it. This model, together
with the assumption that the droplet is sufficiently small that
gravitational effects are negligible and hence its free surface is a
spherical cap, has been the basis for work by a large number of
previous authors, notably Picknett and Bexon,4 Coutant and
Penski,11 Deegan et al.,12,13 Erbil et al.,14 Hu and Larson,15

Popov,16 Dunn et al.,17,18 Masoud and Felske,19 Sefiane et al.,20

Shin et al.,21 Eggers and Pismen,22 Semenov et al.,23−25 Doganci
et al.,26 Gelderblom et al.,27,28 Sobac and Brutin,29,30 Song et
al.,31 Nguyen et al.,32 Nguyen and Nguyen,6,7,33,34 Talbot et al.,35

Yu et al.,36 Dash and Garimella,8,37 Stauber et al.,9,10 Trybala et
al., and Gatapova et al.40

Referred to cylindrical polar coordinates (r,z) with origin on
the substrate at the center of the droplet, its free surface, denoted
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by z = h(r,t), is a spherical cap with radius = t( ) ( ≥ R),
contact radius R = R(t) (R≥ 0), and contact angle θ = θ(t) (0≤ θ
≤ π) given by

θ
θ

= − ± − =h r
R

cos where
sin

2 2
(1)

Note that the physically relevant (i.e., the non-negative) part of h
given by eq 1 is a single-valued function of r for 0≤ r≤ R when 0
≤ θ≤ π/2 and for 0≤ r < Rwhen π/2 < θ≤ π (in which case only
the “+” sign is relevant), but a double-valued function of r for

≤ <R r when π/2 < θ ≤ π (in which case the “+” and “−”
signs correspond to the upper and lower hemispheres,
respectively). The volume of the droplet, V = V(t), is given by

∫π π θ θ
θ

= = +
+

V h r r
R

2 d
3

sin (2 cos )
(1 cos )

R

0

3

2
(2)

Since the evaporation is assumed to be quasi-steady and
limited by the diffusion of vapor in the atmosphere, the vapor
concentration in the atmosphere, c = c(r,z,t), satisfies Laplace’s
equation, ∇2c = 0, subject to the boundary conditions that at the
free surface of the droplet the atmosphere is saturated with vapor
and so c takes its saturation value, csat, that far away from the
droplet c takes its constant ambient value, c∞ (0≤ c∞ ≤ csat), and
that the vapor cannot penetrate the substrate (i.e., ∂c/∂z = 0 on z
= 0 for r > R). In the simplest andmost widely used version of the
model employed here, csat is assumed to be constant; we will

discuss the validity of this assumption in Section 5. As several
previous authors (see, for example, Popov16) describe, the
solution for c is given by Lebedev’s41 solution for a mathemati-
cally equivalent electrostatics problem. In particular, the
evaporative flux from the free surface of the droplet, J = J(r,t),
defined by J =−Dn·∇c, where n is the unit outward normal to the
free surface and D is the diffusion coefficient of vapor in the
atmosphere, is given by

∫

θ α θ

τ θτ
πτ

τ π θ α τ

=
−

+ +

× − τ

∞

∞

− +

⎡
⎣⎢

⎤
⎦⎥

J
D c c

R

P

( ) 1
2

sin 2 (cosh cos )

cosh
cosh

tanh[ ( )] (cosh ) di

sat 3/2

0
1/2

(3)

where P−1/2+iτ(cosh α) denotes the Legendre function of the first
kind of degree −1/2 + iτ and argument

α θ θ= ± −
−

r R R r
R r

cosh
cos sin2 2 2 2

2 2 (4)

where again the “+” and “−” signs correspond to the upper and
lower hemispheres, respectively, when π/2 < θ ≤ π.
At leading order in the limit of small contact angle, θ→ 0+, the

free surface of the droplet is a parabola, namely, h = θ(R2 − r2)/
(2R), and the flux is given by

Figure 1. Scaled plots of four droplets given by eq 1, each with the same volume,V, but different contact angles, namely, (a) θ = π/18 = 10°, (b) θ = π/2 =
90°, (c) θ = 17π/18 = 170°, and (d) θ = π = 180°, and different scaled contact radii, R/V1/3, together with the corresponding scaled evaporative flux from
the free surface, JV1/3/(D(csat−c∞)), given by eq 3 or, in the special case θ = π, by eq 7, shown by the arrows. Note that the length of the arrows is
proportional to the magnitude of JV1/3/(D(csat−c∞)), with the length of the reference arrow in panel d corresponding to JV1/3/(D(csat − c∞)) = 1.
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π
=

−

−
∞J

D c c

R r

2 ( )sat
2 2 (5)

(see, for example, Popov16). In the special case θ = π/2 the free
surface of the droplet is a hemisphere with radius = R , namely,
h = (R2 − r2)1/2, and the flux is uniform and given by

=
− ∞J

D c c
R

( )sat
(6)

(see, for example, Popov16).
In the special case θ = π the free surface of the droplet is a

complete sphere of radius ( ≥ 0) with zero contact radius,
R = 0, namely, = ± −h r( )2 2 1/2. In this case the expression
for the flux (eq 3) requires careful interpretation, and so it is more
convenient to use Smith and Barakat’s42 solution for a
mathematically equivalent electrostatics problem to obtain
(after some simplification)

∫=
−

+ −∞
∞

⎜ ⎟ ⎜ ⎟
⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥J

D c c
h

q q J
rq
h

q q
( )

2
1

2
tanh exp( ) dsat

3/2

0 0

(7)

where J0(·) denotes the Bessel function of the first kind of order
zero. In particular, the flux from the apex of the droplet, r = 0, is
given by

=
− ∞J

D c c( )
Catalansat

(8)

where Catalan ≃ 0.9160 is Catalan’s constant.
Following Deegan et al.,12 Gelderblom et al.28 showed that

near the contact line, r = R and z = 0, the flux is given by

θ
θ

λ θ π
π θ

∼
− −

= −
−

→

λ
∞ ⎜ ⎟⎛

⎝
⎞
⎠J A

D c c
R

R r
R

r R

( )
( )

cos
where

2
2 2

as

sat

(9)

where the function A = A(θ) can, in principle, be calculated from
eq 3. In particular, eq 9 shows that the behavior of the flux near
the contact line depends qualitatively (rather than just
quantitatively) on the value of the contact angle. Specifically,
when 0 ≤ θ < π/2, then −1/2 ≤ λ < 0, and so the flux is
(integrably) singular at the contact line; when θ = π/2, then λ = 0,
and so the flux is finite at the contact line; and when π/2 < θ≤ π,
then λ > 0, and so the flux is zero at the contact line.
Figure 1 shows scaled plots of four droplets given by eq 1 each

with the same volume,V, but different contact angles, namely, θ =
π/18 = 10° (typical of 0≤ θ < π/2), θ = π/2 = 90°, θ = 17π/18 =
170° (typical of π/2 < θ < π), and θ = π = 180°, and different
scaled contact radii, R/V1/3, together with the corresponding
scaled evaporative flux from the free surface, J V1/3/(D(csat−c∞)),
given by eq 3 or, in the special case θ = π, by eq 7, shown by the
arrows. In particular, Figure 1 clearly illustrates the qualitatively
different behavior of the flux near the contact line in the cases 0≤
θ < π/2, θ = π/2, and π/2 < θ ≤ π described above. Specifically,
Figure 1 shows that the diffusion-limited model predicts that,
when 0 ≤ θ < π/2, the flux is largest (theoretically infinite) at the
contact line and smallest at the apex of the droplet (i.e., at r = 0),
when θ = π/2 the flux is uniform and given by eq 6, and when π/2
< θ ≤ π, the flux is largest at the apex of the droplet and smallest
(theoretically zero) at the contact line.

3. THE EVOLUTION OF THE DROPLET
Integrating the flux J given by eq 3 over the free surface of the
droplet gives the total flux from the droplet at any instant, and so
the rate of change of the volume of the droplet, dV/dt, is given by

π
ρ

θ
θ

= −
−

+
∞V

t
RD c c gd

d
( ) ( )

(1 cos )
sat

2
(10)

where V is given in terms of R and θ by eq 2, and the function g =
g(θ) is defined by

∫θ θ θ θτ
πτ

τ π θ τ= + + −
∞⎧⎨⎩

⎫⎬⎭g( ) (1 cos ) tan
2

8
cosh

sinh 2
tanh[ ( )] d2

0

2

(11)

In particular, the function g satisfies g(0) = 16/π, g(π/2) = 2, and
g ∼ (π−θ)3 ln 2 → 0+ as θ → π−.
Equation 10 determines the evolution of V, and hence the

evolution of R and/or θ as the droplet evaporates, and hence, in
particular, the lifetime of the droplet (i.e., the time it takes for R
and/or θ and hence for V to reach zero).
As several previous authors have described, for a droplet

evaporating in the CR mode, R = R0 is constant, and so eq 10
becomes an equation for θ = θ(t), namely,

θ
ρ

θ= −
− ∞

t
D c c

R
g

d
d

( )
( )sat

0
2

(12)

which has the implicit solution

∫ρ θ
θ

=
− θ

θ

∞
t

R
D c c g( )

d
( )

0
2

sat

0

(13)

while for a droplet evaporating in the CA mode, θ = θ0 is
constant, and so eq 10 becomes an equation for R = R(t), namely,

ρ
θ

θ θ
= −

−
+

∞R
t

D c c
R

gd
d

( ) ( )
sin (2 cos )

sat 0

0 0 (14)

which has the exact solution

ρ
θ

θ θ
= −

−
+

∞R R
D c c g

t
2 ( ) ( )

sin (2 cos )
2

0
2 sat 0

0 0 (15)

and hence

π θ θ
θ

ρ
θ

θ θ

=
+

+

× −
−

+
∞

⎡
⎣⎢

⎤
⎦⎥

V

R
D c c g

t

3
sin (2 cos )

(1 cos )

2 ( ) ( )
sin (2 cos )

0 0

0
2

0
2 sat 0

0 0

3/2

(16)

A key observation is that in the special case θ0 = π (i.e., for a
perfectly hydrophobic substrate) the CR and CAmodes coincide at
all times t. In this case, the free surface of the droplet is a complete
sphere of radius = t( ) ( ≥ 0) touching the substrate at the
single point r = 0 with constant contact radius R ≡ R0 = 0 and
constant contact angle θ ≡ θ0= π throughout its entire lifetime, i.e.,
in this case (and only in this case) the CR and CA modes are
identical throughout their entire lifetimes. Integrating the
expression for the flux J in this special case given by eq 7 over
the free surface of the droplet yields an equation for = t( ),
namely,

ρ
= −

− ∞

t
D c cd

d
( ) ln 2sat

(17)
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which has the exact solution

ρ
= −

− ∞D c c
t

2 ( ) ln 22
0
2 sat

(18)

where = (0)0 is the initial radius of the sphere, and hence

π π
ρ

= = −
− ∞⎡

⎣⎢
⎤
⎦⎥V

D c c
t

4
3

4
3

2 ( )ln 23

0
2 sat

3/2

(19)

To simplify the subsequent presentation it is convenient to
scale time twith themaximum lifetime of a droplet evaporating in
the CA mode (which occurs for θ0 = π/2), namely,

ρ
π

ρ θ θ
θ

=
−

=
−

+
+

∞

∞

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

D c c
V

R
D c c

2 ( )
3
2

2 ( )
sin (2 cos )

2(1 cos )

sat

0
2/3

0
2

sat

0 0

0
2

2/3

(20)

where V0 = V(0) is the initial volume of the droplet.
Setting θ = 0 in eq 13 yields an expression for the scaled

lifetime of a droplet evaporating in the CR mode, namely,

∫θ
θ θ

θ
θ

=
+

+

θ⎛
⎝⎜

⎞
⎠⎟t

g
2(1 cos )

sin (2 cos )
2 d

( )CR
0

2

0 0

2/3

0

0

(21)

and setting R = 0 in eq 15 or V = 0 in eq 16 yields an expression
for the scaled lifetime of a droplet evaporating in the CA mode,
namely,

θ
θ θ

θ θ
θ

=
+

+
+⎛

⎝⎜
⎞
⎠⎟t

g
2(1 cos )

sin (2 cos )
sin (2 cos )

( )CA
0

2

0 0

2/3
0 0

0 (22)

Setting = 0 in eq 18 or V = 0 in eq 19 (or, equivalently, taking
the limit θ0 → π− in eq 21 or 22) yields an expression for the
scaled lifetime of both modes when θ0 = π, namely, tCA = tCR = tπ,
where

Figure 2. Evolutions of (a) the contact angle θ, (b) the scaled contact radius R/V0
1/3, and (c) the scaled volume V/V0, plotted as functions of scaled time

t/ for droplets with different initial contact angles, namely, θ0 = π/18 = 10°, θ0 = π/2 = 90°, θ0 = θcrit ≃ 2.5830 ≃ 148°, and θ0 = 17π/18 = 170°,
evaporating in the CR and CA modes, shown by solid and dashed lines, respectively.
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= ≃πt
1

4 ln 2
0.90881/3 (23)

(see Stauber et al.10).
Figure 2 shows the evolutions of θ, R/V0

1/3, and V/V0 plotted
as functions of t/ for droplets with different initial contact
angles, namely, θ0 = π/18 = 10°, θ0 = π/2 = 90°, θ0 = θcrit ≃
2.5830 ≃ 148°, and θ0 = 17π/18 = 170°, evaporating in the CR
and CA modes. In particular, Figure 2 shows that in the special
case θ0 = θcrit (first identified approximately by Picknett and
Bexon4 using an approximate expression for g(θ)), the values of
tCR and tCA coincide (specifically, tCR = tCA = tcrit ≃ 0.9354), but
the evolutions of R, θ, and V for the two modes are very different.
Note that this behavior is qualitatively different from that when
θ0 = π described previously for which the twomodes are identical
for their entire lifetimes.
Figure 3a shows the scaled lifetimes of droplets evaporating in

the CRmode, tCR, given by eq 21, and in the CAmode, tCA, given
by eq 22, plotted as functions of the initial contact angle θ0. In
particular, Figure 3a illustrates the sometimes overlooked fact
that the lifetime of the CR mode is (slightly) longer than that of
the CA mode when θcrit < θ0 < π (see Picknett and Bexon4), and
shows that both tCR and tCA approach tπ from above as θ0→ π−. In
fact, analysis of the expressions for tCR and tCA given by eqs 21 and
22, respectively, in the limit θ0 → π− reveals that

π θ π θ π θ= − − − − + −π
⎡
⎣⎢

⎤
⎦⎥t t O1

4 ln 2 1
12 ln 2

( ) ln( ) ( )CR 0
2

0 0
2

(24)

and

π θ π θ= + − − + −π
⎡
⎣⎢

⎤
⎦⎥t t O1

4 ln 2 1
24 ln 2

( ) ( )CA 0
2

0
4

(25)

(see Stauber et al.10). Figure 3b is an enlargement of Figure 3a
near θ0 = π also showing the asymptotic expressions 24 and 25,
and illustrates that both asymptotic expressions, but particularly
that for tCA, provide good approximations to the exact values of
tCR and tCA for a reasonably wide range of values of θ0 near π.

4. THE CONVERGENCE OF THE EXTREME MODES
The evolutions of θ and R/V0

1/3 plotted in Figure 2a,b show that
as the value of the initial contact angle θ0 increases toward π both
the value of the (varying) contact angle θ in the CRmode and the
value of the (varying) contact radius R in the CA mode stay
increasingly close to their initial values θ0 and R0, respectively. In
other words, the extreme modes of droplet evaporation converge
as the value of θ0 increases toward π, and so, in particular, the
extreme modes become indistinguishable on strongly hydrophobic
substrates.
This behavior might have been expected for the CA mode, for

which θ ≡ θ0 ≈ π necessarily remains close to π and R decreases
by a small amount from its small initial value of R0 ≈ 0 to zero,
and hence necessarily remains close to its value R ≡ 0 in the
special case θ0 = π during its evolution. Indeed, analysis of eq 14
or 15 reveals that for a droplet evaporating in the CA mode, the
asymptotic expression for the contact radius R is given by

π
π θ π θ= − − + −

π
⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟R

V t
t

O
3
4

1 ( ) ( )0
1/3 1/2

0 0
3

(26)

in the limit θ0 → π−, which remains close to R = 0 for the entire
lifetime of the droplet (i.e., until t = tπ at leading order).

However, this behavior is not so immediately obvious for the
CR mode, for which R ≡ R0 ≈ 0 necessarily remains small, but θ
decreases by a nonsmall amount from its initial value of θ0≈ π to
zero during its evolution. However, analysis of eq 12 reveals that
for a droplet evaporating in the CR mode, the asymptotic
expression for the contact angle θ is given by

θ π π θ π θ= − − − + −
π

−⎛
⎝⎜

⎞
⎠⎟

t
t

O1 ( ) ( )
1/2

0 0
3

(27)

in the limit θ0 → π−, which indeed remains close to θ = π until
near the end of its lifetime (i.e., until near to t = tπ at leading
order).
Furthermore, as the evolution of V in the case θ0 = 17π/18 =

170° shown in Figure 2c shows, V decreases from V0 to zero in a
very similar manner for both extreme modes, and indeed for this

Figure 3. (a) Scaled lifetimes of droplets evaporating in the CR mode,
tCR, given by eq 21 and shown with a solid line, and in the CAmode, tCA,
given by eq 22 and shown with a dashed line, plotted as functions of the
initial contact angle θ0. (b) An enlargement of panel a near θ0 = π also
showing the asymptotic expressions for tCR and tCA in the limit θ0 → π−

given by eqs 24 and 25, respectively.
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value of θ0 they are virtually indistinguishable. Specifically, eqs 26
and 27 reveal that, whichever mode the droplet is evaporating in,
the asymptotic expression for the droplet volume V is given by

π θ= − + −
π

⎛
⎝⎜

⎞
⎠⎟V V

t
t

O1 ( )0

3/2

0
2

(28)

in the limit θ0 → π−.
The increasing accuracy of the asymptotic expressions 26−28

as θ0 increases toward π is illustrated in Figure 4, which shows the
evolutions of θ and V/V0 for a droplet evaporating in the CR
mode, and the evolutions of R/V0

1/3 and V/V0 for a droplet
evaporating in the CA mode, plotted as functions of t/ for
droplets on hydrophobic substrates with different initial contact
angles, namely, θ0 = 11π/18 = 110°, θ0 = 13π/18 = 130°, θ0 =
5π/6 = 150°, and θ0 = 17π/18 = 170°, together with the
corresponding asymptotic expressions in the limit θ0→ π− given
by eqs 26−28. In particular, Figure 4a,c shows that the
asymptotic expressions 27 and 26 provide good approximations
to the evolutions of θ and R, respectively, when θ0 is greater than
about 150°, and Figure 4b,d shows that the asymptotic

expression 28 provides a good approximation to the evolutions
of V in both modes for all of the values of θ0 shown.
One important consequence of the convergence of the

extreme modes is that using the exact solution for the evolution
of V in the CA mode given by eq 16, which predicts the so-called
“2/3 power law” that (V/V0)

2/3 varies linearly with t, to
extrapolate experimental data for V to estimate the lifetime of a
droplet (as was done by, for example, Nguyen et al.,32 Nguyen
and Nguyen,33 and Stauber et al.10), is also valid for the CRmode
provided that θ0 is sufficiently close to π. This conclusion is
entirely consistent with the recent work of Nguyen and
Nguyen,34 who found that evolution of V in the CR mode is
well approximated by the 2/3 power law when θ0 is sufficiently
close to π.

5. SUMMARY AND CONCLUSIONS

In the present work we have described the manner in which the
extreme modes of droplet evaporation become indistinguishable
on strongly hydrophobic substrates. In particular, we obtained
simple asymptotic expressions 26−28 which provide good
approximations to the evolutions of R, θ, andV, respectively, for a

Figure 4. Evolutions of (a) the contact angle θ and (b) the scaled volumeV/V0 for a droplet evaporating in the CRmode, and evolutions of (c) the scaled
contact radius R/V0

1/3 and (d) the scaled volume V/V0 for a droplet evaporating in the CAmode, plotted as functions of scaled time t/ for droplets on
hydrophobic substrates with different initial contact angles, namely, θ0 = 11π/18 = 110°, θ0 = 13π/18 = 130°, θ0 = 5π/6 = 150°, and θ0 = 17π/18 = 170°,
together with the corresponding asymptotic expressions in the limit θ0 → π− given by eqs 26−28 shown with dashed lines.
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wide range of hydrophobic substrates. As a consequence, on
strongly hydrophobic substrates it is appropriate to use the 2/3
power law to extrapolate the lifetimes of droplets evaporating in
the CR mode as well as in the CA mode.
As pointed out in Section 2, the present analysis is based on the

simplest and most widely used version of the diffusion-limited
model in which the saturation value of the vapor concentration,
csat, is assumed to be constant. The predictions of this version of
the model have been found to be in excellent agreement with
experimental results by many authors, including Picknett and
Bexon,4 Coutant and Penski,11 Erbil et al.,14 Shin et al.,21 Doganci
et al.,26 Gelderblom et al.,27 Sobac and Brutin,29 Song et al.,31

Nguyen et al.,32 Nguyen and Nguyen,6,33 Talbot et al.,35 Dash
and Garimella,8,37 Semenov et al.,24,25 Trybala et al.,38 and
Stauber et al.10 However, in reality, the value of csat depends on
temperature, and so in situations in which evaporative cooling of
the free surface of the droplet becomes significant it may be
necessary to extend the model to include variations in csat. For
example, Dunn et al.17 and Sefiane et al.20 used this approach to
analyze the effects of the conductivity of the substrate and of the
pressure in the atmosphere above the droplet. In particular, since
instantaneous evaporative cooling increases with the instanta-
neous contact angle of the droplet (see, for example, the work of
Dash and Garimella8) it may become significant as the initial
contact angle increases toward π (i.e., on hydrophobic and
superhydrophobic substrates). In particular, two recent inves-
tigations of the evaporation of droplets of water on different
superhydrophobic substrates have reached different conclusions
about the significance of evaporative cooling. Whereas
Gelderblom et al.27 found good agreement between the
predictions of the simplest version of the model and their
experiments on a substrate with an initial contact angle of up to θ0
≃ 150°, Dash and Garimella8 observed significant evaporative
cooling on a substrate with an initial contact angle of θ0 ≃ 160°
and proposed an ad hoc modification of the simplest version of
the model (namely, reducing the theoretical prediction of the
total evaporative flux by an empirically determined factor of
20%) to account for it. Recently Gleason and Putnam39 proposed
another ad hoc modification of the simplest version of the model
(namely, incorporating a prescribed temperature distribution of
the free surface of the droplet) to account for the evaporative
cooling of a droplet on a heated substrate. However, since the
instantaneous evaporative cooling depends on the instantaneous
geometry of the droplet, its instantaneous effect will be the same
on both extreme modes. Hence we hypothesize that, even in
situations such as those studied by Dash and Garimella8 in which
evaporative cooling is significant, the main result of the present
work, namely, that the extreme modes become indistinguishable
on strongly hydrophobic substrates, will still hold true.
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