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Abstract

Background: Endothelial dysfunction is central to the pathogenesis of coronary artery disease, but the role of local and
circulating endothelial progenitor cells in maintaining vascular health is poorly understood. We hypothesised that
impaired local and circulating vascular repair mechanisms predispose to endothelial dysfunction and the premature
onset of coronary artery disease.

Methods and results: Patients with premature coronary artery disease (n= 16) and healthy age- and sex-matched
controls (n = 16) underwent venous occlusion plethysmography with intra-arterial infusion of acetylcholine and sodium
nitroprusside. Numbers of circulating endothelial progenitor cells were directly quantified in whole blood by flow
cytometry. Endothelial cells were isolated from the blood vessel wall and from peripheral blood mononuclear cells,
and expanded in vitro for phenotypic and functional characterisation and analysis of microRNA expression levels. A
dose-dependent increase in forearm blood flow (p <0.001) was attenuated in response to the endothelial-dependent
vasodilator acetylcholine in patients compared with controls (p =0.03). No differences in the number of circulating
endothelial progenitor cells or in the phenotype, function or microRNA expression levels of endothelial outgrowth cells
isolated from blood were observed in patients and controls. Conversely, local vessel wall endothelial cells from patients
had significant impairments in proliferation, adhesion and migration, and significantly reduced expression levels of
microRNAs known to regulate endothelial function (miRs —10a, —let7b, —126 and —181 b) (p < 0.05 for all).
Conclusion: Local vessel wall derived endothelial cells, rather than circulating endothelial progenitor cells and their
progeny, are impaired in patients with vascular dysfunction and premature coronary artery disease.
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disease and may lead to novel approaches to enhance
vascular repair.

Introduction

Atherosclerosis occurs as a result of recurrent injury to
the vasculature throughout life, with many risk factors
known to play a role in the development, progression
and clinical consequences of disease.'> Our under-
standing of the cellular mechanisms that underpin cor-
onary artery disease is incomplete. Recent interest in
vascular repair and regeneration has gathered momen-
tum, as deficiencies in these mechanisms have been
implicated in the pathogenesis of atherosclerosis.’

Postnatal blood vessel growth and repair was trad-
itionally thought to occur exclusively from the migra-
tion and proliferation of endothelial cells within
existing mature blood vessels.* In 1997, CD34 + EPCs
in the adult circulation were reported to promote thera-
peutic angiogenesis in experimental ischaemia.’ It is
now accepted that early reports of adult EPCs refer
to pro-angiogenic cells of haematopoietic origin.® As
such, a large body of research is dedicated to delinea-
tion of the origin, phenotype, function and transla-
tional aspects of a true adult human EPC.” EPCs are
most commonly studied by direct enumeration in per-
ipheral blood by flow cytometry as
CD34+CDI133+KDR +cells.®*  Colony  forming
assays following ex vivo culture of peripheral blood
mononuclear cells (MNCs) are also widely used for
studies of EPCs. Late endothelial outgrowth cells
(EOCs) lack expression of haematopoietic and leuko-
cyte markers, demonstrate hierarchical proliferative
potential and can form de novo blood vessels
in vivo.”'? Therefore, EOCs appear to arise from
true circulating EPCs.

Functional heterogeneity has been demonstrated in
endothelial cells from different vascular locations, and
appears to persist upon removing them from their micro-
environment for in vitro analyses.'? '® Therefore it is
important to study organ-appropriate endothelial cells,
although in humans such studies are limited due to prob-
lems with accessibility. Reduced numbers of circulating
EPCs have been reported in patients with coronary
artery disease.!”?* However, these data are confounded
by discrepancies in the phenotypic definitions of EPC
with overlap between haematopoietic stem cells and
other circulating lineages.” Moreover, most studies
have failed to confirm that their reported putative
EPCs are bona fide progenitor cells, that is, via isolation
for in vitro expansion and functional assessment.

We hypothesised that impaired local and circulating
vascular repair mechanisms predispose to endothelial
dysfunction and the premature onset of coronary
artery disease. Here, we have used a broad range of

quantitative and functional experiments to assess
morphology, growth kinetics, phenotype, function
and microRNA expression levels in endothelial cells
derived from the vessel wall and from circulating mono-
nuclear cells in patients with premature coronary artery
disease and age- and sex-matched healthy control sub-
jects. We demonstrate that significant functional
impairments and reduced expression levels of
microRNAs known to regulate endothelial cell function
are specific to local vessel wall endothelial cells in
patients with premature coronary artery disease.
Conversely, we observed no differences in the number
of circulating EPCs, or in the function and microRNA
expression by late outgrowth EOCs isolated from the
same patients compared with healthy subjects.

Methods

Detailed description of the materials and methods are
available in the Supplementary Material online.

Subjects

The study was performed with the approval of the
South East Scotland Research Ethics Committee, in
accordance with the Declaration of Helsinki and with
the written informed consent of all participants.
Patients with premature coronary artery disease and a
family history of premature coronary artery disease
(n=16) were identified from the outpatient depart-
ment, Royal Infirmary of Edinburgh, Scotland, UK.
A control group of healthy age- and sex-matched sub-
jects (n=16) with no evidence of significant coronary
artery disease following computed tomography coron-
ary angiography (CTCA) was recruited from the
Clinical Research Imaging Centre, Royal Infirmary of
Edinburgh.

Tissue sampling and vascular assessment

Subjects attended the Clinical Research Facility at the
Royal Infirmary of Edinburgh for vascular assessment
and tissue sampling; peripheral blood was collected for
direct quantification of endothelial progenitor popula-
tions by flow cytometry, and for the isolation and
in vitro expansion of circulating EPCs to generate
endothelial outgrowth cells. Vessel wall endothelial
cells were isolated by wire biopsy for in vitro expansion.

In vitro assessment and microRNA studies

Vessel wall endothelial cells and endothelial outgrowth
cells from patients and controls underwent morpho-
logical and phenotypic assessment by flow cytometry
and immunocytochemistry. Functional assessment of

Downloaded from cpr.sagepub.com at The University of Edinburgh on June 8, 2016


http://cpr.sagepub.com/

Brittan et al.

1559

growth kinetics, adhesion and migration, and
microRNA extraction and TagMan qPCR analysis
was also carried out in these cells.

Statistical analyses

Plethysmographic data were analysed as described pre-
viously.”> Forearm blood flow (FBF) was analysed
using two-way repeated measures analysis of variance.
Continuous variables are reported as mean and stand-
ard error of the mean (SEM) or median (interquartile
range (IQR)). Summary statistics were compared by
Chi-squared, Fisher’s exact, Student’s 7- and Mann—
Whitney U tests where appropriate. Statistical signifi-
cance was taken at p <0.05. Statistical analyses were
performed with GraphPad Prism (version 6,
GraphPad Software Inc., CA, USA).

Results

Patients with premature coronary artery disease and
controls were matched for age and sex (Table 1).

Endothelial-dependent and -independent
vasodilatation

FBF was measured using venous occlusion plethysmo-
graphy before and during intra-arterial infusions of
endothelial-dependent (acetylcholine) and -independent
(sodium nitroprusside) vasodilators. There was a dose-
dependent increase in FBF with both vasodilators
(» <0.001). Vasodilatation was reduced in response to
acetylcholine in patients compared with controls (peak
FBF: 5.1£0.9 vs. 9.3 4£2.7ml/100ml of tissue per min,
p=0.03), but was similar in response to sodium nitro-
prusside (p =0.37) (Figure 1).

Circulating EPCs

Circulating EPCs (CD34+CD133+KDR+) and other
progenitor subpopulations (CD34+4, CD34+CD45—,
CD34+KDR+, CD34+CDI1334, CDI1334+ and
CDI1334+KDR+) were directly quantified in whole
blood using flow cytometry to ascertain differences
between patients and control subjects. No differences
were observed in the number of any circulating subpo-
pulation between patients and controls (Table 2; Figure
S1 in the Supplementary Material online).

Efficiency of cell isolation and growth kinetics

Growth kinetics of outgrowth from vessel wall endo-
thelial cells and peripheral blood MNCs, that is, late
outgrowth EOCs, were calculated to identify functional
differences between these cells in patients and controls.

Outgrowth was observed as colonies that were
expanded to form cobblestone monolayers with typical
endothelial morphology, which were maintained in cul-
ture up to passage 10 (Figure 2(a) to (c) and (i) to (k)).
For vessel wall endothelial cells, colony outgrowth was
observed from 14/16 patients (88%) and 15/16 controls
(94%), and no differences were observed between
patients and controls in the day of first colony appear-
ance (9.1 £ 1.1 vs. 7.4+ 1.2 days, p=0.30) or the total
number of colonies (10.8 £3.3 vs. 9.4+2.5, p=0.92)
(Figure 2(e) and (f)). For late outgrowth EOCs, colo-
nies were derived from all subjects with colonies emer-
ging slightly later from patients compared with controls
(10.3£0.8 vs. 7.9+ 0.5 days, p=0.03), but with no dif-
ference in the number of colonies obtained from
patients compared with controls (11.8+2.3 vs.
20.9 +17.7 colonies, p =0.06) (Figure 2(m) and (n)).

Mean population doubling time (PDT) between pas-
sages 2 and 8 by vessel wall endothelial cells from
patients was significantly reduced compared with con-
trols (mean PDT+SEM: 23402 vs. 3.440.5,
p=0.02) (Figure 2(g)). No significant difference was
observed in mean PDT between passages 2 and 8 by
late outgrowth EOCs from patients compared with con-
trols (2.2+0.2 vs. 2.3£0.2, p=0.89) (Figure 2(0)).
Similarly, cumulative population doubling levels
(CPDLs) of vessel wall endothelial cells from patients
were significantly reduced compared with controls
(CPDL at passage 8: 18.1£14 wvs. 236114,
p=0.03) (Figure 2(h)). No significant difference was
observed in CPDL by late outgrowth EOCs from
patients compared with controls (22.3+0.7 vs.
22.2+ 1.4, p=0.94) (Figure 2(p)).

Phenotypic characterisation of cells

Vessel wall endothelial cells and late outgrowth EOCs
from patients and controls had similar ubiquitous
expression of von Willebrand factor (VWF)
(Figure 2(d) and (1)). Vessel wall endothelial cells main-
tained a high expression of mature endothelial cell mar-
kers with no differences between patients and controls
at early (2-4) passages (CD31+98.34+0.6% vs. 96.2+
1.4%, p=0.24; CD146+98.5£0.5% vs. 97.5+0.9%,
p=0.15) and late (5-10) passages (CD31+97.5+0.6%
vs. 97.94+1.2%, p=0.14; CDI146+95.6+1.3% vs.
92.94+3.9%, p=0.89). A relatively high expression of
KDR by vessel wall endothelial cells was maintained
during culture in patients (89.17Ye haematopoietic
antigen, CD45, was expressed at low levels throughout
(<4% for all) (Figure S2 and Table S1 online).

There was no difference in the phenotype of late out-
growth EOCs between patients and controls at early
(2-4) passages (CD31+4+96.54+1.0% vs. 92.0£2.9%,
p=040; CDI146+4+96.6+1.1% vs. 97.4+1.1%,
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Table 1. Characteristics of patients with premature coronary artery disease and controls.

Patients Controls p value
Age 51£5 50+6 0.8l
Sex, male 15/16 (94%) 15/16 (94%) 0.99
Past medical history
Myocardial infarction Il (69%) 0 (0%) <0.001
Angina 16 (100%) 0 (0%) <0.001
PCI 15 (94%) 0 (0%) <0.001
CABG 2 (13%) 0 (0%) 0.48
Risk factors
Current smokers 0 (0%) 0 (0%) 0.99
Hypertension 5 (31%) | (6%) 0.66
Hyperlipidaemia 7 (44%) 2 (13%) 0.78
Hemodynamic variables
Systolic blood pressure, mmHg 1449+ 14.6 1353+ 16.6 0.10
Diastolic blood pressure, mmHg 885+ 11 834104 0.19
Heart rate, beats/min 56.9+8.3 62.7+8.9 0.07
Total cholesterol, mg/dI 8827 95+£18 0.40
LDL cholesterol, mg/dl 56 +23 58+ 18 0.8lI
Glucose (random), mg/dl 90+ 11 85+7 0.12
Drug treatment
Aspirin 16 (100%) 0 (0%) <0.001
Clopidogrel 6 (38%) 0 (0%) 0.02
Beta blocker 9 (56%) 0 (0%) <0.001
ACE inhibitor/ARB 14 (88%) 0 (0%) <0.001
Calcium channel blocker 2 (13%) 0 (0%) 0.48
Nitrate 3 (19%) 0 (0%) 0.23
Statin 16 (100 %) 0 (0%) <0.001
Coronary artery disease
Age at first coronary event 47+2 N/A -
Single-vessel disease 2 (13%) | (6%) 0.99
Two-vessel disease 6 (38%) 0 (0%) 0.02
Three-vessel disease 8 (50%) 0 (0%) 0.002

PCI: percutaneous coronary intervention; CABG: coronary artery bypass grafting; LDL: low-density lipoprotein; ACE: angiotensin-converting enzyme;

ARB: angiotensin receptor blocker.

p=0.26), and late (5-10) passages (CD31494.0+
2.5% vs. 96.4+1.4%, p=0.90; CD146+98.8+0.3%
vs. 98.3+£0.7%, p=0.80). Expression of KDR by late
outgrowth EOCs was similar in early and late passages
in patients (71.9+10.1% to 73.8+10.8%, p=0.45)
and controls (70.0£9.1% to 60.1£10.6%, p=0.47),
and did not change significantly in patients compared
with controls at late passage (p =0.14). CD45 expres-
sion was low throughout (<4% for all) (Figure S2 and
Table S1 online).

Functional characterisation of cells

In order to identify cell-specific mechanisms that may
be dysfunctional and thus contribute to the

pathophysiology of premature coronary artery disease,
we carried out in vitro functional assessments of migra-
tion and adhesion. Vessel wall endothelial cells from
patients had reduced migration in a wound-healing
assay compared with controls (wound coverage
at 24h: 359+88% vs. 64.8+12.7%, p=0.04)
(Figure 3(a) to (c)). Migration was similar for late out-
growth EOCs in patients and controls (62.2 £8.2% vs.
56.3+8.0%, p=0.60) (Figure 3(e) to (g)). Cell adhe-
sion was reduced in vessel wall endothelial cells from
patients compared with controls (adherent cells per
well: 31.5+£5.4 vs. 53.34+6.6, p=0.02) (Figure 3(d)),
but there were no differences in adhesion by late out-
growth EOCs (52.0+7.1 vs. 57.3+11.2, p=0.83)
(Figure 3(h)).
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Figure |. Endothelial-dependent and -independent vasodilatation in patients with premature coronary artery disease and matched
controls. Both vasodilators caused a dose-dependent increase in forearm blood flow (FBF) in the infused arm (p <0.001), but
vasodilatation was reduced in response to infusion of the endothelial-dependent vasodilator acetylcholine in patients (red) compared
with controls (blue, peak FBF: 5.1 0.9 vs. 9.3 2.7 ml/100ml tissue per min, p =0.03). Vasodilatation was similar in response to
infusion of the endothelial-independent vasodilator sodium nitroprusside (SNP) in patients and controls (p =0.37, n= 16 for both).

Closed circle: infused FBF; open circle: non-infused FBF.

Table 2. Circulating subpopulations of progenitor cells.

Number of circulating progenitor cells (x 10°/l)

p value
Patients (n=16) Controls (n=16)
CD34+CDI133 + KDR+ 0.8 (0.4-2.8) 0.7 (0.2-1.1) 0.41
CD34+ 149.3 (35.5-235.0) 99.4 (28.4-262.1) 0.68
CD34+4CD45— 20.1(7.6-34.7) 18.3 (5.5-25.0) 0.50
CD34+KDR+ 5.6 (3.0-43.8) 5.9(2.1-15.1) 0.62
CD344-CD133+ 5.4 (2.8-12.8) 5.2 (3.0-7.6) 0.49
CDI33+ 9.5 (5.2-17.0) 13.0 (4.0-18.1) 0.80
CDI133+KDR+ 2.7 (1.0-5.2) 1.6 (1.0-3.5) 0.66

Data are median (interquartile range) expressed as an absolute cell count (x 10°/1).

MicroRNA expression by local vessel wall endothelial
cells and circulating EOCs

MicroRNA (miR) expression is often selective or
enriched in individual cell types and cell specific ‘miR
signatures’ can define cellular function. We assessed
expression levels of miRs —10a, —27b, —let7b, —126
and —181 b in early passage local vessel wall endothelial
cells and late outgrowth EOCs from patients and con-
trols (n =8 for each). Levels of miR—10a (0.7 0.1 vs.
1.0£0.1, p=0.007), —let7b (0.64+£0.1 vs. 1£0.1,
p=0.0004), —126 (0.69£0.1 vs. 1.0£0.1, p=0.02)
and —181b (0.69+0.1 vs. 1.0+£0.1, p=0.02) were sig-
nificantly reduced in vessel wall endothelial cells from
patients compared with controls (Figure 4). No differ-
ences in miR expression levels were observed in late
outgrowth EOCs from patients and controls (p > 0.05
for all) (Figure 4).

Discussion

The role of local and circulating EPCs in maintaining
vascular health is not well understood, with deficiencies
in vascular repair potentially contributing to endothe-
lial dysfunction and the development of premature cor-
onary artery discase. We compared numbers of
circulating EPCs in patients with premature coronary
artery disease and matched controls, and additionally
compared endothelial outgrowth following in vitro
expansion of peripheral blood MNCs and endothelial
cells isolated and expanded from the local blood vessel
wall. Whilst patients had endothelial-dependent vaso-
motor dysfunction compared with controls we found
no differences in the number of circulating EPCs or in
the function of late outgrowth EOCs isolated from cir-
culating progenitor cells. In contrast, endothelial cells
isolated directly from the vessel wall had marked
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Figure 2. Morphology and growth kinetics of vessel wall derived endothelial cells and endothelial outgrowth from circulating cells.
Colonies were derived with a high efficiency from vessel wall endothelial cells (ECs) ((a) to (c), x 10 magnification) and from peripheral
blood mononuclear cells ((i) to (k), x 10 magnification) in patients and controls. Cell outgrowth from both sources was morpho-
logically analogous with typical endothelial ‘cobblestone’ morphology. Representative images of the emergence and expansion of
colonies from a patient with premature coronary artery disease are shown. Vessel wall endothelial cells (d) and endothelial outgrowth
cells (EOCs) (1) from patients and controls had ubiquitous expression of von Willebrand factor (VWF; red cytoplasmic staining; DAPI,
blue nuclear staining. Images shown are from a control subject at passage 3, scale bars 50 um). For vessel wall endothelial cells, no
differences were observed between patients and controls in the day of first colony appearance (e) (9.1 £ 1.1 vs. 7.4 4 1.2 days,
p=0.30) or the total number of colonies per subject (f) (10.8+3.3 vs. 9.4+2.5, p =0.92). For late outgrowth EOCs, colonies
emerged later from patients compared with controls (m) (10.3+0.8 vs. 7.9+ 0.5 days, p =0.03) but no difference in colony number
was observed from patients compared with controls (n) (11.8 £2.3 vs. 20.9 & 17.7 colonies, p = 0.06). Mean population doubling times
(PDT) between passages 2 and 8 by vessel wall endothelial cells from patients were significantly reduced compared with controls (g)
(mean PDT £ SEM: 2.3 £ 0.2 vs. 3.4 0.5, p = 0.02). Cumulative population doubling levels (CPDL) of vessel wall endothelial cells from
patients were significantly reduced compared with controls (h) (CPDL at passage 8: 18.1 = 1.4 vs. 23.6 £ 1.4, p =0.03). No significant
difference was observed in mean PDT between passages 2 and 8 by late outgrowth EOCs from patients compared with controls (o)
(22402 vs. 2.3 £0.2, p =0.89) or in CPDL by late outgrowth EOCs from patients compared with controls (p) (22.3 £0.7 vs.
222+ 1.4, p=0.94).

impairment in proliferation, adhesion and migration, circulating EPCs, contributes to endothelial dysfunc-
and reduced levels of expression of miRs known to tion in patients with premature coronary artery disease.
regulate endothelial function in patients compared Previous observations suggest that patients with car-
with controls. These findings suggest that impairment diovascular disease have reduced numbers of circulat-
of local vessel wall endothelial cells, rather than ing EPCs.!72*2¢ However, we observed no differences

Downloaded from cpr.sagepub.com at The University of Edinburgh on June 8, 2016


http://cpr.sagepub.com/

Brittan et al.

1563

% Wound coverage
(24 hours)

% Wound coverage
(24 hours)

Vessel wall ECs
p=0.04 80

p=0.02

60

40

20

Adhesive cells per well

0
© © © ©
& S S S
3 N 2 N
S S (d) & =

Circulating EOCS= 0

(2]
o

Adhesive cells per we
N N
o o

o

(h)

Figure 3. Functional analyses of vessel wall endothelial cells and late outgrowth endothelial outgrowth cells. The potential of vessel
wall derived endothelial cells (ECs) to migrate and undergo wound healing during early passages (passages 2—4) in vitro was signifi-
cantly reduced in patients compared with controls (wound coverage at 24 h: 35.9 £ 8.8% vs. 64.8 &= 12.7%, p =0.04, n= 16 for both)
((a) to (c); x 10 magnification). Conversely, wound healing by late outgrowth endothelial outgrowth cells (EOCs) was similar in

patients and controls (wound coverage at 24 h: 62.2 +8.2% vs. 56.3 +8.0%, p =0.60, n= 16 for both) ((e) to (g); x 10 magnification).
Wound healing assays are representative phase contrast images of endothelial cells ((a) and (b)) and EOCs ((e) and (f)) from a patient
with premature coronary artery disease at passage 2. Similarly, cell adhesion by vessel wall endothelial cells was significantly reduced in
patients compared with controls (adherent cells per well = SEM: 31.5+5.4 vs. 53.3 £ 6.6, p =0.02, n= 16 for both) (d), whereas no
differences were observed in adhesion by late outgrowth EOCs in patients and controls (adherent cells per well: 52.0 £ 7.1 vs.

5734112, p=0.83, n= 16 for both) (h).

in the number of circulating EPCs or in the function of
their progeny in patients and controls. It is important
to note that previous reports have defined progenitor
cells in blood based on their co-expression of haemato-
poietic (CD34+, CD133+) and vascular (KDR+) mar-
kers. These studies did not study the function of EOCs
from these putative EPC populations. We isolated,
expanded and characterised EOCs in patients with pre-
mature coronary artery disease and demonstrated that
these cells are similar in number and function to care-
fully matched healthy controls. Our findings are con-
sistent with a recent report that EOC proliferation was
similar in patients with premature coronary artery dis-
ease and their first-degree relatives.?’

Endothelial denudation is one of the earliest patho-
physiological features of vascular disease, with persist-
ent endothelial dysfunction responsible for the
progression and clinical manifestations of atherothrom-
bosis.”® The traditional paradigm of vascular repair is
based on the proliferation and migration of existing
mature endothelial cells from the adjacent vasculature.
Our observation that vessel wall endothelial cells have
reduced proliferation, adhesion and migration suggest
that local mechanisms of vascular repair are impaired
in patients who develop premature coronary artery dis-
ease. These findings are consistent with previous reports

demonstrating endothelial dysfunction in patients with
coronary artery disease®”** and support a key role for
endothelial dysfunction in the pathogenesis of coronary
artery disecase. Whilst the origin of circulating EPCs
remains uncertain, the fact that their progeny are not
dysfunctional suggests that deficiencies in the number
and function of circulating EPCs are not central to the
development of premature coronary artery disease.

Why are vessel wall derived endothelial cells but not
EOCs from circulating progenitors dysfunctional? We
postulated that functional differences might be due to
differential expression of miRs and therefore transla-
tional repression or degradation of specific messenger
RNAs and related transcriptional networks. A number
of miRs have been shown to regulate aspects of endo-
thelial function including miR-126,>'"* miR-10a,***
miR—27b,* miR-let7b*" and miR-181b.** We dem-
onstrate that expression of these microRNAs was
reduced in vessel wall endothelial cells, but not in late
outgrowth EOCs in patients with premature coronary
artery disease; hence suggesting broad dysregulation of
endothelial transcriptional networks. Further studies will
explore the pathways through which these microRNAs
regulate vessel wall endothelial cell function.

Our findings highlight the importance of studying
tissue-appropriate endothelial cells when investigating
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Figure 4. Expression of microRNAs known to regulate endo-
thelial function in vessel wall endothelial cells and endothelial
outgrowth from circulating cells. Quantitative polymerase chain
reaction (QPCR) was used to investigate expression levels of
microRNAs (miRs) —10a, —27b, —let7b, —126, —181 b in low
passage (2—4) vessel wall endothelial cells (ECs) and late out-
growth endothelial outgrowth cells (EOCs) from patients and
controls. Relative quantities (RQ) of miR—10a (0.7 0.1 vs.
1.0£0.1, p=0.007), —let7b (0.64+0.1 vs. | £0.1, p =0.0004),
—126 (0.69£0.1vs. 1.0£0.1, p=0.02) and -181 b (0.69 £0.1 vs.
1.0£0.1, p=0.02) were significantly reduced in vessel wall ECs
from patients compared with controls (n =8 for each). No dif-
ference was observed for the level of miR—27b in vessel wall
ECs in patients compared with controls (0.87 0.2 vs. 1.0+0.2,
p=0.11). For EOCs the levels of miR—10a (0.88+0.2 vs.
1.0+£0.1, p=0.15), —=27b (1.54£0.6 vs. 1.04+0.2, p=0.27),
—let7b (0.96 +£0.13 vs. 1.0+0.1, p=0.28), —126 (0.89£0.2 vs.
1.0£0.1,p=0.18)and —181 b (0.90+0.2 vs. 1.0+0.1,p=0.18)
were similar in patients and controls (n =8 for each).

the pathogenesis of disease.'*'® To date, studies have
been challenging in humans due to the challenges asso-
ciated with accessing vascular endothelial cells.
However, we report novel methods for the expansion
and maintenance in culture of vessel wall endothelial
cells from both patients and healthy controls. This
method was adapted from an endothelial biopsy proto-
col where cells were immediately fixed for quantitative
immunofluorescence.***** This development permitted
the first functional and phenotypic analyses of human
vessel wall endothelial cells maintained long-term in
culture, and a direct comparison of these cells with
circulating EPCs and EOCs from the same patients.
Our study has a number of strengths. First, we iden-
tified well-characterised patients and matched healthy

controls, and all participants underwent a gold stand-
ard assessment of vascular function. Second, we have
carefully quantified multiple putative circulating EPC
populations, and comprehensively characterised the
function of EOCs. Third, we developed novel methods
to culture vessel wall endothelial cells from patients to
understand the role of local endothelial cells in vascular
repair. However, there are also some limitations to con-
sider. We have evaluated EPCs at a single time point in
patients with stable disease and it is not possible to
determine whether patients have deficiencies in EPC
mobilisation at times of acute vascular injury.
However, our previous studies suggest that phenotypic
EPCs are not mobilised in the context of local vascular
injury during angioplasty or stent implantation® or sys-
temic injury following acute systemic inflammation.*
Our patient population was young and selected to
have few traditional risk factors for coronary artery
disease. Whilst this avoids potential confounding due
to conditions such as diabetes mellitus or cigarette
smoking that may influence EPC function, our obser-
vations may not be generalisable to the broader popu-
lation of patients with coronary artery disease.

In conclusion, impaired proliferation, adhesion,
migration and reduced microRNA expression of local
vessel wall endothelial cells, rather than circulating
EPCs, was associated with endothelial dysfunction
and premature coronary artery disease. Future studies
of vessel wall endothelial cells are likely to advance our
understanding of the mechanisms of premature coron-
ary artery disease and may lead to novel approaches to
enhance vascular repair.
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