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Finite Volume Time Domain Room Acoustics
Simulation under General Impedance Boundary

Conditions
*Stefan Bilbao, Senior Member, IEEE, Brian Hamilton, Jonathan Botts and Lauri Savioja, Senior Member, IEEE

Abstract—In room acoustics simulation and virtualization
applications, accurate wall termination is a perceptually crucial
feature. It is particularly important in the setting of wave-based
modeling of 3D spaces, using methods such as the finite difference
time domain method or finite volume time domain method.
In this article, general locally reactive impedance boundary
conditions are incorporated into a 3D finite volume time domain
formulation, which may be specialized to the various types of
finite difference time domain method under fitted boundary
termination. Energy methods are used to determine stability
conditions for general room geometries, under a large family
of nontrivial wall impedances, for finite volume methods over
unstructured grids. Simulation results are presented, highlighting
in particular the need for unstructured or fitted cells at the room
boundary in the case of the accurate simulation of frequency-
dependent room mode decay times.

Index Terms—room acoustics, finite difference time domain
method, finite volume methods.

I. INTRODUCTION

Full spatiotemporal simulation of acoustic wave propagation
over grids, for purposes of virtual acoustic rendering, or
artificial reverberation offers, at least in theory, a complete
description of wave phenomena within an enclosure or room.
Such methods have seen increased interest in recent years,
particularly using finite difference time domain (FDTD) meth-
ods [1]–[3], and equivalent digital waveguide mesh [4], [5]
formalisms. Finite volume time domain (FVTD) methods have
a long history of use in applications in fluid dynamics [6]
and electromagnetics [7], and were presented in the context of
room acoustics as a generalisation of FDTD to quasi-Cartesian
grids [2], yet lacking conditions for numerical stability at
boundaries. More recently, FVTD methods have been pre-
sented allowing for fully unstructured grids with energy-stable
impedance boundary terminations [8].

The advantages of such direct grid-based time-stepping
methods are many. Relative to standard room acoustics ren-
dering methods such as ray tracing or the image source
method [9], one advantage is the ability to handle arbitrary
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room shapes without simplifying geometrical assumptions, and
thus simulate diffraction effects in a natural manner. Another
advantage is flexibility—as the acoustic field is available in
its entirety over the problem domain, applications in virtual-
ization involving moving sources or receivers require minimal
computational overhead. A third is the highly parallel nature of
such algorithms, particularly when explicit methods are used,
and when the grid has a regular ordering, at least over the
problem interior.

A major concern in room acoustics applications is the
accurate modeling of boundary conditions over an irregularly-
shaped domain boundary or wall. In particular, the main fea-
ture of interest, the absorption, is highly frequency dependent,
and such frequency dependence necessarily implies boundary
conditions which are reactive (or capable of storing energy)
and thus nontrivial to model and implement. For time-stepping
methods such as FDTD or FVTD, two main issues emerge.

First is the question of numerical stability for the algorithm
as a whole, for a given update over the interior, comple-
mented by numerical boundary conditions which correspond,
generally, to impedance terminations of type which may
vary over the room boundary. For FDTD methods operating
over Cartesian grids, frequency domain techniques such as
von Neumann analysis [10], [11] give necessary stability
conditions on unbounded domains or problems on bounded
domains that allow for a Fourier series decomposition of
spatial modes (such as, e.g. a clamped rectangular membrane).
If the boundaries are of a simple type (such as, e.g., a plane
aligned with the grid in one of the coordinate directions),
then such analysis may be extended, as per the methods
developed by Gustafsson, Sundstrom, Kreiss and Osher [12].
If, however, the grid is unstructured, either over the interior,
or at the boundary, and if the boundary itself is of an irregular
shape, then such frequency domain methods do not apply
directly. For example, boundary models thought to be stable
by frequency domain analyses [13], [14] have been found
to be prone to instabilities at re-entrant edges/corners [15],
[16]. The difficulties are obviously compounded when the wall
condition itself is of a nontrivial form (i.e., it is characterized
by a frequency-dependent reflectance, again variable over the
room boundary).

Second is the question of the accuracy of the boundary
condition. A standard approach, particularly when methods
operating over structured grids are employed, is to make use
of a so-called staircase approximation to the boundary. Though
such methods have the virtue of ease of programming, such
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methods suffer from a decrease in accuracy, when viewed in
terms of computed mode frequencies, and also time domain
artefacts, as illustrated in 2D recently in [8]. A much larger
effect of using such a staircase boundary, and one that will be
illustrated in this article, is that of severe inaccuracy in cal-
culated decay times under absorptive wall conditions. On top
of this, the frequency-dependent character of the impedance
boundary condition requires specialized design techniques.
Though some authors use an approach based on running
multiple simulations over different frequency bands [17], [18],
each associated with a constant wall reflectance, for the sake
of efficiency it is desirable to model the frequency-dependent
character of the wall conditions over the entire audio frequency
range simultaneously.

Finite volume approaches constitute a useful design method-
ology which tackles both of the issues mentioned above. Sta-
bility analysis can be carried out in the fully unstructured case,
by making use of energy methods, and allow for numerical
stability conditions for complex geometries, and for simple
impedance boundary conditions [8]. Furthermore, through the
use of fitted cells, rather than staircase approximations at the
room boundary, much better accuracy can be obtained in terms
of temporal coherence of responses and mode frequencies.
As mentioned above, finite volume methods generalize certain
FDTD schemes on structured grids over the interior, and as
such can be thought of as a means of the construction and
analysis of such schemes under complex boundary termination
in the fully unstructured case.

Some basic results on FVTD have been provided in [8].
The current article extends the scope of this work significantly
in various ways, towards tackling real-world room acoustics
problems, by introducing a general passive wall admittance
formulation, suitable for fitting against theoretical or mea-
sured values, while maintaining the important energy balance
property crucial in finding numerical stability conditions. In
addition, whereas only full cubic cells were tested in [8], this
work considers fitted cells for nontrivial 3D room geometries,
as well as adaptations to dodecahedral cells for a 13-point
FDTD scheme on the face-centered cubic (FCC) grid, which
has been found to be more computationally efficient than con-
ventional 27-point schemes [19]. The use of fitted cells in this
study illustrates greatly improved results in terms of calculated
T60 times relative to simple staircase approximations.

In Section II, the model equations for linear acoustics are
given, for a general room geometry, accompanied by locally-
reactive boundary conditions of a general form, described in a
multi-branch circuit form, and an energy analysis illustrating
the passivity of the combined initial/boundary value problem.
(Passivity here means that, for an initial value problem, the
total stored energy of the room, including the walls, must
be non-increasing over time.) Finite volume discretization
is outlined in Section III, as well as the specialization to
Cartesian and FCC grids, in which case such methods are
equivalent to known finite difference time domain methods.
The distinction between staircase and fitted cell approxima-
tions is discussed, with reference in particular to convergence
of such approximations in volume and the bounding area.
Discrete time approximations are introduced in Section IV,

leading to convenient global numerical stability conditions,
obtained through energy analysis. The determination of model
parameters from nontrivial absorptive materials is covered in
Section V. Finally, in Section VI, various illustrations of the
accuracy of such fitted approximations relative to staircase
approximations are provided under a variety of boundary
conditions for some representative geometries, highlighting
especially the gross inaccuracy in calculated T60 times under
staircase boundary termination. The strict numerical energy
conservation and dissipation properties of such schemes are
also illustrated.

II. MODEL EQUATIONS

A model of the dynamics of an acoustic field within an
enclosure is given by the following system:

1

ρc2
∂p

∂t
+∇ · v = 0 (1a)

ρ
∂v

∂t
+∇p = 0 . (1b)

Here, p = p(x, t) and v = v(x, t) are the pressure and particle
velocity, respectively; both are functions of time t ∈ R+ and a
spatial coordinate x. In particular, x ∈ V ⊂ R3, where V is the
room enclosure. The physical constants ρ and c are the density
of air and wave speed in air, respectively, and in this work take
the constant values ρ = 1.21 kg· m−3 and c = 340 m·s−1.
∇ and ∇· are the three-dimensional gradient and divergence
operations, respectively. System (1) must be complemented by
two initial conditions p(x, 0) = p0(x) and v(x, 0) = v0(x);
in this article, it is assumed that the system is unforced, so
only the initial/boundary value problem is considered.

System (1) may be written in a second order form,

∂2Ψ

∂t2
= c2∇2Ψ , (2)

using a velocity potential Ψ = Ψ(x, t) [20], defined by

p = ρ
∂Ψ

∂t
, v = −∇Ψ , (3)

and where ∇2 = ∇ · ∇ is the Laplacian.
The model (1) above is simplified from the linearized Navier

Stokes equations [20], where v is the irrotational part of the
velocity vector field, and where viscothermal loss effects have
been neglected. It, or more commonly the second order form
(2), is the starting point for most wave based simulations of
room acoustics. Generalizations to include effects of viscother-
mal damping, important in modeling wave propagation in large
enclosures, will not be addressed here. See, e.g., [21], [22].

A. Energy Balance

A total energy balance for system (1) may be derived [8]
as

dHi

dt
= −B , (4)

where the total energy Hi(t) stored in the acoustic field is
defined by

Hi =

∫∫∫
V

ρ

2
|v|2 +

1

2ρc2
p2dV ≥ 0 , (5)
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where dV is a differential volume element, and where B(t),
a boundary term resulting from an application of Gauss’s
theorem, is given by

B =

∫∫
∂V
pv⊥dσ . (6)

Here, ∂V is the boundary of the room volume V , with outward
normal n, and where v⊥ = n · v is the normal component
of the particle velocity over the boundary, with dσ as a
differential surface element.

B. Impedance Boundary Conditions

An obvious requirement of any wall condition in a room
acoustics setting is passivity—the wall material may be ca-
pable of storing or dissipating (but not generating) energy.
Considering the energy balance given in (4), it then follows
that for passivity, it must be true that

B = Q+
dHb

dt
with Q ≥ 0 and Hb ≥ 0 , (7)

where Q(t) represents power dissipated by the wall termina-
tion, and Hb(t) the stored energy at the boundary. Under the
non-negativity conditions above, it then follows that (4) may
be written as
dH
dt

= −Q ≤ 0 =⇒ 0 ≤ H(t) ≤ H(0) for t ∈ R+ ,

(8)
where H = Hi +Hb is the total energy stored in the acoustic
field and at the wall. The interest of such a condition is
that it may be transferred to the discrete setting, leading to
sufficient conditions for numerical stability in time-stepping
methods. The numerical counterpart of (8) is an invaluable
design and debugging tool—under lossless boundary con-
ditions, a properly designed scheme will exhibit numerical
energy conservation to the level of accuracy of the machine
(“machine epsilon”), and when losses are present, a numerical
energy balance must be satisfied, whereby the cumulated
power dissipated at the boundary must exactly cancel that lost
in storage, again to machine accuracy.

Examining the term B from (6), then a locally reactive
boundary condition [23] may be framed in terms of a time-
differential relation between the pressure p(x, t) and the
normal velocity component v⊥(x, t), for x ∈ ∂V . It is often
characterized, after introducing Laplace transformed quantities
p̂(x, s) and v̂⊥(x, s), by an admittance Y (x, s), where

v̂⊥ = Y p̂ , (9)

and where s is the usual transform variable. Local reactivity
implies that each point on the wall surface is capable of
storing and dissipating energy, as well as transferring it back
to the acoustic field—but that no direct energy transfer is
allowed between distinct points along the wall. For passivity,
the admittance Y (x, s) must be positive real [24] for every
x ∈ ∂V . For time domain simulation purposes, it is rational
approximations of finite order that are of interest; for such an
approximation, there is always a representation in terms of a
passive one-port network, which, if the form of the admittance
is known, may be arrived at through conventional network

synthesis procedures such as those of Brune [25], Bott and
Duffin [26], and others. See the text by van Valkenburg [27]
for an overview.

In the present case, where the boundary conditions will
be fitted to measured admittances, or empirical formulas,
a simplified representation allowing for straightforward nu-
merical implementation, but sacrificing some generality is of
interest. One useful constraint is that the wall admittance is
zero at the DC frequency, following from the observation that
steady DC flow in the direction of the wall is unphysical. A
one-port parallel structure, containing M series branches is
shown in Fig. 1, where v⊥(x, t) and p(x, t) are interpreted
as the current and voltage, respectively. The mth branch is a
series combination of an inductance L(m)(x) ≥ 0, resistance
R(m)(x) ≥ 0 and finite capacitance C(m)(x) > 0; all are
non-negative. The admittance of the network is

Y (x, s) =

M∑
m=1

s

L(m)(x)s2 +R(m)(x)s+ 1
C(m)(x)

. (10)

The one-port structure relates v̂⊥ and p̂, allowing for the
closure of (9). Note that for M = 1, the circuit representation
reduces to the series combination of a mass, spring and
resistance, as in simpler models of wall admittances [28].
Note also that because of C(m)(x) > 0, the condition of zero
admittance at DC is enforced—this assumption may be relaxed
if, e.g., one is interested in examining simple frequency-
independent loss, which is clearly an idealisation, though a
very useful one.

Parallel Connection

p

p p p

v(1) v(2) v(M)

v⊥

R(1) R(2) R(M)C(1) C(2) C(M)

L(1) L(2)
L(M)

Fig. 1: One-port circuit representation of a boundary admit-
tance, as a parallel combination of M series RLC branches.

Writing v(m) as the partial current in the mth branch, in the
time domain, the differential relationships between v⊥ and p
are

v⊥ =

M∑
m=1

v(m) (11a)

p = L(m) dv
(m)

dt
+R(m)v(m) +

1

C(m)
g(m) (11b)

dg(m)

dt
= v(m) , (11c)

for m = 1, . . . ,M . Note that the new variable g(m) has been
introduced here, reflecting the integration in the capacitor—the
need for such an additional variable follows from the reactive
nature of the capacitance. Examining the boundary term B
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from (7), and using (11), one has

B =

∫∫
∂V
v⊥pdσ

(11a)
=

M∑
m=1

∫∫
∂V
v(m)pdσ (12)

(11b),(11c)
= Q+

dHb

dt
,

where

Q =

M∑
m=1

∫∫
∂V
R(m)

(
v(m)

)2
dσ ≥ 0 (13)

Hb =
1

2

M∑
m=1

∫∫
∂V
L(m)

(
v(m)

)2
+

1

C(m)

(
g(m)

)2
dσ ≥ 0 ,

(14)

and thus the system as a whole is passive, satisfying (8).
There are obviously many other topologies which also lead

to passive termination—see the comments in Section VII.

III. FINITE VOLUME METHODS

Finite volume methods for acoustic wave propagation are
described in [8]. As mentioned in the introduction, such
methods generalize certain finite difference time domain meth-
ods, allowing for convenient treatment of complex boundary
termination ensuring numerical stability. The method will be
outlined in brief below.

A. Cells and Finite Volume Formulation

The starting point in a finite volume discretization is the
definition of N non-overlapping cells Ωj , j = 1, . . . , N ,
covering the domain of interest, here V . In general, these may
be chosen as three-dimensional polyhedra. The volume of cell
Ωj is Vj ; the area of the adjoining surface and the distance
between cells Ωj and Ωk are Sjk and hjk, respectively.1 For a
cell with a boundary on ∂V , the boundary surface area is Sl,
for l = 1, . . . , Nb, where Nb is the total number of boundary
faces. See Fig. 2.

Ωj

Ωk

Ωj

�
�
�

�
�
�

Sjk

hjk

@@
∂V

@
@
@
Sl

Fig. 2: Left: two irregular polyhedral cells Ωj and Ωk, with an
adjoining face, of surface area Sjk, and with inter-cell distance
hjk. Right: a cell Ωj with a boundary face, of surface area Sl.

First, introduce pressures pj(t), representing an average
pressure over the cell Ωj , and outward normal velocities
vjk(t) averaged over the surface adjoining cells Ωj and Ωk; in

1There is some freedom to choose inter-cell distances, but they can be
uniquely determined by centroids of cells or by the nodes in a Voronoi
tessellation. For boundary cells it may be desirable to choose inter-cell
distances based on the centroids of boundary faces.

particular, vjk = −vkj . Through the use of Gauss’s theorem,
the first of system (1) may be written as

Vj
ρc2

dpj
dt

+

N∑
k=1

βjkSjkvjk +

Nb∑
l=1

γjlSlvl = 0 , (15)

∀j = 1, . . . , N . Here, βjk is an indicator function, taking
on the value 1 if Ωj and Ωk share a common face, and 0
otherwise. Similarly, γjl is an indicator function selecting for
a cell Ωj which possesses a face l of surface area Sl on the
outer boundary of the domain V . Such a face is associated
with an outward normal velocity vl. The second of system (1)
may be approximated as

ρ
dvjk
dt

+
1

hjk
(pk − pj) = 0 . (16)

B. Cell Types

In general, finite volume methods operate over unstructured
collections of cells; in room acoustics simulation applications,
which can require very large numbers of such cells, it is useful
to employ a regular arrangement of cells over the problem
interior, with some specialization of cells at the boundary.
Under such conditions, finite volume updates are for the most
part uniform over the domain, as in finite difference time
domain methods, with the underlying finite volume formu-
lation remaining as a tool allowing for the definitive analysis
of numerical stability, and also in the determination of stable
boundary conditions.

To this end, two useful cell types which tile three-
dimensional space are the cubic cell and the rhombic dodeca-
hedral cell (the Voronoi cell of the FCC grid) [19]. See Fig. 3.

Fig. 3: Cells surrounded by their nearest neighbours and stencil
of points used in equivalent finite difference scheme: Left, a
cubic cell (cubic grid), and right, a rhombic dodecahedral cell
(FCC grid).

If the distance between cell centers is h, then for cubic cells,

Vj = h3 Sjk = h2 hjk = h , (17)

and for rhombic dodecahedral cells,

Vj =
1√
2
h3 Sjk =

1

2
√

2
h2 hjk = h . (18)

C. Staircase Approximations and Fitted Boundary Cells

For an arbitrary domain, and if one is using a regular
arrangement of cells, such as the Cartesian (cubic) or rhom-
bic dodecahedral tilings mentioned above, then the simplest
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approach to terminating the computational volume is to use a
staircase approximation—those cells whose centers lie within
the volume of interest are retained, in their entirety. Clearly, in
the limit of small cells, the volume of such an approximation
approaches that of the model domain. The surface area of the
domain boundary, however, does not, even in an approximate
sense. See Fig. 4, illustrating staircase approximations to a
spherical region using Cartesian cells—in the limit of small
cell sizes, the total boundary area of the staircase region
approaches 1.5 times that of the sphere itself.

Fig. 4: Staircase approximations to a spherical region, with
radius r, and of volume V0 = 4πr3/3 and surface area S0 =
4πr2, using Cartesian cells, for different numbers N of cells as
indicated. The total volume and surface area of the staircased
regions, relative to V0 and S0 are indicated in each case.

In some settings in computational room acoustics, such
as, e.g., the case of perfectly reflecting wall conditions, the
numerical surface area of the room boundary does not inter-
vene explicitly, and one should expect, in a simulation, that
room modal frequencies should approach those of the model
problem. If, as in the case of realistic wall impedances incorpo-
rating the effects of loss, the total surface area is significant,
then one should expect that such a staircase approximation
should lead to significant error. In practice, and as will be
illustrated in Section VI, the effect can be a gross distortion
of the decay times within the room—and one which does not
disappear even in the limit of very small cells, or, equivalently,
high sampling rates.

To this end, the use of a regular arrangement of cells over
the domain interior, with an adjustment to cells at the boundary
is of great use—not only are modal frequencies calculated to
greater accuracy, but as the surface area of such a collection of
fitted cells will indeed converge to that of the model domain,
the numerically calculated decay times will also approach
correct values in the limit of small cell size. See Fig. 5 for an
illustration of Cartesian cells fitted to an irregular boundary
(shown in 2D, for the sake of visibility).

Fig. 5: Staircase and fitted approximations in 2D, using Carte-
sian cells. Left: staircase approximation. Centre: One possible
fitted-cell tiling. Right: An alternative tiling illustrating more
uniform cell volumes.

IV. TIME DISCRETIZATION

Suppose the ODE system (15) - (16) is to be discretized with
time step Ts, where Fs = 1/Ts is the sampling rate. Define pnj
and vn+1/2

jk to be interleaved approximations to pj(t = nTs)
and vjk(t = (n+ 1/2)Ts), respectively, for j, k = 1, . . . , N .

Define the forward and backward shift operators e+ and e−,
for a time series fn, where n is either integer or half integer,
as

e+f
n = fn+1 , e−f

n = fn−1 . (19)

One can then define both forward and backward difference
operators δ+ and δ− as:

δ+ =
1

Ts
(e+ − 1) , δ− =

1

Ts
(1− e−) . (20)

A fully discrete formulation of system (15)-(16) is then

Vj
ρc2

δ+pj +

N∑
k=1

βjkSjkvjk +

Nb∑
l=1

γjlSlvl = 0 (21a)

ρδ−vjk +
1

hjk
(pk − pj) = 0 . (21b)

Here, time indices have been suppressed—every instance of
a time series p (respectively v) is assumed evaluated at time
step n (respectively n + 1/2). Notice that the updates (21b)
may always be evaluated explicitly, as may (21a) at cells
Ωj which do not possess a boundary face. Note that the
pressure and velocity variables in scheme (21) above are thus
interleaved, and the use of two distinct operators δ+ and δ−
is for convenience.

Using p = ρδ−Ψ, for some discrete velocity potential Ψ =

Ψ
n+1/2
j , a second order form for system (21) may be written

as

δ+δ−Ψj +
c2

Vj

N∑
k=1

βjkSjk
hjk

(Ψj −Ψk) +
c2

Vj

Nb∑
l=1

γjlSlvl = 0 .

(22)
When specialized to regular arrangements of cells, such as
Cartesian or rhombic dodecahedral, such a scheme is familiar
as a two-step FDTD scheme.

A. Energy Balance

At this stage, it is possible to arrive at an energy balance
analogous to (4). Finite volume methods are often referred to
as conservative in the literature [6]—flux conservation laws
across cell boundaries are preserved. Here, the idea is to
conserve a global scalar energy-like quantity. To this end, it
is useful to define the averaging operator µ+ as

µ+ =
1

2
(e+ + 1) , (23)

and to note the following identities and inequalities involving
products of time series under the action of difference and
averaging operations:

(µ+f) (δ+f) = δ+

(
1

2
f2
)

(µ+δ−f) (f) = δ+

(
1

2
fe−f

)
(24)

fe−f ≥ −
T 2
s

4
(δ−f)

2
. (25)
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Multiplying (21a) by µ+pj , summing over all cells, making
use of identities (24) and employing (21b), leads to the discrete
time energy balance

δ+hi = −b , (26)

which is analogous to (4), and where

hi =

N∑
j=1

(
Vjp

2
j

2ρc2
+

N∑
k=1

βjkρSjkhjkvjke−vjk
4

)
(27a)

b =

Nb∑
l=1

Slvlµ+pjl . (27b)

Here, hi is the discrete equivalent of the energy stored in-
ternally in the acoustic field—as such, it depends only on
pressure values at the cells, and velocities at internal cell
boundaries. The boundary term b has been written in terms
of the outward normal velocities vl and the pressures pjl with
which they are uniquely associated (the converse is not true
if a cell possesses more than one boundary face, as might be
needed, e.g., at domain corners). b is not fully determined until
numerical boundary conditions have been supplied.

B. Numerical Boundary Conditions

As a first step, it is convenient to write the normal boundary
velocities vn+1/2

l , which are interleaved in time with respect
to pressure values pnj , in terms of an average of values v̄nl
which are collocated in time with pressure values, as

v
n+1/2
l = µ+v̄

n
l . (28)

At this point, one may immediately proceed to a discretiza-
tion of the impedance boundary conditions (11):

v̄l =

Ml∑
m=1

v̄
(m)
l (29a)

µ+pjl = L
(m)
l δ+v̄

(m)
l +R

(m)
l µ+v̄

(m)
l +

1

C
(m)
l

µ+g
(m)
l

(29b)

δ+g
(m)
l = µ+v̄

(m)
l . (29c)

Here, the boundary admittance at the lth boundary face has
been written as a parallel combination of Ml series RLC
branches, as illustrated in Fig. 1; Ml need not be the same
at each boundary face, allowing for more or less detailed
modeling as needed.

C. Energy Balance and Numerical Stability Conditions

Examining the term b, using (29a), it may be rewritten as

b =

Nb∑
l=1

Ml∑
m=1

Slµ+v̄
(m)
l µ+pjl . (30)

Using (29b) and (29c), b may be written as

b = q + δ+hb , (31)

where

q =

Nb∑
l=1

Ml∑
m=1

SlR
(m)
l

(
µ+v̄

(m)
l

)2
≥ 0 (32)

hb =
1

2

Nb∑
l=1

Ml∑
m=1

Sl

(
L
(m)
l

(
v̄
(m)
l

)2
+

1

C
(m)
l

(
g
(m)
l

)2)
≥ 0 .

(33)

The energy balance (26) may now be written as

δ+h = −q , (34)

where h = hi + hb. Because q and hb are non-negative, dissi-
pativity of the system as a whole, and thus numerical stability
follows from a non-negativity condition on the internal energy
hi. To find such a condition, use the identity (25) with the
expression for hi from (27a), to give

hi ≥
N∑
j=1

(
Vjp

2
j

2ρc2
−

N∑
k=1

βjkρT
2
s Sjkhjk (δ−vjk)

2

16

)
. (35)

Using the scheme update for velocities at internal faces from
(21b), this expression can be rewritten as

hi ≥
N∑
j=1

(
Vjp

2
j

2ρc2
−

N∑
k=1

βjkT
2
s Sjk (pk − pj)2

16ρhjk

)
, (36)

which is a quadratic form in the cell pressures. Though it
is possible to arrive at a non-negativity condition through
eigenvalue analysis, a useful bound may be further obtained
as

hi ≥
N∑
j=1

p2j

(
Vj

2ρc2
−

N∑
k=1

βjkT
2
s Sjk

4ρhjk

)
. (37)

For a given collection of cells Ωj , then, with volumes Vj ,
adjoining internal faces Sjk and inter-cell distances hjk, a non-
negativity condition may be obtained locally as

1

Vj

N∑
k=1

βjkc
2T 2
s Sjk

2hjk
≤ 1 . (38)

This condition is also familiar as the stability condition for
interior cells proposed by Botteldooren using a digital filter
approach [2], although extensions to boundary cells and their
associated frequency-independent impedance boundary condi-
tions were not provided.

For a tiling of cubic cells, with a distance between cell
centers of h, and using (17), such a condition reduces to
cTs/h ≤ 1/

√
3 on the interior, which is the familiar von

Neumann condition for seven-point FDTD schemes for the
3-D wave equation [29]. However, for a tiling of rhom-
bic dodecahedral cells, using (18), the condition reduces to
cTs/h ≤ 1/

√
3 on the interior, which is more strict than the

von Neumann condition for the associated FDTD scheme over
the interior, which is cTs/h ≤ 1/

√
2. More comments on this

discrepancy appear in Section VII. Some strategies for fitting
cells at boundaries that satisfy (38) can be found in [16].
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Air
10 cm

Air
3 cm

Material #1 Material #2 Material #3

Porous (1)
1 cm

Porous (2)
8.9 cm

Porous (2)
10 cm

Porous (2)
8.9 cm

Gypsum
1.27 cm

Porous (2)
5 cm

Gypsum
2.54 cm

Gypsum
1.27 cm

Fig. 6: Diagrams of wall structures used for computing data
for boundary conditions. Components are porous layers, air
cavities, and solid panels. Thickness are shown in the figure,
and material properties of each component are given in Table I.

D. Implementation Details

For implementation purposes, it helps to rewrite the FVTD
scheme solely in terms of the scalar field Ψ and the boundary
quantities v̄(m) and g(m). Combining (22), (28) and (29a)-
(29c), the update for Ψj becomes:

Ψ+
j =

[
2Ψj −Ψ−j +

c2T 2
s

Vj

N∑
k=1

βjkSjk
hjk

(Ψk −Ψj)

− c2T 2
s

2Vj

Nb∑
l=1

Ml∑
m=1

γjlSlη
(m)
l

(
2L

(m)
l v̄

(m)
l

Ts
−
g
(m)
l

C
(m)
l

−
ρΨ−j
2Ts

)]
/[

1 +
ρc2Ts
4Vj

Nb∑
l=1

Ml∑
m=1

γjlSlη
(m)
l

]
, (39)

where Ψ± := e±Ψn+1/2, and g and v̄ are defined at discrete
time step n, where

η
(m)
l =

(
L
(m)
l

Ts
+
R

(m)
l

2
+

Ts

4C
(m)
l

)−1
. (40)

This is followed by the updates for the boundary quantities
e+v̄

(m)
l and e+g

(m)
l :

e+v̄
(m)
l = η

(m)
l

[(
L
(m)
l

Ts
−
R

(m)
l

2
− Ts

4C
(m)
l

)
v̄
(m)
l

−
g
(m)
l

C
(m)
l

+
ρ

2Ts

N∑
j=1

γjl
(
Ψ+
j −Ψ−j

) ]
(41a)

e+g
(m)
l =

Ts
2

(
e+v̄

(m)
l + v̄

(m)
l

)
+ g

(m)
l . (41b)

V. ASSIGNMENT OF BOUNDARY COEFFICIENTS

Assigning coefficients to approximate boundary admittances
is deceptively difficult primarily due to difficulties in acquiring
realistic broadband data. To produce the data below, a transfer
matrix model (TMM) is used to compute admittances of
layered wall structures [30], [31]. The TMM is based on
analytical solutions of wave propagation across elements such
as flexible panels, porous material layers, and air cavities.

TABLE I: Material properties of wall elements used to com-
pute surface admittance.

Gypsum Panels
Young’s Modulus 1.47 GPa

Loss Factor 0.4%
Mass Density 1000 kg/m

Porous Layers Flow Resistivity (1) 1300 Ns/m4

Flow Resistivity (2) 104 Ns/m4

Air Cavities Density 1.25 kg/m3

Sound Speed 340 m/s

A. Materials

Three layered wall structures and treatments that might be
found in a typical room are shown in Fig. 6. The first two are
based on a double-leaf gypsum wall with an 8.89 cm cavity. In
the cavity is porous insulation defined by the Delany-Bazley-
Miki model [30]. Material #1 is meant to approximate a double
curtain hung in front of a wall using two 1 cm-thick porous
layers. Material #2 is meant to approximate a porous treatment
mounted in front of the gypsum wall, and Material #3 is a
10 cm-thick porous layer mounted to a thick panel, which
might approximate soft materials such as seat cushions. For
convenience the porous layers and gypsum panels are re-used
in multiple structures. Specific material properties are reported
in Table I.

B. Coefficient estimation

Coefficients L
(m)
l , R(m)

l , and C
(m)
l , are estimated such

that deviation between the transfer matrix predictions and the
admittance, as given in (10), is minimized. Minimization is
done with the Nelder-Mead simplex method, and positivity
of the coefficients is forced by specifying infinite error if
coefficients are negative. Ensuring positivity of circuit element
values is a guarantee of positive realness, and, in the numerical
case, of passivity and numerical stability, as illustrated using
energy techniques in the previous section. Error is otherwise
measured by the Euclidean norm of differences between
real and imaginary parts of the surface admittance. This is
preferable to fitting magnitude and phase because it avoids
wraparound ambiguity. To avoid over-emphasizing the fit at
high frequencies, admittance data are computed with the TMM
on logarithmically spaced frequency points.

To facilitate data fitting in moderate dimensions—15 to
27 dimensions in this case—the minimization uses a highly-
informed initialization. An ad-hoc peak-finding algorithm is
used to identify each resonance or peak in the data, ap-
proximate its height, and estimate its half-power bandwidth.
This information is sufficient to specify approximate initial
parameters for the admittance model. Since the minimization
can only find local minima, several initializations are used
with small perturbations added to the initial estimates of
the coefficients. From multiple runs, the best fit is retained.
Fig. 7 shows a typical data set and fit for the admittance of
Material #2, and coefficients estimated for all of the materials
are reported in Table II.
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Target
Model
Components
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Fig. 7: (a) Surface admittance predicted by the TMM (Target)
for Material #2 with the LRC model fit including each
component branch. (b) Deviation between the magnitudes of
target and model.

TABLE II: Table of LRC coefficients for the models fit to the
transfer matrix predictions for three materials in Fig. 6.

Lm Rm Cm

Material #1
24.4272 1672.6264 8.4126×10−7

23.2179 1210.5657 1.8279×10−7

9.6630×10−2 39.3922 8.4863×10−7

9.4285×10−2 35.8868 9.3606×10−8

9.4588×10−2 55.0224 3.3616×10−8

9.8014×10−2 76.1128 1.6608×10−8

1.0520×10−1 54.2331 9.2427×10−9

1.0114×10−1 58.0354 6.4229×10−9

8.8486×10−2 99.5043 5.3150×10−9

Material #2
26.0297 1749.91 7.49563×10−7

26.6955 1583.26 1.57614×10−7

4.1593×10−2 330.129 3.83857×10−7

3.2549×10−2 457.115 4.47654×10−8

4.2137×10−2 629.982 1.15506×10−8

Material #3
22.7431 750.5833 2.1842×10−7

8.1499×10−2 336.6442 7.3053×10−7

6.7680×10−2 491.0421 7.8999×10−8

6.4599×10−2 676.5088 2.6469×10−8

1.6493×10−2 493.5131 3.4710×10−8

7.1131×10−3 60.0617 2.3215×10−8

VI. SIMULATIONS

A. Rotated Box Under Perfectly Reflective Conditions

A useful test case, for which some analytic solutions are
available, is that of a rectangular box-shaped region. Here, to
illustrate the effects of staircase approximations, and the use of
fitted cells, the box will be rotated with respect to the principal
axes defining the grid of cells, assumed uniform over the
interior of the domain. The box is of dimensions Lx, Ly, Lz ,

lying, when unrotated, between −Lx/2 ≤ x ≤ Lx/2,
−Ly/2 ≤ y ≤ Ly/2 and −Lz/ ≤ z ≤ Lz/2. Under perfectly
reflective conditions (i.e., for v⊥ = 0 along all boundaries),
the modal frequencies of the box are given by

fqx,qy,qz =
c

2

√
q2x
L2
x

+
q2y
L2
y

+
q2z
L2
z

qx, qy, qz = 0, 1, . . .

(42)
For this test, a box of size 4

√
5 m×4

√
3 m×4 m was meshed

under three rotations (R0,R1,R2) using cubic and rhombic
dodecahedral cells, with staircase and fitted approximations
at the boundaries, and for various cell sizes, as described
and illustrated in Fig. 8. Grid spacings for interior cells
were set as h = cTs

√
3, where c = 340 m/s and 1/Ts =

1 kHz, 2 kHz, . . . , 10 kHz. Meshings were carried out such that
condition (38) was satisfied at each cell. The percent errors in
the volumes and surfaces areas of these meshing are displayed
in Fig. 9. It can be seen that for staircase approximations,
the volume error remains low, but similarly to the example
illustrated in Fig. 4, the surface area does not improve in the
limit of small cells sizes—aside from the special case labelled
‘R0’, which represents the box unrotated with respect to a
Cartesian grid (this case converges). Meanwhile for the fitted
meshes, errors for surface area and volume approximations
remained below 1e-9% (not shown).

The modal frequencies from these discrete models were
obtained using an eigenvalue analysis of the two-step update
matrix for each scheme. Fig. 10 shows the first four modal
frequencies for staircase and fitted cell approximations to
the box under the three rotations (R0,R1,R2) illustrated and
described in Fig. 8. It can be seen from Fig. 10 that close
matches to the analytical frequencies are obtained using fitted
cells, while staircase approximations only give good matches
in the limit of small cell sizes (or high sample rates, for a
fixed Courant number).

B. Rotated Box Under Resistive Termination at Opposing
Faces

In order to examine the effects of staircase approximations
on room mode decay times more general impedance termina-
tions should be employed, but in that case the wave equation is
not separable and thus modal frequencies are not available in
closed form. There is, however, one case for which a family of
modes is separable. Consider a box under resistive boundary
conditions with admittance Y = α/ρc over the two faces with
x = ±Lx/2, and Y = 0 over all other faces, when unrotated.
Under such conditions, one axial family of modes is separable,
with the exact frequencies fq and T60 decay times τq:

fq =
cq

2Lx
τq =

6Lx ln(10)

c ln
(∣∣∣ 1+α1−α

∣∣∣) q = 1, 2, . . . (43)

As in the previous example, the box dimensions and ro-
tations employed for this test are illustrated and described
in Fig. 8. Impedances for boundary faces associated with
opposing faces of the box, along the longest dimension, were
set with c = 340 m/s and α = 0.05, resulting in an ideal T60
of 3.63 seconds for the family of modes under consideration.
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(a) Cubic, staircase, R0 (b) Cubic, staircase, R1 (c) Cubic, staircase, R2 (d) Cubic, fitted, R0 (e) Cubic, fitted, R1 (f) Cubic, fitted, R2

(g) FCC, staircase, R0 (h) FCC, staircase, R1 (i) FCC, staircase, R2 (j) FCC, fitted, R0 (k) FCC, fitted, R1 (l) FCC, fitted, R2

Fig. 8: Surface meshes of boundary faces after volumetric meshing of 4
√

5 m × 4
√

3 m × 4 m box centered about the origin under various rotations. The
meshings use staircase approximations with cubic cells and rhombic dodecahedral cells from the FCC grid. Meshings using fitted cells are adapted from the
staircase meshings, and thus, only differ from staircase meshes for cells located near the boundaries of the box domain. The code “R0” denotes no rotation,
so that the box is aligned with the principal axes, the code “R1” denotes a 45◦ rotation about the z-axis, and the code “R2” denotes successive 45◦ rotations
about the z- and y-axes (in that order). In each case, the thick dashed line denotes the ideal rotated box domain. In this figure, the inter-cell distance for
interior adjacent cubic and rhombic dodecahedral cells was set to h = cTs

√
3 ≈ 59 cm, where 1/Ts = 1000 Hz and c = 340 m/s.
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(d) Surface area % errors, FCC grid

Fig. 9: Percent error in surface areas and volumes of staircase meshings under rotations (R0,R1,R2) defined in Fig. 8.

Approximated T60 times for the first two modes in this family
were extracted from an interior-eigenvalue analysis and the
associated errors are plotted in Fig. 11. It can be seen that
T60 times are accurately reproduced with fitted meshings;
meanwhile, the staircase approximations exhibit significant
errors that do not disappear in the limit of small cell sizes,
aside from the special case labelled ‘R0’. In effect, the
resulting T60 times are under-approximated for the staircase
grids because surface areas, and thus absorptive surfaces, are
over-approximated. Although, there seems to be no simple
relationship between meshing errors and T60 errors (compare
Figs. 9 and 11), which would suggest that one cannot simply
modify absorption parameters at walls to compensate for
meshing errors and expect to simulate accurate T60 times.

Finally, it is worth mentioning that standard frequency
domain analyses [14] of these schemes would indicate that
numerical dispersion errors are insignificant at the highest
sample rates considered here; for the cubic scheme with a
10 kHz sample rate and λ =

√
1/3, dispersion errors are

less than 0.0005% and 0.02% for the 19 Hz and 38 Hz modes
respectively. It is therefore safe to say that dispersion error is
not a factor in the exhibited T60 errors. More will be said about
this in Section VII in regards to pseudospectral approaches.

With regards to other FDTD methods, it would be insightful

to conduct the tests in Section VI with popular 27-point
interpolated schemes [14]. However, boundary updates that
apply to complex geometries have yet to be formulated for
such schemes; applying the few special case boundary updates
that are available [14] to a rotated box would ultimately
amount to another form of staircase approximation, for which
gross T60 errors would likely be observed, at least for the
test case in Section VI-B. Another comparison left out here
is with digital waveguide mesh (DWM) models that employ
“1-D” boundary terminations [5]. However, it has been found
that such models have equivalent finite volume formulations,
and while they are passive (and thus, stable) by construction,
the resulting meshings demonstrate severe staircasing effects,
but more importantly, consistency is not guaranteed when wall
admittances are non-zero [16].

C. A Complex Geometry Under General Variable Impedance
Conditions

The following numerical experiments serve to demonstrate
the behaviour of the finite volume scheme with general
impedance boundaries on a more complex geometry. Two
features will be demonstrated here: energy conservation to
machine accuracy and an invariance with respect to rotation
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(b) FCC grid, staircase
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Fig. 10: Frequencies of first four modes from simulated rotated box under Neumann boundary conditions under three rotations (R0,R1,R2), as well as analytical
modal frequencies marked on right.
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(a) Cubic, staircase, 19.0 Hz mode
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(b) FCC, staircase, 19.0 Hz mode
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(c) Cubic, fitted, 19.0 Hz mode
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(d) FCC, fitted, 19.0 Hz mode
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(e) Cubic, staircase, 38.0 Hz mode
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(f) FCC, staircase, 38.0 Hz mode
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(g) Cubic, fitted, 38.0 Hz mode
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(h) FCC, fitted, 38.0 Hz mode

Fig. 11: Percent error in T60 times of two modes from simulated rotated box under resistive boundary conditions (α = 0.05) and three rotations (R0,R1,R2)
with respect to the cubic and FCC grids.

(a) Staircase, cubic (b) Fitted, cubic (c) Staircase, FCC (d) Fitted, FCC

Fig. 12: Boundary surface meshes from volumetric meshing of fan-shaped domain, using staircase and fitted approximations derived from cubic and FCC
grids, with h = cTs/λ, where 1/Ts = 1000 Hz and λ =

√
1/3 for the cubic grid and λ = 0.7 for the FCC grid.

and choice of the grid when fitted cells are employed.

For this test, a theatre-shaped room was designed with
five flat faces and one curved face (piecewise-linear), and the
room was meshed under the three rotations (R0,R1,R2) using
cubic and rhombic dodecahedral cells with staircase and fitted
approximations. The domain of interest and example meshings
are shown in Fig. 12. General impedance boundaries with up to
nine RLC branches were associated to each wall; Materials #1
and #2 were associated to the curved and largest flat face,
respectively, and Material #3 was attributed to the remaining
four flat faces. The total volume of the room was 325 m3

and the grid spacings for interior cells were chosen to be
h = cTs/λ with λ =

√
1/3 for cubic cells, and λ = 0.7

for rhombic dodecahedral cells, with 1/Ts set to 4 kHz or
8 kHz, and c = 340 m/s and ρ = 1.25 kg/m3. Meshing errors
(volume, surface area) for fitted meshes were on the order of
1e-9%, while staircase meshes demonstrated errors in surface
area between 15% and 50%. The initial conditions for this
problem were ∂tΨ(x, 0) = 0 and Ψ(x, 0) equal to a spatial
Gaussian centered about (x, y, z) = (−1, 3, 0.5) m with a
variance of (0.4 m)2. Snapshots of a simulation can be seen
in Fig. 14.
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(b) Energy conservation, taking into account cumulative sum of bound-
ary losses. Gray lines denote integer multiples of machine epsilon (2-53).

Fig. 13: Demonstration of numerical energy conservation with fitted mesh based on rhombic dodecahedral cells, with λ = 0.7 and 1/Ts = 1 kHz.

Conservation of numerical energy, taking into account ac-
cumulated losses, can be demonstrated in the simulation, and
is a useful debugging tool for such schemes. This is done by
calculating the quantities hi, hb and q in the run-time loop, as
seen in Fig. 13. The numerical energy balance is conserved to
machine accuracy, and in particular, the variations in energy
appear in discrete steps of machine epsilon.

When using fitted cells, the finite volume solution can
provide for a more reliable numerical solution than staircase
methods, as it remains relatively invariant to the choice of
cell and rotation of the grid. In regards to this test case, the
numerical solution read at the origin (Ψout) is shown as a
function of time in Fig. 15, wherein each subfigure (Figs. 15a-
d) pertains to either a fitted or staircase approximation at a
given sample rate (4 kHz or 8 kHz). Overlaid within each plot
are six time series, which pertain to the simulations with cubic
and rhombic dodecahedral cells each under the three rotations
of the domain (R0,R1,R2).

Considering the entire duration t ∈ [0, 0.5] s, it can be seen
in Fig. 15, that the staircase approximations demonstrate a
large variance with respect to the choice of cell and rotation
of domain, particularly after the arrival of the first few early
reflections, and this variance does not appear to decrease with
Ts. However, considering only the epoch (t ∈ [0, 0.05]) in
staircase approximations, it can be seen that the direct sound
(t < 0.01 s) is rendered accurately (due to consistency on
the interior) and interestingly, the first few early reflections
(t ∈ [0.01, 0.05]) are also well rendered. Looking at the
fitted approximations, a low variance with respect to rotation
and cell choice is demonstrated, and this variance decreases
with Ts, suggesting that the fitted approximations converge
to a unique (true) solution; in contrast, it is clear from
the analysis of the rotated box that staircase approximations
cannot converge to the true solution, as the total surface area
(and thus the T60), at least for certain modes) will be incorrect
regardless of the degree of mesh refinement.

VII. CONCLUDING REMARKS AND PERSPECTIVES

The finite volume time domain approach to room acoustics
simulation is a flexible one, and, as mentioned previously,
generalizes certain FDTD methods, allowing for stability anal-
ysis in the unstructured case through energy methods. This
permits accurate fitting of cells at the room boundary; the

effect of such fitting has been shown here to produce minor
improvements, with little additional computational cost, in the
accuracy of room mode frequencies, and major improvements
in terms of computed mode decay times. Indeed, under a
staircase approximation, computed T60 times under such a
staircase approximation can deviate by as much as 40% from
theoretical values, at least for the special case considered
in Section VI-B—and furthermore, the decay times do not
converge to theoretical values even in the limit of small cell
size (or high sample rate, for a fixed Courant number) as
dispersion errors become insignificant. There remain several
unresolved questions, all of which constitute avenues for
further research.

The problem of choosing an arrangement of cells (or mesh-
ing) to cover a 3D region is a longstanding one, particularly
within nonlinear computational fluid dynamics, where, in order
to resolve viscothermal boundary layers, it is desirable to have
fine meshing at the boundary of the region of interest. In
linear room acoustics, the problem is somewhat simplified,
and indeed, the best choice of meshing would appear to be one
which is as uniform as possible over the problem interior. At
the boundary, however, it has been shown here that, at least in
the finite volume setting, accurate fitting of boundary cells is a
necessity for accurate T60 simulation in the general case. This
leads to a meshing problem over the room boundary for which
there are many possible solutions. It would be of great interest
to find an optimal strategy for the meshing step, and one that
is computationally efficient enough to handle potentially very
large regions.

Sufficient stability conditions for a completely unstruc-
tured arrangement of cells, and under general locally-reactive
impedance boundary conditions, have been illustrated here.
Through energy analysis techniques, the stability problem can
be neatly separated into an analysis of the resulting scheme
over the interior and over the boundary. Furthermore, the
conditions given in (38) can be verified locally, including at
irregular fitted cells adjacent to a boundary. An interesting
observation is that, even for regular cell arrangements on the
interior, in the cases that FVTD reduces to FDTD, the condi-
tions do not always coincide with known von Neumann condi-
tions for the interior scheme. For cubic cells, the condition is
equivalent to the stability condition arising from von Neumann
analysis, but this is not the case for rhombic dodecahedral
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(a) t = 0 (b) t = 5 ms

(c) t = 10 ms (d) t = 20 ms

Fig. 14: Snapshots for test problem described in Section VI-C on a fitted mesh derived from the FCC grid with λ = 0.7 and 1/Ts = 4 kHz. Spatial axes are
in units of metres.

cells (or even hexagonal cells in the 2D case). For meshes
based on the latter two cells, it is possible to operate beyond
the passivity limit (38) (as conducted in Section VI-C) into
the regime where dispersion error is minimized, and stability
conditions can be obtained through an eigenvalue analysis of
quadratic forms like (36). An area of future research will be
to establish locally verifiable bounds that are more relaxed
than (38) for FCC and hexagonal grids.

It is also worth pointing out that domain decomposition
approaches based on modal [32] and pseudospectral meth-
ods [33] usually fall under the category of staircase approx-
imations, as they rely on dividing up an arbitrary domain
into box-shaped partitions in order to take advantage of
the FFT algorithm. While such methods may provide little
to no dispersion error, the same types of modal and T60
errors due to staircasing effects may be a concern, even if
the wave equation is very accurately solved on the interior.
Pseudospectral methods with conformal mappings have been
proposed to address such staircasing issues [34].

Finally, locally reactive impedance boundary conditions
have been approximated by a particular sub-class of positive
real functions which can be written as a parallel combination
of series RLC branches. Though such a structure leads to con-
venience in terms of optimisation to measured or theoretical
impedance curves, it is not the most general class of positive
real functions. It would thus be of great utility to extend the
optimization here to the entire space of positive real functions.
The extension to the case of non-locally reactive boundary

conditions remains open.
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(c) Fitted approximations, 1/Ts = 4 kHz
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(d) Fitted approximations, 1/Ts = 8 kHz

Fig. 15: Plots of Ψout for staircase and fitted approximations at various sample rates. The duration t ∈ [0, 0.5 s] is split in half to show detail. Six curves are
overlaid within each plot; these pertaining to cubic and rhombic dodecahedral cells each under the three rotations: R0, R1, R2.
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