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A subset of Gram-negative bacterial pathogens uses a type III secretion system (T3SS) to open up a conduit into eukaryotic cells
in order to inject effector proteins. These modulate pathways to enhance bacterial colonization. In this study, we screened estab-
lished bioactive compounds for any that could repress T3SS expression in enterohemorrhagic Escherichia coli (EHEC) O157.
The ketolides telithromycin and, subsequently, solithromycin both demonstrated repressive effects on expression of the bacte-
rial T3SS at sub-MICs, leading to significant reductions in bacterial binding and actin-rich pedestal formation on epithelial cells.
Preincubation of epithelial cells with solithromycin resulted in significantly less attachment of E. coli O157. Moreover, bacteria
expressing the T3SS were more susceptible to solithromycin, and there was significant preferential killing of E. coli O157 bacte-
ria when they were added to epithelial cells that had been preexposed to the ketolide. This killing was dependent on expression of
the T3SS. Taken together, this research indicates that the ketolide that has accumulated in epithelial cells may traffic back into
the bacteria via the T3SS. Considering that neither ketolide induces the SOS response, nontoxic members of this class of antibi-
otics, such as solithromycin, should be considered for future testing and trials evaluating their use for treatment of EHEC infec-
tions. These antibiotics may also have broader significance for treating infections caused by other pathogenic bacteria, including
intracellular bacteria, that express a T3SS.

Type III secretion systems (T3SSs) are expressed by a cross-
section of Gram-negative bacterial pathogens to export effec-

tor proteins out of the bacterium and often directly into host
eukaryotic cells. These secreted effectors manipulate host cell
processes presumably to the advantage of bacterial colonization
and subsequent transmission. For enteropathogenic Escherichia
coli (EPEC) and enterohemorrhagic E. coli (EHEC), the T3SS in-
jects proteins into epithelial cells, thus reorganizing the actin cy-
toskeleton and allowing tight intimate binding to the cell surface,
with the subsequent formation of typical attaching-and-effacing
(A/E) lesions. A cocktail of other effector proteins then controls
host cell innate responses to prolong this interaction (1, 2). The
locus of enterocyte effacement (LEE) pathogenicity island en-
codes the EHEC T3SS and a subset of secreted effector proteins,
while the remainder are encoded by prophage regions integrated
at multiple sites around the genome (3). The LEE genes are en-
coded in 5 main operons (LEE1 to LEE5), and their induction is
controlled by a complex network of regulators that includes the
LEE-encoded regulator (Ler), which is encoded at the start of the
LEE1 operon (4–7). The LEE1, LEE2, and LEE3 operons encode
components that span the inner and outer membranes, which
include EscC, the outer membrane porin, and EscN, the ATPase of
the system. The LEE4 operon includes EspA and EscF, which form
the filament and the needle structures, respectively (8); EspB and
EspD, which form a pore in the host cell membrane (9); and,
potentially, EspF, which is injected into the host cell and targeted
to the mitochondria, where it participates in the cell death path-
way (10). In addition, EspF has also been demonstrated to disrupt
transepithelial cell resistance, leading to disruption of tight junc-
tions (11). Tir and intimin are the proteins that determine inti-

mate attachment to the host epithelium and are encoded on the
LEE5 operon, together with CesT, a chaperone for Tir (4, 12, 13).

For pathogens expressing T3SSs, these are generally essential
for virulence and have been the focus of specific antivirulence or
pacification compounds that can limit the expression or activity of
the T3SS (14, 15). These compounds have been shown to be
broadly effective against a number of pathogenic bacteria that
utilize T3SS, such as EHEC (16), EPEC (17), Salmonella enterica
serovar Typhimurium (18), Chlamydia spp. (19), and Yersinia
pseudotuberculosis (20).

In the case of EHEC infection, there is a concern that any an-
tibiotic treatment could induce the production of Shiga toxin
(Stx), the main factor associated with kidney damage and the life-
threatening consequences of human EHEC infections. The genes
for Stx are encoded within the late-gene region of temperate bac-
teriophages integrated in the bacterial chromosome (21, 22). The
phage late genes encode proteins responsible for viral replication,
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assembly, and lysis of the host E. coli cell. These genes are silent
during lysogeny and become expressed only during the lytic cycle.
Both Stx and new viral particles are released when the bacteria
undergo lysis. The switch from lysogeny to the lytic cycle is con-
trolled by the bacterial SOS stress response (23), which is induced
by certain antibiotics (24–27). As Stx variants are the key patho-
genic factors that lead to life-threatening systemic complications
in people infected with EHEC strains, Stx phage induction by any
antibiotic treatment should be investigated. Although certain
classes of antibiotics are known to induce SOS responses, other
antibiotics have successfully been used in outbreaks (28).

The effects of different classes of antibiotics at sub-MICs have
received various levels of attention (29), but it is important to
know if certain antibiotics can have added functionality by re-
pressing virulence at concentrations that would not normally pre-
vent bacterial growth.

In this study, we initially screened for bioactive compounds
that have an effect on expression of the EHEC T3SS but a limited
impact on bacterial growth. This screening identified the ketolide
telithromycin. Subsequent research on a derivative known to be
less toxic in humans, solithromycin, demonstrated not only that
both ketolides inhibit translation of the T3SS at concentrations
that still allow bacterial growth but also that bacteria expressing a
T3SS are more sensitive to solithromycin. E. coli O157 isolates
expressing a T3SS were recovered at significantly lower levels than
a T3SS mutant when they were added to epithelial cells that had
been preexposed to solithromycin, indicating that the antibiotic
may be entering the bacteria through the secretion system during
the infection process.

MATERIALS AND METHODS
Bacterial strains and media. The bacterial strains used in this study are
described in Table 1. Bacteria were cultured in Luria-Bertani (LB) broth
or minimal essential medium (MEM)-HEPES (Sigma-Aldrich) supple-
mented with 0.1% glucose and 250 nM Fe(NO3)3. Caco-2 cells were
grown in Dulbecco modified Eagle medium (DMEM) supplemented with
10% fetal bovine serum (FBS), 15 mM L-glutamine, and 1% penicillin-
streptomycin (Sigma-Aldrich). When measuring the promoter activity of
sulA::gfp, strains were cultured in M9 medium (Sigma-Aldrich) supple-
mented with 0.2% glucose, 2 mM MgSO4, and 0.1% acid-hydrolyzed
Casamino Acids. When required, antibiotics were added to the media at
the following final concentrations: 1 �g/ml for mitomycin C (MMC), 0.03
and 0.10 �M for chloramphenicol, 1.10, 1.48, and 1.85 �M for telithro-
mycin; and 0.25, 0.50, 0.75, 1.00, 3.00, and 5.00 �M for solithromycin
(Cempra Pharmaceuticals). In order to assess the impact of solithromycin
on the viability of bacteria expressing or not expressing a T3SS, ZAP193
and its �LEE2 derivative (Table 1) were cultured overnight in LB and then
inoculated into MEM-HEPES to an optical density at 600 nm (OD600) of
0.5, at which point 3 �M solithromycin was added to the cultures and
their optical densities were measured at 30-min intervals for 150 min.

NINDS library. The National Institute of Neurological Disorders and
Stroke (NINDS) library is a collection of 1,040 known bioactive com-
pounds. It is a small-scale library that may be feasibly screened in general
laboratory facilities. It comprises a wide range of drugs that are used clin-
ically. Many of the compounds are FDA-approved drugs, and their prop-
erties are well established (30, 31). They have all passed major safety
and clinical trials (30). The library was supplied to us by the Centre for
Therapeutics Discovery (CTD) at the Medical Research Council
(MRC). See http://www.mrctechnology.org/about/our-structure/centre
-for-therapeutics-discovery for further details. The compounds in the
NINDS library cover a wide range of therapeutic effects. Out of the 1,040
compounds, there are 157 antibacterials, which account for the largest
single group of compounds in the library. This is followed by anti-inflam-

matories and antineoplastics, with 83 and 76 compounds, respectively.
The rest of the library comprises many smaller groups with different ther-
apeutic effects (e.g., antidepressants, muscle relaxants, antihistamines, di-
uretics, sweeteners, sunscreens). The stock plates of the NINDS library are
prepared at a single concentration of 1 mM, and the molecular weights of
the compounds in the library vary widely. Screening was at a single con-
centration recommended by the suppliers, 10 �M in 1% dimethyl sulfox-
ide. The NINDS library was screened with E. coli O157:H7 TUV 93-0, a Stx
phage-negative version of E. coli O157 EDL933 that has a relatively high
level of T3SS expression (32). This strain was transformed with either
pAJR71 (an LEE1 translational reporter [33]) or pAJR145 (an RpsM re-
porter [34]). The library was screened twice with each assay. The screening
conditions were defined from a number of preliminary experiments that
examined different plate formats, culture volumes, and types of aeration.
This NINDS library was screened in a 96-well plate format with each
compound predispensed into each well (10 �l). The bacterial cultures
(transformed with either the LEE or RpsM readout) in M9 glucose me-
dium (100 �l) were dispensed into the wells at an OD600 of 0.2 using a
Thermo Scientific multidrop dispenser. The plates were then secured in
moist boxes and incubated with rotation at 37°C for 6 h. The fluorescence
readings were taken on a FLUOstar Optima reader (BMG Lab Tech).
Assay assessment was based on conventional criteria applied to high-
throughput sequencing (HTS) screens. High Z= values were obtained at an
endpoint of 6 h for the RpsM reporter (Z= � 0.80), although more vari-
ability was shown for the LEE1 reporter (Z=� 0.40).

Preparation of T3S culture supernatant proteins and analysis by
SDS-PAGE. Bacteria were grown overnight in LB medium, diluted in
MEM-HEPES supplemented with glucose and iron, and then incubated at
37°C until an OD600 of �0.9 was reached. The cultures were centrifuged at
4,000 � g for 30 min, and the supernatants were passed through a 0.45-
�m-pore-size low-protein-binding filter (Millipore). Proteins were pre-
cipitated by the addition of 10% (vol/vol) trichloroacetic acid (TCA; Sig-
ma-Aldrich) and bovine serum albumin (BSA; 4 �g/ml; NEB) at 4°C
overnight. Solutions were centrifuged at 4,000 � g for 30 min at 4°C, the

TABLE 1 Bacterial strains and plasmids used in this study

Strain or
plasmid Description

Source or
reference

Strains
ZAP193 Stx negative, NCTC 12900 33
ZAP198 EHEC O157:H7 strain Walla 3 Nalr 74
�LEE2 ZAP193 derivative with LEE2 deletion This study
ZAP1004 ZAP198 derivative with ler deletion 75
TUV93-0 EHEC O157:H7 strain EDL933 stx negative

derivative
32

Plasmids
pKC26 Promoter-less GFP plasmid 76
pKC26sulA GFP fusion plasmid with promoter from

sulA
This study

pDWLEE1 GFP fusion plasmid with promoter from
LEE1 operon

This study

pDWLEE2 GFP fusion plasmid with promoter from
LEE2 operon

This study

pDWLEE3 GFP fusion plasmid with promoter from
LEE3 operon

This study

pDW6 GFP fusion plasmid with promoter from
LEE4 operon

79

pDWLEE5 GFP fusion plasmid with promoter from
LEE5 operon

This study

pAJR145 pACYC rpsM::gfp 34
pAJR71 pACYC LEE1::gfp 33
pWSK29 Low-copy-no. vector, Ampr 77
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supernatants were carefully poured off, and the protein pellets were air
dried. The pellets were resuspended by the addition of an appropriate
volume of 1.5 M Tris-HCl, pH 8.8. Culture supernatant proteins were
subsequently separated through a 12% SDS-polyacrylamide gel and im-
aged with colloidal blue staining (Severn Biotech). Gel images were cap-
tured using a Flowgen MultiImage light cabinet and ChemiImager 4000i
(v.4.04) software.

Western blotting. To detect EspD by Western blotting, culture super-
natant proteins were obtained as described above. For RecA detection, 1
ml of the same culture was centrifuged, the supernatant was discarded,
and the cell pellet was suspended in 0.1 ml 2� Laemmli buffer (35).
Appropriate volumes were incubated at 100°C for 5 min and then sepa-
rated through a 10% SDS-polyacrylamide gel. Proteins were transferred
onto a Hybond ECL nitrocellulose membrane (Sigma-Aldrich) using a
Trans-Blot electrophoretic transfer cell (Bio-Rad), and membranes were
blocked with 5% (wt/vol) milk powder (Sigma) in phosphate-buffered
saline (PBS; Oxoid) at 4°C overnight. The membranes were sequentially
incubated with 1:2,000 mouse monoclonal anti-EspD (a gift from Trinad
Chakraborty, University of Giessen) or 1:10,000 anti-RecA (Enzo Life
Sciences) and then 1:3,000 rabbit polyclonal anti-mouse IgG-horseradish
peroxidase-conjugated antibodies (NEB), all of which were diluted in PBS
containing 5% (wt/vol) milk powder. All incubations were carried out at
room temperature for at least 1 h on a platform shaker and were washed
for 3 times for 5 min each time in PBS before and after each antibody step.
The membranes were visualized with chemiluminescent detection (GE
Healthcare Life Sciences) on Hyperfilm ECL film (GE Healthcare Life
Sciences) developed in a Protec automatic film processor (Optimax). Im-
ages were taken as described above.

Cell binding assays. Caco-2 cells were cultured for 14 days at 37°C in
5% CO2 and moisture. This amount of time allows the differentiation and
development of microvilli. Caco-2 cells were seeded into 12-well plates at
105 cells per well and incubated overnight. Caco-2 cell cultures were
washed twice with MEM-HEPES without antibiotic 1 h before bacteria
were added. Bacteria were inoculated from LB broth overnight cultures
into prewarmed MEM-HEPES with or without the relevant antibiotic to
an OD600 of �0.3, the bacterial cultures were diluted 1:20 into the corre-
sponding medium, and 100 �l of bacterial suspension was added to each
well of Caco-2 cultures (multiplicity of infection [MOI] � 20). The cells
were incubated at 37°C in 5% CO2 in a moist box for 3 h. After this
incubation period, the supernatants, which contained nonadherent bac-
teria, were discarded, the cells were washed three times with sterile PBS,
and 100 �l of 0.1% Triton X-100 was added. The cells on each well were
scraped off, and suspensions were serially diluted in PBS and triplicate
plated onto LB plates. The plates were incubated overnight at 37°C, and
colonies were counted the next day. For microscopy analysis, the bacteria
were incubated for 1 h and the cells were washed twice with MEM-HEPES
and incubated for 3 or 4 more hours. After this time, the cells were fixed
using 4% paraformaldehyde (PFA) and permeabilized with 2% PFA–
0.25% Triton X-100 at room temperature for 20 min. After three washes
with PBS, samples were incubated overnight with rabbit anti-lipopolysac-
charide (anti-LPS)–O157 antibody (MAST Group, Ltd.) at 1:4,000. After
three more washes, samples were incubated with phycoerythrin (PE)-
conjugated goat anti-rabbit immunoglobulin antibody at 1:1,000 (Molec-
ular Probes) for an hour. Staining of F actin was carried out with fluores-
cein isothiocyanate (FITC)-phalloidin at 1:40 (Molecular Probes) for 90
min at room temperature on a platform shaker. The nuclei were stained
with DAPI (4=,6-diamidino-2-phenylindole; Merck) for 10 min. The
slides were washed three times with PBS and mounted with Hydromount
(National Diagnostic), and coverslips were applied. The mounted slides
were examined by confocal and fluorescence microscopy.

To determine the effect of pretreating epithelial cells on the binding
and viability of E. coli O157, embryonic bovine lung (EBL) cells were used
(http://www.dsmz.de). Confluent EBL cells were treated with 1 ml of
MEM-HEPES with iron and glucose containing 5 �M (final concentra-
tion) solithromycin for 3 h. The cells were washed 3 times with medium

without solithromycin and kept with this medium for 20 min before add-
ing the bacteria. For this, fresh colonies of strain ZAP198 were inoculated
into LB broth and incubated at 37°C and 200 rpm for 16 h. Saturated
cultures were subcultured 1:100 in MEM-HEPES with iron and glucose
and cultured until the OD600 was 0.3. One hundred microliters of the
bacteria was added to each well (MOI, �100). The bacteria were incu-
bated with the EBL cells for 3 h at 37°C in 5% CO2 at 80% humidity. At the
required time, the cells were washed 6 times with PBS and treated with
0.2% (vol/vol) Triton X-100 (100 �l in each well; Sigma). The cells were
removed by scraping, and serially diluted cell suspensions were plated
onto LB agar plates. Following incubation at 37°C for 16 h, the bacterial
colonies were enumerated. The bacteria were also counted by plating at
the time of challenge to detect the initial numbers added to the cells. For
competition of the T3S-positive or -negative strains, the �ler derivative of
ZAP198 (ZAP1004) was transformed with pWSK29 to mark the strain
with ampicillin resistance (Ampr). One hundred microliters each of this
and the parent strain was added to the EBL cells, and the same method
described above was followed. The strains were enumerated indepen-
dently, as the wild-type strain is resistant to nalidixic acid and the ler
deletion mutant is resistant to ampicillin.

Live/dead staining. EBL cells (3 � 105) were seeded overnight on glass
coverslips in 24-well plates precoated with murine collagen (Sigma) ac-
cording to the manufacturer’s instructions. On the next day, the cells were
incubated with 1 ml of MEM-HEPES with iron and glucose with and
without 5 �M solithromycin for 3 h. The cells were then washed 3 times
with antibiotic-free medium. Bacteria were prepared as described above
for the work on binding to EBL cells but were added at an MOI of 20. The
infected cells were incubated for 3 h at 37°C in 5% CO2 at 80% humidity.
The cells were washed twice with 3-(N-morpholino)propane sulfonic acid
(MOPS)-MgCl2, and 0.5 ml LIVE/DEAD BacLight bacterial viability kit
staining solution (Molecular Probes) was added to each well. LIVE/DEAD
staining solution is 5 �M SYTO9 and 30 �M propidium iodide (final
concentrations) in MOPS-MgCl2. Cells were incubated for 15 min at
room temperature in the dark and washed three times in MOPS-MgCl2.
Coverslips were inverted, placed face down onto glass slides, and sealed
with clear nail polish. The images were acquired within 30 min, using a
fluorescence microscope as detailed below.

Measurement of LEE and SulA promoter activity. In order to assess
the expression of individual LEE operons, a series of plasmid-based pro-
moter::green fluorescent protein (GFP) reporter fusions was constructed
(Tables 1 and 2). The first genes, including their native promoters from
each LEE operon, were amplified by high-fidelity PCR using the primer
pairs listed in Table 2. The resulting PCR products were then digested and
inserted into pAJR70 (Table 1) to create LEE1 to LEE5 translational fu-
sions. All the final constructs were confirmed to be correct by sequencing.
A plasmid constitutively expressing GFP (pAJR145 rpsM::gfp) was used as
a control. These plasmids were transformed into ZAP198, and transfor-
mants were selected on LB agar containing 50 �g/ml chloramphenicol.
Strains harboring these reporters were cultured with or without the anti-
biotic being assessed in MEM-HEPES supplemented with chloramphen-
icol, glucose, and iron, as indicated above, and the fluorescence produced
by each bacterial population was measured every hour by transferring
100-�l aliquots of culture into triplicate wells in a black 96-well plate
(Fluoro-Nunc) and reading the plate in a fluorimeter (FLUOstar Op-
tima). The OD600 of the cultures was used to monitor growth. Fluores-
cence was plotted against the optical density by using GraphPad Prism
(v.5.01) software. The promoter-less plasmid pKC26 (Table 1) was used
to correct for the background fluorescence of the strain and medium.

To determine whether there was induction of sulA gene expression by
the tested antibiotics, the sulA promoter (PsulA) was amplified using the
primers 5=-PsulA-XbaI and 3=-PsulA-XbaI (Table 2). Restriction enzyme
sites were introduced into the primers. The promoter region was initially
cloned into the intermediate pJET1.2 plasmid (Fermentas), following the
manufacturer’s instructions. PsulA was subcloned into the unique XbaI
site upstream of a GFP-positive gene in pKC26, thus constructing a tran-
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scriptional GFP reporter plasmid (Table 1). Using the primers specific for
the region flanking the XbaI site and the primers specific for the promoter
regions, the orientation of PsulA in the final pKC26 constructs was con-
firmed by PCR. This plasmid was then transformed into ZAP198, and
ZAP198 sulA::gfp transformants were selected on LB agar containing 12.5
�g/ml chloramphenicol. Strains harboring this reporter were cultured in
M9 medium supplemented with chloramphenicol, and the fluorescence
produced by each bacterial population was measured 6 h later, as de-
scribed above. Promoter-less pKC26 in the ZAP198 background acted as
a control for autofluorescence. As a positive control, mitomycin C was
added (1 �g/ml), given that it induces DNA damage and SulA expression.

Microscopy. Confocal data for A/E lesion analyses were acquired us-
ing a 1,024- by 1,024-pixel image size, a Zeiss Plan Apochromat 63� oil
immersion lens (numerical aperture, 1.4), and a multitrack (sequential
scan) experimental setup on a Zeiss LSM510 microscope. The live/dead
imaging was carried out using a Leica DM LB2 microscope and a 40�
objective lens. Images were captured using a Hamamatsu ORCA-ER
black-and-white charge-coupled-device digital camera.

Statistical analysis. Data are expressed as the mean � standard error
of mean (SEM) or standard deviation (SD) and were analyzed for statis-
tically significant differences by either a two-tailed Student’s t test or anal-
ysis of variance (ANOVA) according to the number of experimental
groups. ANOVA analyses were followed by a comparison between treat-
ments performed by the Newman-Keuls multiple-comparison test.

RESULTS
Screening of the NINDS library for compounds that repress
LEE1 expression. The study analyzed the expression of an Ler
(LEE1) translational fusion to GFP (pAJR71) in E. coli O157:H7
strain TUV-93 (Stx negative) in a 96-well plate format. This read-
out was compared to the expression of a transcriptional reporter
to RpsM (pAJR145), a ribosomal protein that provides an indica-
tion of growth status (16). Preliminary studies (data not shown)
indicated that a 6-h time point produced statistically robust mea-
surements. Fluorescence expression from pAJR71 had a lower Z=
score (0.4) than that from pAJR145 (0.84) as a result of a relatively
high standard deviation across the samples. Due to the relatively
low Z= value for the LEE1 screen, hits were defined as compounds
which affected the fluorescence signal by 3 SDs or more. Under
this definition, the pAJR145 (RpsM) screen had a hit rate of 36%
and the pAJR71 (LEE1) screen had a hit rate of 16%.

Only three compounds, sulfamethoxazole, cefaclor, and teli-
thromycin, showed more significant impacts (reductions) on the
LEE1 signal than the RpsM signal. Telithromycin showed the
greatest differential with a 5� SD reduction for the LEE1 reporter
and a 1� SD reduction for the RpsM reporter (indicated by values
of 	5.0 and 	1.0, respectively). The values for sulfamethoxazole

were 	3.1 and 	1.7, respectively, while those for cefaclor were
	3.5 and 	1.3, respectively. Other macrolide/ketolide antibiotics
in the NINDS library did not show the same level of specific LEE1
repression, with the SD values for the LEE1 and RpsM reporters
being as follows: 	6.7 and 	23.2, respectively, for azithromycin;
1.7 and 	2.7, respectively, for clarithromycin; 4.2 and 	1.6, re-
spectively, for dirithromycin; 2.0 and 	4.6, respectively, for roxi-
thromycin; 1.5 and 	4.8, respectively, for erythromycin; 	0.5
and 	1.2, respectively, for oleandomycin; and 0.5 and 	3.5, re-
spectively, for spiramycin. It is important to point out that all of
these antibiotics were tested only at a concentration of 10 �M on
the initial screening. This final concentration was based on dilu-
tion of the stock plates supplied to us at a stated concentration
of 1 mM.

Analysis of type III secretion profiles. Telithromycin is asso-
ciated with toxicity issues in humans, and there has been the de-
velopment of new ketolides known as a fluoroketolides, of which
solithromycin (Cempra Pharmaceuticals) is currently in clinical
trials (36). Solithromycin is associated with greater potency and
lower toxicity than telithromycin. It was therefore decided to in-
vestigate both telithromycin and solithromycin in terms of their
capacity to inhibit T3S on the basis of the initial findings for teli-
thromycin in the HTS. The structures of telithromycin and soli-
thromycin are illustrated in Fig. 1A. On the basis of the results of
the primary library screen, the impact of both telithromycin and
solithromycin on T3SS protein secretion was determined for two
O157:H7 Stx-negative E. coli strains (ZAP193 and ZAP198) at
several sub-MICs of the antibiotics. Total secreted proteins were
examined by colloidal blue staining followed by Western blotting
for the secreted translocon protein EspD (Fig. 1B and C), as de-
scribed in Materials and Methods. Both telithromycin (Fig. 1B)
and solithromycin (Fig. 1C) reduced the overall level of secretion
of proteins, including EspD, when used at concentrations ranging
from 1.49 to 1.85 �M and from 0.5 to 1.0 �M, respectively. At the
higher concentrations of these ranges, the antibiotics did have a
slight impact on bacterial growth, as they extended the time taken
to reach particular optical densities (Table 3).

Reporter gene assays. To test what effects both telithromycin
and solithromycin have on expression of the five main polycis-
tronic operons present on the locus of enterocyte effacement
(LEE) that encodes the bacterial T3SS, published GFP transla-
tional reporter fusions to each operon promoter were tested in the
presence of telithromycin at 1.85 �M and solithromycin at 1 �M.
The rpsM::gfp (pAJR145) fusion was again used as a control, as it

TABLE 2 Primers used in this study

Primer Plasmid Sequencea

Lerpro5BamH pDWLEE1-GFP CGGGATCC GTTTATGCAATGAGATCTATC
Ler3kpn pDWLEE1-GFP GGGGTACCAATATTTTTCAGCGGTATTATTTC
sepZpro5BamH pDWLEE2-GFP CGGGATCCGCGTTTTCGTTATACTCTAAAGC
sepZ3kpn pDWLEE2-GFP GGGGTACCGGCATATTTCATCGCTAATGC
lee3pro5BamH pDWLEE3-GFP CGGGATCCAGAGCCGTAGTGGTAAGTGC
lee3kpn3 pDWLEE3-GFP GGGGTACCTGATGTCATCCTGCGAACGA
Tirpro5Bgl pDWLEE5-GFP GAAGATCTGCTTCCTGGTGTATAGCATGG
Tir3kpn pDWLEE5-GFP GGGGTACCGACGAAACGATGGGATCCC
5=-PsulA-XbaI pKC26sulA AAAATCTAGAGGTATTCAATTGTGCCCAACG
3=-PsulA-XbaI pKC26sulA AAAATCTAGAAATCAATCCAGCCCCTGTG
a Restriction enzyme recognition sites are underlined.
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encodes a non-LEE-related ribosomal protein. While there was no
evidence for repression of the LEE1 or RpsM reporter at these
specific concentrations, both telithromycin and solithromycin
significantly repressed LEE2, LEE4, and LEE5 expression (Fig. 2).
LEE3 expression was difficult to assess, as it showed very low levels
of expression in either the presence or absence of the antibiotics.
These results indicate that the two ketolides have a preferential
impact on expression of the proteins encoded by LEE operons
LEE2, LEE4, and LEE5 compared to that on the protein encoded
by LEE1 at these concentrations.

Analysis of ketolides on adherence and A/E lesion formation.
Attachment to epithelial cells is a key stage of EHEC infection that
allows colonization of the host intestinal tract, and T3SS is impor-
tant, if not essential, for this process. Therefore, we wanted to
examine whether the inhibition of T3SS determined by these ke-
tolides had any effect on bacterial adherence to intestinal epithelial
cells in vitro. We tested this hypothesis by culturing Caco-2 cells
together with E. coli O157:H7 ZAP198 in the presence or the ab-
sence of 1.85 �M telithromycin. After 3 h of incubation, the per-
centage of attached bacteria was significantly reduced in the pres-
ence of telithromycin (Fig. 3A). This result was confirmed by
quantifying the number of bacteria per nucleus by fluorescence
microscopy. The number of bacteria per nucleus was reduced in a
dose-dependent manner in the presence of telithromycin (Fig. 3B)
or solithromycin (Fig. 3C).

As a reduction in T3SS expression and in the number of adher-
ent bacteria to Caco-2 cells was measured in the presence of the
two ketolides, the impact on A/E lesion formation was examined
by imaging actin cytoskeleton condensation under attached bac-
teria using FITC-phalloidin. Although some bacteria were still
attached to cells in the presence of 1.85 �M telithromycin, there
was no evidence of actin polymerization beneath these adherent
bacteria, while this was clearly observed in controls to which no
antibiotic had been added (Fig. 4). In addition, there were observ-
able differences in the sizes of microcolonies when telithromycin
was present in the culture medium; i.e., the attached microcolo-
nies consisted of lower numbers of individual bacteria in the pres-
ence of the antibiotic than in its absence. At lower concentrations
of telithromycin (1.00 and 0.02 �M), A/E lesions were observed
(Fig. 4), although the extent of actin aggregation at 1.00 �M ap-
peared to be less than that in the absence of the antibiotic, how-
ever, this was not quantified. On the other hand, solithromycin

FIG 1 Telithromycin and solithromycin structures and effect on type III secre-
tion. (A) Molecular structures of telithromycin and solithromycin (78). (B and C)
Impact of increasing concentrations of ketolides on protein secretion by E. coli
O157 strains ZAP193 and ZAP198 (Table 1) cultured in MEM-HEPES in the
presence of the indicated concentrations of telithromycin (B) and solithromycin
(C). Gels were stained with colloidal blue or transferred onto nitrocellulose mem-
branes, and the EspD and RecA proteins were detected with specific antibodies, as
indicated on the left. Arrows, bands corresponding to BSA (66.4 kDa; added to
help precipitation), EspB/D (32.6 and 39.1 kDa, respectively), and EspA (20.6
kDa). Samples were prepared from equal volumes of bacteria (50 ml).

TABLE 3 Antibiotic effect on bacterial growth

Bacterial
strain

Telithromycin Solithromycin

Concn
(�M)

Time of
sampling (h) OD600

a

Concn
(�M)

Time of
sampling (h) OD600

ZAP193 0.00 4.25 0.83 0.00 5.00 0.72
1.11 4.75 0.84 0.25 5.00 0.75
1.48 4.75 0.76 0.50 5.50 0.70
1.85 4.75 0.74 0.75 6.50 0.72

1.00 6.50 0.59

ZAP198 0.00 4.25 0.88 0.00 5.00 0.78
1.11 4.25 0.84 0.25 5.00 0.78
1.48 4.25 0.80 0.50 5.50 0.81
1.85 4.25 0.78 0.75 6.50 0.70

1.00 6.50 0.57
a OD600, optical density at 600 nm.
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showed a wider range of inhibition of A/E lesion formation, since
there were no A/E lesions observed at any of the concentrations
tested (Fig. 4).

Expression of the T3SS increases the susceptibility of E. coli
O157 to solithromycin. To determine if expression of the T3SS
impacts the survival of the bacteria when exposed to the ketolide,
E. coli O157 (ZAP193) and its mutant isogenic with an LEE2
operon deletion (�LEE2 mutant) were cultured in MEM-HEPES
to an OD600 of �0.5 in MEM-HEPES, in order to induce the T3SS,
if it was intact. At that point, cultures were split in two and 3 �M
solithromycin was added to only one of the pair. It was evident
that the wild type was inhibited to a greater extent than the mutant
by addition of the antibiotic, and this was most evident at the later
time points (Fig. 5). A similar and significant effect on the over-
night growth of strain ZAP198 and its isogenic ler mutant was seen
following addition of 1.5 �M solithromycin (P 
 0.05; data not
shown).

Preexposure of epithelial cells to solithromycin reduces
T3SS-dependent attachment of E. coli O157. One property of
ketolides is that they are actively taken up into eukaryotic cells and
so can accumulate to relatively high levels in the cytoplasm (36,
37). We therefore tested whether preexposure of epithelial cells to
solithromycin could alter the capacity of E. coli O157 to attach to
the cells and whether opening of translocation channels into these
preloaded cells may result in a conduit for the antibiotic and bac-
terial killing. The epithelial cells were washed after antibiotic ex-
posure to limit the amount of freely available ketolide. Cells ini-
tially exposed to 5 �M solithromycin had bacterial binding levels

reduced by at least 10-fold (Fig. 6A). Furthermore, the use of
live/dead staining indicated that a proportion of the attached bac-
teria were being killed when binding to the preexposed epithelial
cells (Fig. 6B). The reduced level of bacterial binding likely reflects
both reduced attachment and higher killing. To investigate if the
findings were simply a result of the general release of ketolide from
the epithelial cells, we determined how the recovery of bacteria
with and without a T3SS would be affected by epithelial cells pre-
exposed to solithromycin. The experiments were carried out as
coinfections with E. coli O157 ZAP198 (Nalr) and ZAP198 �ler
(Ampr), which were independently enumerated. While bacteria
with the ler deletion did not bind to the epithelial cells as well, they
could be recovered, and the ratios of the two strains were deter-
mined with and without preexposure of the cells to solithromycin.
It was evident that the wild-type strain expressing a T3SS was
much more susceptible to the preexposed cells, indicating that the
killing was again T3S dependent (Fig. 6C).

Effect of ketolides on SOS induction. Antibiotics are generally
not recommended as a treatment for EHEC-associated gastroin-
testinal infections since certain classes can induce DNA damage
and activate the bacterial SOS system, which can promote Stx
production. In order to assess whether telithromycin or solithro-
mycin induced the SOS response, a GFP reporter fusion to the
sulA promoter was used. SulA expression is induced as a response
to DNA damage (38, 39), so sulA induction is an indirect measure
of the SOS response. As a negative control, vector pKC26, which
contains gfp but no cloned promoter, was used. As a positive con-
trol, pKC26 carrying the SulA reporter was used in a strain treated

FIG 2 Analysis of LEE gene expression in the presence of ketolides by using GFP fusions. Individual promoters of each LEE operon were fused with GFP and
transformed into E. coli O157:H7 strain ZAP198 (Table 1). Plasmid pAJR145 is a control fusion in which the rpsM promoter was fused with gfp (rpsM::gfp) and
transformed into ZAP198. The fluorescence and OD600 were determined every hour. ZAP198 transformed with a promoter-less GFP plasmid (pKC26) was used
as a background control. Lines represent the means of three biological repeats � 1 SD. The results of one representative experiment out of at least three that were
performed with similar results are shown. P 
 0.005, ANOVA; ***, P 
 0.001, Newman-Keuls multiple-comparison test, compared to the results for the control.
OD600, optical density at 600 nm; AU, arbitrary units; TEL, telithromycin; SOL, solithromycin.
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with 1 �g/ml mitomycin C (MMC), since MMC induces inter-
strand DNA cross-links (40), causing double-strand breaks, which
induce the SOS response (41). No increase in the level of the SulA
reporter was measured with treatment with either telithromycin
or solithromycin at concentrations shown to limit T3S, indicating
no induction of the SOS response (Fig. 7).

DISCUSSION

Enterohemorrhagic Escherichia coli (EHEC) infection is a world-
wide human disease with life-threatening systemic complications,
such as hemolytic-uremic syndrome (HUS) (42, 43) and neuro-
logical damage (44, 45) related to Shiga toxin (Stx) production.
EHEC strains were originally defined to be strains that produce
Stx and express a T3SS, as well as to be isolated from patients
exhibiting specific symptoms, such as hemorrhagic diarrhea. At
present, there is no preventative treatment that can lessen the risk
of serious clinical complications, such as HUS. Management and
treatment rely purely on supportive therapy (46–49). In the pres-
ent study, the ketolide telithromycin and the related fluoroke-
tolide solithromycin were demonstrated to repress T3SS at con-
centrations of the antibiotics at which the growth of the bacteria
still occurred, although at slightly reduced rates. This indicates
that at low antibiotic concentrations, translation of the T3SS
might be preferentially inhibited relative to that of other bacterial
proteins in the cell. This is supported by analysis of translational
fusions to the different operons encoded on the LEE (50). Re-
duced expression of LEE2, LEE4, and LEE5 was observed, while
the expression of LEE1 or RpsM (a ribosomal control protein) was
relatively unaffected. The differential repression of the different
reporters was an unexpected finding, and the basis for the varia-
tion in translational control between the operons is currently un-
known, although we have observed coupled posttranscriptional
regulation of the LEE4 and LEE5 operons but not the LEE1 operon
(33, 34). We speculate that the assembly of the T3SS is a staged
process that may require localized coupling of translation to as-
sembly and secretion. It is possible that LEE1 may not be under
such control, whereas later operons are. This could account for the
differential activity of the translational reporters used in this study
(Fig. 2).

The T3SS has been recognized to be a key virulence factor
for disease progression (51), as intestinal colonization is likely
to be important for EHEC infection. The T3SS is required for
the formation of characteristic A/E lesions, identified by local-
ized effacement of microvilli and intimate adherence of bacte-
ria to the apical plasma membrane, often with the formation of
actin-rich pedestal-like structures beneath the bacteria, a pro-
cess that has been linked to disease (52). The two ketolides
tested in the current study led to reduced levels of bacterial
adherence to Caco-2 cells and a diminished capacity to form
A/E lesions. These results are in agreement with the reduced
secretion of T3SS proteins and inhibition of LEE2, LEE4, and

FIG 3 Inhibition of bacterial adherence to Caco-2 cells in the presence of
ketolides. Semiconfluent monolayers of Caco-2 cells were infected with E. coli
O157:H7 ZAP198 at an MOI of 20 in the presence or the absence of teli-
thromycin (TEL) or solithromycin (SOL), and the percentage of adherent
bacteria (A) or the number of bacteria per nucleus (B and C) was deter-
mined as detailed in Materials and Methods. (A) Adherent bacteria were
determined by counting the number of CFU that adhered to Caco-2 cells
after incubation with medium alone (control) or medium supplemented
with 1.85 �M telithromycin. Results are expressed as the mean percentage
relative to the amount of seeded bacteria � SEM. ***, P 
 0.001, Student’s

t test. (B and C) Caco-2 cells were infected with ZAP198 in the presence of
the indicated concentration of telithromycin (B) or solithromycin (C). The
mean number of adherent bacteria per nucleus � SEM was determined by
fluorescence microscopy. The results of a representative experiment out of
two that were performed are shown. Four slides per treatment and at least
24 fields per slide were counted. P 
 0.0001, ANOVA; ***, P 
 0.001,
Newman-Keuls multiple-comparison test; *, P 
 0.05, Newman-Keuls
multiple-comparison test.
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LEE5 translational reporters by treatment with sub-MIC levels
of both antibiotics. These findings indicate that ketolide use
should result in a diminished pathogenicity of EHEC in vivo,
although separation of this from an impact on bacterial growth
makes it difficult to justify animal studies. Our data are in
agreement with data from previous research demonstrating the
therapeutic benefits of macrolide treatment on EHEC infec-
tions. Two independent studies have shown that azithromycin
(53) and rokitamycin (54) treatment reduces lethality and Stx-

related systemic alterations in different animal models of
EHEC infection. However, these studies link the clinical benefit
of this therapy only to a reduction in the levels of Stx produc-
tion. Our findings suggest that macrolides/ketolides could also
contribute to reductions in the levels of EHEC carriage and
possibly also reductions in the rates of HUS development by
reducing T3SS protein production. In this sense, previous
studies have demonstrated that the degree of gut adhesion cor-
relates with the ability to cause disease (55, 56). In cattle, the
main reservoir host for EHEC O157, deletion of the LEE4
operon prevents gastrointestinal colonization (57).

Our results also demonstrate another advantage of using the
ketolides, in that these antibiotics are known to accumulate in
eukaryotic cells (36, 37). This raises the possibility that when the
bacteria open up a channel via the T3SS into a cell pretreated with
the antibiotic, they are potentially exposed to the compound. Cells
pretreated with solithromycin and then washed were able to sig-
nificantly reduce E. coli O157 adherence compared to that ob-
tained on untreated cells, and this was at least in part due to killing
of the bacteria on exposure to the pretreated cells. This lower
recovery of bacteria was T3SS dependent, as the effect was signif-
icantly diminished for a ler mutant. There was also evidence that
even in the absence of eukaryotic cells but in a medium that pro-
motes T3SS expression, bacteria capable of expressing the system
were more susceptible. This effect was not as dramatic as that
observed on the preloaded eukaryotic cells, but this may represent
the different exposure concentrations and the status of the export
channel, which may be more restricted for antibiotic entry in the
absence of target cells. One report previously demonstrated
the T3SS dependence on antibiotic activity for Shigella (58), and
the authors of that report proposed that the antibiotics may be
gaining entry via the export system, although they provided no
evidence for this. However, in their work, pretreatment of cells did

FIG 4 Inhibition of A/E lesion formation by ketolides. Semiconfluent mono-
layers of Caco-2 cells were infected with ZAP198 at an MOI of 20 in the
presence or the absence of the indicated concentrations of telithromycin (Tel)
or solithromycin (Sol). After 4 or 5 h of incubation, cells were fixed in 4% PFA.
Bacteria were stained with anti-O157 antigen detected with PE-conjugated
secondary antibody, nuclei were stained with DAPI, and actin polymerization
was detected with FITC-conjugated phalloidin. Orthogonal sections show ac-
tin polymerization beneath adherent bacteria, which is typical of A/E lesions.
Confocal images were acquired as described in Materials and Methods.

FIG 5 Type III secretion-dependent susceptibility to solithromycin. E. coli
O157 strain ZAP193 (�) and its isogenic �LEE2 mutant (Œ) were cultured to
an OD600 of �0.5 in MEM-HEPES to induce expression of the T3SS in the
wild-type strain. The cultures were then split and 3 �M solithromycin was
added to one of the culture pairs. Growth was then monitored at 30-min
intervals, and the ratio of treated bacteria to untreated bacteria was plotted for
6 pairs of cultures for each strain. The results are expressed as the mean � SEM.
*, P 
 0.05, two-sample t test.
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not impact Shigella invasion. We can propose from the current
study that while antibiotics like the ketolides are considered effec-
tive for some intracellular bacteria, bacteria that open up a chan-
nel to the cell, such as EPEC and EHEC, generally without inva-
sion, can also potentially be targeted by accumulated intracellular
antibiotic.

The use of antimicrobial agents in EHEC infections has been
controversial, since certain classes can induce the bacterio-
phage(s) that encodes Stx, thus leading to Stx production. In
particular, it has been demonstrated that antibiotics which in-
terfere with DNA replication, such as the quinolone antibiotic
ciprofloxacin and trimethoprim-sulfamethoxazole, induce Stx
production in vitro and in animal models in vivo (26, 59–61).

This fact supports the epidemiological observation that treat-
ment of EHEC infections with these antibiotics increases the
risk of development of HUS (62–64). Stx is encoded by genes
within the late-gene region of temperate bacteriophages inte-
grated in the bacterial chromosome, which can be induced by
DNA-damaging agents, such as UV light or antibiotic expo-
sure, thus prompting an SOS response, whereby the produc-
tion of Stx increases (24–27). In the presence of DNA-damag-
ing agents, an activated RecA acts as a coprotease in the
cleavage of the LexA repressor, allowing the transcription of
the SOS genes (65, 66). The transcription of sulA, which is one
of the SOS genes, has been used as a bioreporter for the micro-
bial cytotoxicity of different DNA-damaging agents (39, 67).

FIG 6 Preincubation of bovine epithelial (EBL) cells with solithromycin reduces bacterial recovery in a T3S-dependent manner. (A) The percentage of
ZAP198 bacteria recovered from EBL cells with and without a 3-h pretreatment with 5 �M solithromycin (SOL). The results represent the mean data from
three separate experiments with technical repeats. ***, P 
 0.0001, Student’s t test. (B) Live/dead staining of ZAP198 added to EBL cells either pretreated
or not with 5 �M solithromycin for 3 h. Bacteria were added at a reduced MOI of 20:1 compared with the MOI used in the assays providing the binding
data (100:1). All bacteria should stain green, whereas bacteria that have lost cell wall/membrane integrity also stain red. Arrows, examples of individual
or grouped bacteria. Dead bacteria were imaged only with the cells pretreated with solithromycin. (C) The percentage of ZAP198 (wild type) and ZAP1004
(�ler derivative) bacteria recovered from EBL cells pretreated for 3 h with 5 �M solithromycin as described in Materials and Methods. ***, P 
 0.0005,
Student’s t test.
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Our results show that telithromycin and solithromycin do not
induce sulA expression when used at sub-MICs, thus suggest-
ing that Stx production is not induced with these antibiotics.
This finding is in agreement with the findings of previous stud-
ies showing that protein synthesis inhibitors suppress Stx re-
lease from EHEC (53, 61, 68–71). Alternatively, about 10%
of human intestinal isolates are susceptible to Stx-encoding
phages that could contribute to Stx production (72, 73), and
ketolides would also interfere with that transfer (68).

In conclusion, our study suggests that certain ketolides and
their derivatives warrant further testing as possible therapeutic
options for dealing with primary exposure cases in EHEC out-
breaks and may have wider value for targeting other bacterial
pathogens with T3SSs.

ACKNOWLEDGMENTS

We thank Cempra for supplying us with solithromycin to allow the anal-
ysis.

FUNDING INFORMATION
We acknowledge the funding of an International Partnership Award from
the Biotechnology and Biological Sciences Research Council (BBSRC) to
enable the research between the United Kingdom and Argentina labora-
tories (BB/L026740/1). BBSRC also funded a CASE studentship to N.Y.
(BB/D526245/1), and BBSRC project BB/I011625/1 funded D.L.G.,
S.P.M., and A.T. We also acknowledge a Roslin Institute strategic pro-
gramme grant in innate immunity and endemic disease funded by the
BBSRC.

REFERENCES
1. Vossenkamper A, Macdonald TT, Marches O. 2011. Always one step

ahead: how pathogenic bacteria use the type III secretion system to ma-

nipulate the intestinal mucosal immune system. J Inflamm (Lond) 8:11.
http://dx.doi.org/10.1186/1476-9255-8-11.

2. Shames SR, Auweter SD, Finlay BB. 2009. Co-evolution and exploitation
of host cell signaling pathways by bacterial pathogens. Int J Biochem Cell
Biol 41:380 –389. http://dx.doi.org/10.1016/j.biocel.2008.08.013.

3. Tobe T, Beatson SA, Taniguchi H, Abe H, Bailey CM, Fivian A, Younis
R, Matthews S, Marches O, Frankel G, Hayashi T, Pallen MJ. 2006. An
extensive repertoire of type III secretion effectors in Escherichia coli O157
and the role of lambdoid phages in their dissemination. Proc Natl Acad Sci
U S A 103:14941–14946. http://dx.doi.org/10.1073/pnas.0604891103.

4. Elliott SJ, Hutcheson SW, Dubois MS, Mellies JL, Wainwright LA,
Batchelor M, Frankel G, Knutton S, Kaper JB. 1999. Identification of
CesT, a chaperone for the type III secretion of Tir in enteropathogenic
Escherichia coli. Mol Microbiol 33:1176 –1189.

5. Mellies JL, Elliott SJ, Sperandio V, Donnenberg MS, Kaper JB. 1999.
The Per regulon of enteropathogenic Escherichia coli: identification of a
regulatory cascade and a novel transcriptional activator, the locus of en-
terocyte effacement (LEE)-encoded regulator (Ler). Mol Microbiol 33:
296 –306. http://dx.doi.org/10.1046/j.1365-2958.1999.01473.x.

6. Sanchez-SanMartin C, Bustamante VH, Calva E, Puente JL. 2001.
Transcriptional regulation of the orf19 gene and the tir-cesT-eae operon
of enteropathogenic Escherichia coli. J Bacteriol 183:2823–2833. http://dx
.doi.org/10.1128/JB.183.9.2823-2833.2001.

7. Tree JJ, Wolfson EB, Wang D, Roe AJ, Gally DL. 2009. Controlling
injection: regulation of type III secretion in enterohaemorrhagic Esche-
richia coli. Trends Microbiol 17:361–370. http://dx.doi.org/10.1016/j.tim
.2009.06.001.

8. Knutton S, Rosenshine I, Pallen MJ, Nisan I, Neves BC, Bain C, Wolff
C, Dougan G, Frankel G. 1998. A novel EspA-associated surface organelle
of enteropathogenic Escherichia coli involved in protein translocation
into epithelial cells. EMBO J 17:2166 –2176. http://dx.doi.org/10.1093
/emboj/17.8.2166.

9. Ide T, Laarmann S, Greune L, Schillers H, Oberleithner H, Schmidt
MA. 2001. Characterization of translocation pores inserted into plasma
membranes by type III-secreted Esp proteins of enteropathogenic Esche-
richia coli. Cell Microbiol 3:669 – 679. http://dx.doi.org/10.1046/j.1462
-5822.2001.00146.x.

10. Nougayrede JP, Donnenberg MS. 2004. Enteropathogenic Escherichia
coli EspF is targeted to mitochondria and is required to initiate the mito-
chondrial death pathway. Cell Microbiol 6:1097–1111. http://dx.doi.org
/10.1111/j.1462-5822.2004.00421.x.

11. McNamara BP, Koutsouris A, O’Connell CB, Nougayrede JP, Donnen-
berg MS, Hecht G. 2001. Translocated EspF protein from enteropatho-
genic Escherichia coli disrupts host intestinal barrier function. J Clin In-
vest 107:621– 629. http://dx.doi.org/10.1172/JCI11138.

12. Kenny B, DeVinney R, Stein M, Reinscheid DJ, Frey EA, Finlay BB.
1997. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate
adherence into mammalian cells. Cell 91:511–520. http://dx.doi.org/10
.1016/S0092-8674(00)80437-7.

13. Lio JC, Syu WJ. 2004. Identification of a negative regulator for the patho-
genicity island of enterohemorrhagic Escherichia coli O157:H7. J Biomed
Sci 11:855– 863. http://dx.doi.org/10.1007/BF02254371.

14. Keyser P, Elofsson M, Rosell S, Wolf-Watz H. 2008. Virulence blockers
as alternatives to antibiotics: type III secretion inhibitors against Gram-
negative bacteria. J Intern Med 264:17–29. http://dx.doi.org/10.1111/j
.1365-2796.2008.01941.x.

15. Rasko DA, Moreira CG, Li DR, Reading NC, Ritchie JM, Waldor MK,
Williams N, Taussig R, Wei S, Roth M, Hughes DT, Huntley JF, Fina
MW, Falck JR, Sperandio V. 2008. Targeting QseC signaling and viru-
lence for antibiotic development. Science 321:1078 –1080. http://dx.doi
.org/10.1126/science.1160354.

16. Tree JJ, Wang D, McInally C, Mahajan A, Layton A, Houghton I,
Elofsson M, Stevens MP, Gally DL, Roe AJ. 2009. Characterization of the
effects of salicylidene acylhydrazide compounds on type III secretion in
Escherichia coli O157:H7. Infect Immun 77:4209 – 4220. http://dx.doi.org
/10.1128/IAI.00562-09.

17. Gauthier A, Robertson ML, Lowden M, Ibarra JA, Puente JL, Finlay BB.
2005. Transcriptional inhibitor of virulence factors in enteropathogenic
Escherichia coli. Antimicrob Agents Chemother 49:4101– 4109. http://dx
.doi.org/10.1128/AAC.49.10.4101-4109.2005.

18. Hudson DL, Layton AN, Field TR, Bowen AJ, Wolf-Watz H, Elofsson
M, Stevens MP, Galyov EE. 2007. Inhibition of type III secretion in
Salmonella enterica serovar Typhimurium by small-molecule inhibitors.

FIG 7 Ketolides do not induce DNA damage. The sulA promoter was fused
with the gene for GFP and transformed into ZAP198 (pKC26 sulA::gfp). The
fluorescence and OD600 were determined after 6 h of culture. ZAP198 trans-
formed with a promoter-less GFP plasmid (pKC26) was used as a background
control under each culture condition. Mitomycin C (MMC) was used as pos-
itive control since it induces DNA damage and, consequently, SulA expression.
Lines represent the averages of three biological repeats. The results of one
representative experiment out of at least two that were performed are shown.
OD600, optical density at 600 nm; AU, arbitrary units. ***, P 
 0.0001,
ANOVA.

Fernandez-Brando et al.

468 aac.asm.org January 2016 Volume 60 Number 1Antimicrobial Agents and Chemotherapy

 on January 5, 2016 by U
N

IV
E

R
S

IT
Y

 O
F

 E
D

IN
B

U
R

G
H

http://aac.asm
.org/

D
ow

nloaded from
 

http://dx.doi.org/10.1186/1476-9255-8-11
http://dx.doi.org/10.1016/j.biocel.2008.08.013
http://dx.doi.org/10.1073/pnas.0604891103
http://dx.doi.org/10.1046/j.1365-2958.1999.01473.x
http://dx.doi.org/10.1128/JB.183.9.2823-2833.2001
http://dx.doi.org/10.1128/JB.183.9.2823-2833.2001
http://dx.doi.org/10.1016/j.tim.2009.06.001
http://dx.doi.org/10.1016/j.tim.2009.06.001
http://dx.doi.org/10.1093/emboj/17.8.2166
http://dx.doi.org/10.1093/emboj/17.8.2166
http://dx.doi.org/10.1046/j.1462-5822.2001.00146.x
http://dx.doi.org/10.1046/j.1462-5822.2001.00146.x
http://dx.doi.org/10.1111/j.1462-5822.2004.00421.x
http://dx.doi.org/10.1111/j.1462-5822.2004.00421.x
http://dx.doi.org/10.1172/JCI11138
http://dx.doi.org/10.1016/S0092-8674(00)80437-7
http://dx.doi.org/10.1016/S0092-8674(00)80437-7
http://dx.doi.org/10.1007/BF02254371
http://dx.doi.org/10.1111/j.1365-2796.2008.01941.x
http://dx.doi.org/10.1111/j.1365-2796.2008.01941.x
http://dx.doi.org/10.1126/science.1160354
http://dx.doi.org/10.1126/science.1160354
http://dx.doi.org/10.1128/IAI.00562-09
http://dx.doi.org/10.1128/IAI.00562-09
http://dx.doi.org/10.1128/AAC.49.10.4101-4109.2005
http://dx.doi.org/10.1128/AAC.49.10.4101-4109.2005
http://aac.asm.org
http://aac.asm.org/


Antimicrob Agents Chemother 51:2631–2635. http://dx.doi.org/10.1128
/AAC.01492-06.

19. Slepenkin A, Enquist PA, Hagglund U, de la Maza LM, Elofsson M,
Peterson EM. 2007. Reversal of the antichlamydial activity of putative
type III secretion inhibitors by iron. Infect Immun 75:3478 –3489. http:
//dx.doi.org/10.1128/IAI.00023-07.

20. Nordfelth R, Kauppi AM, Norberg HA, Wolf-Watz H, Elofsson M.
2005. Small-molecule inhibitors specifically targeting type III secretion.
Infect Immun 73:3104 –3114. http://dx.doi.org/10.1128/IAI.73.5.3104
-3114.2005.

21. Neely MN, Friedman DI. 1998. Arrangement and functional identifica-
tion of genes in the regulatory region of lambdoid phage H-19B, a carrier
of a Shiga-like toxin. Gene 223:105–113. http://dx.doi.org/10.1016/S0378
-1119(98)00236-4.

22. Plunkett G, III, Rose DJ, Durfee TJ, Blattner FR. 1999. Sequence of
Shiga toxin 2 phage 933W from Escherichia coli O157:H7: Shiga toxin as a
phage late-gene product. J Bacteriol 181:1767–1778.

23. Waldor MK, Friedman DI. 2005. Phage regulatory circuits and virulence
gene expression. Curr Opin Microbiol 8:459 – 465. http://dx.doi.org/10
.1016/j.mib.2005.06.001.

24. Aertsen A, Faster D, Michiels CW. 2005. Induction of Shiga toxin-
converting prophage in Escherichia coli by high hydrostatic pressure. Appl
Environ Microbiol 71:1155–1162. http://dx.doi.org/10.1128/AEM.71.3
.1155-1162.2005.

25. Kaper JB, Nataro JP, Mobley HL. 2004. Pathogenic Escherichia coli. Nat
Rev Microbiol 2:123–140. http://dx.doi.org/10.1038/nrmicro818.

26. Zhang X, McDaniel AD, Wolf LE, Keusch GT, Waldor MK, Acheson
DW. 2000. Quinolone antibiotics induce Shiga toxin-encoding bacterio-
phages, toxin production, and death in mice. J Infect Dis 181:664 – 670.
http://dx.doi.org/10.1086/315239.

27. Teel LD, Melton-Celsa AR, Schmitt CK, O’Brien AD. 2002. One of two
copies of the gene for the activatable Shiga toxin type 2d in Escherichia coli
O91:H21 strain B2F1 is associated with an inducible bacteriophage. Infect
Immun 70:4282– 4291. http://dx.doi.org/10.1128/IAI.70.8.4282-4291
.2002.

28. Fukushima H, Hashizume T, Morita Y, Tanaka J, Azuma K, Mizumoto
Y, Kaneno M, Matsuura M, Konma K, Kitani T. 1999. Clinical experi-
ences in Sakai City Hospital during the massive outbreak of enterohem-
orrhagic Escherichia coli O157 infections in Sakai City, 1996. Pediatr Int
41:213–217. http://dx.doi.org/10.1046/j.1442-200X.1999.4121041.x.

29. Andersson DI, Hughes D. 2014. Microbiological effects of sublethal levels
of antibiotics. Nat Rev Microbiol 12:465– 478. http://dx.doi.org/10.1038
/nrmicro3270.

30. Heemskerk J, Tobin AJ, Ravina B. 2002. From chemical to drug: neuro-
degeneration drug screening and the ethics of clinical trials. Nat Neurosci
5(Suppl):1027–1029. http://dx.doi.org/10.1038/nn931.

31. Heemskerk J, Tobin AJ, Bain LJ. 2002. Teaching old drugs new tricks.
Meeting of the Neurodegeneration Drug Screening Consortium, 7-8 April
2002, Washington, DC, USA. Trends Neurosci 25:494 – 496.

32. Campellone KG, Robbins D, Leong JM. 2004. EspFU is a translocated
EHEC effector that interacts with Tir and N-WASP and promotes Nck-
independent actin assembly. Dev Cell 7:217–228. http://dx.doi.org/10
.1016/j.devcel.2004.07.004.

33. Roe AJ, Yull H, Naylor SW, Woodward MJ, Smith DG, Gally DL. 2003.
Heterogeneous surface expression of EspA translocon filaments by Esch-
erichia coli O157:H7 is controlled at the posttranscriptional level. Infect
Immun 71:5900 –5909. http://dx.doi.org/10.1128/IAI.71.10.5900-5909
.2003.

34. Roe AJ, Naylor SW, Spears KJ, Yull HM, Dransfield TA, Oxford M,
McKendrick IJ, Porter M, Woodward MJ, Smith DG, Gally DL. 2004.
Co-ordinate single-cell expression of LEE4- and LEE5-encoded proteins
of Escherichia coli O157:H7. Mol Microbiol 54:337–352. http://dx.doi.org
/10.1111/j.1365-2958.2004.04277.x.

35. Tree JJ, Roe AJ, Flockhart A, McAteer SP, Xu X, Shaw D, Mahajan A,
Beatson SA, Best A, Lotz S, Woodward MJ, La Ragione R, Murphy KC,
Leong JM, Gally DL. 2011. Transcriptional regulators of the GAD acid
stress island are carried by effector protein-encoding prophages and indi-
rectly control type III secretion in enterohemorrhagic Escherichia coli
O157:H7. Mol Microbiol 80:1349 –1365. http://dx.doi.org/10.1111/j.1365
-2958.2011.07650.x.

36. Still JG, Schranz J, Degenhardt TP, Scott D, Fernandes P, Gutierrez MJ,
Clark K. 2011. Pharmacokinetics of solithromycin (CEM-101) after single
or multiple oral doses and effects of food on single-dose bioavailability in

healthy adult subjects. Antimicrob Agents Chemother 55:1997–2003.
http://dx.doi.org/10.1128/AAC.01429-10.

37. Zeitlinger M, Wagner CC, Heinisch B. 2009. Ketolides—the modern
relatives of macrolides: the pharmacokinetic perspective. Clin Pharmaco-
kinet 48:23–38. http://dx.doi.org/10.2165/0003088-200948010-00002.

38. Quillardet P, Huisman O, D’Ari R, Hofnung M. 1982. The SOS Chro-
motest: direct assay of the expression of gene sfiA as a measure of geno-
toxicity of chemicals. Biochimie 64:797– 801. http://dx.doi.org/10.1016
/S0300-9084(82)80131-4.

39. el Mzibri M, De Meo MP, Laget M, Guiraud H, Seree E, Barra Y,
Dumenil G. 1996. The Salmonella sulA-test: a new in vitro system to
detect genotoxins. Mutat Res 369:195–208. http://dx.doi.org/10.1016
/S0165-1218(96)00052-3.

40. Tomasz M, Palom Y. 1997. The mitomycin bioreductive antitumor
agents: cross-linking and alkylation of DNA as the molecular basis of their
activity. Pharmacol Ther 76:73– 87. http://dx.doi.org/10.1016/S0163
-7258(97)00088-0.

41. Walker GC. 1984. Mutagenesis and inducible responses to deoxyribonu-
cleic acid damage in Escherichia coli. Microbiol Rev 48:60 –93.

42. Gianantonio CA, Vitacco M, Mendilaharzu F, Gallo GE, Sojo ET. 1973.
The hemolytic-uremic syndrome. Nephron 11:174 –192. http://dx.doi.org
/10.1159/000180229.

43. Karmali MA, Steele BT, Petric M, Lim C. 1983. Sporadic cases of
haemolytic-uraemic syndrome associated with faecal cytotoxin and cyto-
toxin-producing Escherichia coli in stools. Lancet i:619 – 620.

44. Steinborn M, Leiz S, Rudisser K, Griebel M, Harder T, Hahn H. 2004.
CT and MRI in haemolytic uraemic syndrome with central nervous sys-
tem involvement: distribution of lesions and prognostic value of imaging
findings. Pediatr Radiol 34:805– 810.

45. Gallo EG, Gianantonio CA. 1995. Extrarenal involvement in diarrhoea-
associated haemolytic-uraemic syndrome. Pediatr Nephrol 9:117–119.
http://dx.doi.org/10.1007/BF00858990.

46. Iijima K, Kamioka I, Nozu K. 2008. Management of diarrhea-associated
hemolytic uremic syndrome in children. Clin Exp Nephrol 12:16 –19.
http://dx.doi.org/10.1007/s10157-007-0007-4.

47. Orth D, Grif K, Zimmerhackl LB, Wurzner R. 2008. Prevention and
treatment of enterohemorrhagic Escherichia coli infections in humans.
Expert Rev Anti Infect Ther 6:101–108. http://dx.doi.org/10.1586
/14787210.6.1.101.

48. Goldwater PN. 2007. Treatment and prevention of enterohemorrhagic
Escherichia coli infection and hemolytic uremic syndrome. Expert Rev
Anti Infect Ther 5:653– 663. http://dx.doi.org/10.1586/14787210.5.4.653.

49. Serna AT, Boedeker EC. 2008. Pathogenesis and treatment of Shiga
toxin-producing Escherichia coli infections. Curr Opin Gastroenterol 24:
38 – 47. http://dx.doi.org/10.1097/MOG.0b013e3282f2dfb8.

50. McDaniel TK, Jarvis KG, Donnenberg MS, Kaper JB. 1995. A genetic
locus of enterocyte effacement conserved among diverse enterobacterial
pathogens. Proc Natl Acad Sci U S A 92:1664 –1668. http://dx.doi.org/10
.1073/pnas.92.5.1664.

51. Jerse AE, Yu J, Tall BD, Kaper JB. 1990. A genetic locus of enteropatho-
genic Escherichia coli necessary for the production of attaching and effac-
ing lesions on tissue culture cells. Proc Natl Acad Sci U S A 87:7839 –7843.
http://dx.doi.org/10.1073/pnas.87.20.7839.

52. Nataro JP, Kaper JB. 1998. Diarrheagenic Escherichia coli. Clin Micro-
biol Rev 11:142–201.

53. Zhang Q, Donohue-Rolfe A, Krautz-Peterson G, Sevo M, Parry N,
Abeijon C, Tzipori S. 2009. Gnotobiotic piglet infection model for eval-
uating the safe use of antibiotics against Escherichia coli O157:H7 infec-
tion. J Infect Dis 199:486 – 493. http://dx.doi.org/10.1086/596509.

54. Hiramatsu K, Murakami J, Kishi K, Hirata N, Yamasaki T, Kadota J,
Shibata T, Nasu M. 2003. Treatment with rokitamycin suppresses the
lethality in a murine model of Escherichia coli O157:H7 infection. Int J
Antimicrob Agents 21:471– 477. http://dx.doi.org/10.1016/S0924-8579
(03)00007-4.

55. Turner SM, Scott-Tucker A, Cooper LM, Henderson IR. 2006. Weapons
of mass destruction: virulence factors of the global killer enterotoxigenic
Escherichia coli. FEMS Microbiol Lett 263:10 –20. http://dx.doi.org/10
.1111/j.1574-6968.2006.00401.x.

56. Frankel G, Phillips AD, Rosenshine I, Dougan G, Kaper JB, Knutton S.
1998. Enteropathogenic and enterohaemorrhagic Escherichia coli: more
subversive elements. Mol Microbiol 30:911–921. http://dx.doi.org/10
.1046/j.1365-2958.1998.01144.x.

57. Naylor SW, Roe AJ, Nart P, Spears K, Smith DG, Low JC, Gally DL.

Type III Secretion-Dependent Sensitivity to Ketolides

January 2016 Volume 60 Number 1 aac.asm.org 469Antimicrobial Agents and Chemotherapy

 on January 5, 2016 by U
N

IV
E

R
S

IT
Y

 O
F

 E
D

IN
B

U
R

G
H

http://aac.asm
.org/

D
ow

nloaded from
 

http://dx.doi.org/10.1128/AAC.01492-06
http://dx.doi.org/10.1128/AAC.01492-06
http://dx.doi.org/10.1128/IAI.00023-07
http://dx.doi.org/10.1128/IAI.00023-07
http://dx.doi.org/10.1128/IAI.73.5.3104-3114.2005
http://dx.doi.org/10.1128/IAI.73.5.3104-3114.2005
http://dx.doi.org/10.1016/S0378-1119(98)00236-4
http://dx.doi.org/10.1016/S0378-1119(98)00236-4
http://dx.doi.org/10.1016/j.mib.2005.06.001
http://dx.doi.org/10.1016/j.mib.2005.06.001
http://dx.doi.org/10.1128/AEM.71.3.1155-1162.2005
http://dx.doi.org/10.1128/AEM.71.3.1155-1162.2005
http://dx.doi.org/10.1038/nrmicro818
http://dx.doi.org/10.1086/315239
http://dx.doi.org/10.1128/IAI.70.8.4282-4291.2002
http://dx.doi.org/10.1128/IAI.70.8.4282-4291.2002
http://dx.doi.org/10.1046/j.1442-200X.1999.4121041.x
http://dx.doi.org/10.1038/nrmicro3270
http://dx.doi.org/10.1038/nrmicro3270
http://dx.doi.org/10.1038/nn931
http://dx.doi.org/10.1016/j.devcel.2004.07.004
http://dx.doi.org/10.1016/j.devcel.2004.07.004
http://dx.doi.org/10.1128/IAI.71.10.5900-5909.2003
http://dx.doi.org/10.1128/IAI.71.10.5900-5909.2003
http://dx.doi.org/10.1111/j.1365-2958.2004.04277.x
http://dx.doi.org/10.1111/j.1365-2958.2004.04277.x
http://dx.doi.org/10.1111/j.1365-2958.2011.07650.x
http://dx.doi.org/10.1111/j.1365-2958.2011.07650.x
http://dx.doi.org/10.1128/AAC.01429-10
http://dx.doi.org/10.2165/0003088-200948010-00002
http://dx.doi.org/10.1016/S0300-9084(82)80131-4
http://dx.doi.org/10.1016/S0300-9084(82)80131-4
http://dx.doi.org/10.1016/S0165-1218(96)00052-3
http://dx.doi.org/10.1016/S0165-1218(96)00052-3
http://dx.doi.org/10.1016/S0163-7258(97)00088-0
http://dx.doi.org/10.1016/S0163-7258(97)00088-0
http://dx.doi.org/10.1159/000180229
http://dx.doi.org/10.1159/000180229
http://dx.doi.org/10.1007/BF00858990
http://dx.doi.org/10.1007/s10157-007-0007-4
http://dx.doi.org/10.1586/14787210.6.1.101
http://dx.doi.org/10.1586/14787210.6.1.101
http://dx.doi.org/10.1586/14787210.5.4.653
http://dx.doi.org/10.1097/MOG.0b013e3282f2dfb8
http://dx.doi.org/10.1073/pnas.92.5.1664
http://dx.doi.org/10.1073/pnas.92.5.1664
http://dx.doi.org/10.1073/pnas.87.20.7839
http://dx.doi.org/10.1086/596509
http://dx.doi.org/10.1016/S0924-8579(03)00007-4
http://dx.doi.org/10.1016/S0924-8579(03)00007-4
http://dx.doi.org/10.1111/j.1574-6968.2006.00401.x
http://dx.doi.org/10.1111/j.1574-6968.2006.00401.x
http://dx.doi.org/10.1046/j.1365-2958.1998.01144.x
http://dx.doi.org/10.1046/j.1365-2958.1998.01144.x
http://aac.asm.org
http://aac.asm.org/


2005. Escherichia coli O157:H7 forms attaching and effacing lesions at the
terminal rectum of cattle and colonization requires the LEE4 operon. Mi-
crobiology 151:2773–2781. http://dx.doi.org/10.1099/mic.0.28060-0.

58. Honma Y, Sasakawa C, Tsuji T, Iwanaga M. 2000. Effect of erythromycin
on Shigella infection of Caco-2 cells. FEMS Immunol Med Microbiol 27:
139 –145. http://dx.doi.org/10.1111/j.1574-695X.2000.tb01424.x.

59. Gamage SD, Patton AK, Strasser JE, Chalk CL, Weiss AA. 2006. Com-
mensal bacteria influence Escherichia coli O157:H7 persistence and Shiga
toxin production in the mouse intestine. Infect Immun 74:1977–1983.
http://dx.doi.org/10.1128/IAI.74.3.1977-1983.2006.

60. Kimmitt PT, Harwood CR, Barer MR. 2000. Toxin gene expression by
Shiga toxin-producing Escherichia coli: the role of antibiotics and the
bacterial SOS response. Emerg Infect Dis 6:458 – 465. http://dx.doi.org/10
.3201/eid0605.000503.

61. Yoh M, Frimpong EK, Voravuthikunchai SP, Honda T. 1999. Effect of
subinhibitory concentrations of antimicrobial agents (quinolones and
macrolide) on the production of verotoxin by enterohemorrhagic Esche-
richia coli O157:H7. Can J Microbiol 45:732–739. http://dx.doi.org/10
.1139/w99-069.

62. Molbak K, Mead PS, Griffin PM. 2002. Antimicrobial therapy in patients
with Escherichia coli O157:H7 infection. JAMA 288:1014 –1016. http://dx
.doi.org/10.1001/jama.288.8.1014.

63. Wong CS, Jelacic S, Habeeb RL, Watkins SL, Tarr PI. 2000. The risk of
the hemolytic-uremic syndrome after antibiotic treatment of Escherichia
coli O157:H7 infections. N Engl J Med 342:1930 –1936. http://dx.doi.org
/10.1056/NEJM200006293422601.

64. Dundas S, Todd WT, Stewart AI, Murdoch PS, Chaudhuri AK,
Hutchinson SJ. 2001. The central Scotland Escherichia coli O157:H7 out-
break: risk factors for the hemolytic uremic syndrome and death among
hospitalized patients. Clin Infect Dis 33:923–931. http://dx.doi.org/10
.1086/322598.

65. Courcelle J, Hanawalt PC. 2003. RecA-dependent recovery of arrested
DNA replication forks. Annu Rev Genet 37:611– 646. http://dx.doi.org/10
.1146/annurev.genet.37.110801.142616.

66. Little JW. 1991. Mechanism of specific LexA cleavage: autodigestion and
the role of RecA coprotease. Biochimie 73:411– 421. http://dx.doi.org/10
.1016/0300-9084(91)90108-D.

67. Quillardet P, Huisman O, D’Ari R, Hofnung M. 1982. SOS Chromotest,
a direct assay of induction of an SOS function in Escherichia coli K-12 to
measure genotoxicity. Proc Natl Acad Sci U S A 79:5971–5975. http://dx
.doi.org/10.1073/pnas.79.19.5971.

68. McGannon CM, Fuller CA, Weiss AA. 2010. Different classes of antibi-
otics differentially influence Shiga toxin production. Antimicrob Agents
Chemother 54:3790 –3798. http://dx.doi.org/10.1128/AAC.01783-09.

69. Murakami J, Kishi K, Hirai K, Hiramatsu K, Yamasaki T, Nasu M.
2000. Macrolides and clindamycin suppress the release of Shiga-like toxins
from Escherichia coli O157:H7 in vitro. Int J Antimicrob Agents 15:103–
109. http://dx.doi.org/10.1016/S0924-8579(00)00126-6.

70. Yoh M, Frimpong EK, Honda T. 1997. Effect of antimicrobial agents,
especially fosfomycin, on the production and release of Vero toxin by
enterohaemorrhagic Escherichia coli O157:H7. FEMS Immunol Med Mi-
crobiol 19:57– 64. http://dx.doi.org/10.1111/j.1574-695X.1997.tb01072.x.

71. Pedersen MG, Hansen C, Riise E, Persson S, Olsen KE. 2008. Subtype-
specific suppression of Shiga toxin 2 released from Escherichia coli upon
exposure to protein synthesis inhibitors. J Clin Microbiol 46:2987–2991.
http://dx.doi.org/10.1128/JCM.00871-08.

72. Gamage SD, Patton AK, Hanson JF, Weiss AA. 2004. Diversity and host
range of Shiga toxin-encoding phage. Infect Immun 72:7131–7139. http:
//dx.doi.org/10.1128/IAI.72.12.7131-7139.2004.

73. Gamage SD, Strasser JE, Chalk CL, Weiss AA. 2003. Nonpathogenic
Escherichia coli can contribute to the production of Shiga toxin. Infect
Immun 71:3107–3115. http://dx.doi.org/10.1128/IAI.71.6.3107-3115.2003.

74. Ostroff SM, Griffin PM, Tauxe RV, Shipman LD, Greene KD, Wells JG,
Lewis JH, Blake PA, Kobayashi JM. 1990. A statewide outbreak of Esch-
erichia coli O157:H7 infections in Washington State. Am J Epidemiol
132:239 –247.

75. Low AS, Holden N, Rosser T, Roe AJ, Constantinidou C, Hobman JL,
Smith DG, Low JC, Gally DL. 2006. Analysis of fimbrial gene clusters and
their expression in enterohaemorrhagic Escherichia coli O157:H7. Envi-
ron Microbiol 8:1033–1047. http://dx.doi.org/10.1111/j.1462-2920.2006
.00995.x.

76. Holden N, Totsika M, Dixon L, Catherwood K, Gally DL. 2007. Regu-
lation of P-fimbrial phase variation frequencies in Escherichia coli
CFT073. Infect Immun 75:3325–3334. http://dx.doi.org/10.1128/IAI
.01989-06.

77. Wang RF, Kushner SR. 1991. Construction of versatile low-copy-
number vectors for cloning, sequencing and gene expression in Esche-
richia coli. Gene 100:195–199. http://dx.doi.org/10.1016/0378-1119(91)
90366-J.

78. Krokidis MG, Marquez V, Wilson DN, Kalpaxis DL, Dinos GP. 2014.
Insights into the mode of action of novel fluoroketolides, potent inhibitors
of bacterial protein synthesis. Antimicrob Agents Chemother 58:472– 480.
http://dx.doi.org/10.1128/AAC.01994-13.

79. Wang D, Roe AJ, McAteer S, Shipston MJ, Gally DL. 2008. Hierarchal
type III secretion of translocators and effectors from Escherichia coli
O157:H7 requires the carboxy terminus of SepL that binds to Tir. Mol
Microbiol 69:1499 –1512. http://dx.doi.org/10.1111/j.1365-2958.2008
.06377.x.

Fernandez-Brando et al.

470 aac.asm.org January 2016 Volume 60 Number 1Antimicrobial Agents and Chemotherapy

 on January 5, 2016 by U
N

IV
E

R
S

IT
Y

 O
F

 E
D

IN
B

U
R

G
H

http://aac.asm
.org/

D
ow

nloaded from
 

http://dx.doi.org/10.1099/mic.0.28060-0
http://dx.doi.org/10.1111/j.1574-695X.2000.tb01424.x
http://dx.doi.org/10.1128/IAI.74.3.1977-1983.2006
http://dx.doi.org/10.3201/eid0605.000503
http://dx.doi.org/10.3201/eid0605.000503
http://dx.doi.org/10.1139/w99-069
http://dx.doi.org/10.1139/w99-069
http://dx.doi.org/10.1001/jama.288.8.1014
http://dx.doi.org/10.1001/jama.288.8.1014
http://dx.doi.org/10.1056/NEJM200006293422601
http://dx.doi.org/10.1056/NEJM200006293422601
http://dx.doi.org/10.1086/322598
http://dx.doi.org/10.1086/322598
http://dx.doi.org/10.1146/annurev.genet.37.110801.142616
http://dx.doi.org/10.1146/annurev.genet.37.110801.142616
http://dx.doi.org/10.1016/0300-9084(91)90108-D
http://dx.doi.org/10.1016/0300-9084(91)90108-D
http://dx.doi.org/10.1073/pnas.79.19.5971
http://dx.doi.org/10.1073/pnas.79.19.5971
http://dx.doi.org/10.1128/AAC.01783-09
http://dx.doi.org/10.1016/S0924-8579(00)00126-6
http://dx.doi.org/10.1111/j.1574-695X.1997.tb01072.x
http://dx.doi.org/10.1128/JCM.00871-08
http://dx.doi.org/10.1128/IAI.72.12.7131-7139.2004
http://dx.doi.org/10.1128/IAI.72.12.7131-7139.2004
http://dx.doi.org/10.1128/IAI.71.6.3107-3115.2003
http://dx.doi.org/10.1111/j.1462-2920.2006.00995.x
http://dx.doi.org/10.1111/j.1462-2920.2006.00995.x
http://dx.doi.org/10.1128/IAI.01989-06
http://dx.doi.org/10.1128/IAI.01989-06
http://dx.doi.org/10.1016/0378-1119(91)90366-J
http://dx.doi.org/10.1016/0378-1119(91)90366-J
http://dx.doi.org/10.1128/AAC.01994-13
http://dx.doi.org/10.1111/j.1365-2958.2008.06377.x
http://dx.doi.org/10.1111/j.1365-2958.2008.06377.x
http://aac.asm.org
http://aac.asm.org/

	MATERIALS AND METHODS
	Bacterial strains and media.
	NINDS library.
	Preparation of T3S culture supernatant proteins and analysis by SDS-PAGE.
	Western blotting.
	Cell binding assays.
	Live/dead staining.
	Measurement of LEE and SulA promoter activity.
	Microscopy.
	Statistical analysis.

	RESULTS
	Screening of the NINDS library for compounds that repress LEE1 expression.
	Analysis of type III secretion profiles.
	Reporter gene assays.
	Analysis of ketolides on adherence and A/E lesion formation.
	Expression of the T3SS increases the susceptibility of E. coli O157 to solithromycin.
	Preexposure of epithelial cells to solithromycin reduces T3SS-dependent attachment of E. coli O157.
	Effect of ketolides on SOS induction.

	DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES

