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The ability to detect motion and track a moving object hidden around

a corner or behind a wall provides a crucial advantage when physically go-

ing around the obstacle is impossible or dangerous. Previous methods have

demonstrated that is possible to reconstruct the shape of an object hidden

from view. However, these methods do not enable the tracking of movement

in real-time. We demonstrate a compact non-line-of-sight laser ranging tech-

nology that relies upon the ability to send light around an obstacle using a

scattering floor and to detect the return signal from a hidden object with only

a few seconds acquisition time. By detecting this signal with a single-photon

avalanche diode (SPAD) camera, we follow the movement of an object located

a meter away from the camera with centimetre precision. We discuss the

possibility of applying this technology to a variety of real-life situations in the
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near future.

Recent years have seen remarkable advances in the field of image processing and data

acquisition, allowing for a range of novel applications [1–8]. An exciting new avenue is

using optical imaging techniques to observe and track objects that are both in movement

and hidden from the direct line-of-sight. The ability to detect motion and track a moving

object hidden from view would provide a crucial advantage when physically going around

the obstacle is impossible or dangerous, for example to detect a person moving behind a

wall or a car approaching from behind a blind corner.

Techniques for imaging static objects that are hidden from view have been recently

demonstrated relying on, for example, radar technology [9, 10], variations of laser illumi-

nated detection and ranging (LIDAR) [3, 5, 11, 12], or speckle-based imaging. The latter

approach was first developed for imaging through opaque barriers [13–15], and also allows

for imaging around corners [16, 17]. The work of Velten et al. [5] and, more recently,

Buttafava et al. [8] sets out to establish the 3D shape of a static hidden object by col-

lecting the return scattered light with a streak camera or single-photon avalanche diode,

respectively. While remarkable 3D reconstruction of objects are achieved with these tech-

niques, Buttafava et al. point out that the requirement for scanning and subsequent long

acquisition times mean that their technique is currently unsuitable for imaging moving

objects.

Notwithstanding these ingenious imaging systems, locating the position of a hidden

object in motion and monitoring its movement in real time remains to date a major

challenge. We set out to solve the tracking problem and develop a technique based

on both hardware and software implementations that are specifically designed for this
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purpose. Our solution is based on a LIDAR-like approach where a single-photon avalanche

diode (SPAD) camera [7,18–22] is used to image light that is backscattered from beyond

the direct line-of-sight (see Methods for camera details). The high temporal resolution

of the camera relies on the fact that each individual pixel is operated in time-correlated

single-photon counting (TCPSC) mode [21, 22], and measures the arrival times of single

photons with a 45.5 ps time bin. The high sensitivity of the camera allows extremely

short acquisition times, which in turn allows one to locate hidden objects on time scales

sufficiently short to be able to track their movement. In the following, we first show that

we can locate the position of an object hidden behind a wall with centimeter precision,

without the need for pre-acquiring a background in the absence of the object. We then

show that real-time acquisition is possible for an object moving at a few centimeters per

second.

The proof-of-principle experiments were performed in the laboratory as shown in Fig. 1.

The “target” we wish to track is a human form cut in a piece of foam that is 30 cm high,

10 cm wide and 4 cm thick. The target is positioned roughly one meter away from the

camera and is hidden from its view by a wall (Fig. 1a,b). As in many real-life situations,

there is not always a conveniently placed wall, door or window that can be used as a

reflective surface to send and collect light, so we rely only on the presence of the floor, in

this case, a piece of white cardboard. The camera is therefore imaging a patch of the floor

that is just beyond the edge of the obscuring wall. We then send a train of femtosecond

laser pulses on the floor, 15 cm to the left of the field of view of the camera. Light scatters

from this point into a spherical wave and propagates behind the wall (see Fig. 1c). Part

of the scattered light reaches the hidden target, which then scatters light back into the

field of view, approximately as a single spherical wave (see Methods).
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In Fig. 1c, we show an example of a single time frame of such a recording (raw acquired

data) where the backscattered spherical wave is clearly visible, frozen in time by the cam-

era as it sweeps across the field of view. The target location is then retrieved by utilising

the fact that: (i) the time it takes for the light to propagate from the laser to the object

and back, similarly to a LIDAR system, gives information about the object’s distance and

(ii) the curvature and direction with which the spherical wavefront propagates across the

camera field-of-view provides information on the target position.

Target position retrieval. The target-position retrieval algorithm therefore relies on both

the temporal and spatial information recorded by the SPAD camera. Every pixel i of

the 32x32-pixel camera, corresponding to a position ~ri = (xi, yi) in the field of view,

records a histogram of photon arrival times (see Fig. 2a). First, we isolate the signal of

interest coming from the target alone from the signal coming from unwanted sources in the

environment such as the walls and the ceiling. This can be achieved by simply acquiring

a background signal in the absence of the target, but is not a practical solution if we are

interested in tracking non-cooperative moving targets. Instead, by acquiring data with

the target at different positions, we can distinguish the signal that is not changing at each

acquisition (generated by the static sources) and the signal that is changing (generated

by the target). A median of the temporal histograms for each pixel proves to be a very a

good approximation of the background signal [23–25] and allows to effectively isolate the

signal generated from the target alone (see Supplementary Information).

Once the target signal is isolated, we proceed similarly to standard time-of-flight mea-

surements and fit a Gaussian function to the temporal histograms, as shown in Fig. 2b

[4, 26–28]. For each pixel i, the peak position of the Gaussian fit 〈t〉i is a measure of the

4



light travel-time from the moment the laser hits the ground, scatters to an object at a

point and scatters back to the specific point in the field of view of the camera. There

is an ensemble of locations ~ro that satisfy the condition of equal propagation time, thus

forming an ellipse on a plane parallel to the floor defined by the target’s height. This

ellipse represents a probability distribution for the position of the hidden object: Fig. 2d

shows as an example the probabilities calculated from experimental data, correponding to

four different pixels indicated in the figure. In order to retrieve the target’s position, we

then calculate the joint probability density by multiplying the probability densities from

all 1024 camera pixels (see Methods for more details).

Results. In a first experiment, we place the target at eight distinct positions and acquire

data for three seconds at each position. Using the algorithm detailed above, we retrieve

a probability density P (~ro) for the eight positions of the target. Figure 3 shows, to scale,

the relative positions of the laser illumination spot on the floor, the camera and its field of

view, together with the actual positions of the target superimposed on the joint probability

distributions in color scale. The method provides an accurate retrieval of the target’s

position with a precision of approximately ±1 cm in x and ±2 cm in y, corresponding

to ∼ 20% uncertainty with respect to the target’s size in both directions. This precision

depends on the target’s distance and its position in x and y, due to geometrical arguments

(see Supplementary Information). The precision obtained experimentally corresponds to

what is expected from simulations. Our results also show that we are able to retrieve

target positions when it is not only hidden from view but is actually physically receded

behind the end of the wall.
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We then placed the target on a moving track directed along the y-direction. Although

the target is moving continuously, we record one position every three seconds and we thus

retrieve a discrete set of locations, each of which represents the average position of the

target during the acquisition time. Figure 4 shows an example of the system tracking

a target moving at 2.8 cm/s, where we show a few of the retrieved positions as well as

the full evolution of the hidden target’s motion, where the maximum probability position

is illustrated as a function of time. We see that the motion that we retrieve with real-

time acquisition corresponds to the actual target’s motion. Data was also recorded at

different speeds and for other x positions of the track (see Supplementary Information).

The supplementary video clearly shows a difference in the target’s speed, highlighting the

ability of the camera system to capture with reasonable accuracy both position and speed

of a moving target.

The detection range of this technique is ultimately limited by the signal-to-noise ratio

(SNR) of the detected signal. We verified from the experimental data that, for a fixed

distance between the camera and the field of view, the recorded signal decays as 1/(|ro−

rl||ro − ri|)2, where |ro − rl| is the distance between the laser spot and the object, and

|ro− ri| the distance between the object and the field of view. We are currently detecting

targets to a range of |r0 − ri| ∼ |ro − rl| ∼ 60 cm. With the increase of the target’s

size and possible improvements made to the setup and detection hardware (e.g. increased

detector fill factor and optimised wavelength sensitivity), we expect to extend this range

to detecting targets at about 10 m distance. A comprehensive analysis of the factors

affecting the SNR is presented in the Supplementary Information.

Extending the scope of our current work to include multiple hidden objects is also of

considerable interest. We performed preliminary measurements in which we detect two
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hidden targets (see the Supplementary Information). The ability of the current technol-

ogy to track multiple objects is determined by our capacity to distinguish signals from

distinct targets. Precise tracking of multiple targets would be enhanced by some relatively

straightforward solutions such as increasing the field of view of the system by using large-

area arrayed detectors or decreasing the temporal response of the system. Large-format

SPAD array cameras with these properties are in development.

SPAD detectors, originally developed as single pixel elements, are gradually becoming

widely available as focal plane arrays. The single photon sensitivity and picosecond tem-

poral resolution provide a unique tool for fundamental studies [7] and our results show

that they can also enable real-time non-line-of-sight ranging of a moving target. An in-

teresting avenue for future work is to combine these techniques with the simultaneous

3D reconstruction of the target shape. We have shown that we can reliably track the

position of a target if it moves by less than its own size during the acquisition time. Our

results thus pave the way for tracking hidden objects in real time in a number of real-life

scenarios, such as surveillance, rescue missions and implementation in cars for detecting

incoming hidden vehicles.

Methods

Laser details: The laser we use in our non-light-of-sight laser ranging system is an 800 nm

wavelength femtosecond oscillator that emits pulses of 10 nJ energy and 10 fs duration

at a 67 MHz repetition rate (0.67 W average power). A small portion of the laser (8%

reflection) is sent to an optical constant fraction discriminator (OCF) that generates a

TTL signal then sent to the camera to synchronise the acquisition to the propagation of the

laser pulses. We note that the system has been tested with different laser specifications,

7



e.g. light-in-flight with the same SPAD camera was demonstrated using a portable micro-

chip laser, with 4 kHz repetition rate [7].

Camera details: The camera is a 32x32-pixel array of Si CMOS single-photon avalanche

diodes (SPAD) that are individually operated in time-correlated single-photon counting

(TCSPC) mode: every time a photon is detected by a pixel, the time difference between

its arrival and the arrival of the TTL trigger from the OCF is measured and stored in the

time histogram. Each histogram has 1024 time pixels with a time-bin of 45.5 ps. The time

resolution is limited by the electronic jitter of the system, which is ∼110 ps (measured

at full-width-half-maximum). This impulse response corresponds to a spatial (depth)

resolution of a 1.65 cm, i.e. of the same order of magnitude of our target, allowing us to

approximate the back scattering as a single spherical wave originating from the target.

A standard Nikon-mount lens is attached to the camera (Samyang, 8 mm focal length,

F3.5).

The histograms are recorded over 10,000 laser pulses and the camera is operated at its

minimum operating exposure time of 300 µs, so that each acquisition takes 3 seconds. The

operating frame rate is only limited by the camera’s USB connection to the computer,

so that the minimum exposure time is currently 300 µs (frame rate of 3 kHz). The next

generation of SPAD camera will be implemented with USB3.0 which will allow to reach

higher operating rates, up to the limit of 1 MHz set by the camera’s internal functioning.

The limit at which data can be acquired will then be set by the amount of signal scattered

back to the field of view of the camera, but we expect to be able to record data for one

position within less than a second.
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Retrieval details: For a pixel i, the peak position of the Gaussian fit 〈t〉i is used to

determine the total photon flight time, with an uncertainty that is taken to be the Gaus-

sian standard deviation σti . The time 〈t〉i is a measure of the light travel-time from the

moment the laser hits the ground, scatters to an object at a point ~ro = (xo, yo) and

scatters back to the specific point ~ri in the field of view of the camera. There is a an

ensemble of locations ~ro that satisfy this condition, forming a three-dimensional ellipsoid

which collapses to a two-dimensional ellipse on a plane parallel to the floor defined by

the target’s height, where we restrict our search (see Supplementary Information). This

ellipse is defined by |~ro − ~rl| + |~ro − ~ri| = 〈t〉i × c, where |~ro − ~rl| and |~ro − ~ri| are the

distances from the laser point ~rl on the floor to the target and from the target to the point

~ri, respectively, as illustrated in Fig. 2c. This ellipse represents a probability distribution

for the position of the hidden object with uncertainty σti :

P ellipse
i (~ro) ∝ exp

[
−(ε/c− 〈t〉i)2

2σ2
ti

]
(1)

where ε is the ellipsoidal coordinate ε = |~ro − ~rl| + |~ro − ~ri|. We therefore calculate

the probability distributions P ellipse
i (~ro) for every pixel i of the field of view. Figure 2d

shows as an example four of the P ellipse
i (~ro) probabilities calculated from experimental

data, correponding to four different pixels indicated in the figure. In order to retrieve the

target’s position, we calculate the joint probability density by multiplying the probability

densities from all 1024 camera pixels:

P (~ro) = N

1024∏
i=1

Pi(~ro). (2)

P (~ro) determines the overall probability distribution of the location of the target, and N

is a normalisation constant. A complete mathematical development and details about the
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form of Pi(~ro) are given in Supplementary Information.
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Figure 1: Looking around a corner. Our setup re-creates, at a ∼ 5x reduced scale, a
situation where a person is hidden from view by a wall or an obstacle. a) The camera is
positioned on the side of the wall and is looking down at the floor: it cannot see what is
behind the wall but its field of view is placed beyond the end of the obstacle. b) A side
view shows that the target is hidden behind the wall. In order to see the hidden target
around the corner, laser pulses are sent to the floor. c) The light then scatters off the floor
and propagates as a spherical wave behind the obstacle, reaching the hidden object. This
light is then in turn scattered back into the field of view of the camera. The SPAD camera
records both spatial and temporal information on the propagating spherical light wave as
it passes through the field of view, creating an elliptical pattern where it intercepts the
floor. An example of the spatially resolved raw data, as recorded by the camera for a
fixed time frame as the ellipse passes in the field of view is shown in the inset.
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Figure 2: Retrieving a hidden object’s position. a) A histogram of photons arrival
times is recorded for every pixel (here for pixel i as indicated in c). This experimental
histogram contains signals both from the target and unwanted background sources. b)
Background subtraction and data processing allows to isolate the signal from the target
and fit a Gaussian to its peak, centered at 〈t〉i with a standard deviation of σti . c) The
time of arrival 〈t〉i is used to trace an ellipse of possible positions of the target which would
lead to a signal at this time. d) Ellipses calculated from different pixel (experimental data)
give slightly displaced probability distribution that intercepts at a given point. The area
where the ellipses overlap indicates the region of highest probability for the target location.
Multiplying these probability distributions (also with all other similar distributions from
all 1024 pixels of the camera) provides an estimate of the target location.
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Figure 3: Experimental results of hidden object’s position retrieval. Experimen-
tal layout and results showing the retrieved locations for eight distinct positions of the
target, approximately one meter away from the camera (distances indicated in the fig-
ure are measured from the camera). The coloured areas in the graph indicate the joint
probability distribution for the target location whose actual positions are shown as white
rectangles. Each P (~ro) peak value is individually normalised to one.
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Figure 4: Non-line-of-sight tracking of a moving target. Distances in the graph are
measured from the camera position. a) The object is moving in a straight line along the
y-direction, from bottom to top (as represented by the dashed rectangle and the arrow),
at a speed of 2.8 cm/s. The coloured areas represent the retrieved joint probability
distributions: the point of highest probability, indicating the estimated target location,
is highlighted with a filled circle. The colours correspond to different acquisition “start”
times, as indicated in the colorbar: successive measurements are each separated by 3
second intervals, i.e. the data acquisition time as explained in the text. We show the
retrieved positions in x and y as a function of time in b) and c), respectively. The dots
in (b) and (c) show the points of maximum probability together with the 50% confidence
bounds (red shaded area). The green area shows the actual position of the target.
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