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Abstract

Synthetic biologists aim to construct novel genetic circuits with useful applications through rational design and
forward engineering. Given the complexity of signal processing that occurs in natural biological systems,
engineered microbes have the potential to perform a wide range of desirable tasks that require sophisticated
computation and control. Realising this goal will require accurate predictive design of complex synthetic gene
circuits and accompanying large sets of quality modular and orthogonal genetic parts. Here we present a
current overview of the versatile components and tools available for engineering gene circuits in microbes,
including recently developed RNA-based tools that possess large dynamic ranges and can be easily
programmed. We introduce design principles that enable robust and scalable circuit performance such as
insulating a gene circuit against unwanted interactions with its context, and we describe efficient strategies for
rapidly identifying and correcting causes of failure and fine-tuning circuit characteristics.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Microbes are capable of sensing a wide variety of
stimuli, processing information efficiently, and pro-
ducing a range of chemical and physical responses.
Genetic engineers have repurposed these impres-
sive capabilities to interrogate natural biological
signalling pathways [1] and have reprogrammed
cells to produce desirable compounds [2], to sense
and report on the presence of toxic metals [3] or
cancer [4], or to seek and destroy pathogenic
bacteria [5,6]. These state-of-the-art examples use
relatively simple signal processing networks com-
pared to complex native systems, hinting at the great
potential for designer organisms but also highlighting
how difficult it currently is to effectively and routinely
program synthetic gene circuits [7,8].
Synthetic biology has often adopted an electrical

engineering framework for the design of novel gene
networks: basic functional units are termed parts
[9,10] and can be connected to build circuits, input–
Author. Published by Elsevier Ltd. This
rg/licenses/by-nc-nd/4.0/).
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output responses are described as having analogue
or digital characteristics [11,12], and signal process-
ing is often implemented using Boolean logic
functions [13]. This conceptual framework is effec-
tive up to a point, but predictions of how gene circuits
will behave often fail when they are implemented in
living cells because of the many undefined, complex
and dynamic interactions that can occur between the
circuit and its context [14,15]. Functional circuits can
still be produced, using iterative cycles of testing and
refinement to correct failures, and strategies for
insulating parts from confounding contextual effects
are being developed [16,17], but the inability to
accurately model circuit behaviour remains a major
barrier to the construction of large gene circuits.
Another limiting factor for the construction of

complex synthetic gene circuits has been a lack of
large sets of appropriately characterised parts,
though this has changed in recent years [18–22].
Desirable properties of part families include speci-
ficity and orthogonality (strong interactions with
is an open access article under the CC BY-NC-ND license
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2 Review: Microbial Gene Circuit Engineering
cognate parts, without cross-talk), compatibility (can
be used in the same circuit), and composability
(possessing transfer functions that overlap with
other parts) [7]. Parts whose function can be
designed de novo are particularly amenable to the
creation of large orthogonal sets [18–20].
In this review, we describe the current tools and

principles available for microbial gene circuit engi-
neering (Table 1), starting with regulators of tran-
scription and translation, two major control points
that determine the levels of gene circuit components,
and their associated final outputs in a cell. Large sets
of orthogonal regulatory parts have been generated
[18–22], though recently developed RNA-based
tools show particular promise as effective, reusable
components for gene circuit engineering. The
specificity of RNA-based tools is defined by base-
pairing, making design conceptually simple and
amenable to computational modelling. Both the
CRISPR-dCas9 [19] and the toehold switch [20]
part families have dynamic ranges of over two orders
of magnitude and have few constraints on their
programmability. Tools for post-transcriptional and
post-translational signal processing are also dis-
cussed, including split inteins for protein splicing
[23], the use of scaffolds for coordination of
pathways [24], and memory elements [12,25].
Since gene circuits often do not function as expected
when they are assembled, we discuss how context
effects impact on circuit function [14,15] and how
circuits can be insulated against these effects
[16,17]. Finally, we look at practical strategies for
debugging and tuning circuits to meet design
specifications [8,26].
Tools for Engineering RNA Levels

Transcription is arguably the most important
control point for a gene circuit. It provides compre-
hensive regulation over the levels of each compo-
nent since not all RNAs go on to be translated. The
tools available for RNA-based signal processing are
increasing in number and capability [18–20,27]. The
vectoral nature of transcription gives rise to polar
effects, some of which can be useful (e.g., coordi-
nation of gene expression as a polycistronic RNA),
whilst others are undesirable (read-though of termi-
nators [28]). Control elements are more easily
composed at the DNA level [29], avoiding problems
that may be caused by secondary-structure forma-
tion in mRNA [16,30]. Regulation of transcription
affords an efficient use of cellular resources com-
pared to the downstream regulation of translation, as
energy and resources are not wasted on RNA
synthesis. Here we review and discuss the versatile
components, tools, and approaches available to
achieve transcription-based gene circuit design in
microbial cells. Most transcriptional regulation com-
Please cite this article as: R. W. Bradley, et al., Tools and Principles f
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ponents control the initiation of RNA synthesis, by
modulating RNA polymerase (RNAP) binding affinity
with the promoter DNA [31,32], stabilising initiation
complex formation [33], or controlling access to a
promoter [19,21].

RNAP binding

The nucleotides in a promoter sequence that
interact with the RNAP holoenzyme are fundamental
determinants of the transcription rate from that site.
Sequence-dependent binding occurs between the
σ70-type factors and the −10 and −35 (core) regions
to specify the initiation site, whilst the C-terminal
domains of the α subunits preferentially interact with
short tracts of repeated A or T nucleotides in the 30
base pairs upstream of the −35 region (the UP
element), influencing promoter strength [34]
(Fig. 1a). Various studies have explored how
changes to and between the −10 and −35 regions
influence σ70-type promoter strength [35,36], with
thermodynamic modelling of the binding energies
proving one useful predictor for promoter strength
[31]. An examination of the contribution of the UP
element to σE promoter strength revealed the
importance of RNAP concentration for models of
the full-length promoter: the influence of the UP
element decreased with increasing RNAP concen-
tration for promoters with a strong core sequence
and vice versa [37]. The sequence downstream of
the transcription start site can also influence tran-
scription rates; potentially interfering effects can be
avoided using a standardised 5′ untranslated region
(UTR) and a constant initiating nucleotide [17,38].
The libraries of promoter sequences created for
these studies and others [17,39,40] span a large
range of strengths, making them a useful resource
for biological engineers until fully predictive models
of promoter activity are built.

Protein transcriptional regulators

Activators

Classical activators used in gene circuit design,
such as LuxR [41], work by stabilising RNAP binding
to the promoter. Taking a different approach,
Rhodius and colleagues used part mining of extra-
cytoplasmic function σ factors (ECFs) to build the
largest library of orthogonal protein transcriptional
activators available for use in Escherichia coli,
finding 20 ECFs and cognate promoters that show
low cross-reactivity [32]. These proteins function by
determining the specificity of RNAP for a given
promoter sequence, interacting at the −35 and −10
regions. The authors take advantage of this property
to produce synthetic chimeric ECFs, a strategy that
they estimate could produce a total set of approxi-
mately 160 orthogonal ECF/promoter pairs. ECF
or Microbial Gene Circuit Engineering, J. Mol. Biol. (2015), http://
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function can also be inhibited through their seques-
tration by an anti-σ factor; thus, anti-σ factors can be
used to lower the OFF state and tune the activation
of promoters (alter the cooperativity) by their cognate
ECF. Effective anti-σ repressors of all 20 orthogonal
ECFs were identified, though some cross-reactivity
to non-cognate ECFs was observed. Rhodius et al.
characterise the dynamic range, response function,
and toxicity of the parts, making this a rich resource
for biological engineers.
Other useful transcriptional activators for use with

the native E. coli RNAP include three chaperone-
activator pairs (which can be used for AND logic)
[42], phage transcriptional activators [43], and the
HrpRS bacterial enhancer binding proteins [44]
(which can be used in combination with the
HrpS-inhibiting HrpV protein [45]). HrpRS activates
transcription from the σ54-dependent PhrpL promoter
in an ATP-dependent manner [46,47]. Hence,
contrasting to σ70-dependent transcription, there is no
spontaneous open complex formation and PhrpL is not
recognised by the σ70-RNAP holoenzyme, which
renders the OFF state of the PhrpL promoter close to
zero, facilitating a digital-like response upon activation
[48].

T7 RNAP

The native E. coli RNAP is not necessarily required
for transcription: the phageT7RNAP is a single-subunit
enzyme capable of high transcription rates, which
recognises promoter sequences that are orthogonal to
those used by the native E. coli RNAP. Promoter
recognition is determined by a “specificity loop” in the
enzyme, which a number of groups have modified to
produce variants that exhibit differing degrees of
selectivity to a given promoter sequence: highly
orthogonal sets [49,50] allow for modular control, whilst
cross-talk between other combinations of polymerases
and promoters could also be useful for differential
control of multiple genes [51,52]. The T7 RNAP coding
sequence can be split into parts that interact—either
spontaneously [51] or more stably via split-intein-me-
diated trans-splicing [23]—to form a functional enzyme.
T7 RNAP that is split into two enables basic AND logic
[23,51] or analogue addition functions to be incorpo-
rated into a gene circuit, though theenzymecanbe split
into up to four sections [52]. Segall-Shapiro and
colleagues demonstrated the use of tripartite T7
RNAP as a “resource allocator”, where the expression
level of an N-terminal “core” enzyme fragment deter-
mines the total level of transcriptional resources
available, thereby setting an upper bound on the
metabolic load imposed on the cell by actively
transcribing synthetic gene circuits [52]. Differential
expression of C-terminal “σ” domain fragments that
contain orthogonal specificity loops then controls the
distribution of the transcriptional resources across an
array of target promoters. Positive post-transcriptional
Please cite this article as: R. W. Bradley, et al., Tools and Principles f
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regulation of the total T7RNAP transcriptional resource
level is achieved by splitting the core fragment further
into “α” and “β” subunits; expression of the α subunit
can thenbe titratedagainst the constitutively expressed
β subunit to control the amount of the holocore
fragment. Conversely, sequestration of the core
fragment using an inactive version of the σ domain
enables negative regulation of total transcription.
Repressors

Transcription-repressing proteins most commonly
act by blocking RNAP access to the promoter
(Fig. 1a). A library of homologues of the DNA
binding protein TetR and their cognate operator
sequences was built by Stanton et al., and it
contains 16 orthogonal variants sourced from
sequence databases [21]. The response function
and toxicity of the repressors was characterised,
providing useful data for gene circuit design. The
authors note that, theoretically, a set of 130 orthogonal
variants for this repressor class exists [53]. A smaller
library of LacI variants has also been produced [54],
which can be used for NAND logic at a promoter due
to the cooperative nature of LacI-induced DNA
looping.
The DNA binding specificity of certain families of

proteins can be predicted and programmed [55,56]:
the DNA binding domain of transcription activator-like
effectors (TALEs) comprises multiple 34-amino-acid
repeats that each have two residues that interact with
the DNA major groove. Since the amino acid-nucleo-
tide recognition code is known, repeats can be
assembled to create a protein with predictable DNA
sequence-specific binding. TALE repressors aremore
easily programmed compared to zinc-finger DNA
binding proteins [57,58], can be used for multiplexed
gene control [59], and have been shown to provide
over 100-fold repression of gene expression in E. coli
[60], but to date, they are a poorly represented class of
components in E. coli gene circuits. This may be due
to the relative difficulty in assembling the coding
sequence of the binding repeats—though high--
throughput methods have been developed for TALE
synthesis [61–63]—or possibly due to the emergence
of CRISPR-Cas9 technology.

Inducible control of transcription

Small-molecule control: Protein regulators

Transcriptional regulators that are controlled by
small-molecule inducers are indispensable to de-
signers of synthetic gene circuits, allowing simple
and often cheap external control over mRNA
production rates and facilitating cell-to-cell commu-
nication in the case of quorum-sensing molecules
[64]. A few “classical” regulators (usually proteins)
that sense inputs ranging from metabolites to metal
or Microbial Gene Circuit Engineering, J. Mol. Biol. (2015), http://
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Table 1. Tools for microbial gene circuit engineering.

Tool family Action References Notes

Control of RNA levels
Promoters (RNAP binding) Control of transcription initiation rate [31,34–39] Activity can be reasonably well predicted

with thermodynamic models but is
sensitive to changes in adjacent
sequences

Transcriptional activators
Extracytoplasmic function σ factors Recruitment of RNAP to specific

promoter sequences
[32] 20 orthogonal ECF/promoter pairs

characterised, all with cognate anti-σ
factors

HrpRS bacterial enhancer binding
proteins;
chaperone activators; phage
activators

Recruitment of RNAP to specific
promoter sequences

[44,45,139,42,43] HrpRS activate the σ54-dependent PhrpL;
ATP dependency gives a low OFF state
for a digital-like response

T7 RNAP Single-subunit phage RNAP
recognises orthogonal promoters

[23,49–52] Variants that recognise orthogonal
promoter sequences exist; protein
can be split to increase functionality

Transcriptional repressors
TetR homologues; LacI variants DNA binding proteins (block promoter

binding by RNAP)
[21,54] 16 orthogonal TetR variants

characterised with up to 200-fold
repressive activity

TALE repressors DNA binding proteins with
programmable sequence
specificity

[59–63] Construction of TALE proteins is
relatively time consuming

Small-molecule inducible control of transcription
Riboswitches Cis-elements that control

transcription termination
[70–74] Only a few small molecules can be sensed

UAA control of transcription UAA availability controls ribosome
stalling in a leader peptide

[78] Positive regulation is based on tna
operon control; negative regulation uses
trp operon attenuator

Optogenetics Light-sensing two-component
systems

[79–82] Can specifically detect red, green, or
blue wavelength

RNA control of transcription
pT181-based transcription repression A taRNA induces formation of a

transcription terminator
[85,86] Cis-elements can be concatenated

STARs A taRNA disrupts formation of a
transcription terminator

[22] Up to 94-fold dynamic range

tna adapter Transcriptional regulation via
translational regulation of tna leader
peptide synthesis

[88] 103-fold dynamic range when combined
with the IS10 translational regulator

CRISPR-dCas9 transcriptional regulation
dCas9 transcription repression Repression of transcription initiation

or elongation
[19,33] Programmable sgRNA directs dCas9 to

specific sequences for 103-fold
repression

dCas9:RNAPω transcription activation Recruitment of RNAP ω subunit to
promoter enhances transcription
initiation

[33] Largest impact observed with weak
promoters

RNA degradation
Csy4 cleavage Csy4 endoRNase degrades target

mRNA
[16] Requires the Csy4 target sequence to be

encoded within the open reading frame
Self-cleaving aptazyme Ligand-responsive ribozyme

encoded at the 3′ end of mRNA
[105] Modular design can incorporate different

aptamers

Control of protein levels
RBSs Control of translation initiation rate [ 1 1 0 –

112,116,117]
In silico modelling has good predictive
power

Orthogonal ribosomes Modified 16S rRNA initiates
translation only from cognate
orthogonal mRNAs

[118,119] Three additional orthogonal ribosomes
are available

Riboswitches mRNA secondary structure
occludes the RBS in a
ligand-dependent manner

[121–123] A limited number of ligands can be sensed;
temperature sensing is also possible

4 Review: Microbial Gene Circuit Engineering
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Table 1 (continued)

Tool family Action References Notes

taRNAs
sRNAs AntisenseRNA binds mRNA to block

RBS and promote degradation
[124–126] Conceptually simple to design, can

target native mRNAs
IS10 repression taRNA binds to cis-region of mRNA

to block RBS
[18] Many sets containing two to seven

orthogonal pairs exist; requires
cis-element upstream of open reading
frame

Toehold switches Trigger RNA sequesters a branch of
a translation inhibition hairpin in the
mRNA

[20] Dynamic range of up to 600-fold
activation; very few constraints trigger/
switch binding sequence

Protein degradation
(Inducible) ssrA-tagged degradation SsrA tags target protein for

degradation by ClpXP machinery
[132,134,135] SspB chaperone activity can be induced

to tune degradation rate
M. florum Lon degradation M. florum Lon protease is

orthogonal to E. coli; modified tags
can be recognised by both ClpXP
and Lon

[136] Various steady-state and inducible
degradation rates available

Beyond transcription and translational control
Protein splicing Split intein used to form a peptide

bond between two proteins
[144] Two- and three-way splicing is possible

Protein cleaving Can be used to release a
sequestered factor

[148] Example uses the tobacco etch virus
protease

Protein scaffolds Protein binding domains used to
immobilise and organise enzymes

[150,24,154] Stoichiometry and relative position on
the scaffold can be controlled

RNA scaffolds CRISPR guide RNAs or
multi-dimensional RNA structures
as scaffolds for protein binding

[101,155] CRISPR guide RNAs can recruit
proteins to DNA; multi-dimensional RNA
scaffolds spatially organise metabolic
pathways

Inducible association of proteins Target proteins are fused to
signal-responsive interacting domains

[134,156–158] Interacting domains that respond to
small molecules or light are available

DNA modification for memory
Recombinases Recombinases flip a section of DNA [162–164] Memory elements can be nested or

concatenated; excisionases can be
employed to reverse DNA flipping

Retron-encoded analogue memory ssDNA produced in response to a
signal is incorporated into the
genome at a replication fork

[25] DNA changes can be targeted to any
unique sequence in the genome;
recombination frequency is proportional
to ssDNA expression level

5Review: Microbial Gene Circuit Engineering
ions are widely employed, though future complex
gene circuits will require a larger number of inducible
transcription regulators that are orthogonal to each
other and the cell's metabolism (i.e., low toxicity, low
cross-talk with endogenous regulators, unrespon-
sive to endogenous metabolites). Whilst some
existing protein regulators have been adapted to
work in new contexts, for example, by rational
modification of the DNA binding specificity [65] or
constructing chimeric proteins through the fusion of
different sensing and DNA binding domains [66], the
variation in natural mechanisms of inducer binding
and conformational changemakes scalable, modular,
and predictive designof new regulator proteins difficult
(RNA sensors of small molecules will be discussed
later). For example, computational redesign of the
QacR binding pocket was recently used to expedite
an in vitro screen of new transcriptional regulators
responsive to vanillin, but the best variants had a low
dynamic range (ON:OFF ratio less than 10) [67].
Please cite this article as: R. W. Bradley, et al., Tools and Principles f
dx.doi.org/10.1016/j.jmb.2015.10.004
In the absence of a characterised sensing system for
ametabolite of interest, it may be possible to find native
promoters that respond to the molecule via global
transcript profiling. Dahl et al. pioneered this approach,
using microarrays to identify promoters that are
differentially activated in response to the toxic interme-
diate farnesyl pyrophosphate in the isoprenoid biosyn-
thesis pathway [68].

Small-molecule control: Riboswitches

Small-molecule control over transcription can also be
achieved using riboswitches. These structures in the 5′
UTR of an mRNA contain a regulatory domain that
undergoes restructuring upon ligand binding to an
adjacent aptamer domain. The resulting structural
change may either repress or activate transcription
[27,69]. Cis-elements that control the formation of a
transcription terminator hairpin have been demonstrat-
ed in E. coli that are responsive to, for example,
or Microbial Gene Circuit Engineering, J. Mol. Biol. (2015), http://
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theophylline [70], guanine [71], andS-adenosylmethio-
nine [72], albeit with fold changes of less than two
orders of magnitude. Riboswitch engineering has
produced aptamers that sense unnatural compounds
that are orthogonal to the cell's metabolism [73,74],
though the variety of ligands sensed by riboswitches is
limited in general [69]. In vitro screening and selection
methods for aptamerswith novel binding properties are
Fig. 1 (legend o

Please cite this article as: R. W. Bradley, et al., Tools and Principles f
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well established [75], but further development of
complementary experimental [76] and rational design
[71,72] strategies for transferring these properties into
effective in vivo riboswitches is required [77].
Liu et al. demonstrated a scalable design for

small-molecule control of transcription, using unnat-
ural amino acid (UAA) concentration to either
positively or negatively regulate the transcription of
n next page)

or Microbial Gene Circuit Engineering, J. Mol. Biol. (2015), http://
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downstream genes [78]. Both activating and repres-
sing control regions feature a leader peptide gene
containing UAA codons; if the corresponding UAA-
charged tRNA is absent, the ribosome will stall. The
positively regulated design, based on the tna
operon, then features a Rho transcription termination
sequence ahead of then the regulated genes; if the
leader peptide is translated without ribosome stalling
(UAAs available), the Rho binding site is blocked,
and translation of downstream genes occurs. The
negatively regulated design, based on the trp operon
attenuator, replaces the Rho binding site with a
structured RNA region that forms a transcription
termination hairpin if the leader peptide is translated
without stalling. These designs are scalable, being
programmed by the type of UAA incorporated in the
leader peptide, and possess 10- to 100-fold dynamic
ranges in their output.
Optogenetics

Light is an orthogonal signalling medium for many
bacteria and is of particular interest for industrial
applications where the addition of a chemical inducer
is expensive or would contaminate the product.
Red-light-sensing and green-light-sensing transcrip-
tional activating systems that can work in tandem
have been engineered, using the chimeric
Cph1-EnvZ/OmpR (red) [79,80] and the unmodified
CcaS/R (green) [81] two-component histidine kinase
signalling pathways. Additionally, the blue-light-
responsive YF1/FixJ two-component system has
been engineered into light-activating and light-
repressing configurations [82].

RNA control of transcription

Amajor strengthofRNA-basedparts for gene circuits
is that they are amenable to in silico design: thermo-
dynamic models are able to make good predictions of
the secondary structure of, and interactions between,
small trans-acting RNAs (taRNAs) and their cognate
cis-elements [27,83,84]. The simple composition of
RNA aids design but is also a relative weakness:
Fig. 1. Tools for engineering transcriptional control. (a) Key reg
promoter via σ70 interactions with the −10 and −35 regions; addit
domains and the UP element. Binding regions at −12 and −24 fo
repression requires disruption of transcription initiation by pre
CRISPR-dCas9 can block transcription initiation or elongation—re
blocking RNAP progressing at the start of the transcript (grey line,
Control of transcription by taRNAs: (b-i) the native pT181 cis-elem
taRNA induces the formation of a transcription terminator hairp
aptamer—ligand binding releases internal pseudoknot interactions
transcription [87]; (b-iii) direct-acting STARs sequester one branch
CRISPR-dCas9 transcription repression. (c-i) The 20 nucleotides a
the first eight nucleotidesarenot essential for specificity (bluebar, d
is optimal—repression is negligible using 11 nucleotides or fewer
binding by the sgRNA-dCas9 complex requires initial recognition

Please cite this article as: R. W. Bradley, et al., Tools and Principles f
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proteins aremore chemically diverse and consequently
may be able to interact with a more diverse set of
ligands andwith a greater span of binding affinities [27].
Protein-based regulators generally exhibit greater
dynamic ranges and stronger levels of repression and
have longer half-lives [27]. However, the larger
sequence and chemical diversity of proteins makes
their interactions much more difficult to model com-
pared to RNA; consequently, RNA-based part families
are likely to be preferred for the construction of complex
large gene circuits in the near future [27,84].
With regard to transcriptional control, a number of

variants of the pT181 transcription attenuation system
have been developed for gene circuit control in E. coli:
the native pT181mechanism uses a structured 5′UTR
that forms a hairpin, normally allowing transcription
elongation; a “kissing loop” interaction of a hairpin on
the taRNA with the 5′ UTR hairpin promotes the
formation of a downstream transcription terminator
stem–loop structure [85] (Fig. 1b-i). Lucks and co-
workers altered the terminator stem of the native
system to increase the dynamic range of repression
to five-fold and created three orthogonal hairpin/taRNA
pairs by mutating the loop of the control hairpin [85].
Another 11 pairs were created in a later study using
chimeras with hairpin elements from taRNA-controlled
translational regulators [86]. Multiple regulators can be
placed upstreamof a coding region to createNOR logic
or improve repression [85]. A further adaptation of the
system introduced a small-molecule-sensing aptamer
to the taRNA that interferes with the interacting hairpin
in the ligand-unbound state; binding of the ligand frees
the taRNA hairpin to interact with its cognate loop on
the 5′ UTR hairpin region and inhibit translation [87]
(Fig. 1b-ii). The design is modular and able to integrate
different aptamers as long as the structure is known
[87].
Recent work on the pT181 system has adapted it

to enable taRNA activation of transcription, by
changing the default secondary conformation to a
stable transcription terminator. Small transcription
activating RNAs (STARs) have been engineered to
disrupt the terminator, either indirectly via interaction
with an upstream hairpin structure or through direct
ions for transcriptional control at a promoter. RNAP binds the
ional interactions take place between the α subunit C-terminal
r the alternative σ54 factor are indicated below. Effective TetR
venting RNAP binding and open complex formation [21].
pression is most effective when preventing σ factor binding or
darker colour indicates more effective repression) [19,33]. (b)
ent allows transcription by default; the presence of a cognate
in; (b-ii) the pT181 taRNA can be engineered to contain an
, allowing taRNA binding to the cis-element and repression of
of a terminator hairpin, activating transcription. (c) Features of
t the 5′ end of the sgRNA (red) is responsible for DNAbinding;
arker indicatesmore tolerant); a guide lengthof 20nucleotides
(green bar, darker is more tolerant). (c-ii) DNA target (orange)
of the adjacent PAM sequence (purple) in the DNA.
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sequestration of one branch of the terminator stem
[22] (Fig. 1b-iii). This positive regulation configura-
tion of the pT181 system exhibits a higher dynamic
range (94-fold) compared to the repressor and is
equally amenable to concatenation for the creation
of layered logic gates.
taRNAs have also been incorporated into a

modular regulator based on the previously de-
scribed regulation of transcription via control over
tna leader peptide translation [88]. The leader
peptide functions as a modular “adapter”, allowing
a number of both negative and positive translation
regulation mechanisms to be used to control
transcription, including the IS10 RNA-IN/RNA-OUT
motif [18] that allows for nearly three orders of
magnitude of transcriptional repression [88]. Multi-
ple tna adapter units can be combined to control a
single transcriptional output, though Csy4 process-
ing is required to allow proper folding of RNA-IN
cis-elements.

CRISPR-dCas9 control of transcription
Clustered regularly interspaced short palindromic
repeat (CRISPR) systems recognise, remember, and
destroy foreign nucleic acids, acting as immune
systems in their hosts to defend against invading
phage and plasmids [27,55,89]. Natural CRISPR
systems comprise a set of DNA-encoded target
sequences—the CRISPR array—which are tran-
scribed and processed into guide RNAs. These
RNAs target CRISPR-associated proteins to comple-
mentary sequences that are cleaved, allowing the
specificity of CRISPR-associated protein binding to be
programmed by modifying the sequence of the guide
RNA. It is this function that makes adapted CRISPR
systems such attractive tools for genetic engineering.
The Cas9 protein from the Streptococcus pyogenes
type II CRISPR system has been widely applied as a
minimal functional unit for the recognition and cleavage
of target double-strandedDNA for genomeengineering
[90–94] and in its mutant endonuclease-inactivated
form dCas9 as a DNA binding protein [19,33]. Cas9
requires both a guide RNA and a tracrRNA (trans-acti-
vatingCRISPRRNA) to function; theguideRNAcanbe
expressed either as a crRNA (CRISPR RNA) as it is
from the CRISPR array or as a fusion to the tracrRNA
known as an sgRNA (small guide RNA) [95] (Fig. 1c-i).
Target sequences must be directly downstream of a
three-nucleotide “NGG” protospacer-adjacent motif
(PAM) for recognition and cleavage to occur [96]
(Fig. 1c-ii). Two recent efforts have produced split
versions of Cas9 to achieve increased functionality:
reformation of the functional enzyme can be mediated
by small-molecule binding for rapid induction [97] or by
using the sgRNA as a scaffold [98]. Here we will
consider the use of dCas9 in bacterial transcriptional
regulation.
Please cite this article as: R. W. Bradley, et al., Tools and Principles f
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CRISPR-based repression of transcription uses
dCas9 to blockRNAPaccess to a promoter or prevent
transcription elongation—a property that most other
repression mechanisms do not have, allowing tran-
scription of downstream genes in a polycistronic unit
to be selectively knocked down. The highest repres-
sion is achieved by targeting dCas9 to the transcrip-
tion initiation region (especially the −35 box [19,33]) or
the antisense strand close to the start of a target gene
if preventing transcription elongation [19]. Repression
is highly effective, up to 1000-fold when targeting a
gene with two sgRNAs [19], and tuning of repression
is also possible though the introduction ofmismatches
between the guide and target sequences or truncation
of the guide [19,33]. The 12 bases of the guide RNA
adjacent to the PAM are the minimal requirement for
specificity [19], making it unlikely that off-target
binding will occur in bacterial genomes [27]. Expres-
sion of multiple guide RNAs enables parallel control
over multiple genes [19,99,100]. Guide RNAs can be
expressed as a series of sgRNA transcriptional units:
Nielsen and Voigt used Golden Gate assembly to
combine multiple units for the construction of a gene
circuit with three layers of sgRNA control [100].
Alternatively, Cress et al. employed type IIS restriction
enzyme assembly for the construction of a synthetic
array of crRNAs transcribed from one promoter, which
was used to simultaneously repress three endoge-
nous E. coli transcripts [99].
Transcription activation is also possible by fusing

dCas9 to an activator protein. The only example so far
in E. coli uses a fusion to the RNAP ω subunit, with
dCas9 targeted approximately 90 base pairs up-
stream of the transcription start site [33]. Activation is
modest (23-fold for a weak promoter, lower effects for
stronger promoters) and requires a ΔrpoZ strain but
might be improved through fusions with (multiple)
alternative factors. Rather than using a direct fusion to
dCas9, the guide RNA can be also used as a scaffold
for hairpin binding proteins, which are themselves
fused to an effector protein, enabling recruitment of
different effectors to different sites [101].

RNA degradation

Targeted cleavage of mRNA molecules was dem-
onstrated by Qi et al. who used and inserted an
in-frame cognate sequence for the Pseudomonas
aeruginosa CRISPR endoRNase Csy4 immediately
downstream of the start codon, resulting in better than
10-fold repression of protein expression [16]. This
method obviously is constrainedbyhaving to integrate
the Csy4 target sequence into an open reading frame,
but other CRISPR-based technologies may enable
specific, programmable degradation of mRNA in the
future: Mitchell and co-workers showed that, in vitro,
the type II Cas9 endonuclease can be targeted to and
cleave single-stranded RNAs by supplying the PAM
motif in trans on a single-stranded DNA (ssDNA)
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oligonucleotide [102]. As pointed out by Nelles et al., it
has not been shown that this technique would work in
vivo or that cleavage of DNA would not also occur
[103]. The targeted RNA binding function of nucle-
ase-inactivated Cas9 (RCas9) could still be very
useful, and Nelles et al. suggest other potential
applications for RCas9, including targeting proteins
to an RNA that then acts as a scaffold, combining
sensing with actuation [103]. Other CRISPR systems
also show potential as programmable bacterial RNAi
tools, for example, the Streptococcus thermophilus
type III-A Csm complex, which was recently shown to
preferentially cleave single-stranded RNA in vitro and
repressed replication of the MS2 RNA phage when
the components were expressed in E. coli [104].
Trans-acting elements are not necessarily required:
Win and Smolke introduced a ligand-regulated self-
cleaving ribozyme (aptazyme) into the 3′ end of an
mRNA to control gene expression, using a modular
design that can use different aptamer domains [105];
ligand binding could either disrupt or reinforce the
ribozyme fold, modulating the self-cleaving activity.
RNA stability can be improved by protecting long

single-stranded regions fromRNase E degradation by
introducing hairpin secondary structures [106,107];
RNA half-life in E. coli correlates somewhat with the
folding energy of 5′ hairpins, indicating that this
protection against RNase E is an important, but not
exclusive, factor for RNA stability [108]. Stronger
ribosome binding site (RBS) sequences also impart a
small improvement inmRNAstability, presumably due
to the bound ribosome blocking RNase access [40].
Tools for Engineering Protein Levels

In contrast to the multiple routes for regulating
transcription, peptide synthesis rates are mostly
accessible to regulation by RNA—both the mRNA
template itself and taRNAs. Translation can begin at
internal sites in the mRNA, allowing control over the
initiation rates of individual reading frames within a
polycistronic transcript.

Translation initiation control with designer RBSs

Translation initiation requires recognition of an RBS
by the 30S ribosomal subunit, through base-pairing
between the RBS and an anti-Shine–Dalgarno se-
quence encoded in the 16S ribosomal RNA (rRNA).
The strength of the mRNA-rRNA interaction, as well as
accessibility of the region to the ribosome, determines
the likelihood of the translation complex forming and is
an important control point for gene expression [109]
(Fig. 2a). Thermodynamic models of translation initia-
tion have been developed by a number of groups,
which all show good predictive power [110–112].
These models have been implemented in computa-
tional tools that enable efficient sampling of a large
Please cite this article as: R. W. Bradley, et al., Tools and Principles f
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range of translation initiation rates, allowing optimisa-
tion of protein expression levels in a synthetic biological
system [107,113]. Farasat et al. demonstrated
effective sampling of expression levels in different
bacteria and also combined kinetic modelling of a
biosynthetic pathway (which includes enzyme ex-
pression parameters) with translation initiation rate
prediction to find variants with improved productivity
[107]. A complementary approach using directed
evolution rather than pathwaymodellingwas employed
in another study, combiningRBS library designwith the
multiplex automated genome engineering (MAGE)
recombineering method [114] to optimise a five-gene
pathway, using 16 RBS variants for each gene that
sampled a range of translation initiation rates spanning
three orders of magnitude [115]. These translation
initiation rate prediction tools are available online, for
example, the RBS Calculator [116], which has been
recently updated to incorporate parameters developed
by Borujeni et al. [117].

Orthogonal ribosomes

Ribosome recognition of the RBS in an mRNA
occurs through base-pairing between the RBS and an
anti-Shine–Dalgarno sequence encoded in the 16S
rRNA, a fact that has been exploited to generate three
additional orthogonal ribosomes with modified 16S
rRNA that initiate translation only from mRNAs with
cognate orthogonal RBSs [118]. Transcription of both
the orthogonal rRNA and mRNA is required for gene
expression, creatingAND logic for greater control over
the output [119]; the orthogonal rRNA could be
considered a trans-activating RNA in this particular
context. A practical consequence of the use of
orthogonal rRNAs is that the coding sequence of
target mRNAsmay need to be reconfigured to prevent
pausing at Shine–Dalgarno-like sequences [120].

Riboswitches

Riboswitch control over translation occurs through
ligand-dependent restructuring of the 5′ UTR of an
mRNA to modulate access of the ribosome to the
RBS [27,69]. As was discussed for transcriptional
riboswitches, the range of ligands and the fold
response are limited, but translational riboswitches
have been employed successfully in synthetic micro-
bial gene circuits, for example, to control chemotaxis
[121]. Sharma et al. demonstrated that translation-
controlling riboswitches can be combined to allow
AND and NAND logic, though the composition
required screening of variants (i.e., was not modular)
[122]. Temperature-sensitive riboregulators of tran-
scription (RNA thermometers) also act through control
of RBS availability; an RBS occluded within second-
ary structures formed at low temperature becomes
accessible at higher temperatures as the RNA melts
[123].
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Fig. 2. Tools for engineering translational control. (a) Key regions for translational control on an mRNA: the ribosome
interacts with the translation initiation region via interactions between the 16S rRNA and the RBS; sRNA repression is most
effective when targeting this region, and the IS10 and toehold switch cis-elements function by sequestering the RBS and
start of the open reading frame (ORF) [18,20]. The structure of the 5′ and 3′ ends alters accessibility to RNases. (b)
IS10-based translational repression: binding of the taRNA (RNA-OUT) and resultant occlusion of the RBS is initiated via
interactions between its specificity loop (green) and the cognate sequence in the RNA-IN cis-element. (c) The toehold
switch cis-element sequesters the RBS (red) and ORF start (blue) in a hairpin. Binding of the trigger taRNA initiates using
the toehold region (purple) and displaces the hairpin to also bind the 5′ branch (orange), freeing the RBS.
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taRNA control of translation

Trans-repressing RNA control

The mechanism of translation inhibition by small
RNAs (sRNAs) is conceptually simple, making this
method easy to implement: the sRNA contains a
complementary sequence to the target mRNA,
binding at or just downstream of the RBS to block the
ribosome (Fig. 2a), with sRNA-mRNA binding energy
correlated to repression strength [124]. In addition to
the targeting region, a 3′ scaffold recruits the Hfq
chaperone protein that stabilises the sRNA-mRNA
interaction and promotes their degradation by RNase
E [125]. Synthetic sRNAs that use the scaffold portion
from an endogenous E. coli sRNA [124,126] with a
designed5′antisense regionmaybedesigned:Naand
colleagues used the MicC scaffold to make over 120
sRNAs, allowing them to repress multiple target
metabolic genes and screen for increased productivity
of a desirable compound [124]. Endogenous sRNAs
target a range of locations on target mRNAs (i.e., not
Please cite this article as: R. W. Bradley, et al., Tools and Principles f
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always the RBS) using a variable number of bases
[126]; thus, the strategy employed by Na et al. of
screening multiple sites on and around the translation
initiation region of the target mRNA for effective
repression may be advisable [124].
The native IS10 translation control system is

composed of a taRNA (RNA-OUT) and a cognate
RNA-IN sequence surrounding the RBS and start
codon of the controlled mRNA. The free antisense
RNA-OUT molecule contains an interacting hairpin,
the loop of which initiates binding to the RNA-IN
sequence to block ribosome access to the translation
initiation region [18] (Fig. 2b). The loop region defines
the specificity of the interaction between RNA-IN/
RNA-OUT pairs, and Mutalik et al. manipulated the
sequence of the loop in a streamlined version of the
native RNA-OUT and screened a group of 23 variants
for repression efficacy and orthogonality, then vali-
dating an orthogonal set of five in vivo. Data from the
experimental groupwere used to predict the existence
of thousands of sets of pairs (sets containing two to
sevenmembers) that exhibit less than 20%cross-talk.
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The IS10 system has also been adapted for small--
molecule sensing by adding an aptamer to the
RNA-OUT sequence [87].

Trans-activating RNA control

Green et al. recently described the development of
toehold switches, translation-blocking hairpins that
sequester the RBS and start codon of a gene, with
translation activation occurring through binding of a
short (30–40 bases) trigger RNA that sequesters the
upstream branch of the hairpin (similar to the mecha-
nism of direct STAR transcription activation) [20]
(Fig. 2c). Binding initially occurs to a single-stranded
region 5′ of the hairpin (the “toehold”), and the hairpin is
designed so that only the RBS and start codon need
remain constant between different switches: the start
codon is part of the 3′ branch of the hairpin, meaning a
seven-amino-acid linker is added to the protein. Whilst
alternative efforts to develop trans-activating RNA
systems do not alter the coding of the regulated gene
[127–129], the toehold switch design places very few
constraints on the sequence when constructing
trigger-switch pairs, potentially allowing the creation
of a huge number of orthogonal pairs. The most
effective toehold switches have a dynamic range of
over 600-fold, an order of magnitude better than most
other taRNA control mechanisms. Green et al.
showed that multiplexed control over the translation
of four fluorescent proteins transcribed as a single
polycistronic mRNA is possible with minimal polar
effects, demonstrating the potential for sophisticated
control over synthetic gene networks. Endogenous
genes can also be placed under the control of trigger
RNAsbyaltering the chromosomal copyof the gene to
introduce the regulatory hairpin, but this intervention
could disrupt native regulation (of transcription as well
as translation) [130]. Another application is to sense
RNAs—the RNA being sensed is used as the
trigger—which has been shown to work in cell-free,
paper-based devices for sensing Ebola mRNA [131].

Protein degradation rate tuning

The concentration of a protein and dynamics of its
expression may also be controlled via manipulation of
its degradation rate. SsrA degradation tags of varying
strength [132] are available, though thesemake use of
host ClpXP machinery—a fact utilised by Prindle et al.
to temporally coordinate protein expression with delay
times of less than a minute [133]. Inducible degrada-
tion of proteins is also possible: SspB-dependent
chaperoning of DAS-ssrA-tagged proteins for ClpXP
degradation was made inducible by splitting SspB and
fusing each half to FRB or FKBP12, two proteins that
are brought together through binding rapamycin [134];
replacement of the native sspB promoter with an
anhydrotetracycline-inducible promoter has also been
demonstrated [135]. More recently, a hybrid system
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that can degrade proteins using either the nativeE. coli
ClpXP or an inducible orthogonal Lon protease from
Mesoplasma florum has been developed [136]. The
27-amino-acid M. florum ssrA tag was modified at
the C-terminus to create a set of variants that are
recognised by the endogenous E. coli degradation
machinery to give a range of steady-state levels of a
target proteinwhilst remaining an effective signal forM.
florum Lon degradation. The efficacy of M. florum Lon
degradation could also bemodulated through variation
of residues 13–15, creating a library of tags with a
range of steady-state and inducible degradation rates.
Beyond Transcriptional and Translational
Control

In addition to the regulation of RNA and protein
synthesis, biological signal modulation also occurs
through the interactions between and within these
molecule classes (e.g., binding [32,45], chemical
modification [137]), providing additional opportunities
for control. Compared to transcription and translation,
information transfer between interacting molecules
can be extremely rapid and resource efficient [138].

Modulation of transfer functions

The HrpRSV system contains examples of protein/
protein interactions that both amplify and diminish a
signal: HrpR and HrpS form a heterohexamer that
activates σ54-dependent transcription from the PhrpL
promoter (allowing AND logic); inhibition of HrpS by
HrpV negatively modulates the output from PhrpL,
reducing the gain and dynamic range of the output
[45,139] (Fig. 3a). The in trans inhibition by HrpV
illustrates an important general strategy for lowering
the OFF level of a signal and increasing the sensitivity
of a response—a key property in biological circuits
that require digital characteristics or bistability
[11,26,137,140]. Briefly, in trans inhibition or seques-
tration may be designed into a gene circuit, for
example, by introducing additional decoy binding
sites for transcription factors [141], expressing specific
sequestering proteins [32,45] or antisense RNAs
[142]. Positive cooperativity also increases response
sensitivity, occurring when ligand binding increases
the binding affinity for subsequent ligands [143].

Splicing and cleaving

Splicing and cleavage reactions can be used for
rapid, stable switching of function. Split inteins have
been employed in a number of contexts for protein
splicing, usually to reconstitute an active enzyme from
two (or more [144]) inactive components [23,97,98]
(Fig. 3b-i). RNA splicing also occurs in bacteria [145–
147], though this function has not been adapted for
use in synthetic gene circuits in vivo to the best of our
or Microbial Gene Circuit Engineering, J. Mol. Biol. (2015), http://
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Fig. 3. Beyond transcriptional and translational control. (a) The HrpRS proteins combine to activate transcription from
the PhrpL σ54 promoter, enabling AND logic functions (upper chart). Inhibition of HrpS by HrpV modulates the transfer
function, allowing the transcriptional amplification gain from PhrpL to be tuned in an analogue fashion (lower chart) [45].
(b) Control of protein/protein interactions: (b-i) split T7 RNAP (pink) can be stably reconstituted using split inteins (green);
excision of the intein results in concomitant splicing of the N- and C-terminal T7 RNAP fragments [23]. (b-ii) The interaction
between proteins A (green) and B (blue) can be mediated by reversible light-dependent binding between PhyB and PIF3
[158]. (c) Bacterial DNA can be altered in vivo in a targeted fashion using Beta recombinase to facilitate integration of
mutation-containing ssDNAs (red) to a homologous sequence within a replication fork (yellow) [25]. The signal is recorded
across the population, with the number of mutants proportional to signal intensity or duration.
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knowledge. Cleavage can be exploited for inactivation
of a component, for example, RNA aptazyme-
mediated self-cleaving [105], but it has also been
used to activate signalling by releasing a sequestered
transcription factor [148].

Scaffolds

Analternative to covalent fusing of components is to
stabilise their interactions using a scaffold, enabling
modular, predictable, and scalable organisation of
substrate components. Protein scaffolds have been
adapted to re-wire yeast signalling pathways [149]
and built de novo to sense and control protein
concentration [150]. There is much potential in using
scaffolds (and micro-compartments [151,152]) to
coordinate metabolic pathway enzymes: enzymes
and intermediates are concentrated to minimise
diffusion times of unstable intermediates [153], and
the stoichiometry and position of components on the
scaffold can be easily manipulated [24,154]. RNA
scaffolds can be used in isolation, for example,
CRISPR guide RNAs that act as scaffolds for
transcriptional effectors [101], but they can also be
engineered to produce sophisticated higher-order
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structures [130]: Delebecque et al. made use of
two-dimensional RNA scaffolds to improve hydrogen
production in E. coli [155].

Inducible association

Small-molecule-induced association of proteins can
be engineered by fusing the target proteins to
interacting domains, for example, FRB and FKBP12
for rapamycin-dependent binding [134]. Photo-
modulation of protein/protein interactions is also
possible: the PhyB/PIF3 (phytochrome) and Cry2/
CIP1 (cryptochrome) pairs respectively exhibit red-
light-dependent and blue-light-dependent association
and have been fused to DNA binding and activation
proteins to enable photo-activation of transcription in
yeast [156–158] (Fig. 3b-ii); these systems could also
be exploited in bacteria, for example, to accelerate
split-intein-based reconstitution of transcription fac-
tors [156].

DNA modification for memory

Memory can bebuilt into gene circuits using network
motifs that generate robust bistability [159–161], but
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recent developments now allow direct editing of the
organism's native data storage medium, DNA.
Recombinases can be used to excise or flip a section
of DNA, depending on the orientation of flanking
recombination sites; incorporation of a control se-
quence such as a promoter or terminator gives a
read-out of the orientation of thememory element, and
memory elements can be concatenated or nested to
create different two-input logic gates [29,162]. Ge-
nome mining was recently applied to identify 11
orthogonal phage integrases, which were all used in
the creation of a memory array that can record 2048
(211) unique states, as well as for the assembly of
three-layer cascades [163]. This expansion in the size
of available permanent biological memory could be
directly beneficial to environmental sensing systems
[159] and should facilitate the construction of novel
synthetic bio-computation architectures [163]. Bonnet
et al. also incorporated an excisionase into their
system to allow the orientation of memory elements
to be re-set, creating re-writable memory [164].
Recombinase-basedmemory is limited by the small

number of orthogonal recombinases, but Farzadfard
and Lu have described scalable DNA-encoded
memory that is encoded in an analogue fashion
across a population of cells [25]. ssDNA is produced
via reverse transcription of a retron, which is itself
transcribed from an inducible promoter in response to
the input being recorded (e.g., presence of drug).
ssDNAs are designed to bemostly homologous to the
target locus but introduce a desired mutation, and
cells are engineered to express Beta recombinase to
catalyse incorporation of the ssDNA at a replication
fork (Fig. 3c). The introduced mutation can be
designed to cause loss or gain of function in a gene,
allowing the population to be screened andmemory to
be read. The number of recombination events is
proportional to the number of ssDNAs produced, that
is, the concentration of inducer, and memory can be
re-written by expressing a different ssDNA to target
the same locus.

Principles for Robust and Scalable
Gene Circuit Design—Modularity
and Orthogonality

Despite having a large and growing resource of
components, an inability to accurately predict how they
will functionwhen combinedmeans synthetic biologists
have not succeeded in producing corresponding
increases in gene circuit size [42]. Modularity is the
quality of consistent function in a variety of contexts and
is a core requirement for predictive design of complex
gene circuits [8,15,165]. The complementary property
of orthogonality implies that parts and modules will not
display undesirable cross-talk with other elements in
the engineered biological systems, as well as with the
host genetic background. Orthogonal parts and mod-
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ules are important for the compatibility of parts within,
and scalable design of, large gene circuits comprising
many components [44]. Ideally, synthetic biologists
would like the components they use to be “plug and
play”, functioning reproducibly in different circuit de-
signs; in practice, the complexity of in vivo biological
systems makes this very difficult to achieve. Unlike
electronic digital circuits, the components in a
biological circuit are not connected by insulated
wires, and the flow of biological information has to
depend on specific chemical interactions to avoid
cross-talk. The interactions of gene circuit compo-
nents with each other and with the host organism alter
their function through unexpected contextual effects
[14,15,166], including retroactivity—especially in
larger circuits [137,165,167,168]. Here we introduce
principles for building scalable gene circuits,
discussing how context effects arise and how they
can be mitigated, either through extensive character-
isation of the gene circuit or through the insulation of
components.

Physical composition

Undesirable contextual effects can occur through
unanticipated interactions between the components
of a gene circuit and between the gene circuit and
the host environment [14,15].
Starting at the level of the physical assembly, parts

can be sensitive to sequence changes at their
boundaries [169–172]. From their analysis of 12,563
promoter/RBS combinations, Kosuri et al. found
that nearly 17% of the variation in protein levels
could not be predicted from the promoter or RBS
strength [40]. A conceptual solution to the problems
arising from physical composition is to expand the
definition of a part to include the regions that influence
its function. Informedby relatedwork that identified the
promoter:UTR and UTR:gene of interest (GOI)
junctions as important sources of variability in gene
expression [44,166] (Fig. 4a-i), Mutalik and co-
workers created an expression operating unit (EOU)
[17]. The EOU comprises a standardised promoter
sequence and 5′ UTR sequence adjacent to the
transcription start site to remove context effects on
transcription initiation, whilst a leader peptide that is
translationally coupled to the GOI removes secondary
structure around the GOI's RBS (Fig. 4a-ii). Expres-
sion can be tuned by varying the −10 and −35 regions
of the promoter and the RBS for the GOI (encoded
within the leader peptide sequence) and by introduc-
ing rare codons into the leader peptide. Use of the
EOU imparts a high level of consistency to relative
expression levels of aGOIwhen varying promoter and
RBS sequences, enabling highly predictive design
and tuning of protein levels in a gene circuit. Further
improvements might include standardisation of the
length of the transcription control element to include
the UP element [8,38].
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Fig. 4. Tools for improving modularity of gene circuit building blocks. (a) Reducing sequence context effects: (a-i)
building new functional units thorough the combination of open reading frames and transcription and translation initiation
parts results in variation at the junctions that can alter part activity. (a-ii) EOU uses translational coupling between a leader
polypeptide and the GOI to reduce context effects. The sequence is fixed, except at the −10 and −35 regions of the
promoter and the GOI's RBS (located within the leader ORF), to allow tuning of transcription and translation initiation rates.
(b) Messenger RNA secondary structure can cause variation in protein expression levels from individual ORF in different
transcriptional contexts. Cleaving the mRNA into minimal RBS ORF units (e.g., using Csy4 [16]; cleavage sites encoded at
the black triangles) standardises ribosome access and RNA degradation rate.
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Another approach to improve modularity is to
insulate parts from their sequence contexts. At the
DNA level, this might include adding standardised
spacers between components [38] or preventing
transcriptional read-through using transcription ter-
minators. The high transcription rates of genes
driven by T7 promoters are often a source of toxicity
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for the cell, making effective termination especially
important in these cases [28,49]. There is the added
benefit of producing defined mRNAs that possess a
uniform 3′ structure and have a more consistent
range of stabilities. Chen et al. created a useful
resource through the characterisation of 582 termi-
nators of varying strength, including a subset of 39
or Microbial Gene Circuit Engineering, J. Mol. Biol. (2015), http://
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that have better than 98% termination efficiency and
have enough sequence variation to prevent homol-
ogous recombination [173]. Improvements in the
modelling of terminators will aid predictive design of
effective, compatible sequences [174].
Post-transcriptional processing can also be

employed to insulate RNA-based parts from their
transcriptional context. It is often desirable to arrange
genes in polycistronic units to reduce the size of
constructs and avoid re-using promoter sequences.
Qi et al. showed not only how moving monocistronic
protein coding genes into the context of an operon
caused variation (i.e., variably decreased) in the
production of the encoded proteins but also that this
effect could be countered using post-transcriptional
modification of the mRNA to create monocistronic
units [16]. Target sequences for the P. aeruginosa
Csy4 endoRNase were inserted to flank the RBS and
open reading frame, removing 5′ and 3′ UTRs,
resulting in consistent and often increased expression
levels of the proteins; access for the ribosome to the
RBS is standardised, and variable 3′ sequences that
influenceRNA stability are excised (Fig. 4b). Lou et al.
demonstrated a similar approach using a ribozyme
encoded in the transcript to cleave the 5′ UTR [30],
whilst 3′ RNase III sites decreased expression
variability in the study of Cambray et al. [174].
Transcript processing also allows more complex
sRNA regulation to be employed by insulating cis-re-
gulatory elements from interactions with each other so
that multiple regulatory elements can be designed into
one polycistronic transcript [88]—spacers are not
effective insulators of RNA cis-elements [85].

Functional composition

When parts are connected to form a circuit, failure
may occur because the output range of an upstream
component does not match the required input range
of the downstream one. Components that have been
characterised in isolation are functionally connected
in a gene circuit, and their interaction alters the
behaviour of the upstream component because of
increased load [165]. This effect has been termed
retroactivity and can be illustrated with the example
of a transcription factor that binds an operator site:
whilst the expression level of the transcription factor
may have been characterised when it is expressed
in isolation, the connection of downstream operator
sites reduces the levels of available protein due to
sequestration [167,175]. Recent work has demon-
strated that it is possible to mitigate retroactive
effects on signalling dynamics caused by increasing
downstream load through the use of an insulating
kinase/phosphorylase buffer module that has faster
kinetics than the transcription-based components
[137,168]. Otherwise, retroactivity must be corrected
for through characterisation of parts in their func-
tional context followed by tuning of the circuit [44].
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Undesirable cross-talk between components may
also occur. This effect can be mitigated by using
well-characterised part families that have been
shown to be orthogonal [18,21,32,45,50]. RNA-
based part families have the advantage that cross-
talk can be effectively screened for in silico using
thermodynamic models [20]. Orthogonality is a key
quality for the creation of scalable part families,
allowing larger circuits to be constructed and
creating a wider variety of alternative components
for use when tuning a circuit.

Host context

When a gene circuit is propagated within a host
organism, it competes against native host processes
for cellular resources and can interact directly with
host components; these effects can disrupt the
normal function of both the gene circuit and the host.
Gene circuits use host machinery for activities

including the replication of DNA, transcription and
translation, and protein and RNA degradation, and
they also draw energy and metabolites from host
pathways. Cellular resource availability varies be-
tween growth conditions and host strains [176,177].
Cardinale et al. identified ribosome availability and
growth rate as the key determinants for circuit
performance across a range of E. coli strains, but
they additionally found that specific deletions of host
genes can also have a large effect [176]. These
mutations indirectly effected circuit performance by
altering flux through carbon and nitrogen metabolic
pathways. The complementary approach of altering
the host genetic (and metabolic) context through the
enrichment of genes can also be beneficial for circuit
behaviour [177].
If the burden of the gene circuit on the host exceeds

homeostatic limits, the supply of resources needed for
normal cell functioning and that of the gene circuit will
be reduced, leading to altered behaviour or failure. For
example, over-production of mRNA in E. coli causes
competition for the translation machinery, leading to
queuing that alters the dynamics of protein expression
and upsets the correlation between mRNA and
protein levels [178]. This overburdening can also
cause a decrease in host protein production rates and
inhibition of growth [179], effects that feed back on
gene circuit function as altered expression levels and
dilution rates. Similar effects occur if expression of
heterologous proteins makes excessive use of rare
codons, which can limit the overall rate of protein
production due to a scarcity of charged tRNAs.Protein
expression can be improved through codon optimisa-
tion [180], though the most optimal codon assignment
may change depending on the state of the host [181].
Metabolic bottlenecks can also be purposefully
utilised to exert control over global translation;
Kobayashi [182] used a synthetic gfp gene (gene
encoding green fluorescent protein) rich in rare
or Microbial Gene Circuit Engineering, J. Mol. Biol. (2015), http://
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codons to suppress the global translation rate in
E. coli, human cell lines, and adenovirus. As
described previously for transcriptional control [78],
this rare codon strategy might be combined with the
use of UAAs: an open reading frame rich in re-pur-
posed codons could be used as a general suppressor
of genes that use those codons, or the total abundance
of a set of synthetic proteins could be controlled though
availability of the re-purposed tRNA. To prevent
competition with the host for the transcription and
translation machinery, the orthogonal alternatives of
phage RNAPs [50] (possibly deployed within the
previously described “resource allocator” framework
[52]) and orthogonal ribosomes [118,119] can be
employed. Further insulation from host processes
might be possible in the future, by making use of
reprogrammed or expanded genetic codes and UAAs
[183,184].
Direct cross-talk between gene circuit and the host

components can occur either through non-specific
promiscuous interactions or through specific interac-
tions that may cause interference [44] or toxicity [185].
Parts are often sourced from unrelated organisms in
order to help avoid specific interaction between the
circuit and host [44,136], and the genome can be
screened for potential binding sites or interacting
genes [19,21]—though these strategies cannot en-
sure that non-specific interactions do not occur.
Non-specific interactions include off-target binding
by protein/protein interaction domains [32] and
transcriptional read-through [28]. The impact of part
expression on the host growth rate and transcriptional
profile can be quantified to aid selection of compo-
nents that are orthogonal to the host [19,22,32].
Non-specific interactions are weaker than the desired
specific interaction; thus, often toxic effects are only
observed at high expression levels, leaving a reason-
able functional range to work with [32].

Beyond orthogonality and modularity: Managing
context effects for robustness and genetic stability

Robust gene circuits maintain their performance
over time and across changing conditions—they
respond adaptively to contextual perturbations such
as host growth rate or transcription factor availability,
and they often have a high signal-to-noise ratio, in
order to produce consistent behaviour [186,187].
Gene circuits that function adaptively and do not
over-burden their host are also more robust in terms
of evolutionary stability [188]: as described previ-
ously, the burden imposed on a host by a gene
circuit can reduce the growth rate, creating a
selection pressure against that circuit. Gene circuits
should be orthogonal to the host machinery wher-
ever possible in order to reduce interactions with
host processes and improve robustness. When
interaction is unavoidable, the gene circuit can be
designed to dynamically modulate its expression in
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response to increased strain on the host. An
example of this is the negative feedback control of
a biosynthetic pathway in response to elevated
levels of a toxic intermediate [68], which improves
the efficiency and productivity of the gene circuit, in
addition to limiting the burden on the host. More
complex regulatory networks might take inputs from
a range of native promoters as a “fingerprint” to
identify the metabolic state of the cell. In another
example, Kushwaha et al. use integrated positive-
and negative-feedback loops in their “portable
expression resource” to tune the expression of T7
RNAP and maintain it at a non-toxic level in diverse
Gram-positive and Gram-negative bacteria [189].
The study also shows the potential for engineering
cross-species DNA parts, enabling the construction
of genetic devices that function similarly across
diverse organisms. Ceroni et al. recently used a
“capacity monitor” to quantify the burden imparted by
different gene circuit designs [190], concluding that
the least burdened cells have more free ribosomes.
This suggests that RNA-based circuits that perform
analogue signal processing [11,191] are likely to be
robust. The potential for evolutionary corruption of a
gene circuit can also be reduced by not re-using
parts, thus helping prevent recombination and
choosing a host strain with reduced mutability [192].

Characterisation across contexts

It is clear that describing a part as modular also
requires an understanding of the contextual limits of
that modularity. Whilst insulation may preserve the
properties of a component over a wider range of
conditions, there will always be limits [193]. Beyond
the contexts discussed above, wider environmental
and ecosystem level effects—which can be con-
trolled in the laboratory but are relevant to real-world
applications—can interfere with circuit function and
should be quantified [14,15]. The characterisation of
parts under different conditions generates data that
can be used to design an appropriate gene circuit for
a given application [15].
As part libraries grow, the early calls for standar-

dised descriptions of biological components become
increasingly pertinent [194,195]. Common units such
as polymerases per second and relative expression
units facilitate comparison and exchange between
engineers [9,39], and Mutalik et al. have outlined
how the consistency of a component across contexts
might be captured as a part “quality” statistic [166].
Olson et al. have produced an optogenetic system to
drive gene expression for characterisation studies
[196], whose rapidly reversible and easily tuned
input allows interrogation of the dynamic response of
a component [193]. These advances will hopefully
improve our understanding of synthetic systems and
accelerate progress towards their predictable
design.
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Tools for Debugging and Tuning Gene
Circuits

Without fully predictive design capabilities, the
construction of a gene circuit inevitably requires
cycles of debugging and tuning: the causes of failure
must be identified so that the design can be adjusted
to make the circuit operate within desired parame-
ters, either by replacing a non-functional (e.g., toxic
or having an irreparable impedance mismatch)
component or by selecting a variant with a more
appropriate transfer function. Here we set out
methods for identifying and correcting defects in
gene circuits and fine-tuning their characteristics,
and we discuss DNA assembly strategies in the
context of the refinement process.
Debugging—Identifying causes of failure

The change in function that can result from
connecting a biological component into a gene
circuit might be easily observed or inferred, espe-
cially in small circuits where there are few elements
connecting a controllable input and measurable
output. In such cases, proceeding directly to tune
and reassess the circuit behaviour might be a more
efficient strategy than characterising the activity of
the parts in their new context. In a large circuit, the
number of connections between input and output
may obscure which components are performing
poorly. For this reason, a good general rule is to build
and test modules of a larger circuit before combining
them [44] in order to characterise parts in a context that
more closely resembles that of the complete system.
Stepwise addition of parts or modules to a circuit, with
characterisation of the resulting network and compar-
ison to previous iterations, enables quantification of the
effects of elaborating the module composition [193].
This characterisation strategy requires methods to

assess the levels of internal (i.e., non-output) gene
circuit components. Quantification of the relevant
biomolecules using, for example, RNAseq, produces
a snap-shot of the state of the circuit [40] and can also
be used to assess the impact of the circuit on the
expression of native genes [22]. In addition, synthetic
biology tools in the formof sensors and reporters have
been employed to investigate the state of gene circuit
components. The activity of a promoter can be easily
assessed by placing a reporter gene under its control;
protein amounts [197] or localisation [198] can be
monitored using a fusion to a reporter enzyme or
scaffold [150], if the topology of the target protein
permits. Similarly, RNA levels can be tracked in vivo
through co-transcription with the Spinach aptamer
[199], an RNA that activates fluorescence from its
cognate fluorophore upon binding (a range of ligands
with different spectral properties exist [199,200]).
Recent work from the Jaffrey laboratory showed
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how Spinach can be adapted in a modular fashion
into a combined sensor reporter of metabolites and
proteins by altering a hairpin to contain a second
aptamer [201]: binding of the target ligand allows the
fluorophore binding pocket to form. Toehold switches
can also be used to senseRNA levels [20], and in vitro
studies that combine strand displacement sensing of
RNAwith theSpinach reporter showpromiseas future
in vivo sensors that do not require an intermediate
translation step [202,203]. Reporters and sensors can
reveal the internal dynamics of gene circuits, but their
introduction will perturb the gene circuit due to
interactions with core components and the additional
load on the host [193].

Tuneable elements in gene circuits

Once the cause of failure in a gene circuit has
been identified, changes to the circuit must be made
to correct its behaviour. Contextual interference
might be resolved by changing the host chassis
[44,176] or growth conditions. A component may
have to be replaced due to toxic effects of its
expression or because the required transfer function
is outside of its dynamic range. If a component
belongs to a large orthogonal set—for example, the
TetR transcriptional regulators [21] or the IS10-based
translational regulators [18]—then it may be possible
to select an alternative that has a more appropriate
transfer function. Signal amplifiers also can be
introduced into the gene circuit to correct for imped-
ance mismatch by modulating the output of an
upstream component to harmonise the connection
[45,162,204]. Otherwise, the behaviour of a gene
circuit is typically corrected by making appropriate
adjustments to promoter or RBS strength, component
degradation rate, or copy number.
RBSs and promoters are well suited as tuning

knobs for a gene circuit [44,205], as their (relative)
activity can be computationally modelled reasonably
well [31,117]; thus, the selection of variants is not
limited to a characterised library. In addition, they are
short sequences that have a large influence on the
transfer function of a component, so a wide range of
activities can be sampled by using degenerate
oligonucleotides to construct or mutating these
parts [115]. For example, the T7 promoter sequence
is approximately 23 base pairs long, with distinct
subsequences responsible for initiation and speci-
ficity [169] that have made it amenable to mutagen-
esis and screening for variants with a range of
promoter strengths [206,207]. The interacting re-
gions of trans- and cis-acting RNAs share the same
qualities of predictable design and relative short
length and thus could be useful as tuning devices.
The number of copies of a DNA sequence can be

adjusted either through adding duplicates to the design
of the circuit (e.g., doubling up transcriptional attenua-
tors [85]) or by transferring the component to a plasmid
or Microbial Gene Circuit Engineering, J. Mol. Biol. (2015), http://
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with a different copy number [208]. Control over the
levels of DNA components can be used to tune transfer
functions: increasing the copy number of a gene will
increase the output mRNA level [208]; increasing the
number of operator sites can improve cooperativity
through regulator sequestration [209].
The degradation rate of components is an important

parameter in dynamic circuits, such as repressilators,
which require rapid degradation of regulators to remain
in the oscillating parameter space [210]. Tools for
controlling protein degradation rate were described
above [132,134,136]; tools for controlling RNA degra-
dation rates are less sophisticated, but we anticipate
that the growth of RNA-based gene circuits will
stimulate progress in this area.

Strategies for circuit refinement

When refining the behaviour of a gene circuit, the
extent to which synthetic biologists should rely on
rational design informed by characterisation, or
directed evolution, is a matter of debate [211]. In
practice, our current inability to accurately predict
component function means that efficient tuning
strategies will probably involve some screening of
variants [7,212]. Whilst modern combinatorial as-
sembly methods are powerful [40], there are limits to
the size of variant libraries that can be effectively
sampled in a screen [114]. Characterisation and
subsequent modelling [44,107,196,213] of circuits
can be used to inform the creation of variants, in
order to efficiently search a circuit's parameter space
for a desired behaviour [115]. Variation might also be
included in the first iteration of circuit building, if
potential points of failure can be identified in
advance. The recent construction of a half-adder
logic circuit in E. coli made use of both of these
strategies, using the results from tests of lower-level
circuits plus a priori knowledge of possible con-
text-dependency-based “bugs”, to create a focused
selection of variant designs during the next stage of
circuit development [214]. The requirement for
tuning and debugging gene circuits is an important
consideration when choosing an assembly strategy
for construction of a gene circuit [215].
Thewidely used BioBrick standard [9,216,217] (and

related variants [218,219]) uses type II restriction
enzymes for the stepwise idempotent construction of
units that have standard prefix and suffix linkers.
Whilst the introduction of variation to tuning elements
is easy during the initial assembly, once a part has
been subsumed into a larger module, it cannot be
exchanged; the workflow must return to the step
where that part was added if alterations need to be
made, or alternative (e.g., PCR-based) methods of
introducing variation must be used. This cumbersome
limitation is not found in the recently described
BASIC method, which uses type IIS restriction
enzymes to create overhangs for the attachment of
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linker fragments to defined parts, facilitating parallel
assembly of up to seven components [220]. A similar
method using isothermal assembly is available, but
the linkers are defined when parts are initially cloned,
again making it more difficult to change the order of
parts [221].
Bespoke, PCR-based assembly methods such as

SLIC [222], Gibson Assembly [223], CPEC [224], and
SLiCE [225] are alternatives to linker-based assem-
bly, and they avoid the formation of “scars” that can
influence circuit function [226]. A large range of
variation can easily be introduced to several positions
in parallel using degenerate oligonucleotides [107],
whereas modular assembly strategies might be
limited by the characterised parts available. Construc-
tion is not always sequence independent, however, as
secondary structure and repeated sequences in the
overlaps can prevent correct annealing. Additionally,
the requirement for generating parts by PCR (and
subsequent sequence validation) for every construct
may not be suitable for some workflows [220].
MAGE is a powerful tool for introducing post-

assembly variation into a gene circuit [114,227].
ssDNA oligonucleotides are incorporated into replicat-
ing DNA via λ-Red recombination. Repeated rounds of
MAGE with a mixture of oligonucleotides targeting
different loci and/or with degenerate sequences [115]
can be used to incrementally saturate the population
with mutations.
Concluding Remarks and Outlook

After nearly one and a half decades of accelerating
growth, synthetic biology has now advanced to a stage
where there are many tools and building blocks
available for gene circuit engineering. Significant
progress has also been made to improve the
modularity and orthogonality of these building blocks
to enable more predictable and robust design of large
complex gene networks. Using the state-of-the-art
tools and principles described here, the scale,
complexity, and resulting functionality of next-genera-
tion synthetic gene circuits will be significantly greater
than their current counterparts, thus enabling many
new applications and driving a revolution in industrial
biotechnology.
RNA-based parts are likely to majorly drive the next

increases in gene circuit sophistication due to their
ease of programmability and because the thermody-
namic models that facilitate their design can be
adapted to predict behaviour at the circuit scale
[228,229]. CRISPR-dCas9 and toehold switches are
prime examples, exhibiting large dynamic ranges and
specific interactions with targets. In addition, standar-
dised expression cassettes will aid predictive design
and tuning of protein components. The deployment of
these tools in the near future should provide useful
insights into their potential limitations (e.g., toxicity
or Microbial Gene Circuit Engineering, J. Mol. Biol. (2015), http://
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[26]) and best practice for their implementation.
Likewise, detailed characterisation of the larger
circuits that we anticipate being built in the coming
years will inform our understanding of context effects
and retroactivity, enabling engineers to hone design
principles for improving robustness. Though the
dynamic and undefined environment of the host can
cause unexpected variation in gene circuit behaviour,
strategies that combine the use of insulated parts and
rational, model-driven searching of parameter space
will reduce the time required to build large circuits.
Variation due to interactions with the host metabolism
might be further reduced by using strainswith reduced
genomes [192].
That said, further development of components is

needed, especially in particular areas. For example,
modular sensors of smallmoleculeswith newbespoke
binding specificities will be required to connect
synthetic control circuits with metabolic pathways
[68]. Similarly, new orthogonal quorum-sensingmech-
anisms [230] would expand the opportunities for
intercellular communication in synthetic microbial
communities [231], enabling the development of
more sophisticated distributed biological computing
[232]. The ease of screening for aptamers puts the
development of RNA-based sensors at the fore for
now, though the potential for stronger interactions with
a wider range of ligands means rationally engineered
proteins will probably be better components in the
future [233]. Work is needed to standardise and refine
the process of linking RNA aptamers with regulatory
regions, to produce components that possess high
specificity and large dynamic ranges.
There are also opportunities to expand and improve

existing classes of regulators: for example, the
mechanism of STAR transcriptional regulation by
direct disruption of a terminator hairpin [22] is very
similar to the mechanism of toehold switch transla-
tional regulation [20], suggesting that the number of
orthogonal STARs might be equally amenable to
scale up through the rational design of new STAR-
terminator pairs [173]. DNA-based memory will
potentially enable biological circuits that can learn
from past experience and adapt accordingly, but the
slow rates of DNAmodification make population-wide
digital recording of transient signals difficult [25,164].
Two-tier memory systems may prove valuable, using
bistable circuits with fast switching dynamics to
stabilise a signal until complete DNA modification
has occurred.
Recent advances in part provision and quality will

need to be matched by development of circuit design
capabilities if significant gains in complexity are to be
realised. Computational tools for the selection and
optimisation of network topology and constituent parts
will be essential for the design of large synthetic
networks [234–236]. Digital signal processing is
required for certain applications [237] but is energet-
ically expensive and therefore difficult to scale up
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[238]. A shift towards analogue signal processing
will be required to create synthetic circuits that have
the sophistication and efficiency of natural systems
[11,238]. For the next generation of designer
microbes to function robustly outside of the laboratory,
circuit design will need to incorporate higher-level
management of functional subsystems [239] to
provide the adaptability necessary for real-world
applications.
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