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Dictionary-driven Ischemia Detection from Cardiac
Phase-Resolved Myocardial BOLD MRI at Rest

Marco Bevilacqua, Rohan Dharmakumar, and Sotirios A. Tsaftaris, Member, IEEE.

Abstract—Cardiac Phase-resolved Blood-Oxygen-Level Depen-
dent (CP–BOLD) MRI provides a unique opportunity to image an
ongoing ischemia at rest. However, it requires post-processing to
evaluate the extent of ischemia. To address this, here we propose
an unsupervised ischemia detection (UID) method which relies
on the inherent spatio-temporal correlation between oxygenation
and wall motion to formalize a joint learning and detection
problem based on dictionary decomposition. Considering input
data of a single subject, it treats ischemia as an anomaly and iter-
atively learns dictionaries to represent only normal observations
(corresponding to myocardial territories remote to ischemia).
Anomaly detection is based on a modified version of One-class
Support Vector Machines (OCSVM) to regulate directly the
margins by incorporating the dictionary-based representation
errors. A measure of ischemic extent (IE) is estimated, reflecting
the relative portion of the myocardium affected by ischemia. For
visualization purposes an ischemia likelihood map is created by
estimating posterior probabilities from the OCSVM outputs, thus
obtaining how likely the classification is correct. UID is evaluated
on synthetic data and in a 2D CP–BOLD data set from a
canine experimental model emulating acute coronary syndromes.
Comparing early ischemic territories identified with UID against
infarct territories (after several hours of ischemia), we find
that IE, as measured by UID, is highly correlated (Pearson’s
r = 0.84) w.r.t. infarct size. When advances in automated
registration and segmentation of CP–BOLD images and full
coverage 3D acquisitions become available, we hope that this
method can enable pixel-level assessment of ischemia with this
truly non-invasive imaging technique.

Index Terms—Cardiac MRI, Blood-Oxygen-Level Dependent,
Dictionary Learning, Sparse Representations, Shift-invariance

I. INTRODUCTION

CARDIAC Phase-resolved Blood-Oxygen-Level Depen-
dent (CP–BOLD) Magnetic Resonance Imaging (MRI)

is a state-of-the-art technique for directly examining changes
in myocardial oxygenation without any contrast media [1],
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Fig. 1. BOLD signal intensity time series (as segmental averages of six
different radial segments across the images, ie., frames, of the cine movie)
extracted from rest CP–BOLD MRI data of the same subject, at baseline
(left) and under ischemia (right). (CP–BOLD is ECG-triggered and first and
last time points correspond to diastole. Time series have been normalized
according to the process described in Section II-B for ease of visualization.)

[2]. In a single acquisition it obtains both BOLD contrast and
myocardial function that can be seen as a movie (effectively
a cine BOLD acquisition). Recently, it was shown that CP–
BOLD can be used even at rest [3], without any contraindi-
cated provocative stress (exercise or pharmacological agents)
[4], offering a truly non-invasive “needle-free” approach to
ischemia evaluation. This approach relies on examining dif-
ferential myocardial signal intensity variations (when seen as
a function of cardiac phase) among territories affected by
ischemia and “remote territories” (i.e. not affected by the
disease) [3]. However, since signal intensity changes are subtle
(≈15%) and need information across cardiac phases, direct
visualization is difficult and requires post-processing. Here,
we propose a method to detect ischemia by identifying remote
and ischemic patterns of oxygenation and wall motion syn-
ergistically using a dictionary-based decomposition. Ischemia
quantification and visualization are obtained in a completely
unsupervised fashion without any prior knowledge on disease
status using as sole input the CP-BOLD data of the subject.

As Fig. 1 illustrates the BOLD signal intensity is maximum
in systole and minimum in diastole in healthy conditions, but
territories of the myocardium, affected by arterial occlusion,
do not exhibit this behavior. Exploiting this phenomenon,
Tsaftaris et al. [3] used myocardial radial segments from
late systolic and diastolic frames to define S/D: the ratio of
average segmental intensity at systole over diastole. It was
hypothesized and shown that S/D>1 in baseline scenarios
or remote to ischemia, and S/D<1 in affected myocardial
territories. However, S/D uses only two images of the cine
acquisition and provides a coarse segmental analysis.

On the other hand, there are significant benefits to obtaining
visualization maps and quantification at a finer segmental level
(ideally that of a single pixel): enabling differential diagnosis
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into epicardial or endocardial ischemia and other transmural
effects, and improving the spatial characterization of the area
at risk [5]. Unfortunately, with the S/D approach when aver-
ages are taken in smaller segments, noise increases and more
often than not the S/D>1 hypothesis may not hold. To this end,
we envision that it would be advantageous to use all images
from the CP–BOLD image sequence for a better identification
of ischemic regions. Recent experiments on properly generated
synthetic data [6] have shown that an independent component
analysis (ICA) approach adopted from fMRI [7] outperformed
S/D. However, ICA cannot accommodate time shifts present
in BOLD time series, which are likely due to physiological
differences between different myocardial territories [8]. This
shifting in time characteristic CP–BOLD effect, was suspected
by Tsaftaris et al. [3] and was statistically shown by Rusu et
al. [6], using a circulant dictionary model.

In this paper, we use the temporal features of CP–BOLD to
establish an unsupervised method for identifying time series
affected by ischemia as anomalous w.r.t. remote, which are
considered as normal. Our only underlying assumption is that
remote time series are more populous w.r.t. those that could
be affected, an assumption reasonable for evaluating acute
ischemia in single vessel disease. We propose an unsupervised
ischemia detection (UID) algorithm by combining time series
of the BOLD signal (i.e., radial segmental intensity) and
also myocardial function as radial wall thickness (typically
used to assess wall motion anomalies from cine MRI). A
general multi-component dictionary-driven anomaly detection
(DDAD) algorithm, which combines sparse decomposition and
a One-class Support Vector Machines classifier (OCSVM) [9]
forms the core of UID. In an iterative fashion it finds a
normal pattern (with the dictionaries) and classifies anomalous
observations incorporating within the OCSVM optimization
problem the errors related to the dictionary-based approxima-
tion. To detect ischemia with DDAD, observations as time
series of both intensity and function are represented by two
separate dictionaries, which are learned to characterize normal
time series (i.e., those likely to belong to remote territories),
and are linked in the joint classification step with OCSVM.
Finally, to aid interpretation we provide visualization maps
of ischemia likelihood, computing posterior probabilities by
approximating the OCSVM outputs with a sigmoid function.
The quantitative outcome of UID is a notion of ischemia
extent (IE) [10], which measures the relative portion of the
myocardium affected by ischemia. We evaluate UID using
synthetic data and in 2D CP–BOLD data from a canine
experimental model emulating acute coronary syndromes, and
validate IE, as measured by UID, w.r.t. infarct size.

The contributions of this paper are both technical and
physiological. DDAD is the first method that combines dictio-
naries and an unsupervised classifier as OCSVM for anomaly
detection. Other sparsity enforcing methods (e.g., [11]) base
the decision on regularization parameters contained in the
dictionary learning formulation itself, which, in practice, turn
into hard thresholds applied on the sparse representation
coefficients. Moreover, they assume fixed dictionaries [11],
whereas here DDAD learns the dictionary in the presence
of outliers, which are progressively detected (with OCSVM)
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Data
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Mask-to-mask 

registration
Segmental 

intensity average

Rotation 
correction

Radial 
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Radial 
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Pattern discovery via 
Dictionary Learning
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classifier

C. Inference
Ischemia Likelihood via Posterior 

Probability Approximation

Fig. 2. Workflow of the proposed unsupervised ischemia detection (UID).

without thresholds and excluded from the learning process.
Furthermore, this paper also uses for the first time myocardial
function (as additional time series) to jointly identify BOLD
and functional effects, taking advantage of complementary in-
formation between the two [3]. This paper exploits this directly
at the raw data level, elevating further the diagnostic power of
CP–BOLD imaging as one of the new “multi-criteria” cardiac
ischemia testing methods. Interestingly, we find that wall
thickness as a function of cardiac phase also shifts –a finding
unique in the cardiovascular literature. This work is also the
first to obtain visual maps of ischemia likelihood, based on
inference methods. Our only input is the CP–BOLD data of a
single subject and myocardial delineations. As algorithms for
precise registration and segmentation of CP–BOLD images
advance, we hope to rapidly accelerate the deployment of this
method for the pixel-level assessment of ischemia with this
truly non-invasive imaging technique.

This work is inspired by the approach of Rusu and Tsaftaris
[12], where a circulant dictionary model is used for ischemia
detection. However, in this paper, decisions are based on
OCSVM and not on thresholds, functional information is also
used, and outcomes are validated with extensive experiments.

UID’s steps are visually outlined in Fig. 2. After pre-
processing (Step A), both intensity and functional time series
are extracted from a single image sequence and are given to
DDAD for classification (Step B). DDAD identifies anomalous
and normal observations, which are used to define an ischemia
extent (IE). Finally, Step C performs probabilistic inference,
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which is used for visualization purposes.
In the following, we present first in Section II data and pre-

processing. We present DDAD separately in Section III for
clarity, and in Section IV we detail how we apply DDAD to
UID (Step B) together with Step C. Before drawing conclu-
sions, Section V presents results on synthetic and real data.
Shorthands used in this paper are summarized in Table I.

II. DATA AND PRE-PROCESSING

A. Experimental data

We use CP–BOLD MRI data obtained from 11 controlled
canine experiments modeling early acute ischemia and reper-
fusion injury [3], where a controllable hydraulic occluder is
affixed to the Left Anterior Descending (LAD) artery and in-
flated to cause ischemia. While anesthetized and mechanically
ventilated, canines were imaged using a clinical 1.5T MRI
system twice at rest: before occluder activation (baseline) and
during > 90% LAD occlusion.

The protocol, detailed in [3], included breath-held acquisi-
tions at mid-ventricle position with a flow compensated CP–
BOLD sequence [2] at baseline and at 20mins post-occlusion.
Scan parameters were: field of view, 240×145 mm2; spatial
resolution, 1.2×1.2×8 mm3; readout bandwidth, 930 Hz per
pixel; flip angle, 70◦; TR/echo time (TE), 6.2/3.1 ms; and
temporal resolution 37.2 ms). Late Gadolinium Enhancement
(LGE) imaging data were also acquired in 8 of the 11 canines
after 3 hours of occlusion and during reperfusion (the occluder
being released) to identify myocardial regions succumbed
to ischemic tissue damage, using a sequence employing a
PSIR reconstruction with TurboFLASH readout [13]. Scan
parameters were: spatial resolution, 1.3×1.3×8 mm3; TE/TR,
3.9/8.2 ms; TI, 200 to 220 ms; flip angle, 25◦; and readout
bandwidth, 140 Hz/pixel.

TABLE I
ACRONYMS APPEARING IN THE MANUSCRIPT.

Acronym Definition First appearance

CP–BOLD Cardiac Phase-resolved
Blood-Oxygen-Level Dependent

Abstract

DDAD Dictionary-Driven Anomaly
Detection

Sec. I, p. 2

DL Dictionary Learning Sec. III, p. 4
DLwT Dictionary Learning with

Theshold
Sec. V, p. 8

FD-OCSVM Frequency-Domain One-Class
Support Vector Machines

Sec. V, p. 8

GT Ground-Truth Section V, p. 9
ICA Independent Component Analyis Sec. I, p. 2
IE Ischemic Extent Abstract
LAD Left Anterior Descending Sec. II, p. 3
LGE Late Gadolinium Enhancement Sec. II, p. 3
MRI Magnetic Resonance Imaging Sec. I, p. 1
NMP Nonnegative Matching Pursuit Sec. IV, p. 6
OCSVM One-Class Support Vector

Machines
Abstract

S/D Systole to Diastole ratio Sec. I, p. 1
SVM Support Vector Machines Sec. IV, p. 6
UID Unsupervised Ischemia Detection Abstract
WT Wall Thickness Sec. II, p. 3
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Fig. 3. Effect of registration on intensity time series.

B. Data pre-processing and time series extraction

The goal of UID is to estimate the presence of myocardial
ischemia, given as input a single CP–BOLD sequence of
images at rest. As mentioned previously, we extract both
intensity and “functional time series”, the latter reflecting
variations of myocardial wall thickness over time. They are
exploited in a common framework.

To accurately isolate the myocardium we rely on expert
myocardial delineations and extract time series corresponding
to average BOLD signal intensity and myocardial function.
Cardiac motion is corrected via registration or via rotation on
the basis of a known cardiac landmark. The myocardium is
partitioned into K radial segments, and we extract time series
of length N across the cardiac cycle (N is the number of
images in the sequence), each of it referring to a particular
radial segment. This process is repeated for BOLD intensity
and function, forming two matrices, YI ∈ RN×K and YF ∈
RN×K , respectively, where time series are arranged column-
wise. Each time series is further processed by removing the
average value and normalizing it w.r.t. its `2-norm. YI and
YF form the input data to the adapted DDAD.

In detail, to obtain intensity time series the segmentation
masks are used to elastically register the myocardium relying
only on binary shape. (The BOLD effect can introduce errors
to intensity driven registration.) More precisely, let {Mn}Nn=1

and {In}Nn=1 be the sets of the segmentation masks and
the sequence of images, respectively, and let M1 be chosen
as the reference mask. When processing the n-th image
of the sequence, In, then, Mn is registered to M1, and
the transformation found T is applied to In to obtain the
registered image În = T (In). (Note that the transformation
fields forming T are zero outside the myocardium, i.e. only
the myocardium “moves”.) We use the well-known Demons
algorithm [14], with σ = 4, and simple linear interpolation. At
the end, we obtain a new sequence of registered images, where
the myocardium appears globally registered. Fig. 3 shows that
after registration time series follow closer a unique pattern.

To obtain functional time series per each segment, we need
to first correct for cardiac motion to achieve good intra-phase
cardiac segment correspondence. Since registration (as the
above) will render wall thickness constant across the cardiac
phase, a different strategy is adopted here. Rotation correction
is performed on the basis of the insertion points of the ventricle
(the RV groove), annotated by the expert. Papillary muscles
are excluded (via fitting a ellipsoidal model on the convex hull
of the endocardial boundary) and the final myocardial mask is
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then radially partitioned. For each segment and per each im-
age, average wall thickness (WT) is calculated as the average
radial distance between the endo- and epicardial boundaries of
the related segmentation masks. The collection for all images
in the image sequence of the related WT measures forms
per-segment functional time series. The examples in Fig. 4
show that under baseline conditions functional time series do
follow a common pattern. As expected, the presence of disease
differentially affects myocardial function: time series related
to segments remote to ischemia appear to follow a “normal”
pattern, whereas others considerably deviate from it.

We should note that while here we used myocardial thick-
ness, alternate functional indicators can be used, such as
segmental (regional) circumferential strain [15], [16], [17] and
others as reviewed in [18]. Also, strain measures obtained from
various definitions of strain tensors are better suited for pixel-
level analysis and should be preferred over segmental variants
discussed here (see also Section VI).

III. DICTIONARY-DRIVEN ANOMALY DETECTION (DDAD)

The proposed dictionary-driven anomaly detection (DDAD)
algorithm aims at finding anomalies occurring in a multi-
signal scenario. We suppose to have available M different yet
equally-sized data sets of time series referring to the same test
case,

{
Yj
}M
j=1

. Each data set Yj ∈ RN×K , corresponds to a
type of signal (in the case of UID M = 2, as we have intensity
and functional information), N is the length of each signal
and K their number. (For simplicity we assume that signals
have equal length N , but this is not necessary.) Hence our
approach is based on two assumptions. (i) Most of the time
series (the “normal” ones) conform with a dictionary-based
decomposition model (Yj ≈ DjXj), whereas a fraction of
them (the “anomalous” time series) significantly deviates from
this model. (ii) Anomalies occur contextually in the different
data sets, i.e. if yji is an anomaly in Yj , yki is an anomaly
in Yk. We can then define a single vector of labels (statuses),
l ∈ RK , which determines if a specific instance is an anomaly
(l(i) = −1) or not (l(i) = 1).

DDAD consists of two iterative steps: first,
{
Yj
}M
j=1

are
provided as input to the dictionary learning (DL) algorithm(s),
which aim at finding for each Yj a dictionary-based model to
characterize the normal behavior. The same assumption about
the presence of a linear model that characterizes the normal
time series is used by Adler et al. [11]. Unlike the latter, where
the dictionary is assumed known, here we perform DL in the
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Fig. 4. Example of “functional time series” from rest CP–BOLD MRI of a
subject under baseline (left) and ischemia (right) conditions.

presence of outliers (which are meant to be discovered and
excluded progressively), i.e. the models are trained directly
on the given data sets. As a second step, a modified OCSVM
classifier identifies the anomalies, by jointly considering all
signals. We adapt OCSVM to take into account representation
errors obtained with the DL step, i.e., deviations from the
normal model. The two steps are repeated in an iterative
fashion, so that the learning of the dictionary-based models
increasingly benefits from a refined classification step, and
vice versa. As a consequence, at each iteration, refined normal
patterns (i.e. the M dictionaries) are found, and OCSVM, in
turn, can rely on an increasingly better characterization of the
“normal” class. The complete DDAD procedure can be found
in Algorithm 1. The inputs of the algorithm are M data sets{
Yj
}M
j=1

, each one referring to a different type of signal, and

M dictionary models
{
DMj

}M
j=1

to characterize the desired
DL problems. Each step is detailed below.

Algorithm 1 Proposed Dictionary-driven Anomaly Detection
(DDAD) algorithm.

1: procedure DDAD(Y1, . . . ,YM , DM1, . . . ,DMM )
2: Label initialization:

l(i) = 1 ∀i = 1, . . .K

3: Separate dictionary learning problems:

Learn
[
D1,X1

]
from Yl≡1 according to DM1

. . .

Learn
[
DM ,XM

]
from Yl≡1 according to DMM

4: Jointly consider all different types of time series:

Z =
[
Y1; . . . ;YM

]
Ẑ =

[
D1X1; . . . ;DMXM

]
5: Compute distances in the Kernel space:

di = 2
(
C − φ(zi)

Tφ(ẑi)
)
∀i = 1, . . .K

6: Solve the modified OCSVM:

min
ω,ρ

‖ω‖2

2
− ρ s.t. ωTφ(zi) ≥ ρ− λdi

7: Update the labels:

l(i) = sgn(ωTφ(zi)− ρ) ∀i = 1, . . .K

8: If num. max iterations not reached go to Step 3.
9: return l . Output labels

10: end procedure

A. Pattern discovery via Multi-component Dictionaries

Sparse representations have been shown to be useful for the
development of data-driven models to represent 1-D signals
and images [19] with several good properties, e.g., capability
of handling high-dimensional vectors [20] and robustness to
noise [21]. Moreover, sparse representations, when enriched
with special constraints on the objects to learn (dictionary
atoms or sparse coefficients), can provide useful interpretations
of the given data [22]. Dictionaries and sparse representations
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have been used successfully in medical imaging, and partic-
ularly in MRI, for example to reconstruct image data (e.g.,
[23]), to model brain networks (e.g., [24]), or to obtain higher
resolution (e.g., [25]) or different contrast (e.g., [26]).

In a general way, we can see dictionary learning (DL) as
a flexible framework to train a multi-component dictionary
(i.e., composed by several sub-dictionaries, each one possibly
characterized by a special structure), with several additional
constraints (soft and hard) to provide further expressiveness:

min
D,{Xi}

∥∥∥∥∥Y −
t∑

i=1

DiXi

∥∥∥∥∥
F

+

t∑
i=1

∑
j

αijΦj(Xi)

s.t. gj(Xi) = cj , i = 1, ..., t , j = 1, ..., n1

hj(Xi) ≤ dj , i = 1, ..., t , j = 1, . . . , n2

, (1)

where Y is the data matrix, {D1, . . . ,Dt} are t sub-
dictionaries composing the dictionary D ({X1, . . . ,Xt} being
the respective sparse representation matrices). {Φi} represents
a set of possible “soft” constraints that are summed up to the
cost function as a penalization and can be possibly applied
to any of the t matrices Xi. As for the “hard” constraints,
we can consider both equality constraints (gj(Xi) = cj)
and inequality constraints (hj(Xi) ≤ dj), the latter possibly
including conditions on the norm of the sparse vectors.

The formulation in (1) gives a very general framework
for dictionary learning. A dictionary model (DM) is given
after defining the structure of the dictionary D (type and
size of each sub-dictionary Di), as well as all the possible
soft and hard constraints. In the scenario considered for
DDAD of multiple signal sources, such that M data sets of
time series

{
Yj
}M
j=1

are available, we generally assume that
each dictionary-based model is trained independently. In other
words, for the j-th data set, we define a dictionary model
DMj that leads to a particular expression of (1), to learn the
related dictionary Dj .

B. Modified One-class Support Vector Machines (OCSVM)
At each iteration, once all the dictionary-based models

for characterizing the normal cases for all M types of time
series are trained, a joint classification step is performed.
To this end, we propose to use an OCSVM classifier [9],
[27], [28]. OCSVM is an SVM-like classifier, which aims
at finding the boundaries to separate data points related to
a single dominant class from the rest of the data points,
considered as outliers. In a multi-signal scenario, we perform
the classification jointly, i.e. matrices related to all signal
types are vertically concatenated to form a unique data matrix
Z =

[
Y1; . . . ;YM

]
(each joint observation is a column of

the matrix Z).
In the original formulation of OCSVM [9], the goal is to

find the hyperplane achieving the maximal separation between
the points and the origin in an appropriate high-dimensional
kernel space. The hyperplane is characterized by the vector ω,
which is perpendicular to the decision boundary, and ρ, which
represents a bias. ω and ρ are found by solving:

min
ω,ρ,ξ

‖ω‖2

2
− ρ+

1

νN

N∑
i=1

ξi

s.t. ωTφ(zi) ≥ ρ− ξi , ξi ≥ 0

, (2)

where ν is a regularization parameter and {ξi} are the so-
called slack variables, which play as soft margins in allowing
some data points, the outliers, to lie on the other side of
the decision boundary (a data point zi may lie on the side
of the origin, i.e., ωTφ(zi) − ρ < 0, but thanks to an
appropriate positive ξi it can still respect the constraint in
(2)). An interesting property of OCSVM is that it can be used
in an unsupervised setting as an anomaly detection algorithm:
in fact, once a model for the normal class (i.e., a decision
boundary) is learned on a data set, it can be tested on the
same data set to detect anomalies by evaluating the sign of
the function g(zi) = ωTφ(zi)− ρ (the slack variables are in
this case neglected).

As others have previously done [29], [30], we propose a
new mechanism in how the slack variables are implemented.
As the dictionary learning (DL) step is meant to find a model
to characterize the normal time series, we want to use this
information to “guide” the OCSVM classifier, such that data
points with a larger reconstruction error in the DL step are
considered to most likely be anomalies. Given a data point
zi (the concatenation of M corresponding time series), its
dictionary-based reconstruction is then given by:

ẑi =
[
D1x1

i ; . . . ;D
MxMi

]
. (3)

The distance between zi and ẑi, evaluated in the high-
dimensional kernel space, can then be used as an indicator on
how much the data point zi deviates from the normal pattern.
The expression of this distance is derived as follows:

di = ‖φ(zi)− φ(ẑi)‖2

= φ(zi)
Tφ(zi) + φ(ẑi)

Tφ(ẑi)− 2φ(zi)
Tφ(ẑi)

= 2
(
C − φ(zi)

Tφ(ẑi)
) . (4)

In the last step in (4), note that the inner product φ(zi)
Tφ(zi)

equals K(φ(zi), φ(zi)), which equals a constant C for most
of the commonly adopted kernels.

We propose to use distances {di} in the OCSVM objective
to regulate accordingly the margin of each data point. The
original problem (2) is then changed into:

min
ω,ρ

‖ω‖2

2
− ρ s.t. ωTφ(zi) ≥ ρ− λdi (5)

where λ is a regularization parameter that weights each dis-
tance to provide the actual margin. Eq. (5) can be transferred
into its dual formulation and solved with the usual method
of Lagrange multipliers. Note that the original OCSVM for-
mulation does not explicitly enforce any structural invariance.
Using the proposed distances {di} (4) in this modified formu-
lation does have benefits of introducing structural invariance to
the classifier. As we will discuss below, in the case of UID, we
can use these distances to directly promote shift-invariance.

IV. UNSUPERVISED ISCHEMIA DETECTION (UID) WITH
DDAD

UID falls into the category of problems addressed in Section
III, since we have M = 2 signals (BOLD and functional
information) that provide different (but correlated) time series.
Moreover, since we address a single vessel disease (LAD
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typically supplies <50% of the left ventricle (LV)), we can
consider the remote territories larger in number and hence treat
ischemia detection as an anomaly identification problem.

The main feature of DDAD is its flexibility in the choice
of the dictionary models for the normal classes of each
type of signal: any model can be “plugged” into the DDAD
framework, since the classification step via OCSVM is inde-
pendent of the particular model chosen. As we discussed in
the Introduction, and it is visible in the examples (cf. Fig. 1
and Fig. 4, left columns), due to the expected characteristic
CP-BOLD effect, we decide to adopt a shift-invariant model.
We then use the following DL problem to find the pattern:

min
C,X
‖Y −CX‖2F s.t. ‖xi‖0 = 1 , 1Txi ≥ 0 , (6)

where C ∈ RN×P is a single circulant dictionary (of P
atoms, shifts) and a unitary constraint on the `0-norm of the
sparse coefficient vectors is employed (i.e. each time series
is seen as a weighted shifted version of a unique circulant
pattern). In addition to the sparsity constraint, we propose
to add a nonnegative constraint: this aids the learning of a
circulant kernel without sign ambiguity, in order to prevent
the case where a time series, although maybe behaving very
differently than the underlying remote pattern, can get a
negative coefficient, yet large in absolute value. The problem
in (6) is solved by modifying the C–DLA algorithm of Rusu
et al. [31], to incorporate a non-negativity constraint on the
sparse coefficients. While keeping the standard SVD-based
initialization of C–DLA, the modified version alternates the
construction of the circulant dictionary C (which involves
the solution of dN/2e complex least squares problems in
the Fourier domain) with the Nonnegative Matching Pursuit
(NMP) algorithm [32], a variant of the well-known Orthogonal
Matching Pursuit (OMP) algorithm [33], to compute a non-
negative sparse coefficient matrix X. The DL procedure is
the same for both intensity and functional time series, and is
repeated to learn two independent remote patterns expressed
by, respectively, the circulant dictionaries CI and CF . Using
our modified step, i.e. plugging our distances {di} (4) into
the OCSVM objective, makes the classifier invariant to shifts:
the “normality” of each data point is in fact evaluated with
relation to its dictionary-based, shift-corrected, reconstruction.

Let us now discuss this model (a choice which we also
elaborate on in the results) w.r.t. previous dictionary-based
approaches. Rusu et al. [6] proposed a multi-component DL
problem, which, along the lines of Eq. (1), employs a circulant
dictionary C and a general dictionary G learned via K–SVD
[34]. A similar model was later used by the same authors
[12] but also considering a soft spatial constraint Φ(X) with
the aim of enforcing similarity between the sparse repre-
sentations of time series referring to neighboring locations.
However, both models were designed under different inputs.
Their primary purpose was to learn statistical models of how
CP-BOLD intensity varies in the myocardium and extract a
common characteristic CP-BOLD pattern with the circulant
dictionary, which forms a primary assumption of this work
too. However, they did so using information from a population
(all the resulting time series are aggregated into a unique data

matrix Y). The general dictionary serves to better learn inter-
patient variability. In our case, instead, since our input matrices
only consist of time series from a single-subject acquisition,
we do not need this extra dictionary component. Moreover,
since the input data considered here are “mixed” (we have
both remote and ischemic time series) and relatively small in
number, we want to have a model for the remote time series
as compact as possible, in order not to encapsulate within it
also patterns related to ischemic areas.

Following the formalism of DDAD, (6) represents the
dictionary model (DM) for both types of time series (DMI

and DMF ). YI , YF , DMI and DMF are the inputs of
a customized DDAD algorithm for ischemia detection. The
output of the algorithm is a vector of labels l ∈ {−1, 1}K ,
denoting remote and ischemic territories. Given l, the obtained
ischemia extent (IE) is defined as the number of ischemic
labels (l(i) = −1) over the total number of time series (K):

IE =
| {l(i) ≡ −1} |

K
(7)

Algorithm 2 summarizes the complete unsupervised is-
chemia detection procedure, which uses DDAD to perform
the proper ischemia detection step (DM is the model defined
by (6)) and subsequently computes ischemia likelihood values
by first estimating the posterior probability for each time series
to belong to the normal class (the method to approximate the
posterior probabilities is detailed in Section IV-A). Note that
the three steps listed in Algorithm 2 reflect Fig. 2.

A. Inference via posterior probability approximation (PPA)

While the previous steps provide opportunities for a clas-
sification of where ischemia occurs and a quantification with
IE, for practical purposes it is necessary to provide a measure
of confidence for each particular status assignment. To obtain
such a confidence, we propose to utilize the well-established
method of Platt [35], which maps the output score of a Support
Vector Machines (SVM) classifier prior to the sign operation
(g(z) = ωTφ(z)−ρ) to a posterior class probability by fitting
a sigmoid function:

Pr(l = 1|z) = (1 + exp(A+ g(z) +B))−1 . (8)

Algorithm 2 Unsupervised Ischemia Detection (UID) using
DDAD.

1: procedure UID({In}Nn=1, {Mn}Nn=1, DM)
2: Time series extraction with pre-processing:

YI ,YF ← {In}Nn=1 , {Mn}Nn=1

3: Perform ischemia detection with DDAD:

[l, g(·), ε] = DDAD
(
YI ,YF ,DM,DM

)
4: Obtain ischemia likelihood values with PPA:

ilv = PPA(l, g(·), ε)

5: return l, ilv
6: end procedure
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To estimate the parameters A and B, we adopt the im-
plementation proposed by Lin et al. [36]. This approach
requires some validation labels and SVM scores as priors,
i.e. observations for which the labeling is considered reli-
able. We propose to select these observations among the
joint time series zi that are represented as the best and the
worst according to the dictionary-based decomposition model
(i.e. they have the largest and smallest reconstruction error
ε(i) = ‖zi − ẑi‖2), and thus can most likely be considered
as anomalies and normal samples, respectively. For each joint
time series we can finally obtain an ischemia likelihood value
as the complement of the estimated posterior probability,
ilv(i) = 1− Pr(l = 1|zi).

V. EXPERIMENTAL ANALYSIS

We test and validate UID on multiple data sets of both
synthetic and real data. As for the latter, our testing data
consists of S = 11 canine subjects imaged in controlled rest
experiments, as described in Section II-A. For each subject we
have available 2 CP–BOLD MRI image sequences: at baseline
(prior to occlusion) and under ischemia (with critical LAD
stenosis). First, in Section V-A we explore the presence of
shifts in intensity and functional time series in baseline cases,
and provide insights on the model choice for UID (Section
IV). Then, we experimentally evaluate our proposed algorithm
both on synthetic data (Section V-B), appropriately generated
to simulate CP–BOLD patterns, and on real data (Section
V-C). Finally, Section V-D discusses the performance of the
algorithm under minor presence of anomalies.

In all experiments conducted, given the small size of the
data sets considered, we chose for the OCSVM within DDAD
a Gaussian kernel with σ = 1. For the regularization parameter
in the OCSVM objective (Eq. (5)), we found via grid search
on synthetic data experiments an optimal value of λ = 0.1.
The maximum number of DDAD iterations is fixed to 10.

A. Model justification

By observing the BOLD intensity curves of a single subject
under an ongoing ischemia (left column of Fig. 1), we can
see that certain time series follow a regular pattern, while
presenting slight mutual shifts. This is valid also for the so-
called functional time series (left column of Fig. 4): as in
the case of intensity, there is a supposedly unique “remote-
to-ischemia” pattern, whereas time series related to ischemic
territories appear much more delayed. We can in fact hypothe-
size that disease yields notable delays and irregularities in the
contraction patterns of the heart.

In Section IV we formulated the dictionary learning model
(6), where such time series are decomposed w.r.t. a single
circulant dictionary (CI for intensity time series and CF

for functional time series), with a nonnegative constraint and
sparsity strictly set to one.

1) Presence of shifts: The model for intensity and func-
tional time series proposed in Eq. (6) is assumed to be valid
both at baseline (for all time series) and under ischemia (in this
case only for the so-called remote time series). To evaluate the
presence of shifts, and identify a suitable number of circulant

TABLE II
RELATIVE REPRESENTATION ERROR (%) WITH DIFFERENT SHIFTS

CONSIDERED IN THE DICTIONARY-BASED REPRESENTATION MODEL.

No. of Shifts

1 2 3 4 5
BOLD Intensity 36.4 34.0 33.2 33.1 33.0
Function 21.6 20.3 20.1 20.1 20.1

atoms (shifts) P , we consider the baseline data sets available
and compute for each time series the relative representation
error (εi = ‖yi−Cxi‖2/‖yi‖2), for different shift values. To
learn the circulant dictionaries we adopt again C-DLA [31].
The error values obtained as average on all the baseline time
series are reported in Table II.

Table II shows that both types of time series (intensity
and function) can be represented by the simple shift-invariant
model proposed, and that shifts are present in both of them.
In particular, both for intensity and shape time series, it turns
out that considering P = 3 shifts of the pattern already leads
to the lowest representation error achievable by the model.
Thus, hereinafter, in all the experiments conducted we consider
P = 3 shifts (and consequently dictionaries of P = 3 atoms).

2) Dictionary composition: The model described in Section
IV relies on a single dictionary component (circulant only)
because we want to learn well the normal patterns in the
data, but not the “anomalous” ones (ischemic). Here we
experimentally demonstrate that indeed a multi-component
dictionary (e.g., the two-component dictionary used by Rusu et
al. [6]) , by adding more degrees of freedom (general atoms),
leads to learning also the ischemic data.

We identified remote (normal in our definition) and ischemic
territories (segments) on the CP–BOLD data (under ischemia)
on the basis of visually inspecting infarct location on LGE
images. We learned for each data set a two-component dictio-
nary composed by a circulant, with a fixed number of atoms,
and a general one, with a number of atoms that varies: 0
(only the circulant part is present), 1 or 2, respectively, and
computed the relative dictionary-based representation errors.
Results, averaged on multiple subjects, are reported in Table
III (for K = 24). The first row reflects the simple model, with
only circulant dictionary, adopted in this study.

Observe the larger difference in representation error be-
tween remote and ischemic with the simple model, which
shows that the simple model better separates the remote from
ischemic case. On the other hand, as we add general atoms,

TABLE III
AVERAGE RELATIVE REPRESENTATION ERROR (%) ON REMOTE AND

ISCHEMIC (INTENSITY AND FUNCTIONAL) TIME SERIES FOR DIFFERENT
NUMBERS OF “GENERAL ATOMS” (# ATOMS).

Intensity TS Functional TS

# atoms Remote Ischemic ∆ Remote Ischemic ∆

0 56.7 68.1 11.4 30.6 48.7 18.1

1 45.9 40.0 -5.8 24.4 27.0 2.6
2 33.1 30.1 -3.0 13.7 20.8 7.1
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the representation error decreases in both cases (remote and
ischemic). However, the rate of decrease for ischemic is
higher, and the difference in representation between the two
cases becomes less and less evident. For intensity time series,
ischemic patterns are actually better represented by this two-
component dictionary, which is undesirable.

B. Evaluation on synthetic data
To provide a quantitative evaluation of the proposed method,

we first test it with synthetic data because by generating
synthetic data we can control composition such as number
of available time series and the percentage and location of
anomalies (ground truth in other words is available). Data re-
sembling the CP–BOLD time series patterns are appropriately
generated according to the sparse generative model described
below (for testing purposes we used a fixed time series length
N = 28); a comparison with other possible approaches for
unsupervised anomaly detection is then carried out, to evaluate
the performance of our method in terms of detection accuracy.

1) Generating synthetic data: To simulate the scenario of a
CP–BOLD data set in presence of ischemia, we synthetically
generate K time series, of which composition is known by
design: Kn are considered “normal” (ideally referring to
remote territories) and Ka are “anomalous” (i.e., related to
ischemia). We can then define a ground truth ischemic extent
(IE) as the ratio Ka/K. The normal time series are generated
by following the sparse generative model of Rusu et al. [6],
using a simple circulant Cn ∈ RN×P allowing for P shifts
of a single kernel (for the sake of generality we consider
random variations resembling a CP–BOLD effect), and a
unitary `0-norm constraint is set for each coefficient vector.
We also considered additive Gaussian noise (ni ∼ N (0, σ2

n)).
The parameters of the variables involved are estimated by
considering baseline time series, and the ratio between the
variances of the signal and the noise reflects the signal-to-
noise ratio observed on the real data.

To generate anomalous (i.e. ischemic) time series we rely
again on [6], but, instead, a compact dictionary Da is learned
from time series extracted from CP–BOLD image sequences
under ischemia, corresponding to segments identified with the
aid of LGE images to be well-within the area suspected of
ischemia. The dictionary is then used as a basis to sparsely
generate anomalies (as parameters, we chose a dictionary size
for Da equal to 5 atoms, and a sparsity s = 3). Fig. 5 shows
two examples of synthetic data sets (K = 24) with mixed
remote (normal) and ischemic (anomalous) time series, in a
percentage reflecting an IE of, 25% and 37.5% respectively.

We use the models described to generate data sets for
two types of time series (reflecting ‘intensity’ and ‘function’
origins). The sparse models to synthetically generate two
corresponding time series of two types are totally independent
(shifts, coefficients, and noise vary), but both are generated to
belong to the same class (anomaly vs. normal).

2) Performance in detection accuracy: Given the procedure
described previously for generating realistic synthetic data of
CP–BOLD time series, we can evaluate the performance of the
proposed UID detailed in Section IV w.r.t. other approaches.
In particular, we consider:
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Fig. 5. Examples of synthetic data sets with simulated remote (green) and
ischemic (red) time series, for two different ischemic extents (IE) considered.

• One-class SVM (OCSVM) [9] performed directly on the
original time series Y (we use a fixed parameter ν = 0.3);

• One-class SVM performed in the frequency domain (FD–
OCSVM), i.e. on the magnitude of the vectors trans-
formed via the Fourier transform (this should reduce shift
effects and lead to a more shift-invariant classifier);

• Dictionary learning (DL) with a threshold directly ap-
plied on the sparse coefficients (DLwT) [12] (a circulant
dictionary is computed via C–DLA and the decision on a
single time series is made by thresholding, with τ = 0.5,
the related sparse coefficient); and

• Independent component analysis (ICA) as described in
[6] (thresholding the best spatial independent component
found via ICA decomposition).

The above-listed methods are compared with the proposed
method (with two time series to resemble cases where both
intensity and function are used) but also a variant that uses
only one time series (intensity).

Table IV reports accuracy, measured as correct assignments
w.r.t. the known by design ground-truth composition. Accuracy
values are obtained by averaging the outcomes of each method
across M = 200 simulations (i.e. 200 different synthetic
data sets are generated). The methods have been tested on
several values of K and for IE percentages (25% and 37.5%)
compatible with ischemia attributed to single vessel disease.

TABLE IV
ACCURACY (MEAN ± STANDARD DEVIATION) OF SEVERAL ALGORITHMS

FOR ANOMALY DETECTION, INCLUDING THE PROPOSED ONE, ON
SYNTHETIC DATA TESTS EMULATING VARIABLE IE (%).

K=24 K=48

Methods IE=25 IE=37.5 IE=25 IE=37.5
OCSVM 79±7 74±7 84±5 77±5
FD-OCSVM 80±8 78±11 82±8 82±10
ICA [6] 88±15 88±12 89±12 88±11
DLwT [12] 84±6 74±7 83±5 73±7
PROPOSED 87±10 84±11 90±10 86±11
PROP. (2 TS types) 91±7 86±10 92±7 90±8

K=60 K=90

Methods IE=25 IE=37.5 IE=25 IE=37.5
OCSVM 84±4 77±4 85±4 78±3
FD-OCSVM 83±7 78±11 83±8 79±11
ICA [6] 88±12 88±11 90±14 89±9
DLwT [12] 84±5 74±5 84±4 74±4
PROPOSED 90±9 87±11 91±9 88±11
PROP. (2 TS types) 91±6 89±9 93±6 91±9
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Fig. 6. Visual representation of the evolution of the classification labels at
each iteration of DDAD (green for normal, red for anomaly) from an initial
state (top row). Bottom row represents ground-truth (GT) assignments.

One can readily observe that the proposed UID, when
both types of time series are used, outperforms all other
approaches, including the version of the proposed with only
one. It has always the highest average and lower variation
w.r.t. other unsupervised techniques. It is important to note
that no assumptions are made in UID except that anomalies
contextually occur in the two types of time series. Overall
we see that using fixed thresholds (DLwT) under-performs,
and projecting to a shift-invariant space has benefits (OCSVM
performs worse than FD-OCSVM). While in FD-OCSVM a
fixed basis is used (Fourier), learning the basis and adapting
the anomaly detection process always has benefits, since ICA
and UID outperform the other approaches. We should note
that for ICA we identify the principal spatial component to
threshold by examining the correlation of the time component
with the ground-truth, so in that sense ICA numbers are
elevated. When we use non-Gaussian measures to do that ICA
numbers fall down to ≈ 60%.

In our tests, DDAD converges after 4.8 iterations (on aver-
age). For an intuitive understanding of DDAD’s convergence
process, see Fig. 6, which shows how labels change across
iterations. Starting with “all-normal” labels (top row), the
algorithm stops when the same vector of labels is produced
for two consecutive runs, matching here the ground-truth.

C. Visual and quantitative assessment on real data

On real data, UID takes as input only the CP–BOLD
sequence of images (of N images, with N varying among
subjects) of an imaged subject, with no additional information
but its segmentation masks. Intensity and shape time series
are extracted according to the pre-processing step described in
Section II-B, YI ∈ RN×K and YF ∈ RN×K , where K is the
number of radial segments. We used K = 36, since it provided
the best balance between learning performance (enough data
to learn) and accuracy w.r.t. pre-processing errors. Finally, IE
(Eq. (7)) and likelihood estimates are obtained.

To show the potential of iteratively refining the learned
pattern on real data, as an example, Fig. 7 shows intensity and
functional time series of a particular subject under ischemia,
along with the circulant patterns learned at the first and the
last iterations of UID. As we can observe, the patterns change
to better represent the remote time series (this is more evident
for functional time series in this case), as the anomalies are
correctly detected and excluded from the learning process.

Using this iterative process UID produces a classification to
remote (normal) and ischemia (anomalous) as Fig. 8 illustrates.
Other approaches for myocardial ischemia detection, namely
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Fig. 7. Examples of intensity and functional time series under ischemia (left)
and related circulant patterns (right), learned at the first (dashed line) and
last iteration (solid line) of UID.

the S/D method [3] and the DLwT method [12], where we have
a dictionary learning (DL) step followed by hard thresholding,
along with the corresponding LGE image obtained after 3
hours of occlusion and during reperfusion are also shown.
Observe the close correspondence with LGE, of the proposed
(UID) when both intensity and function time series are used.
S/D shows incoherent findings, whereas DLwT does not
capture a large and continuous ischemic territory.

Beyond these visual examples, the superiority of UID is
quantified also statistically when testing it across our subject
population. For each subject with LGE data available we
obtained IE (with UID and all other methods considered),
collected IE values and correlated them with infarct size.
Infarct size was measured using standard practice [37], con-
sidering an infarcted region wherever signal intensity exceeds
by 5 times the standard deviation of the mean of a reference
region. As summarized in Table V, together with standard p-
values and bootstrapped estimates (after 106 permutations),
IE measured with the proposed method (UID) shows an
exceptional, statistically significant, correlation of 0.84 with
infarct size. Even when using only intensity the proposed
method outperforms all others. Although its p-value is close to
the significance threshold (p-value = 0.05), the bootstrapped
estimate is 0.0394 and thus is statistical significant. All other
methods under-perform, yielding non-significant correlations.
DLwT and ICA, although they did well in some of the
synthetic experiments, here having a fixed threshold or not
being able to deal with shifts, lead to poorer performance.
Our method finds an optimal basis (dictionaries), exploits both
function and BOLD signal intensity, and finds a suitable per
subject ‘threshold’, all in an unsupervised fashion. S/D as we
mentioned in the introduction, shows poorer performance since
less averaging within a segment (due to a finer partitioning)
leads to more noisy S/D estimates. UID, instead, thanks to
sparsity is more resistant to noise [21].
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S/D DLwT Proposed (only intens.) Proposed (w. function) LGE

Fig. 8. Ischemia classification maps related to one subject obtained with several methods (overlaid on an image in diastole from the CP–BOLD image
sequence) compared with the corresponding LGE image obtained after 3hrs of ischemia and during reperfusion.
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Fig. 9. An ischemia likelihood map as obtained by UID for another subject,
color-coded and overlaid on the original CP–BOLD image in diastole (a).
Together we also show a six-segment bulls-eye plot of likelihood for the
same case (b); the color bar shown refers to both (a) and (b). In (c) the
corresponding LGE image is reported.

UID can also estimate likelihood values for each time series
(which are viewed as a probability of a time series to be
originated from an ischemic territory) using the optional infer-
ence Step C of UID, as seen in the example of Fig. 9, along
with the LGE image for this subject. Observe again the close
correspondence between the derived visualization map and the
LGE image, capturing a broad ischemic territory (and potential
area at risk), which eventually led to the diffuse endocardial
infarct. By averaging those likelihoods we can provide a 6-
segment bulls-eye representation, following standard clinical
practice [38]. With this plot, a clinician can readily ascertain
that the culprit artery causing myocardial ischemia is LAD.

D. Performance under presence of minor anomalies

Our approach assumes that some anomalies are present. To
address clinical scenarios where ischemia is not so apparent in
the myocardium, we performed tests both on synthetic and real
data. Specifically, for synthetic experiments, we used the same
data generation models described in Section V-B, by setting

TABLE V
PEARSON CORRELATION COEFFICIENTS (r) AND RELATED P-VALUES,
OBTAINED BY CORRELATING, FOR DIFFERENT METHODS, ISCHEMIC

EXTENT (IE) WITH INFARCT SIZE IN OUR SUBJECT POPULATION.

Method r p-value Bootstrap. p-value

S/D [3] -0.0808 0.8491 0.5751
FD-OCSVM 0.2495 0.5512 0.3138
ICA [6] 0.2708 0.5164 0.2634
DLwT [12] 0.3233 0.4347 0.2247

PROPOSED (only intens.) 0.6643 0.0723 0.0394
PROPOSED (w. function) 0.8425 0.0087 0.0040

IE = 5%. This value of ischemic extent can either reflect very
minor ischemia or account for artifacts (e.g., flow artifacts)
that can make normal patterns appear anomalous. As Table
VI shows, our method adapts adequately to this case without
any modifications, finding an IE consistent with the value set
by design. Once again, jointly exploiting two types of time
series leads to a significant increase of the performance. Note
also that the DLwT method [12] has high accuracy, but tends
to under-estimate the anomalies.

TABLE VI
ACCURACY (MEAN ± STANDARD DEVIATION) AND RESULTING IE

OBTAINED WITH SEVERAL ALGORITHMS, INCLUDING THE PROPOSED ONE,
ON SYNTHETIC DATA TESTS EMULATING MINOR ISCHEMIA (IE=5%).

K=60, IE=5%

Methods Accuracy IE measured
OCSVM 72±2 33±2
FD-OCSVM 71±2 34±2
ICA [6] 75±11 29±11
DLwT [12] 96±1 1±1
PROPOSED 91±12 10±14
PROP. (2 TS types) 96±9 4±9

Furthermore, we ran our algorithm on a set of real data
from 7 baseline canine studies (operated animals, but without
occluder activation). After feeding these baseline data sets to
our algorithm, we found an average IE of 7%, whereas the sec-
ond best performing algorithm (i.e. detecting the lowest num-
ber of anomalous territories), FD-OCSVM, gave an average
IE = 15%. Moreover, visual inspection of the ischemia maps
(not shown for brevity) revealed that the identified anomalous
segments are spatially diffuse, suggesting that the anomalies
are not likely to be attributed to pathological findings.

VI. CONCLUSION AND DISCUSSION

In this paper we presented UID, an algorithm for dictionary-
driven anomaly detection, and its application to ischemia
detection in CP–BOLD MRI at rest. The outcome of the algo-
rithm, when applied to time series originating from CP–BOLD
data of a single subject imaged at rest, is the unsupervised
classification of the time series as remote or affected by is-
chemia, and a measure of ischemic extent, as the ratio of those
affected divided by their total number. The method combines
both signal intensity and myocardial function in a unifying
framework. An optional inference step obtains a confidence
as to classification certainty, and provides visualization maps
of ischemia likelihood.
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Using real data from controlled experiments under baseline
conditions we found that a circulant dictionary model can
suitably describe not only BOLD signal intensity but also wall
thickness. We tested the algorithm and underlying circulant
structures in a variety of settings. Using synthetic experiments
we showed superior performance when all aspects considered
are combined: (a) a shift-invariant model has benefits; (b)
anomaly detection (via OCSVM) performed better than using
fixed thresholds; and (c) combining two complementary time
series (to emulate in our case BOLD intensity and myocardial
function) proved beneficial than using only one. Of course,
as we increase the number of time series available, accuracy
improves, illustrating the potential of pixel-level analysis when
segmentation and registration performance improves (please
see discussion below). Our experiments on subjects under
severe coronary occlusion showed significant visual agreement
between infarct size (LGE) and visualization maps of ischemia
extent. Quantitatively, ischemic extent (IE) obtained using our
method is statistically significantly correlated (p < 0.05) with
infarct size as estimated with LGE.

In this paper, we used ischemia detection in CP–BOLD as
an application of DDAD. However, this algorithm is general
and can be used wherever we need to combine subspace
decomposition with anomaly detection via OCSVM. With
DDAD, when combing different dictionary learning algorithms
with an appropriate choice of sparsity, several complex data
manifolds (subspaces) can be considered and can be linked
with OCSVM directly via the representation error. Depending
on the number of dictionary atoms (in a general context) or
union of circulants (in a structural shift-invariant context) mul-
tiple “normal” classes and behaviors can be accommodated.
Our synthetic experiments showed that is better to rely on
OCSVM rather than fixed thresholds, which may have a non-
linear effect on the performance instead of the linear one of a
regularization-based approach as ours. Currently, we are also
exploring applications of DDAD in shape discrimination and
object segmentation in other domains.

This paper relies on segmental analysis and expert myocar-
dial delineation to reduce the bias of any errors introduced
by automated segmentation algorithms. Even with standard
cine MRI, myocardial segmentation accuracy (measured with
Dice Overlap criteria) is reported to be close to 80%, based
on recent automated atlas-based state-of-the-art algorithms
[39], [40]. With such accuracy, segmentation errors, of 20%
e.g., can have undesirable effects to the fidelity of extracted
BOLD signals. Since we focus on the detection part here,
we opted to use expert delineations. Nonetheless, in clinical
settings full automation is desirable and we are investigating
segmentation algorithms tailored for CP–BOLD [41], [42] to
fill this need. Also, this paper does not use intensity-based
registration to elastically register sequential images within
the sequence. Again this is done to avoid any registration
errors, since it is known that the BOLD effect adversely
affects myocardial registration accuracy. As segmentation and
registration accuracy for CP–BOLD increases, we hope to
obtain ischemia extent maps and quantification at the pixel-
level, which will also increase the number of available time
series. As our synthetic experiments show, this will in fact

benefit the algorithm.
Overall performance is also expected to increase moving

from 2D to 3D, when full cardiac coverage cine BOLD
sequences using free-breathing approaches [43] become avail-
able. We rely on radially-defined myocardial wall thickness
to assess myocardial function, which is not translatable to the
pixel-level. We will need to adopt either pixel-level definitions
of Jacobian or strain measures (including radial and circum-
ferential strain) from their appropriate tensors [16], [44], [15],
[17], to obtain pixel-level time series of myocardial function.
Currently, we do not enforce any spatial correlation among
time series; however we can readily adopt the spatial constraint
in our formulation, as done in [12]. At the single pixel-level,
adding such spatial constraints should help produce smoother
(and contiguous) ischemia maps. Finally, our validation is
limited solely due to inherent difficulties of relating ischemia
(from CP–BOLD) with infarct (from LGE). It is well known
that the ischemic territory (area at risk) could be larger than
the infarcted territory, and that a one-to-one correspondence
does not exist, since ischemia is a trigger (hence an early
effect), while infarction is a consequence (i.e. occurs after
prolonged ischemia). We are in the process of tandem PET-
MRI experiments in a dedicated scanner, which ideally should
provide co-registered PET perfusion and BOLD MRI data
offering additional validation. Our method has been tested in
cases where single-vessel disease is present, i.e. unaffected
(remote) territories are expected to be more populous. In the
case of multi-vessel disease, modifications on the assumptions
and the methodology might be necessary; however, current
animal models cannot readily emulate such disease scenarios.
Thus, we are also in the process of recruiting patient and
volunteer populations to test the method on humans with a
larger range of ischemia conditions. However, the presentation
of both of these outcomes is the subject of a future manuscript.

In conclusion, we showed that the proposed approach can
reliably detect ischemic territories with CP–BOLD MRI at
rest. It learns and represents normal patterns of signal intensity
and myocardial function from remote territories efficiently,
taking advantage of a unique structurally sparse decomposition
framework combined with anomaly detection performed via
OCSVM to iteratively identify normal (remote) and anomalous
(ischemic) behaviors. To aid visualization and diagnosis, a
probabilistic inference step provides confidence for ischemia
likelihood. When combined with advances in myocardial seg-
mentation and registration tailored to the BOLD effect, our
approach will help to accelerate the clinical translation of this
truly non-invasive and repeatable method for pixel-level and
transmural assessment of ischemia.
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