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SUMMARY

The accurate formation of synaptic vesicles (SVs)
and incorporation of their protein cargo during endo-
cytosis is critical for the maintenance of neurotrans-
mission. During intense neuronal activity, a transient
and acute accumulation of SV cargo occurs at the
plasmamembrane. Activity-dependent bulk endocy-
tosis (ADBE) is the dominant SV endocytosis mode
under these conditions; however, it is currently un-
known how ADBE mediates cargo retrieval. We
examined the retrieval of different SV cargo mole-
cules during intense stimulation using a series of
genetically encoded pH-sensitive reporters in
neuronal cultures. The retrieval of only one reporter,
VAMP4-pHluorin, was perturbed by inhibiting
ADBE. This selective recovery was confirmed by
the enrichment of endogenous VAMP4 in purified
bulk endosomes formed by ADBE. VAMP4 was also
essential for ADBE, with a cytoplasmic di-leucine
motif being critical for this role. Therefore, VAMP4
is the first identified ADBE cargo and is essential
for this endocytosis mode to proceed.

INTRODUCTION

The efficient formation of synaptic vesicles (SVs) from the

plasma membrane after neurotransmitter release is critical to

maintain the fidelity of neurotransmission across a wide range

of stimulation intensities. Distinct SV endocytosis modes are

present within central nerve terminals that are triggered by

discrete patterns of neuronal activity. These are ultrafast endo-

cytosis (Watanabe et al., 2013, 2014), clathrin-mediated endo-

cytosis (CME), which is prevalent during mild stimulation

(Granseth et al., 2006), and activity-dependent bulk endocy-

tosis (ADBE), which is only triggered during intense neuronal

activity (Clayton et al., 2008; Clayton and Cousin, 2009a).

The route for SV formation differs between these endocytosis

modes, with CME generating single SVs, whereas both ultra-

fast and ADBE generate endosomes directly from the plasma

membrane from which SVs can then bud (Kokotos and Cousin,

2015).
A key aspect in the formation of functional SVs is the incorpo-

ration of the correct protein cargo with the appropriate stoichi-

ometry. CME utilizes both the adaptor protein complex AP-2

and a series of monomeric adaptor proteins to ensure a high fi-

delity of SV cargo clustering and incorporation (Diril et al.,

2006; Kelly and Owen, 2011; Koo et al., 2011; Rao et al.,

2012). In contrast, very little is known regarding the mechanism

of SV cargo retrieval from the plasma membrane in either ultra-

fast endocytosis or ADBE. Recent studies have hinted that cargo

sorting occurs primarily at the endosome for both modes

(Cheung and Cousin, 2012; Kononenko et al., 2014; Watanabe

et al., 2014), suggesting that endosomes are formed in a rela-

tively non-specific manner and may resemble the plasma mem-

brane in composition (Kononenko et al., 2014). During ADBE the

generation of ‘‘bulk’’ endosomes is rapid and synchronous with

neuronal activity (Clayton et al., 2008). This event is widely

thought to be clathrin independent, since inactivation or knock-

down of clathrin does not impact on either the formation of bulk

endosomes (Heerssen et al., 2008; Kasprowicz et al., 2008) or

the recovery of SV cargo during high-frequency stimulation (Ko-

nonenko et al., 2014).

We investigated whether directed sorting of SV cargo occurs

at the plasma membrane during ADBE, since this will ultimately

impact on the molecular composition of SVs generated via this

endocytosis mode. We examined the retrieval of a series of

exogenously expressed SV cargo molecules, and we found

that only one was preferentially trafficked via ADBE—VAMP4.

Endogenous VAMP4 was selectively enriched on bulk endo-

somes and was also essential for ADBE to proceed, indicating

that it is an essential ADBE cargo molecule.
RESULTS

VAMP4 Is Selectively Retrieved from the Plasma
Membrane by ADBE
ADBE is triggered by intense neuronal stimulation and is the

dominant mode of SV retrieval during such stimuli (Clayton

et al., 2008). However, little is known regarding SV cargo selec-

tion mechanisms by this endocytosis mode. To investigate this,

we examined the trafficking of a series of genetically encoded re-

porters of SV cargo that have a pH-sensitive GFP moiety

(pHluorin) fused to a luminal domain. Such reporters are widely

used to monitor both SV fusion and CME, since pHluorin fluores-

cence is quenched in acidic environments such as the SV interior
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Figure 1. VAMP4-pHluorin Displays a Slow Fluorescent Downstroke
Only after Intense Stimulation

(A) Representative images of VAMP4-pHluorin (VAMP4-pH) fluorescence in

hippocampal (HPC) neurons in response to a train of 400 action potentials

delivered at 40 Hz. Images are false colored with the panels indicating fluo-

rescence at rest (left), during stimulation (40 Hz, middle), or 2 min after stim-

ulation (Recovery, right). White arrows indicate nerve terminals that increase

after the stimulation is complete, whereas red arrows show nerve terminals

that continue to decrease. Scale bar, 10 mm.

(B and D) Hippocampal or cerebellar (CGN) neurons transfected with VAMP4-

pH were stimulated at 40 Hz, 10 s (indicated by bar). The time course of the

average (Avg) VAMP4-pH response in nerve terminals is displayed as DF/F0 ±

SEM (normalized to the total pHluorin pool [NH4]). This average trace can be

dissected into two discrete populations that display either slow increases (Up)

or decreases (Down) after stimulation in either (B) HPCs or (D) CGNs.

(C and E) HPCs (C) or CGNs (E) transfected with VAMP4-pH were stimulated

with a train of either low-frequency (10 Hz, 30 s) or high-frequency (40 Hz, 10 s)

stimulation. The percentage of Up (open bars) and down (Dn, solid bars) re-

sponses in individual nerve terminals in displayed, ± SEM (HPC: n = 4 [10 Hz,

40 Hz]; CGN: n = 7 [40 Hz], n = 5 [10 Hz]; ***p < 0.001; *p < 0.05; two-way

ANOVA).
(Kavalali and Jorgensen, 2014). SV exocytosis is therefore re-

ported as an increase in fluorescence, whereas SV endocytosis

is monitored as a decrease, since CME is rate limiting when

compared to the rate of SV acidification (Sankaranarayanan

and Ryan, 2000; Atluri and Ryan, 2006) (but see Egashira et al.,

2015). This interpretation becomes more complicated when
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monitoring ADBE, however, since the initial step in this pathway

is the formation of a bulk endosome, which is present in nerve

terminals for at least 30 min following its generation (Cheung

et al., 2010). From first principles the larger interior of the bulk en-

dosome when compared to a SV (approximately 50-fold for a

150 nm endosome) should mean it takes longer to acidify. This

should retard the rate of the post-stimulation fluorescence

decay, rendering interpretation of the pHluorin signal a much

more complex process.

We first examined the trafficking of VAMP4-pHluorin during

intense neuronal activity, since this reporter displays a unique

activity-dependent fluorescent profile in comparison to other

pHluorin-tagged SV cargo. VAMP4-pHluorin exhibits a fluores-

cence decrease when challenged with action potentials followed

by a slow post-stimulation increase (Raingo et al., 2012),

suggesting its activity-dependent retrieval from the plasma

membrane occurs only during intense stimulation. The post-

stimulation, activity-dependent increase is thought to be asyn-

chronous release (Raingo et al., 2012), which is proposed to be

mediated by SVs generated by ADBE (Evstratova et al., 2014);

thus, VAMP4-pHluorin may be a potential ADBE cargo. When

cultured hippocampal neurons expressing VAMP4-pHluorin

were stimulated with a train of high-frequency action potentials

(40 Hz, 10 s) to evoke ADBE, they displayed an average response

consisting of an immediate downstroke and slow recovery to

baseline (Figures 1A and 1B) (Raingo et al., 2012). However,

when individual nerve terminal responses were assessed, the

average response could be dissected into two discrete post-

stimulation fluorescent profiles (Figure 1B). Approximately 40%

of nerve terminals displayed a slow decrease in fluorescence

after stimulation, whereas 60% displayed an increase (Fig-

ure 1C). We next assessed the evoked VAMP4-pHluorin profile

in cultures of cerebellar neurons since a larger proportion of their

nerve terminals display ADBE (Clayton and Cousin, 2009b), most

likely due to chronic stimulation in culture (Burgoyne and Cam-

bray-Deakin, 1988). In these neurons 65%of nerve terminals dis-

played a slow fluorescent decrease and only 35% displayed an

increase, correlating with the higher prevalence of ADBE in this

culture system (Figures 1D and 1E).

We hypothesized that this slow fluorescent downstroke may

represent the acidification of bulk endosomes after their rapid

activity-dependent generation by ADBE. We tested this by

performing a series of corroborating experiments. First we deter-

mined the number of nerve terminals displaying slow VAMP4-

pHluorin downstrokes in response to 10 Hz stimulation, a

protocol that primarily triggers CME and not ADBE (Clayton

et al., 2008). Very few nerve terminals displayed a VAMP4-

pHluorin downstroke in either hippocampal or cerebellar neu-

rons under these stimulation conditions (Figures 1C and 1E).

Thus, when ADBE is not triggered by intense stimulation, the

number of slow VAMP4-pHluorin downstrokes is negligible.

To determine whether slow VAMP4-pHluorin downstrokes

reflect bulk endosome acidification after ADBE, we examined

how the fluorescent response is altered when this endocytosis

mode was inhibited. We employed a stimulation 1 (S1) and stim-

ulation 2 (S2) protocol in cerebellar cultures, where two identical

high-frequency trains (40 Hz, 10 s) were applied 10 min apart

(Figures 2A and 2B). A very similar proportion of nerve terminals



Figure 2. Slow VAMP4-pHluorin Downstrokes Are Arrested during

Inhibition of ADBE

(A) Cerebellar neurons transfected with VAMP4-pHluorin (VAMP4-pH) were

stimulated with two sequential action potential trains (S1 and S2) 10 min apart

(both 40 Hz, 10 s). Cultures were incubated with 2 mM CT99021 (CT) 10 min

prior to S1 and then continuously onward where indicated.

(B) Representative time course of the control S1 VAMP4-pH response

dissected into fluorescent upstrokes (Up) or downstrokes (Down) is displayed

asDF/F0 ± SEM (normalized to the total pHluorin pool [NH4]). The stimulation is

indicated by the bar.

(C) The percentage of Up (open bars) and Down (Dn, solid bars) responses in

individual nerve terminals in either the absence (Ctrl) or presence of CT99021

(CT) are displayed ± SEM (n = 7 Ctrl; n = 5 CT; **p < 0.01; two-way ANOVA).

(D–G) Cerebellar neurons were transfected with either empty shRNA or shRNA

against syndapin I and either (D and E) VAMP4-pHluorin (VAMP4-pH) or (F and

G) synaptophysin-pHluorin (syp-pH). Cultures were stimulated with an action

potential train (40 Hz, 10 s).

(D and F) Average time course in neurons expressing either empty vector

(Empty, blue) or shRNA against syndapin I (Syd KD, purple) is displayed as DF/

F0 ± SEM (normalized to the total pHluorin pool [NH4] for VAMP4-pH and peak

fluorescence for syp-pH). The bar indicates the period of stimulation.

(E) The percentage of Up (open bars) and Down (Dn, solid bars) VAMP4-pH

responses in individual nerve terminals are displayed, ± SEM (n = 5 Empty;

n = 4 Syd KD; *p < 0.05; two-way ANOVA).
displaying evoked slow downstrokes was observed at both S1

and S2, indicating the reproducibility of the response (Figure 2C).

We assessed the effect of arresting ADBE by inhibiting glycogen

synthase kinase 3 (GSK3). Antagonism of this protein kinase has

no effect on ADBE during an initial high-frequency stimulus;

however, ADBE is inhibited during subsequent identical action

potential challenges (Evans and Cousin, 2007; Clayton et al.,

2010). This was confirmed by monitoring uptake of large fluores-

cent dextran molecules (tetramethylrhodamine-dextran [TMR-

dextran]) that selectively report ADBE (Figure S1A). When S1

and S2 experiments were performed in the presence of the

GSK3 antagonist CT99021 (2 mM), there was no difference in

the proportion of nerve terminals displaying slow VAMP4-

pHluorin downstrokes during the first stimulus train (Figure 2C).

However, when S2 responses were monitored (at which time

ADBE is inhibited), there was a significant reduction in the num-

ber of nerve terminals displaying a downward fluorescent

response (Figure 2C). Thus, inhibition of ADBE greatly diminishes

the proportion of nerve terminals displaying activity-dependent

slow VAMP4-pHluorin downstrokes, suggesting this downstroke

reflects bulk endosome acidification.

To confirm that slow VAMP4-pH fluorescent downstrokes

were ADBE dependent, we silenced expression of the essential

ADBE molecule syndapin I using a characterized short hairpin

RNA (shRNA) vector (Clayton et al., 2009). Inhibition of ADBE

was confirmed by monitoring TMR-dextran uptake during high-

frequency stimulation (Figure S1C). Syndapin I knockdown

dramatically altered the average VAMP4-pHluorin response,

with almost all nerve terminals displaying an immediate evoked

increase in signal (Figure 2D). Indeed, syndapin I knockdown

reduced the number of nerve terminals displaying slow

VAMP4-pHluorin downstrokes to almost zero (Figure 2E). This

provides compelling evidence that ADBE is responsible for these

evoked downstrokes during intense neuronal activity.

If VAMP4-pHluorin is specifically retrieved via ADBE, its fluo-

rescent signal should be inaccessible to impermeant weak

acid, since it will be trapped inside a slowly acidifying bulk endo-

some directly after intense stimulation. To test this, an imperme-

ant acid solution was applied immediately after high-frequency

(40 Hz) stimulation in either cerebellar or hippocampal neurons

to quench the fluorescent signal from the surface reporter.

Approximately 40% of the VAMP4-pHluorin response was resis-

tant to quenching when compared to a pre-stimulus baseline in

either neuronal subtype (Figures 3A and 3B). Importantly, com-

plete quenching of the VAMP4-pHluorin response was observed

at 10 Hz stimulation, where ADBE is not triggered (Figure 3B).

This indicates that VAMP4-pHluorin is located inside a slowly

acidifying compartment such as a bulk endosome after intense

stimulation and that VAMP4 is a bone fide cargo for ADBE.

Most SV Cargoes Are Not Selectively Recovered
by ADBE
To determine whether other SV cargoes are also recovered by

ADBE, we performed a surface quenching experiment in cere-

bellar neurons using synaptophysin-pHluorin (syp-pHluorin) as
(F) Quantification of the average time constant (t) ± SEM of the evoked syp-pH

response (n = 8 Empty; n = 5 Syd KD; ns, non-significant; Student’s t test).

Neuron 88, 973–984, December 2, 2015 ª2015 The Authors 975



Figure 3. VAMP4-pHluorin Fluorescence Is Inaccessible to Acid

after Intense Stimulation

(A) Cerebellar (CGN) or hippocampal (HPC) neurons transfected with VAMP4-

pHluorin (VAMP4-pH) were stimulated with either low-frequency (10 Hz, 30 s;

red) or high-frequency (40 Hz, 10 s; black) stimulation indicated by bar. The

representative VAMP4-pH response in CGNs during challenge with acidic

buffer (illustrated by shaded regions) either before (A0) or directly after (A1)

stimulation is displayed. The dotted line illustrates the baseline signal during

exposure to acid.

(B) Quantification of the accessibility of acid solution after stimulation (DA1/

DA0) in both CGN and HPC neurons (CGN: n = 5 [10 Hz], n = 4 [40 Hz]; HPC:

n = 3 [10 Hz], n = 4 [40 Hz]; **p < 0.01; ***p < 0.001; Student’s t test).

(C) CGNs transfected with synaptophysin-pHluorin (syp-pH) were stimulated

for 10 s at 40 Hz (indicated by bar). The average syp-pH response during

challenge with acidic buffer (illustrated by shaded regions) either before (A0) or

after stimulation (A1 and A2) is displayed as DF/F0 ± SEM. The dotted line

illustrates the baseline signal during exposure to acid.

(D) Quantification of the accessibility of acid solution at either pulse 1 (DA1/

DA0) or 2 (DA2/DA0) as a percentage of total quenchable syp-pH fluorescence

(n = 12; ns; one-way ANOVA).

Figure 4. Inhibition of ADBEDoesNot Affect the Retrieval ofMultiple

SV Cargo Molecules

(A) Cerebellar neurons transfected with the pHluorin reporters synaptobrevin

II-pHluorin (sybII-pH), synaptotagmin-1-pHluorin (syt1-pH), vGLUT-pHluorin

(vGLUT-pH), or synaptophysin-pHluorin (syp-pH) were stimulated with two

sequential action potential trains (S1 and S2) 10 min apart (both 40 Hz, 10 s).

Cultures were incubated with 2 mM CT99021 (CT) 10 min prior to S1 and then

continuously onward.

(B–E) Average time course of the fluorescent response of either sybII-pH (B),

syt1-pH (C), vGLUT-pH (D), or syp-pH (E) presented asDF/F0 ± SEMat both S1

(blue) and S2 (red). In all cases, the bar indicates the period of stimulation.

(F) Quantification of the average time constant (t) ± SEM of the evoked sybII-

pH (Syb), syt1-pH (Syt1), vGLUT-pH (vGLUT), and syp-pH (Syp) response for

both S1 (blue) and S2 (red) traces (n = 4 sybII-pH; n = 10 syt1-pH; n = 5 vGLUT-

pH; n = 6 syp-pH; ns; one-way ANOVA).
a typical SV cargo. In contrast to VAMP4-pHluorin, application of

acid pulses immediately after high-frequency stimulation

decreased the syp-pHluorin response to near baseline levels

(Figures 3C and 3D). Thus, virtually all syp-pHluorin fluorescence

is present inside rapidly acidifying compartments (such as SVs)

immediately after high-frequency stimulation. This suggests

that syp-pHluorin is not recovered by ADBE during intense

neuronal activity.

To determine whether a series of other SV cargo molecules

could be recovered by ADBE, we performed S1 and S2 experi-

ments in cerebellar neurons with pHluorin-tagged versions of

either syp-pHluorin, synaptobrevin II (sybII-pHluorin), synapto-

tagmin-1 (syt1-pHluorin), or the vesicular glutamate transporter

(vGLUT1-pHluorin) (Figure 4A). In all cases the evoked fluores-
976 Neuron 88, 973–984, December 2, 2015 ª2015 The Authors
cent response was unaltered between the S1 and S2 challenge,

in terms of the extent of the fluorescent response or the kinetics

of fluorescence recovery (Figure S2). When these experiments

were repeated in the presence of CT99021, there was no change

in either the extent of the pHluorin signal (Figure S3B) or the ki-

netics of fluorescence recovery (Figures 4B–4F) between S1



Figure 5. CME Inhibition Arrests SV Cargo

Retrieval Except VAMP4-pHluorin during

Intense Stimulation

(A) Cerebellar neurons were stimulated (40 Hz, 10

s) in the presence of 50 mM TMR-dextran with or

without (Ctrl) 15 mM pitstop-2. Quantification of

TMR-dextran puncta per field ± SEM is normalized

to Ctrl (n = 7 for both; ns; Student’s t test).

(B and C) Cerebellar neurons transfected with

either synaptophysin-pHluorin (syp-pH) or

VAMP4-pHluorin (VAMP4-pH) were stimulated

(40 Hz, 10 s) in the presence or absence of 15 mM

pitstop-2. The average time courseDF/F0 ± SEM is

displayed for syp-pH (B) and VAMP4-pH (C) for

Ctrl (S1, dark blue) and pitstop-2 (S2, light blue)

neurons (syp-pH: n = 6; VAMP4-pH: n = 3;

***p < 0.001; two-way ANOVA).

(D) Hippocampal (HPC) neurons transfected with

either scrambled (Scr) or shRNA against clathrin

heavy chain (CHC KD) were stimulated (40 Hz,

10 s) in the presence of 50 mM TMR-dextran.

Quantification of dextran puncta per mm ± SEM is

normalized to Scr control (n = 20 Scr; n = 17 CHC;

ns; Student’s t test).

(E and F) HPCs transfected with either syp-pH or

VAMP4-pH and either Scr or CHC KD shRNAwere

stimulated (40 Hz, 10 s) as indicated by bar. The average time course DF/F0 ± SEM is displayed for syp-pH (E) and VAMP4-pH (F) for Scr control (dark blue) and

CHC KD (light blue) neurons (syp-pH: n = 9 Scr, n = 6 CHC KD; VAMP4-pH: n = 5 Scr, n = 4 CHC KD; ***p < 0.001; two-way ANOVA).
and S2 for any reporter. This suggests that inhibition of ADBE

does not impact on the recovery of most SV cargoes during

intense stimulation, a premise supported by the fact that a sec-

ond maneuver that arrests ADBE (inhibition of cyclin-dependent

kinase 5 with the antagonist roscovitine; Figure S1B) also had no

effect on activity-dependent syp-pHluorin retrieval (Figures S3C

and S3D). This was confirmed by the absence of effect on the

evoked syp-pHluorin response in cerebellar neurons where

expression of the ADBE molecule syndapin I had been silenced

(Figures 2F and 2G; Figure S1D). Thus, inhibition of ADBE does

not affect the trafficking of exogenously expressed SV cargo.

To ensure that the lack of retrieval of typical SV cargo by ADBE

was not specific to cerebellar neurons, we repeated this experi-

ment in primary cultures of hippocampal neurons expressing

syp-pHluorin. These neurons responded to both stimulus trains

in a very similar manner to cerebellar neurons (Figure S4B).

When incubated with CT99021 to inhibit ADBE during the sec-

ond stimulus train, there was no difference in either the extent

of syp-pHluorin response or the kinetics of its fluorescence re-

covery (Figures S4C and S4D) compared to untreated neurons.

Thus, inhibiting ADBE does not impact on the trafficking of a se-

ries of exogenously expressed SV cargo molecules during

intense neuronal activity in multiple culture systems.

Most SV Cargoes Are Retrieved by CME during High-
Intensity Stimulation
Wehave shown that VAMP4-pHluorin is selectively recovered by

ADBE during intense stimulation. However, the endocytosis

mode responsible for recovery of other SV cargo remains un-

clear. CME is maximally active during intense stimulation

(Clayton et al., 2008) and therefore may be responsible for the re-

covery of these cargo molecules. To test this, we examined the
trafficking of syp-pHluorin after inhibition of CME in cerebellar

neurons. CME was arrested by exposure to the clathrin inhibitor

pitstop-2 (15 mM) (von Kleist et al., 2011). Pitstop-2 had no effect

on ADBE, confirmed by its absence of effect on TMR-dextran

uptake evoked by frequency stimulation (Figure 5A). In contrast,

pitstop-2 abolished the fluorescence recovery of syp-pHluorin

after an identical stimulus train (Figure 5B). Thus, syp-pHluorin

appears to be predominantly trafficked via CME even during

intense neuronal activity. Prolonged exposure to pitstop-2 de-

acidifies SVs (Hua et al., 2013), potentially explaining the arrest

of the syp-pHluorin fluorescence recovery. However, this effect

only became apparent beyond the timescale of our experiments;

therefore, SV deacidification is not responsible for this block of

syp-pHluorin retrieval (Figure S5).

We next determined whether arresting CME interfered with

the evoked VAMP4-pHluorin response during high-frequency

stimulation. We predicted that the fluorescent downstroke

would not be affected by this maneuver, since it would be in-

dependent of CME. This was the case, with the VAMP4-

pHluorin response displaying an initial upstroke followed by a

slow post-stimulation fluorescence decrease to below base-

line levels when CME was arrested using pitstop-2 (Figure 5C).

This response was observed in all nerve terminals investi-

gated. Thus, the slow VAMP4-pHluorin downstroke is unaf-

fected by the arrest of CME, confirming its dependence on

ADBE.

To confirm these observations, we knocked down expression

of clathrin heavy chain (CHC) using shRNA oligonucleotides

(Royle et al., 2005). This shRNA approach reduced endogenous

CHC levels in cerebellar neurons, but surprisingly it also inhibited

TMR-dextran uptake (Figures S6A and S6C). This inhibition was

most likely due to chronic arrest of clathrin-dependent SV
Neuron 88, 973–984, December 2, 2015 ª2015 The Authors 977



budding from bulk endosomes, since cerebellar neurons are

cultured in permanently depolarizing conditions (Burgoyne and

Cambray-Deakin, 1988). In agreement, CHC knockdown had

no effect on TMR-dextran uptake in cultured hippocampal neu-

rons (Figure 5D). We therefore examined the effect of CHC

knockdown on syp-pHluorin retrieval in hippocampal neurons,

since its effect in cerebellar neurons cannot be interpreted due

to off-target effects on ADBE (Figure S6C). Neurons expressing

scrambled shRNA exhibited a characteristic syp-pHluorin

response, whereas those expressing CHC shRNA exhibited a

greatly retarded fluorescence recovery after stimulation (Fig-

ure 5E). Thus, inhibition of CME by either CHC knockdown or a

clathrin inhibitor significantly impacts on syp-pHluorin retrieval

during high-frequency stimulation, indicating that CME is the

dominant SV retrieval mode for this SV cargo even during intense

neuronal activity. We also determined the effect of CHC knock-

down on the VAMP4-pHluorin response in hippocampal neu-

rons. Neurons expressing CHC shRNA displayed a similar

VAMP4-pHluorin profile to pitstop-2-treated neurons, with an

initial increase followed by a slow post-stimulation downstroke

(Figure 5F). Thus, the slow VAMP4-pHluorin downstroke, which

is only triggered during high intensity, was unaffected by two in-

dependent maneuvers that arrest CME, confirming its depen-

dence on ADBE.

Endogenous VAMP4 Is Retrieved by ADBE
We have shown that VAMP4-pHluorin is a genetically encoded

reporter of ADBE. We next determined whether endogenous

VAMP4 was also selectively accumulated by ADBE. To achieve

this we performed biochemical fractionation experiments to

enrich bulk endosomes from neuronal cultures. Cerebellar neu-

rons are excellent for such studies, since they can be cultured

to greater than 95% homogeneity (Burgoyne and Cambray-Dea-

kin, 1988). We confirmed the enrichment of a bulk endosome

fraction by tracking newly formed endosomes and SVs using

the fluorescent dye FM1-43. After loading FM1-43 in the

absence or presence of a strong stimulus, the neurons were

lysed by mechanical disruption. The post-nuclear supernatant

was then fractionated using discontinuous Nycodenz gradients

after a short spin to remove cellular debris (Figure 6A) (Barysch

et al., 2010). Analysis of FM1-43 fluorescence in the stimulated

fractions showed two distinct peaks, corresponding to endo-

somes (fraction 2) and SVs (fraction 5) (Figure 6B) (Barysch

et al., 2010). To confirm that these fractions were enriched for

bulk endosomes and SVs, respectively, we performed an iden-

tical experiment using the fluid phasemarker horse radish perox-

idase (HRP). Morphological analysis confirmed the enrichment

of HRP-labeled endosomes in fraction 2 and HRP-labeled SVs

in fraction 5when comparing stimulated to unstimulated cultures

(Figures 6C–6G).

Next we probed for the presence of endogenous SV cargo by

western blotting. This was achieved by comparing the presence

of these cargoes in endosome and SV fractions from the same

preparation of stimulated cultures. The endogenous SV cargoes

syt1, syp, sybII, and vGLUT were all present in both the bulk en-

dosome and SV fraction (Figures 6H and 6I). In contrast, VAMP4

was almost exclusively present in the endosome fraction

(Figures 6H and 6I). Thus, bulk endosomes do contain endoge-
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nous SV cargo; however, only VAMP4 is enriched within this

compartment.

To confirm the localization of VAMP4 to bulk endosomes

in vivo, we performed ultrastructural analyses using silver-

enhanced immunogold staining in either resting or stimulated

(40 Hz, 10 s) cerebellar cultures. We observed a high degree of

VAMP4 localization to bulk endosomes in stimulated nerve ter-

minals, confirming its recovery via ADBE (Figure 7A).

VAMP4 Is Required for ADBE
One key remaining question is whether VAMP4 simply repre-

sents an ADBE cargo or whether it is essential for ADBE to

proceed. We determined this by using validated shRNA oligonu-

cleotides against VAMP4 (Bal et al., 2013) (Figures S7A–S7C).

Knockdown of VAMP4 had no effect on the syp-pHluorin

response evoked by 40Hz stimulation, indicating no essential

role in CME (Figure S7D). However, under identical stimulation

conditions VAMP4 knockdown abolished TMR-dextran uptake,

an inhibition fully rescued by expression of wild-type VAMP4-

pHluorin (Figures 7B and 7C). Therefore, in addition to being

the first identified ADBE cargo molecule, VAMP4 is essential

for this key endocytosis mode.

The essential requirement for VAMP4 in ADBE suggests it

must share key interactions with other endocytosis molecules

to direct this process. One potential association is with adaptor

proteins, since a di-leucine motif on the cytoplasmic N terminus

of VAMP4 coordinates such interactions (Peden et al., 2001). To

test this we performed a rescue experiment in VAMP4 knock-

down neurons using a VAMP4 mutant (L25A) that disrupts this

interaction (Peden et al., 2001; Raingo et al., 2012). We observed

no rescue of TMR-dextran uptake with this mutant (Figures 7B

and 7C), suggesting interactions between VAMP4 and adaptor

proteins are essential for progression of ADBE.

We next examined whether disrupted adaptor protein interac-

tions affected the trafficking of VAMP4-pHluorin. This mutation

abolished the fast activity-dependent VAMP4-pHluorin down-

stroke in both cerebellar and hippocampal neurons in agreement

with previous work (Raingo et al., 2012) (Figures 8A and 8B).

Furthermore, the L25A mutant displayed a similar average traf-

ficking profile to wild-type VAMP4-pHluorin in neurons where

ADBE had been inhibited (compare Figures 8A and 8B with Fig-

ure 2C). This effect was not due to a dominant-negative effect on

ADBE by L25A overexpression, since overexpression of this

mutant or wild-type VAMP4-pHluorin has no effect on evoked

TMR-dextran uptake (Figure S7E). Thus, adaptor interactions

of VAMP4 are essential for both its trafficking via ADBE and for

ADBE itself.

The essential requirement for VAMP4 in ADBE provided us

an opportunity to examine how ablation of this endocytosis

mode alters presynaptic function during sustained and intense

neuronal activity. To achieve this, we examined the trafficking

of syp-pHluorin in response to four consecutive trains of

high-frequency action potentials (40 Hz, 10 s) in hippocampal

neurons transfected with either VAMP4 shRNA or a scrambled

control. The syp-pHluorin response in control neurons was

highly reproducible, displaying a reduction in the peak fluores-

cent response with each consecutive action potential train,

presumably due to short-term depletion of SVs (Figures 8C



Figure 6. Endogenous VAMP4 Is Selectively

Accumulated via ADBE

(A) Cerebellar neurons were stimulated with

50mMKCl for 2min in presence of 10 mMFM1-43.

Cells were washed, mechanically broken, and

centrifuged to separate intracellular compart-

ments from broken cells and nuclei (PNP, post

nuclear pellet). The post nuclear supernatant

(PNS) was centrifuged though discontinuous

Nycodenz gradients as illustrated. The fractions

collected are illustrated, with the endosome (2)

and SV (5) fractions highlighted.

(B) FM1-43 fluorescence from either basal (blue

bars) or stimulated (red bars) fractions is pre-

sented as arbitrary fluorescence ± SEM (n = 6;

Student’s t test; ***p < 0.001; **p < 0.01; *p < 0.05).

Fraction 2 (endosomes) and fraction 5 (SVs) are

highlighted.

(C–G) An identical procedure was performed to

load neurons with 10 mg/ml HRP, with fractions 2

(endosomes) and 5 (SVs) processed for electron

microscopy. HRP-labeled structures greater than

80 nm were abundant in stimulated (Stim) (D), but

not basal (C), samples from fraction 2 (Fr 2),

whereas HRP-labeled SVs (30–60 nm) were

abundant in stimulated (F), but not basal (E),

samples from fraction 5 (Fr 5). Scale bar, 250 nm

for all images. (G) Quantification of the evoked

number of HRP-labeled structures per field. Yel-

low bars represent fraction 2, and purple bars

represent fraction 5 (n = 15; Student’s t test; SVs

versus endosomes [Endo]; ***p < 0.001).

(H) Stimulated endosome and SV fractions were

separated by SDS-PAGE and transferred to

nitrocellulose membranes. Representative immu-

noblots for VAMP4, synaptotagmin-1 (Syt1), syn-

aptophysin (Syp), synaptobrevin II (SybII), and

vGLUT for endosome (Endo) and SVs fractions are

shown.

(I) Quantification of the ratio of SV cargo between

endosomes and SVs normalized for total protein

content ± SEM (n = 3; one-way ANOVA to VAMP4;

***p < 0.001; **p < 0.01).
and 8D). VAMP4 knockdown neurons displayed a greater

reduction in peak height during the latter stimulus trains when

compared to the scrambled shRNA controls (Figures 8C and

8D). Importantly, the time constant of syp-pHluorin retrieval

was not significantly different between VAMP4 knockdown

and control neurons (Figure 8E), indicating that the reduction

in peak height was not due to modulation of CME. Therefore,

the reduction in presynaptic performance in VAMP4 knock-

down neurons is most likely due to a reduction in SVs gener-

ated via ADBE, highlighting the importance of this endocytosis

mode in maintaining neurotransmission during periods of sus-

tained neuronal activity.
Neuron 88, 973–984,
DISCUSSION

During brief bursts of intense neuronal

activity, SV cargo and membrane tran-

siently accumulate at the plasma mem-

brane of central nerve terminals. ADBE
is the dominant SV endocytosis mode under these conditions;

however, it was unclear whether ADBE actively sorted cargo at

the plasma membrane, since both clathrin and adaptor proteins

are essential for SV generation from bulk endosomes (Heerssen

et al., 2008; Kasprowicz et al., 2008; Cheung and Cousin, 2012;

Kononenko et al., 2014). We have identified one SV cargo,

VAMP4, which is specifically sorted into endosomes during

ADBE and is also essential for ADBE to occur.

The generation of bulk endosomes via ADBE is a clathrin-inde-

pendent process (Heerssen et al., 2008; Kasprowicz et al., 2008).

Recent studies using syt1-pHluorin appeared to support this

idea, since neither AP-2 nor clathrin knockdown had no effect
December 2, 2015 ª2015 The Authors 979



Figure 7. VAMP4 Is Essential for ADBE

(A) Cerebellar neurons were either left to rest (Basal) or challenged with an

action potential stimulus (40 Hz, 10 s) and then processed for immunoelectron

microscopy. Representative images show nerve terminals labeled with

VAMP4 antibodies after immunogold detection and silver enhancement.

Almost all silver particles were localized to endosomal structures after 40 Hz

stimulation (indicated by arrows). Scale bars, 200 nm in all cases.

(B) Cerebellar neurons were transfected with either scrambled shRNA (Scr) or

VAMP4 shRNA (KD) and co-expressed with either GFP, wild-type (WT V4), or

L25A VAMP4-pHluorin (L25A V4). Neurons were stimulated with a train of

action potentials (40 Hz, 10 s) in the presence of 50 mM TMR-dextran (Dex).

Images display transfected neuron (green), TMR-dextran uptake (red), and a

merged image for all experimental conditions. Arrowheads indicate nerve

terminals that accumulated TMR-dextran. Scale bar, 15 mm.

(C) Quantification of dextran puncta per mm ± SEM normalized to Scr control

(n = 23 Scr; n = 21 VAMP4 KD + GFP; n = 23 VAMP4 KD + WT VAMP4-pH;

n = 26 VAMP4 KD + L25A VAMP4-pH; ***p < 0.001; one-way ANOVA).

Figure 8. VAMP4 Is Required to Maintain Neurotransmission

(A and B) Cerebellar (CGN) (A) or hippocampal (HPC) (B) neurons were

transfected with either wild-type (WT) VAMP4-pHluorin (VAMP4-pH) or an

L25A mutant. Cultures were stimulated with an action potential train (40 Hz,

10 s) as indicated by the bar in the displayed average time course (DF/F0 ±

SEM, normalized to the total pHluorin pool [(NH4]; CGN: both n = 5; HPC:

n = 6 WT, n = 7 L25A).

(C) HPCs were transfected with syp-pH and either scrambled (Scr) or VAMP4

shRNA (KD). Neurons were challenged with four trains of action potential

stimuli (40 Hz, 10 s) separated by 4 min as indicated by the bars. The average

time course DF/F0 ± SEM is displayed for syp-pH for Scr control (blue) and

VAMP4 KD (orange) neurons (n = 4 Scr; n = 5 VAMP4 KD).

(D and E) Quantification of either the syp-pH peak height normalized to the

first peak (D) or the time constant (t) (E) for each stimulus is displayed ± SEM

(n = 4 Scr; n = 5 VAMP4 KD; *p < 0.05; Student’s t test).
on the evoked fluorescent response during high-frequency stim-

ulation (Kononenko et al., 2014). In contrast, we observed a

robust inhibition of the syp-pHluorin response on inhibition of

CME during intense activity using either the clathrin antagonist

pitstop-2 or CHC knockdown. One potential explanation for

this discrepancy is the efficiency of CHC knockdown by lentiviral

shRNA (as used in Kononenko et al. [2014]), since this method

displays a wide range of knockdown between individual cultured

neurons (López-Murcia et al., 2014). Another confounding factor
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would be the temperature at which experiments were per-

formed, since CME may not be dominant at 37�C (Watanabe

et al., 2014). However, at physiological temperatures we still

observed a robust arrest of the syp-pHluorin response with

CHC knockdown (Figure S6E). Finally, under stimulation condi-

tions identical to those in the previous study (Kononenko et al.,

2014), we observed a robust inhibition of Syt1-pHluorin retrieval

in cultured hippocampal neurons on CHC knockdown (Fig-

ure S8). We are currently unable to explain why we observe

such disparate results using almost identical tools; however,

we have shown identical effects on SV cargo retrieval in multiple

systems using two independent maneuvers to arrest CME.

An important point to note from our biochemical enrichment

of bulk endosomes is that endogenous SV cargoes were



accumulated by ADBE. This may be a result of ADBE accumu-

lating excess SV cargo in a non-specific manner, due to CME

reaching saturation capacity. An alternative explanation is that

a population of SVs generated via CMEmay fuse with bulk endo-

somes to provide key molecules required for functional ADBE-

derived SVs. Regardless, the presence of essential SV cargo

on bulk endosomes will ensure that ADBE-derived SVs have

the requisite complement of trafficking and fusion molecules

that are essential for a functional SV.

We have identified the first genetically encoded reporter of

ADBE, VAMP4-pHluorin. ADBE is visualized as a slow down-

stroke in VAMP4-pHluorin fluorescence after challenged with a

train of high-frequency action potentials. This downstroke re-

flects acidification of bulk endosomes rather than VAMP4-

pHluorin retrieval, since (1) ADBE only occurs during stimulation

(Clayton et al., 2008) and (2) the downstroke continues for mi-

nutes after termination of stimulation. We also observed an im-

mediate drop in VAMP4-pHluorin fluorescence in hippocampal

neurons and to a lesser extent in cerebellar neurons, consistent

with a parallel retrieval of this reporter via CME (Raingo et al.,

2012). In agreement this fast activity-dependent fluorescent

decrease was ablated by inhibition of this endocytosis mode. It

was also ablated by mutating the interaction motif for adaptor

proteins on VAMP4 (Raingo et al., 2012), suggesting that interac-

tions mediated via this motif are also required for VAMP4

retrieval via CME. It should also be stated that CME is not

required for retrieval of VAMP4 via ADBE, since the slow post-

stimulation downstrokeswere retainedwhenCMEwas inhibited.

Thus, an adaptor-dependent, clathrin-independent retrieval pro-

cess retrieves VAMP4 as a first, essential step of ADBE.

The endosomal location of VAMP4 was confirmed by both

in vivo ultrastructural analysis and the inability of impermeant

acid to quench VAMP4-pHluorin fluorescence after high-inten-

sity stimulation. This latter result meant that we were able to es-

timate the kinetics of bulk endosome acidification for the first

time. We found VAMP4-pHluorin fluorescence decreased with

a time constant of approximately 32 ± 2 s in the presence of pit-

stop-2 (to eliminate contaminating CME). This is an order of

magnitude slower than SV acidification (Atluri and Ryan, 2006;

Egashira et al., 2015), consistent with the larger internal volume

of the bulk endosome compared to a SV (approximately 50-

fold, assuming a typical bulk endosome of 150 nm diameter).

Thus, when interpreting pHluorin responses during high-fre-

quency stimulation, CME is rate limiting for most SV cargo,

whereas bulk endosome acidification is rate limiting for

VAMP4-pHluorin.

The selective capture of VAMP4 by ADBE is not simply due to

its high expression at the plasma membrane in comparison to

other SV cargo (Raingo et al., 2012). This is because the propor-

tion of plasma membrane VAMP4-pHluorin (23.1% ± 4.0%

cerebellar neurons; 36.1% ± 7.0% hippocampal neurons) is

comparable to the surface expression of both sybII-pHluorin

and Syt1-pHluorin (Gordon et al., 2011; Pan et al., 2015; Zhang

et al., 2015), neither of which are selectively accumulated via

this endocytosis mode.

We show that a di-leucine sorting motif on VAMP4 is essential

for its recovery via ADBE and for ADBE itself. This motif coordi-

nates interactions with adaptor proteins (Peden et al., 2001),
suggesting that VAMP4 recruits specific adaptors to mediate

both ADBE and its own recovery from the plasma membrane.

The cytoplasmic domain of VAMP4 contains other interaction

sites for adaptor proteins such as PACS-1 (Hinners et al.,

2003), and its SNARE motif can interact with the CALM/AP180

family of monomeric adaptor molecules (Sahlender et al.,

2013). It will be important to establish the role of these interac-

tions and how they coordinate the recovery of other ADBE-spe-

cific cargoes.

The selective accumulation of VAMP4 during ADBE suggests

that SVs formed via this mode of endocytosis may have a spe-

cific molecular signature that defines their physiological function

in central nerve terminals. It is known that ADBE-derived SVs re-

populate the reserve pool, which is only released during intense

stimulation after the synchronous release of the readily releas-

able pool (Richards et al., 2003; Cheung et al., 2010). In agree-

ment we observed a rundown in presynaptic function in

VAMP4 knockdown neurons, confirming the requirement for

ADBE-derived SVs to maintain neurotransmitter release during

intense neuronal activity (Cheung et al., 2010). SV pools have

been proposed to have a specific molecular composition that

defines their role, in particular the expression of non-canonical

forms of sybII (Hua et al., 2011; Raingo et al., 2012; Ramirez

et al., 2012). Modulation of VAMP4 expression has bidirectional

effects on asynchronous release in neuronal culture (Raingo

et al., 2012), suggesting ADBE-derived SVs may replenish this

specific functional pool. In support, AP-3b2 knockout mice

display large deficits in asynchronous release (Evstratova

et al., 2014), agreeing with the essential role for the adaptor pro-

tein AP-3 in generating SVs from bulk endosomes (Cheung and

Cousin, 2012). Thus, ADBEmay produce SVs with a distinct mo-

lecular signature that destines them to specifically maintain a SV

pool that mediates asynchronous release.
EXPERIMENTAL PROCEDURES

Materials

The pHluorin expression vectors were obtained from the following sources:

Syp-pHluorin, Prof. L. Lagnado (University of Sussex); Syt1-pHluorin, Prof.

V. Haucke (Leibniz Institute of Molecular Pharmacology); vGLUT1-pHluorin,

Prof. R. Edwards (University of California, San Francisco); sybII-pHluorin,

Prof. G. Miesenbock (Oxford University); and VAMP4-pHluorin, Prof. Ege Ka-

valali (UT Southwestern Medical Centre). The sequence encoding VAMP4-

pHluorin was cloned into a Clontech EGFP-N1 mammalian expression vector

by first removing EGFP and then inserting VAMP4-pHluorin using AgeI and

NotI enzymes. The L25A mutant was made via mutagenesis using the primers

forward tgaaaggagaaatgctttggaagatgatg; reverse catcatcttccaaagcatttctcc

tttca (mutated bases underlined). The empty vector for mCerulean was

made as described (Gordon and Cousin, 2013) as were syndapin I and empty

mCerulean-tagged pSUPER shRNA vectors (Cheung et al., 2010). Validated

shRNA oligonucleotides and their scrambled controls for both CHC (Royle

et al., 2005) and VAMP4 (Raingo et al., 2012) were ligated into mCerulean-

tagged pSUPER shRNA vectors as described (Cheung et al., 2010). FM1-43

and advasep-7 were from Biotium. VAMP4, synaptophysin, and vGLUT1 anti-

bodies were from Synaptic Systems. Pitstop-2 and syt1 and sybII antibodies

were from AbCam. CT92001 was from R&D Systems, and roscovitine was

fromMerck. Neurobasal media, B-27 supplement, penicillin and streptomycin,

minimal essential medium (MEM), and Lipofectamine 2000were obtained from

Invitrogen. The silver enhancement kit was fromNanoprobes, whereas F(ab’) 2

fragment anti-rabbit antibodies conjugated to ultrasmall gold particles were

from Electron Microscopy Sciences. Osmium tetroxide, paraformaldehyde,
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and glutaraldehydewere fromAgar Scientific. All other reagents were obtained

from Sigma-Aldrich.

Tissue Culture

Primary cultures of cerebellar neurons were prepared from the cerebella of

7-day-old Sprague Dawley rat pups of both sexes (Anggono et al., 2006).

Dissociated primary hippocampal neuronal cultures were prepared from

E17.5 C56BL/6J mouse embryos of both sexes by trituration of isolated hippo-

campi to obtain a single cell suspension, which was plated at a density of

5 3 105 cells/coverslip on poly-D-lysine and laminin-coated 25-mm cover-

slips. Cultures were maintained in neurobasal media supplemented with

B-27, 0.5 mM L-glutamine, and 1% v/v penicillin and streptomycin. After

72 hr, cultures were further supplemented with 1 mM cytosine b-d-arabinofur-

anoside to inhibit glial proliferation.

Transfections

Cerebellar neurons were transfected between 5 and 7 days in culture, whereas

hippocampal neurons were transfected between 6 and 8 days in culture with

Lipofectamine 2000 (Gordon et al., 2011). In most experiments, two constructs

were co-expressed; pHluorin vectors were cotransfected with either mCeru-

lean empty vector or mCerulean expressing shRNA vectors. Both sybII-

pHluorin and syp-pHluorin were expressed in the absence of other vectors

unless specifically stated in the legends. Cerebellar neurons were imaged af-

ter 8–10 days in culture, whereas hippocampal neurons were imaged after

13–16 days.

Imaging of pHluorin Responses

Cerebellar neuron cultures were removed from culture medium and left for

10 min in incubation medium (170 mM NaCl, 3.5 mM KCl, 0.4 mM KH2PO4,

20 mM TES (N-tris[hydroxy-methyl]-methyl-2-aminoethane-sulphonic acid),

5 mM NaHCO3, 5 mM glucose, 1.2 mM Na2SO4, 1.2 mM MgCl2, and

1.3 mM CaCl2 [pH 7.4]). They were mounted in a Warner imaging chamber

with embedded parallel platinum wires (RC-21BRFS) and placed on the stage

of a Zeiss AxioObserver A1 epifluorescencemicroscope. Transfected neurons

were visualized with a Zeiss Plan Apochromat340 oil immersion objective (NA

1.3) at 430 nm excitation (to illuminate mCer), whereas pHluorin reporters were

visualized at 500 nm (both using a dichroic > 525 nm and long-pass emission

filter > 535 nm). Cultures were subjected to continuous perfusion with incuba-

tion medium and stimulated with a train of either 400 action potentials deliv-

ered at 40 Hz (100 mA, 1-ms pulse width) or 300 action potentials delivered

at 10 Hz where indicated. At the end of the experiment, cultures were chal-

lenged with alkaline imaging buffer (50 mM NH4Cl substituted for 50 mM

NaCl) to reveal total pHluorin fluorescence. Where indicated cultures were

also challenged with acidic imaging buffer (20 mM MES substituted for

20 mM TES [pH 5.5]). Fluorescent images were captured at 4-s intervals using

a Zeiss AxioCam MRm Rev.3 digital camera and processed offline using Im-

age J 1.43 software. Regions of interest of identical size were placed over

nerve terminals, and the total fluorescence intensity was monitored over

time. Only regions that responded to action potential stimulationwere selected

for analysis. All statistical analyses were performed using Microsoft Excel and

GraphPad Prism software. Where required, traces were decay corrected using

a mono-exponential decay function fitted to the first 15 points of acquisition.

The pHluorin fluorescence change was calculated as FD/F0, and n refers to

the number of individual coverslips examined.

Imaging of hippocampal cultures was performed in essentially the same

manner apart from perfusion with an altered imaging buffer (136 mM NaCl,

2.5 mM KCl, 2 mM CaCl2, 1.3 mMMgCl2, 10 mM glucose, and 10 mM HEPES

[pH 7.4] supplemented with 10 mM 6-cyano-7-nitroquinoxaline-2,3-dione and

50 mM DL-2-Amino-5-phosphonopentanoic acid).

Dextran Uptake

The uptake of TMR-dextran (40 kDa) was monitored as described previously

(Clayton et al., 2008). Briefly, cerebellar neurons were removed from culture

medium, left for 10 min in incubation medium, and then stimulated with a train

of 400 action potentials (40 Hz, 10 s). TMR-dextran (50 mM) was present during

the stimulus and was washed away immediately after stimulation. The extent

of loading was determined by the number of fluorescent puncta in a defined
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field of view (130 3 130 mm) using a 403 oil immersion objective at 550 nm

excitation and >575 nm emission. Thresholding analysis was performed to dis-

count regions too large to represent individual nerve terminals (diameter

greater than 2 mm). The average number of dextran puncta per field for each

experiment (usually eight fields of view per experiment) were averaged for

the same conditions and subtracted from background fluorescence. The final

value for dextran puncta was obtained by averaging the individual averages

from at least three independent experiments (n is taken as the number of ex-

periments). To ensure the density of nerve terminals was consistent between

fields and experimental conditions, experiments were always performed on

the same set of cultures. Cultures were used between 8 and 10 days in vitro.

Experiments with hippocampal neurons were performed in an almost identical

manner, with the exception of the 10-min repolarization in altered imaging

buffer. Hippocampal neurons were used between 14 and 16 days in vitro.

Experiments using neurons transfected with either shRNA or overexpres-

sion vectors were performed in the same manner, with the number of dextran

puncta per mm of axon calculated and then normalized to control values. In

both cases n is the number neurons analyzed from at least three independent

coverslips.

Immunofluorescence

Immunolabeling was performed as described (Gordon et al., 2011). Briefly

transfected neurons were visualized at 480 nm after incubation with anti-

GFP antibodies to enhance the signal from mCerulean expressing neurons.

Endogenous CHC or VAMP4 were visualized at 550 nm (antibody dilutions

were 1:250 and 1:500 for CHC and VAMP4, respectively). Identically sized re-

gions of interest were placed over transfected neurons in the same field of

view, along with background regions. The level of either CHC or VAMP4

expression was calculated by subtracting background autofluorescence prior

to calculating the ratio for transfected/non-transfected expression levels.

Immunoelectron Microscopy

Cerebellar neurons were removed from culture medium, left for 10 min in incu-

bation medium, and then either stimulated with a train of 400 action potentials

(40 Hz, 10 s) or left to rest. Cultures were immediately fixed in 2% paraformal-

dehyde/0.5% glutaraldehyde in 0.1 M sodium phosphate buffer (PB [pH 7.4])

at room temperature. After three washes in 0.1 M PB, cerebellar neurons

were permeabilized using 2% BSA/0.1% Tx-100 in 0.1 M PB for 1 hr. Cultures

were then incubated with VAMP4 antibody (1:100) in 2% BSA/0.1% Tx-100 in

0.1 M PB for 1 hr. After three washes in 2% BSA in 0.1 M PB, cerebellar neu-

rons were incubated with ultrasmall gold anti-rabbit conjugated Fab’antibod-

ies for 1 hr in 2% BSA in 0.1 M PB. Cells were washed three times in 0.1 M PB

and post-fixed in 2%glutaraldehyde in 0.1MPB for 30min. After three washes

in 0.1 M PB, cultures were subjected to HQ Silver Enhancement as per the

manufacturer’s instructions (Nanoprobes). After further washes in dH2O and

then 0.1 M PB, cerebellar neurons were stained using 1% osmium tetroxide

in 0.1 M PB for 30 min. After washing, cultures were subjected to post hoc

staining with uranyl acetate before dehydration and embedding using Durcu-

pan resin. Samples were sectioned at 70- to 900-nm thickness and collected

on formvar-coated slot grids (Agar Scientific). Grids were stained with lead

citrate before being viewed on a JEOL-1200 EX transmission electron

microscope.

Bulk Endosome Enrichment

Cerebellar neuron cultures were left to repolarize in incubation medium for 1 hr

to minimize existing bulk endosomes and were then stimulated for 2 min with

50 mM KCl in the presence of 10 mM FM1-43. Cells were washed once with

incubation medium and then twice with incubation medium supplemented

with 200 nM Advasep-7. Cerebellar neurons were collected in buffer contain-

ing 250mM sucrose and 3mM imidazole [pH 7.4] andmechanically broken us-

ing a ball-bearing cell cracker (European Molecular Biology Laboratory), with

the lysate spun for 15min at 1,200 g. The post nuclear supernatant was depos-

ited at the base of a discontinuous Nycodenz (Axis-Shield) gradient (12%,

20%, 25%, and 35% in 3 mM imidazole, 0.5 mM EDTA [pH 7.4]). The samples

were centrifuged for 90min at 170,000 g in an OptimaMAX-XP Tabletop Ultra-

centrifuge (Beckman Coulter). The different fractions were collected as indi-

cated in Figure 6A, with bulk endosomes found at the interface between



12%and 20%Nycodenz and SVs between 20%and 25%Nycodenz. The fluo-

rescence of all fractions was monitored in a TD-700 fluorometer (Turner

Designs) to reveal the presence of labeled compartments.

For protein biochemistry studies, stimulated fractions 2 (bulk endosome)

and 5 (SVs) were lysed in SDS sample buffer (67 mM SDS, 2 mM EGTA,

9.3% glycerol, 12% b-mercaptoethanol, bromophenol blue, and 67 mM

Tris). Samples were resolved on SDS-PAGE and transferred onto nitrocellu-

lose membranes for western blotting. Primary antibodies were used at

the following dilutions: VAMP4, 1:2,000; syt1, 1:1500; syp, 1:8,000; sybII,

1:8,000; vGLUT, 1:1,500. These antibodies were amplified using IRDye anti-

mouse, rabbit, and guinea pig secondary antibodies (all diluted at 1:10,000;

LI-COR Biosciences). Membranes were imaged using an Odyssey 9120

Infrared Imaging System (LI-COR Biosciences) and analyzed using Image

Studio Lite (LI-COR Biosciences). The intensity of the endosome and SVs

fractions from the same membrane were calculated and expressed as an

abundance ratio (endosome/SV) after normalizing to total protein content.

Cerebellar neuron fractions were processed in an identical manner for elec-

tron microscopy except for the fact that HRP (10 mg/ml) was used instead of

FM1-43 and Advasep-7 was omitted from the wash step. The bulk endosome

and SV samples were fixed in 2% glutaraldehyde for 30 min at 37�C and

washed in 100mMTris (pH 7.4). Sampleswere incubated in 0.1%diaminoben-

zidine and 0.2% H2O2 until color developed. The samples were stained with

1% osmium tetroxide and dehydrated using ethanol and polypropylene oxide

and embedded using Durcupan resin. Samples were sectioned, mounted on

grids, and viewed using a FEI Tecnai 12 transmission electron microscope.

HRP-labeled structures were identified and their diameter was calculated by

taking the average of the longest and shortest diameters of individual endo-

somes using ImageJ (NIH). A cutoff of 80 nm was used to separate bulk endo-

somes from SVs (30–60 nm).

Statistical Analysis

A Student’s t test was performed for comparisons between two datasets. For

greater than two datasets, a one-way ANOVA was employed. For compari-

sons between fluorescence responses over time, or where greater than one

variable was being compared, a two-way ANOVA was performed.
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