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Abstract

The combined use of mice that have genetic mutations (transgenic mouse models) of human pathology and advanced
neuroimaging methods (such as MRI) has the potential to radically change how we approach disease understanding, diagnosis and
treatment. Morphological changes occurring in the brain of transgenic animals as a result of the interaction between environment
and genotype, can be assessed using advanced image analysis methods, an effort described as “mouse brain phenotyping”. However,
the computational methods involved in the analysis of high-resolution brain images are demanding. While running such analysis on
local clusters is possible, not all users have access to such infrastructure and even for those that do, having additional computational
capacity can be beneficial (e.g., to meet sudden high throughput demands). In this paper we use a commercial cloud platform for
brain neuroimaging and analysis. We achieve a registration-based multi-atlas, multi-template anatomical segmentation, normally
a lengthy in time effort, within a few hours. Naturally, performing such analyses on the cloud entails a monetary cost, and it is
worthwhile identifying strategies that can allocate resources intelligently. In our context a critical aspect is the identification of
how long each job will take. We propose a method that estimates the complexity of an image processing task, a registration, using
statistical moments and shape descriptors of the image content. We use this information to learn and predict the completion time
of a registration. The proposed approach is easy to deploy, and could serve as an alternative for laboratories that may require
instant access to large high performance computing infrastructures. To facilitate adoption from the community we release publicly
the source code.

Index Terms

High performance computing, cloud, neuroimaging, MRI, phenotyping, computer vision, image analysis, resource allocation,
machine learning.

I. INTRODUCTION

The introduction of cloud computing has affected how high performance computing resources are purchased, allocated, and
managed. While previously access to such resources required either the purchase of advanced clusters or the participation in
grid services, with commercial clouds, super computing level resources are available to everyone. Although initially they were
targeted to enterprise users, the use of commercial clouds for research applications is gaining momentum. This transition is
expected to facilitate research where large data repositories are needed to be processed (“big data”). An application domain that
will benefit from this paradigm change is the large scale analysis of imaging data. Images arising from biological or medical
domains (e.g., MRI of the brain) are characterized by high acquisition cost, large resolution, and complex analysis pipelines
(i.e., the sequence of image processing steps). However, since the same pipeline is applied for each dataset they are ideally
suited for large data parallelization.

The advent of magnetic resonance imaging (MRI) methods for the study of the brain has significantly advanced our
understanding of how this important organ functions in health and disease. In typical studies, subjects are divided in two
or more groups, based on experimental design. Each subject is then scanned (possibly several times) with a particular scanning
protocol to obtain one or several imaging volumes that reflect the underlying anatomy of the brain or brain tissue status or
composition. At the next phase, imaging data must be analyzed to extract several features that improve our understanding of
the effects of specific genetic variations or disease on the brain.

An example of an analysis is to identify differences in the volume of specific brain regions among the subjects and groups
from brain MRI volumes. While an expert can manually delineate these structures in each subject’s volume, this process
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is highly time consuming (6–10 hours depending on imaging resolution and number of structures) and introduces observer
variability. Thus, computational solutions that automatically segment the anatomy within the brain are highly desirable.

One approach that has been particularly popular in the literature is a registration based atlas propagation (Figure 1). Assuming
the existence of an atlas (A

(I)
1 , A

(L)
1 ), where A

(I)
1 is an intensity volume and A

(L)
1 is the corresponding labeling (i.e., its

anatomical segmentation) previously delineated by an expert, the labels can be propagated to another intensity volume S(I)
1 , if

a mapping between the two intensity volumes is known. The result of such a process is the labeled subject S(L)
1 . An intensity

based registration finds a linear or better a non-linear mapping between two volumes using only voxel intensities. Generally, for
1 atlas and N subjects (S(I)

n , for n = 1, . . . , N ) this process requires N registrations. Several processing platforms implement
this approach, e.g., ANTs1, Freesurfer2, and LONI3.

Recently, it has been suggested that is best to use multiple atlases when performing a registration based label propagation [1]
to account for variability between the subject population and the atlas. In this context several registrations are performed and the
best atlas is identified, usually the one most similar to the subject, to propagate the labels. Alternatively, all atlases are used in a
fusion based segmentation approach [1], [2]. In recognition that obtaining multiple atlases is demanding and that atlases may not
always reflect population variability, also several intermediate templates are used. These templates are either previous subjects,
or even synthetic MRI volumes created by learning the variability between previously processed subject populations [2]. As
Figure 2 illustrates, in this case all subjects S(I)

n are registered using multiple templates Tp = (T
(I)
p , T

(L)
p ), for p = 1, . . . , P ,

which are registered to multiple atlases Am = (A
(I)
m , A

(L)
m ), for m = 1, . . . ,M , using the intensity component. The final

anatomical labels S̃(L)
n for each subject are obtained by fusing the results of all registration based propagations.

?

Fig. 1: Registration based propagation of labels from an intensity volume atlas A(I)
1 with known anatomical segmentation A(L)

1

to a subject volume S(I)
1 via intensity based registration to estimate the anatomical labeling S(L)

1 .

As the number of subjects (N ), templates (P ), and atlases (M ) increases, the complexity increases (in total P × (M +
N) non-linear registrations are required). Depending on the non-linear registration algorithm, the complexity of this process
increases even further. Current state-of-the-art algorithms that provide highly accurate, diffeomorphic, and invertible non-linear
registrations between volume pairs, are increasingly complex since they optimize models with tens of millions of degrees of
freedom while they reach cubic theoretical complexity [3].

It is clear that this analysis is computationally demanding and is just an example of the many complex neuroimaging analysis
pipelines used throughout the community [4], [5]. Traditionally, the majority of such analyses has occurred in single powerful
workstations with limited throughput. Recently, since non-linear registration of volume pairs (as well as the majority of image
analysis pipelines) is suitable to efficient data parallelism, the use of computing clusters to achieve higher throughput has been
proposed (see the reviews of [6], [7]).

In recognition that some researchers may not have access to these options, the scientific community reacted by establishing
consortia (e.g., LONI, neuGRID, outGRID, CBRAIN) that aim at making distributed (grid) computing available for neuroscience
and neuroimaging research [6], [7]. These grid level services usually provide a user-friendly graphical interface for designing
and putting together any image analysis pipeline, with respect to both tools and data. However, for executing seamlessly this
process, access to the computer grid associated with the consortia underwriting these efforts is assumed.

Unfortunately, users that have limited or no access to powerful computer grids or clusters are left with limited computational
options. Even users that do have access to such consortia or local clusters, in some cases they can benefit from having
additional computational capacity (for example, increasing throughput to meet a deadline). The users can configure and install

1http://stnava.github.io/ANTs/
2http://surfer.nmr.mgh.harvard.edu/
3http://www.loni.ucla.edu/Software/
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Fig. 2: A multi-atlas (Am), multi-template (Tp) registration based strategy for anatomical brain segmentation of subject volumes
(Sn). The lines represent the warping between two volumes using the deformation fields obtained by non-linear registration.

the underlying computational framework of LONI on another grid environment or the cloud (e.g., they can install the NITRC
environment on Amazon EC24); but they have to export the image analysis pipeline as a virtual machine and take care of
the details of its execution and the management of the cloud resources. To manage the workflow there exist several systems
(Soma-workflow [8], Megha Workflow Management System [9], Gridbus [10], Cloudbus [11], Aneka [12], CometCloud [13]),
and several demonstrations of those for imaging applications are available [4], [5]. However, managing such systems (e.g.,
installation on the cloud environment, and configuration of services) and deployment of jobs may prove challenging and time
consuming for most users. Admittedly, these limitations might explain why cloud computing has not been adopted by the
broad neuroscience and neuroimaging community for compute-intensive analyses.

In this paper, we use a commercial cloud computing platform (PiCloud) to perform one of such intensive analysis procedures:
a registration based multi-atlas, multi-template anatomical segmentation for estimating the size of anatomical brain regions on
the basis of magnetic resonance images. Here we show that when PiCloud, which is being developed to facilitate transparent
access to commercial cloud infrastructures, is combined with sophisticated analysis and resource optimization methods, it offers
an appealing alternative for several laboratories and types of users. Our approach:

• relies on a general purpose cloud environment and not on dedicated grids and clusters;
• utilizes the PiCloud platform, which offers flexible, simple, and transparent allocation of computational resources via a

Python application programming interface;
• is based on Python, which is simpler for building complicated image analysis pipelines than other solutions (e.g., using

C or C++ programming languages) as others have also found [14];
• is sufficiently easy to be adopted and extended by non computer experts;
• allocates cloud resources efficiently to minimize monetary cost; and
• incorporates a method to learn and predict execution time by taking into account the image content to facilitate resource

allocation.

We demonstrate our findings using data from mice phenotyping experiments, with the goal of identifying morphological
differences between two different population groups. Our cloud based neuroimaging pipeline identifies such differences in
several anatomical parts of the mouse brain. Furthermore, using the same imaging data and execution times we show that it is
possible to reduce monetary cost by intelligently allocating resources. This paper builds upon our previous work [15], where
we first propose the use of commercial clouds (PiCloud) for neuroimaging.

The rest of this paper is organized as follows: in Section II-A we outline the proposed image analysis pipeline, and in
Section II-B we describe the proposed cloud implementation. Section II-C details the proposed framework for intelligent
resource allocation on the cloud. Section III outlines implementation details and presents and discusses our experimental
findings, while finally Section IV offers conclusions and directions for future work.

4http://www.nitrc.org/plugins/mwiki/index.php/nitrc:User_Guide_-_NITRC_Computational_Environment
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II. PROPOSED METHODS

A. Registration Based Brain Anatomical Segmentation Pipeline

To demonstrate the potential of high throughput processing on the cloud we implement a typical example of a compute-
intensive analysis: a multi-atlas, multi-template anatomical segmentation such as the one illustrated in Figure 2. We rely on
a highly accurate non-linear registration algorithm to match a moving volume (e.g., a subject S(I)

n ) and a fixed volume (e.g.,
a template T

(I)
p ). This registration finds a diffeomorphic transformation that is symmetric, invertible, topology preserving,

and differentiable [3], [16]. This allows us to propagate information from the fixed to the moving volume and vice-versa in
an accurate manner. Briefly described, the goal of non-linear registration is to find the optimal transformation, φ, within a
specified transformation space which maps each location x of volume S(x) to a location in volume T (z) such that a specified
cost function relating the similarity between S and T , is minimized. Recently, diffeomorphisms (φ) have been proposed that
are differentiable, invertible, and topology preserving. With diffeomorphic registration, the following variational function is
optimized:

{v∗1,v∗2} = argmin
v1,2

{∫ 0.5

0

||Lv1(x, t)||2 dt+

∫ 0.5

0

||Lv2(x, t)||2 dt+ λ

∫
Ω

Π∼ (S ◦ φ1(x, 0.5), T ◦ φ2(x, 0.5)) dΩ

}
(1)

where, t ∈ [0, 0.5], v(x, t) = v1(x, t) and v(x, t) = v2(x, 1 − t) when t ∈ [0.5, 1], Π∼ is a volume similarity metric, L is
an appropriate norm, λ is a regularizer, and Ω is the domain of the diffeomorphism. While finding the optimal transform is
complex and ill-defined, under certain assumptions, symmetric diffeomorphic solutions are obtained numerically using greedy
optimization strategies [16]. To increase the probability that the greedy strategy finds a global minimum and to reduce the
number of necessary iterations, a multi-resolution strategy using up to LV levels of the Gaussian pyramid is adopted. A
transformation is found first for an under-sampled version of the original data, and then is refined at each step while reaching
the final full resolution.

The results of each registration are linear (affine) registration parameters as well as forward (subject to template, or template
to atlas) and inverse (template to subject, or atlas to template) warp fields (essentially voxel-to-voxel mappings) [16]. Using the
inverse warp field and affine parameters obtained we estimate S(L)

n using the given labeled template T (L)
p , denoted by S(L)

n |T (L)
p .

The same process can be applied to obtain T
(L)
p |A(L)

m . Technically speaking we do not perform these steps independently,
i.e., first propagating from atlas to template and then from template to subject, but we concatenate the transforms to minimize
interpolation errors.

Finally, we combine all intermediate segmentations (S(L)
n |T (L)

1 , . . . , S
(L)
n |T (L)

P ) by a fusion process to obtain the final result
S̃

(L)
n =

⋃P
p=1 S

(L)
n |T (L)

p , implemented as a majority vote algorithm that maintains for each voxel the most populous label
across the P candidates [1].

B. Proposed Cloud Implementation

To translate our image analysis pipeline to the cloud we use the PiCloud5 platform. This platform provides the user with
transparent access to cloud resources currently supplied by Amazon Web Services (AWS). A Python library and middleware
(implemented as an API) enables the use of cloud storage and computational power directly via the Python interpreter. It
relieves the user from dealing with several issues such as virtual servers, connections, resource scaling, job scheduling, and
billing, which may prevent non computer experts from using cloud computing services.

Among the types of service offered by PiCloud (as of July 2013), we consider the following:

• c1 core type, offering 1 compute unit, 300 MB of memory, and low I/O performance at $0.05/hour;
• c2 core type, offering 2.5 compute units, 800 MB of memory, and moderate I/O performance at $0.13/hour;
• f2 core type, offering 5.5 compute units, 3.7 GB of memory, and moderate I/O performance at $0.22/hour;
• m1 core type, offering 3.25 compute units, 8 GB of memory, and high I/O performance at $0.30/hour;

where core types are similar to what Amazon refers to as instances, a compute unit refers to AWS definition of equivalent
CPU capacity of a 1.0–1.2 GHz 2007 Opteron or 2007 Xeon processor, and I/O performance refers to internal communication
within the cloud infrastructure. Each core type can be used in two modes: on demand or real-time core provisioning. PiCloud
charges on a per millisecond rate and not for the full hour when using on demand cores.

The PiCloud service can provide a virtually unlimited number of cores, hence not imposing any strict limits on the total
number of potential jobs parallelized simultaneously. This, coupled with the fact that the jobs are self-contained, translates into
a high speedup of the overall process.

Subject to resource availability and internal proprietary resource management, any job executed on demand on PiCloud is
placed on a queue, incurring a variable (unknown to the user) waiting time. Allocating a priori a job for real-time operation

5http://www.multyvac.com/
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guarantees immediate execution, with a fixed waiting time. If the usage meets a certain per hour minimum (> 60% of the
hour), the real-time allocation is free of charge. Data storage and download incur a cost, whereas data uploading and intra-cloud
communications (between storage and node) are free of charge.

We configure a Ubuntu GNU/Linux virtual machine (actually a Linux Container) following the PiCloud instructions for
setting an environment to include customized libraries and applications required for our operation. We optimize (by enabling
multi-threading) and compile the ANTs toolkit, which offers registration (ANTS), warping (WarpImageMultiTransform), and
label fusion (ImageMath), and other standalone applications. Furthermore, NeuroDebian (http://neuro.debian.net/) repositories
have also been included to facilitate installation of other neuroimaging applications [6].

......

......

......

SNSnS1

Tp

AMA1 Am

T1 TP

Upload
to cloud

Register subjects
to templates

Fuse
segmentations

Download
from cloud

Register templates
to atlases

Fig. 3: Schematic of the workflow that performs the strategy of Figure 2 for a given set of data (subjects, templates, and
atlases).

We use Python scripts to execute the workflow illustrated in Figure 3 for a given set of input volumes (subjects, templates,
and atlases). More specifically,

(a) We use the PiCloud file storage interface, in particular the cloud.files.put function, to upload the input data (i.e.,
subjects, templates, and atlases) to the cloud from our local workstation.

(b) We use Python wrapper functions, an abstract example of which is shown in Listing 1, that execute the components of
the image analysis pipeline for each input dataset: they retrieve the input data (subjects, templates, or atlases) from cloud
storage to a node, run the applications (registration or fusion) composing the pipeline as subprocesses, and finally save
the output files on cloud storage.

(c) A single Python instruction of the PiCloud library (cloud.map) executes (maps) the functions for each dataset pair
(e.g., an atlas and a template, or a template and a subject), specifying the type of computational resources (core type,
on demand or real time) and custom environment to use. This function essentially implements the core of the data
parallelism that we employ here.

(d) We retrieve the output data (e.g., labeled subjects S̃(L)
n ) from the cloud, using the cloud.files.get function of the

PiCloud file storage interface.

Once all jobs have completed (registrations and fusions), we download to our local workstation all final labeled volumes
(S̃(L)
n ) for subsequent statistical analysis. The web interface and the APIs available by PiCloud, provide several statistics

(execution times), metadata, and output logs on each job, which are collected for analysis and comparisons.
To execute jobs on the PiCloud system (via the cloud.map arguments) we must identify the type of service (real-time or

on demand) and the core type (c1, c2, f2, or m1) among the function’s arguments. Each option involves different charges and
maintains different guarantees for service. One can assign all jobs to the same service type for simplicity however this is far from
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Listing 1 Example abstract code illustrating a part of the proposed cloud implementation, discussed in Section II-B.

import cloud
import subprocess

def job(moving, fixed, params):
# retrieve input volumes
cloud.files.get(moving + ’.nii.gz’)
cloud.files.get(fixed + ’.nii.gz’)
# parse parameters and input files
build_ants_arguments = ’... params ...’
args = ’ANTS’ + build_ants_arguments
popen = subprocess.Popen(args, shell=True, stderr=subprocess.STDOUT)
popen.wait() # wait for ANTs to terminate
cloud.files.put(’...’) # save output files

an optimal allocation. While for certain cases assigning the type of core is trivial (e.g., the c1 does not have enough memory to
execute a registration), when several core types satisfy the requirements a resource allocation methodology is necessary. Several
approaches exist to assign resources (and schedule them if needed [17], [18]) by satisfying various performance criteria, such
as (1) cumulative, makespan, or minimum execution time or cost or deadline [19]–[23]; (2) constrained formulations such as
minimizing cost under time constraints [24], [25]; and (3) allocating resources under budget constraints [26]. Nevertheless, all
options essentially care for the proper assignment of each job to a core and service type.6

More critically, most approaches do require an estimate of the execution time for each job and application to make efficient
and accurate allocation and scheduling decisions [5], [19]. Typically these estimates are obtained by analytical modeling of
the underlying source code (which is not always available), or using empirical and historical data of each job and application
type [5], [19], [28], [29]. However, when the job to be executed (in our case a registration) is homogeneous (i.e., the same
job and parameters is executed on different data of the same size), we would have to rely on an average estimate of execution
time [30]–[32]. Unfortunately, this option underperforms when the execution time depends on the actual data content (not only
their size) and involves non-linear iterative components. Image registration is a perfect example of a highly non-linear process
that iterates until a numerical minimum is found and thus is highly dependent on the input volumes. In fact, the expected
convergence time varies largely among volume pairs [5].

Thus, in order to intelligently allocate resources in an environment that is composed of similar jobs but the data content
changes, an approach that utilizes this data dependence to more accurately estimate execution time is necessary.

C. Predicting the Execution Time of Image Analysis Applications

Here we propose for the first time a learning based method, which utilizes prior history of execution times and actual
imaging data to learn a model that relates image content and execution time for each individual registration. Although we
focus on registration, our formulation is general enough to accommodate several image analysis applications that involve
iterative optimization components. It may be utilized wherever estimates of execution time are needed (e.g., in any resource
management framework [5], [19]).

To showcase the effect of accurate prediction of execution time from a resource management perspective we consider a proof
of concept problem: minimizing the total cost of performing a multi-atlas, multi-template segmentation for a set of subjects,
templates, and atlases. Under certain assumptions (e.g., ignoring total completion time, or makespan, and not incorporating
the unknown to the user wait time for on demand cores) this optimization reduces to minimizing the individual cost of each
registration. The main innovation is the method to predict accurately the execution time of non-linear processes. Once a good
estimate of time is available it can be incorporated into any complex optimization and resource scheduling process.

For convenience of presentation and without loss of generality, we refer to a registration between a subject S(I)
n (i.e., the

moving volume) and a template T (I)
p (i.e., the fixed volume), and assume that all volumes have the same dimensions and data

size (as such we ignore time for internal to the cloud data transfers, i.e., application time ' execution time). We denote as f$

the function that maps the execution time tcn,p of a pair of volumes S(I)
n , T (I)

p to monetary cost for a given core type c (c1, c2,
f2, or m1). Under our assumptions, the minimum total cost is achieved by minimizing the cost of each individual registration

6Note that we do not refer here to cost optimization of renting services from a mix of providers [27].
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and as such we are interested in which core type c minimizes:

c∗n,p = argmin
c

f$(tcn,p), (2)

where c∗n,p identifies the minimum cost allocation for a particular volume pair.
Unfortunately, the execution time of an application is not known a priori and a model to estimate it is necessary. We model

the execution time tcn,p of a pair of volumes S(I)
n , T (I)

p on core type c, as:

tcn,p =
fapp

f cCPU

, (3)

where f cCPU reflects the underlying CPU capabilities of core type c, while fapp is a function that reflects how many processing
cycles the application requires. Although in Eq. (3) a simple linear relation is adopted, more complex models that relate
application cycles to processing time exist; however, the following analysis still holds and would only require that another
Eq. (3) is adopted.

Most works in the literature related to scheduling or resource provisioning would assume either the worst case scenario for
the number of cycles needed for an application (by source code profiling) [32], or they would rely on a historical average
estimate [30], [31], or learned models of the usage of computational resources for an application [28], [29]. For the same
application (e.g., a registration) with data size equal for each case, this means that the execution time is either estimated using
a constant (a worst case value is assumed) or as the historical mean (or maximum) of previous executions for the same core
type. However, in this context this will not lead to good allocation, because it does not take into account the effect of the
actual data content on the execution time of the application (e.g., how many iterations does it take to converge).

We propose that in the context of non-linear image registration, we can actually model the application component more
accurately by incorporating the image content within the formulation as:

fapp = fparam(τ ) · fcont(S
(I)
n , T (I)

p , τ ), (4)

where fparam is a multiplicative component that relates how different registration parameter options (represented as a set τ )
of the application affect the required number of cycles per iteration; while fcont represents how many iterations are necessary
to achieve the minimum in the non-linear optimization function of the transformation model given parameters τ . Substituting
Eq. (4) to Eq. (3) we obtain:

tcn,p =
fparam(τ )

f cCPU

· fcont(S
(I)
n , T (I)

p , τ ). (5)

For simplicity but without loss of generality, we can assume that all jobs are executed with the same parameters:

tcn,p = constc · fcont(S
(I)
n , T (I)

p , τ ). (6)

It is known that intensity based registration algorithms utilize local similarity metrics, such as normalized cross-correlation,
mean squared error, and normalized mutual information, to drive the registration process [16]. Thus, the similarity of two
volumes should affect how fast and easy will be to register them. Figure 4a provides a motivating example, showing color
coded local correlation values (using a w×w×w sliding window, with w = 5) for two different volume pairs at full resolution:
one with slow execution time and one faster. We see that the slower pair has more areas with low similarity (colored as red
hues) when compared to the faster one. As commonly done in neuroimaging, here we assume that the two volumes are first
registered linearly to the same common space and as such gross volumetric differences are non existent, and only local variation
must be accounted for.

Based on this motivation, we proceed by modeling fcont(S
(I)
n , T

(I)
p , τ ) to reflect the similarity between S(I)

n , T (I)
p . We must

pick a function that is computationally easy to estimate (in other words it does not take long to compute), but should reflect
the diversity of volume pairs a registration algorithm encounters. It should also relate to the similarity criteria the registration
algorithm used (hence our inclusion of the parameter set τ to reflect the type of similarity metric and the neighborhood
size utilized in the registration). Using, for example, the average across all slices of local similarities should be a good
indicator of similarity, but is not the only one. In fact, the statistical distribution and the topology of local similarities convey
important information as Figure 4b illustrates. Therefore, we propose to use statistical features that characterize the distribution
of similarity values and shape descriptors to approximate the topological distribution of high similarity values between two
volumes.

In order to reflect the contribution to time of processing the original volumes hierarchically, using LV levels of the Gaussian
pyramid obtained by subsampling the original resolution, we represent as Vgn,p the three dimensional matrix of the collected
values of similarity between two volumes S(I)

n , T (I)
p at the gth level of the Gaussian pyramid obtained using a local similarity

criterion in a w × w × w neighborhood as defined in the set τ .
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Fig. 4: Distribution of local correlation is related to execution time. (a) The local correlation values vary spatially in this
slice view between different volume pairs V1, V2: one with slower execution time (left) and one with faster (right). (b) Sliced
volumes |V1|h, |V2|h with threshold h = 0.5 used to compute the topological features. For these volumes, the values of the
topological features are: Sp = (480.5, 42.7), Cd = (0.64, 0.67) and Fl = (0.67, 0.93) for the pairs of slower and faster execution
time respectively. (c) The probability density of local correlation values of slower or faster volume pairs (V1 and V2) are
different and their characteristics are used to predict execution time.

On the basis of this volume Vgn,p we extract the mean, standard deviation, kurtosis, skewness, and median of the vector
ρgn,p, which is the collection of local correlation values of the volume Vgn,p.

The above statistical features do not take into account the topological distribution of correlated areas. Thus, we also adopt
several, easy to compute, topological 3D shape descriptors introduced in the discrete space (a voxel representation) of binary
volumes. We obtain the binary volume |Vgn,p|h after thresholding with value h the absolute value volume |Vgn,p|, such that
an empty voxel (0) means low similarity and a filled voxel (1) means high similarity. We adopt several descriptors, such as
sphericity (Sp) [33], discrete compactness (Cd) [34], and fill (Fl) that are computationally efficient. Using these topological
features we aim to capture the compactness and density of the similarity volume, since it is known that recovering several
small deformations that are spaced far apart requires more effort from a registration standpoint than a larger but co-located
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and compact deformation.
Sphericity Sp [33] is defined as:

Sp =
A3

36πV 2
, (7)

where A is the area of the enclosing surface and V is the volume of the space. Considering every measurement to be unit
length, computing V reduces to counting the filled voxels in the space while A corresponds to the sum of the areas of the
external polygons (1 in each case) of the voxels which are on the visible faces of Vgn,p. Sphericity achieves its minimal value
of 1 for a perfect sphere shape. When comparing sphericity of multiple objects, the values are scaled to produce a meaningful,
comparable result in the range [0, 1].

Discrete compactness Cd [34] is computed as:

Cd =
Ac
Acmax

, (8)

where Ac is the contact surface area which corresponds to the sum of the areas of the contact surfaces (1 in each case) common
to each two voxels, while Acmax = 3(n − n2/3) for a n-voxel representation. Cd is in the range [0, 1], with 0 achieved when
all voxels are disconnected and 1 for a perfect cube shape.

Fill Fl is a basic measure defined as:
Fl =

V

Vtotal
, (9)

where Vtotal counts the total voxels in the object representation. Fl is again in the range [0, 1].
For each new registration we compute the local correlation volume Vgn,p (and |Vgn,p|h) and extract the previously defined

features (a process which is extremely fast compared to registration). Based on such features and a model of execution time,
which we learn as we will describe subsequently, we estimate the time to perform the registration, in order to identify the core
allocation that minimizes monetary cost in our PiCloud implementation. For a collection of new registrations we split the jobs
accordingly, by passing the respective volume pairs and core types as cloud.map arguments.

We use supervised learning approaches to obtain models of the execution time tcn,p of intensity based volume registration
from historical data. Given a collection of ` previously processed data samples (input volume pairs, and time) on a particular
computational set-up c, we represent the local similarity features (extracted at each of the LV levels of the Gaussian pyramid)
as a matrix X ∈ R`×d, where d = 8 · LV due to the 5 statistical and the 3 topological features at each of the LV levels.

We linearize Eq. (6) by taking the logarithm on each side, therefore we proceed by modeling log(tcn,p) as the dependent
variable in all of the regression formulations that follow. Accordingly, a predicted execution time log(t̂cn,p) is transformed back
to the original scale (seconds), prior to using its value to calculate the monetary cost of executing the corresponding registration
on core type c. To predict execution time of non-linear registration, we adopt a variety of linear and non-linear regression
models from the machine learning literature (i.e., linear regression, Random Forest [35], and support vector regression [36],
[37]), which we briefly review in the following paragraphs.

The first type of regression analysis we consider is a simple linear model, which expresses execution time (actually, the
logarithm of time) as linear combination of the input features:

yi = β0 + β1xi,1 + · · ·+ βdxi,d, (10)

where yi ∈ R is the response (i.e., the collection of logarithmic scaled execution times), β0 ∈ R is the intercept, β1, . . . , βd ∈ R
are the regression coefficients, and xi,j ∈ R are the predictors, with i = 1, . . . , ` and j = 1, . . . , d. We estimate the model
parameters that identify the regression hyperplane using a least squares formulation. With the coefficients β̂0, . . . , β̂d now
known, we predict the computational time for an unseen volume pair using Eq. (10). We should note that in Eq. (10), if we
ignore the contribution of the content (in other words assume β1 = . . . = βd = 0), solving the least squares problem to find
the optimal constant is equivalent to using the historical mean of execution time at each core type as a predictor of future
execution time.

To see if some features (in their extracted level) are more important than others, we optimize the number of features employed
by the linear model using a feature selection strategy widely adopted for sparse approximations, in order to discard unnecessary
predictors and obtain a possibly more interpretable model [38]. We explicitly impose the maximum allowed representation
error ε ∈ R, with respect to the model obtained using the full support of predictors (i.e., all features are used). We adopt a
greedy method that gradually reduces the support of the solution by iteratively removing the predictors that offer the smallest
model error increase, while remaining below the target imposed representation error ε [39].

In addition to the linear model, we also investigate possible non-linear relations between execution time and features, using
random forest regression [35] and support vector regression [36], [37]. Random Forest regression [35] uses an ensemble of
ntree unpruned regression trees {h(x,Θk), k = 1, . . . , ntree}, where x is a d-dimensional feature vector, and Θk are random
vectors determining bootstrap samples of the original dataset. When growing a tree, the best split at each node is selected
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among a random subset of mtry � d features. A new data sample x′ is evaluated at each tree, whose output is the numerical
value corresponding to the terminal node reached by applying the set of rules for that tree. The prediction of the random
forest for x′ is the average across all individual tree predictions. Since features are selected randomly when building the trees,
random forest regression performs feature selection implicitly.

On the other hand, from the area of maximum margin classifiers, Support Vector Regression (SVR) [36] is a statistical learning
method for the computation of a regression function from labeled training data. We first use the basic linear formulation of
SVR, that operates in the original d-dimensional input space, thus restricting the regression function to be a hyperplane. We
also investigate the non-linear fit to the training data, using a function ϕ : Rd → H to map the input patterns xi ∈ Rd into a
Hilbert space H, possibly higher dimensional, where the best approximating function could be linear. Support vector regression
is formulated as a convex optimization problem [36]:

minimize
w,ξ,ξ∗,b

1

2
‖w‖2 + C

∑̀
i=1

(ξi + ξ∗i )

subject to w>ϕ(xi) + b− yi ≤ ε+ ξi,

yi −w>ϕ(xi)− b ≤ ε+ ξ∗i ,

ξi, ξ
∗
i ≥ 0,

(11)

where ` is the number of training samples, w and b are the coefficients of the hyperplane, C > 0 is a regularization parameter
controlling the flatness of the regression function, ε determines the width of the insensitivity zone (i.e., the margin), ξi, ξ∗i are
the slack variables, yi is the target value, and i = 1, . . . , `. The optimization problem of Eq. (11) is solved in its dual form
using the Lagrange multipliers method, to identify the support vectors that define the regression function in the input space.
In general, evaluating ϕ explicitly could be costly (or even unfeasible), hence the mapping is computed efficiently using a
kernel function k : Rd ×Rd → R, such that k(xi,xj) = 〈ϕ(xi), ϕ(xj)〉H, where 〈·, ·〉H denotes the inner product in the high
dimensional space. We include in our study the following kernels widely adopted in the statistical learning theory:

1) Linear Kernel: k(xi,xj) = x>i xj ,
2) Gaussian Kernel: k(xi,xj) = exp(−γ‖xi − xj‖2),
3) Sigmoid Kernel: k(xi,xj) = tanh(γx>i xj + r), and
4) Polynomial Kernel: k(xi,xj) = (γx>i xj + r)a.

The parameters of the SVR learning algorithm (C, ε) and kernel functions (γ, r, a) are selected using a grid search strategy.
We use different regression models in order to cover maximally the advantages offered by each one in recovering/interpreting

the underlying data structure. For example, the Linear Model albeit simple is generally able to produce good, interpretable
results – especially with the addition of a feature selection step – and can be easily extended to process data in an online
fashion, thus updating the model on the fly with every new addition of data. On the other hand, SVR methods are able to
accommodate for non-linear dependencies, even though the generated models rarely have a real-world interpretation and a
considerable amount of time has to be allocated to the delicate task of parameter tuning. Finally, Random Forest also allows
for non-linearity and additionally can accommodate categorical variables in the model (e.g., if we were to use one model to
describe all possible parameter and environment setups) while also providing a natural feature selection mechanism (variable
importance estimation). Again, the selection of the model may be time consuming since many realizations of the Random
Forest are computed for the same parameters and the best model is kept.

In the following section we present the performance of the proposed prediction approaches compared to the classical one
of using the historical mean of execution time.

III. RESULTS AND DISCUSSION

A. Experimental Setup

To demonstrate the potential of our approach, in this paper we use imaging data from small animal (mice) phenotyping
experiments. We use total N = 20 subject volumes, P = 6 template volumes (from other mice experiments), and M = 1 atlas
(from [40]). While all the mice are of the same age, ten mice are common wild-types and ten are transgenic individuals carrying
a mutation thought to mimic genetic variation related to a rare human disease. The subjects are scanned ex-vivo with a 7T
Bruker Scanner, using a T2-weighted RARE sequence at a 0.09 mm isotropic resolution, resulting in volumes of 177×200×177
voxels. All volumes are first processed to isolate the brain (skull stripping) and to correct for intensity inhomogeneity using
standard approaches. Our aim is to identify and quantitate the presence of brain morphological abnormalities in transgenic
individuals.

Parameters for all ANTs based registrations are normalized cross correlation as similarity criterion in a window of size
w = 5 voxels (i.e., 5 × 5 × 5 neighborhood), LV = 4, a maximum of 100 non-linear iterations at each level, and Gaussian
regularization and symmetric normalization parameters as recommended in [16].
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Fig. 5: A 3D rendering of brain anatomy for one of our subjects. Four different anatomical structures are labeled and shown
with different colors, while the brain volume is reported as semi-transparent gray.

We execute the image analysis pipeline using the proposed PiCloud implementation only on ‘real-time’ cores. Thus, 6 jobs
(registration between atlas and templates) are required for the first part of the analysis, and 120 jobs (registration between
templates and subjects) for the second part. Also, 20 fusion jobs are necessary. Each job is assigned to a core instance on the
PiCloud, with locks to complete the registration processes (126 jobs) before launching the fusion jobs. The benefit of using
‘real-time’ cores is that each instance (and job) is launched simultaneously after a fixed provisioning time.

To compare the gain in efficiency by parallelizing this process using the PiCloud platform, we also execute on a local
workstation (8 core 3.4 GHz Intel Core i7 and 16 GB RAM) the same process using 1 (serially) or 8 cores (parallel) without
any optimization.

B. Phenotyping Findings

Figure 5 shows a 3D rendering of four structures of interest for one of our subjects. Collectively Table I shows average (and
standard deviation) volume sizes for the four areas of interest, which are obtained by measuring the number of voxels that have
a given label number in the labeled subject volume S̃(L)

n . Observe that the transgenic mice exhibit larger cerebellar and thalamic
volumes, with respect to the wild type group. However, total intracranial volume (TIV) is shown to be statistically different
among the two groups, where the transgenic mice exhibit larger brain sizes. To identify differences in relative volume, we
obtain normalized structure volumes, where the size of each structure is normalized by the TIV of that subject. It is evident now
that overall the size for all of these four structures is altered in the transgenic group, indicating gross morphometric differences
in the brain structure of this transgenic mouse line. (All statistical findings are obtained using Mann-Whitney-Wilcoxon non
parametric tests.)

TABLE I: Morphological phenotyping results for the two mouse lines used where structure volumes are shown as mean
(standard deviation). ∗, ∗∗∗ indicate significant difference at the 0.05, 0.005 levels, respectively.

Volume (mm3) Normalized Volume (%)

Structure Wild Type Transgenic Wild Type Transgenic

Cortex 67.2(2.85) 67.44(5.31) 13.73(0.18) 12.85(0.5)∗∗∗

Cerebellum 57.7(4.22) 44.83(5.08)∗∗∗ 11.78(0.54) 8.53(0.58)∗∗∗

Thalamus 14.99(0.54) 17.09(1.27)∗∗∗ 3.06(0.09) 3.26(0.19)∗

Hypothalamus 8.27(0.3) 8.43(0.47) 1.7(0.06) 1.61(0.05)∗∗∗

Total Intracranial Volume (TIV) 489.41(17.6) 524.53(31.06)∗ - -

C. Computational Results

In this section we present our findings related to the computational aspects of the process as well as the results of the
learning based modeling of the execution time. All models use the previously defined probability densities and the topological
features of the local correlation volumes at all LV = 4 levels.

As depicted in Figure 3, the workflow assumes that the user uploads the input data to the cloud and, upon completion,
downloads the output data. We measure the upload and download rate from our site in Italy to PiCloud (hosted in East Coast
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TABLE II: Average times and cost per non-linear registration on cloud and local workstation shown as mean (standard
deviation).

Resource Type Average Time (min) Average Costb ($)

Data Transfera Processing

PiCloud c2 0.27 (0.17) 58.28 (22.83) 0.13 (0.05)
PiCloud m1 0.19 (0.13) 43.83 (15.16) 0.22 (0.08)
PiCloud f2 0.19 (0.02) 37.23 (10.44) 0.14 (0.04)
Workstation – 21.47 (7.07) –
a This accounts for time spent moving around data within the PiCloud

infrastructure, reflecting both network level I/O latency and also latency
to the local (node) storage. For reference, input data size = 5040 ±
136 kB, output data size = 44605± 362 kB.

b Costs according to PiCloud pricing of July 2013.

AWS) at 3.7 and 7 Mbit/s respectively. Assuming on average 3 MB for each volume, the total times spent uploading and
downloading data are 2.9 minutes and 69 seconds respectively, since we upload 27 volumes and download only 20 volumes
(the final labeled subjects). Average times (for intra-cloud data transfer and processing time) for each non-linear registration
as well as monetary cost are shown in Table II. Observe that with respect to processing time, data transfer time is negligible,
demonstrating the compute-intensive characteristics of this analysis, making it ideal for data parallelism, which is known to
scale efficiently.

The makespan of the overall process (in our context the execution time of the longest registration job for the first part of the
analysis, followed by the longest registration for the second part, and finally the longest fusion job) for our study on PiCloud
requires 8, 5.1, and 4.2 hours for c2, m1, and f2 core types, respectively. On the other hand using all 8 cores on the local
workstation requires a total of 18 hours. The total time at the workstation without any parallelization (1 core) requires over 140
hours (approximately 6 days). As the number of registrations or the time to perform a registration increase (higher resolution,
different parameters) the local workstation is not able to handle the load.

Considering a hypothetical experiment (a similar one is described in [2]) with M = 5 atlases, P = 200 synthetic templates,
and N = 45 subjects, will require P×(M+N) = 10000 registrations. A workstation with 8 cores, would require approximately
57 days. Even assuming the existence of a cluster/grid service that would guarantee 32 simultaneous jobs, this hypothetical
experiment would need 14 days. On the other hand, PiCloud offers high scalability by allowing the user to provision the
required resources for real-time service; as such from a computation view point the makespan of this experiment will be
similar to doing a small experiment. Naturally the only limiting factors may be the time spent uploading and downloading
data to and from the cloud (insignificant in our case), the guarantee of service up-time, and the accumulated total cost. It is
therefore important to identify strategies that may help mitigate the cost involved.

To showcase the potential of the proposed learning framework for predicting execution time of non-linear registration (for
minimizing cost), we use real execution times and the 120 volume pairs of the second stage of the registration process (the
right hand part of the graph in Figure 2). These registrations are executed in all possible core services (c2, f2, m1) and thus
we collect 360 execution times in total. For reference, the total cost of executing all 120 registrations on c2, f2, and m1 is
$17.2, $18.1, and $30.1, respectively. In the following we refer only to c2 and f2, because m1 is more expensive than f2 and
slower in all cases. Since for each registration we know the actual execution time at c2 or f2 core service, using Eq. (2) we
identify the optimal scenario of assigning a registration to the core type that minimizes cost. We label this assignment as c∗n,p
and the actual time as tcn,p. This mix of c2 and f2 core services is referred to as the best case scenario in the following.

Subsequently we use the volume pairs and execution times for each core service to train all the models described in
Section II-C. We use the same similarity criterion (correlation) and the same neighborhood size (cube of 5 voxels) as those
used for ANTs registrations to obtain Vgn,p and extract the statistical and topological features from this correlation map. We
use a Matlab implementation of Random Forest7 and built-in functions for linear regression. For support vector regression we
use LIBSVM (version 3.17) [41].

To test the accuracy of predicting the execution time of an unseen volume pair S(I)
n̄ , T (I)

p̄ we adopt an unbiased cross validation
strategy, resembling the leave one out validation approach. We take the original dataset consisting of 120 registrations (volume
pairs) and their execution times at each core type, and for each volume pair we perform a round of cross validation, using
that pair for testing and a subset of the remaining for training. To ensure that the models are trained without encountering
any of the testing volumes, and hence are blinded to the testing data, we identify which volumes are involved (for example,
S

(I)
1 and T (I)

2 ). To assure that no bias exists, we eliminate from the dataset all pairs that involve in a registration any of the
two volumes (for our example all registrations that involve either S(I)

1 or T (I)
2 are excluded). We use the remaining volume

and time pairs (called here the unbiased training set) to train the models described in Section II-C, using parameters reported

7http://code.google.com/p/randomforest-matlab/
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TABLE III: Regression model parameters used in the experiments.

Model Parameters

Linear Model –
Linear Model + Feature Selection ε = 16%
Random Forest ntree = 90, mtry = 6
SVR + Linear Kernel C = 6, ε = 0.1
SVR + Gaussian Kernel C = 2, ε = 0.1, γ = 0.1

TABLE IV: Cross-validated results of regression analysis for c2 and f2 core type execution times, reported as Mean Absolute
Percentage Error (MAPE).

Model Training Testing

c2 (%) f2 (%) c2 (%) f2 (%)

Proposed
Linear Model 13.0 11.2 17.6 15.5
Linear Model + Feature Selection 14.3 12.3 24.9 17.9
Random Forest 7.3 6.2 17.7 16.0
SVR + Linear Kernel 13.0 11.7 20.0 16.9
SVR + Gaussian Kernel 13.5 12.4 18.2 16.2

Baseline
Historical Mean 27.3 26.2 30.1 28.7

in Table III. Subsequently, we apply each model to the unseen volume pair S(I)
n̄ , T (I)

p̄ , obtaining the corresponding predicted
execution time t̂cn̄,p̄.

We repeat this process first on execution times of the c2 core and then for the f2 core, and using Eq. (2) we estimate the core
assignment c∗n̄,p̄ that minimizes cost. For each volume pair, we estimate the time difference between the actual and predicted
times tcn̄,p̄ − t̂cn̄,p̄, and also record the agreement of assignment, i.e., if c∗n̄,p̄ = ĉ∗n̄,p̄. We repeat this process for all 120 volume
pairs and calculate the mean absolute percentage error (MAPE) of predicting the execution time for each core service, and the
percentage of the 120 pairs for which the assignment to a core service is the same as for the best case.

Using such evaluation criteria allows us to compare the performance of the different models when predicting the execution
time of a new registration. We use MAPE since this indicator is widely adopted to determine the quality of estimation, especially
in the case of time series forecasts, and allows us to evaluate directly any differences in time prediction between core types.
(If we were to use actual times this comparison would not be possible since one core type is faster than the other.)

Given the estimated core assignment ĉ∗n̄,p̄, we calculate the average execution time (across all jobs) and the total cost for
that allocation. For comparison we use the historical mean of execution times of the training set at each core service as an
alternative to the proposed approaches.

Estimating as accurately as possible the execution times of non-linear registration processes is an important aspect of resource
provisioning when considering allocation for monetary cost minimization and also for job scheduling. Table IV outlines the
main results obtained regarding the execution time estimation and provides a comparison with the historical mean. (SVR with
sigmoid and polynomial kernel report low performance in all experiments, and are excluded from the comparison.) Overall,
the MAPE in predicting execution time of our learning based approach using a linear model is 17.6% and 15.5% for the c2
and f2 core services respectively. On the other hand, using simply the mean of historical data the error is 30.1% and 28.7%
respectively. Thus, our approach provides almost a 50% improvement over current practice. It appears that a linear model

TABLE V: Cross-validated results for resource allocation accuracy.

Model Training Accuracy Testing Accuracy

Overalla (%) Overall (%) c2 Allocationb (%) f2 Allocationb (%)

Proposed
Linear Model 83.1 77.5 81.5 69.2
Linear Model + Feature Selection 81.8 73.3 70.4 79.5
Random Forest 92.1 88.3 88.9 87.2
SVR + Linear Kernel 83.8 80.0 82.7 74.4
SVR + Gaussian Kernel 86.1 83.3 84.0 82.1

Baseline
Historical Mean 62.5 49.2 71.6 2.6

a Overall accuracy denotes the percentage of correct allocations with respect to the best case.
b c2 (resp. f2) allocation accuracy denotes the percentage of correct c2 (resp. f2) allocations with respect to the best case.
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describes well the relationship between the features used and execution time, and offers comparable performance in both
training and testing sets, indicating good generalization. The reduced linear model with feature selection (using on average 6
features) does not improve performance, demonstrating the importance of all features (statistical and topological extracted at
all resolution levels). The other non-linear models do not seem to provide any benefit in terms of testing performance. While
Random Forest does offer the lowest training error (≈ 7%) it does not generalize well, indicating probable over-fitting.

The first direct application of estimating the job execution times is job allocation. When using the PiCloud platform, the
central question is to which type of core to allocate each individual job. We are interested in the overall allocation performance
(percentage-wise, how many jobs are allocated to the same type of core as in the best case) and the specific allocation
performance (percentage-wise, for each core type, the allocation accuracy as compared to the best case). The complete results
are depicted in Table V. The linear model agrees with the best case on 77.5% of the cases; whereas using the historical
mean to drive decisions results in an overall agreement of only 50%. Remarkably, the historical mean agrees less than 3%
in f2 allocations with respect to the best case. Such biased behavior is not observed with the linear model. Overall, all of
the proposed models offer superior performance compared to the historical mean, and the Random Forest offers the highest
accuracy among all (88.3%). It appears that there is slightly higher accuracy when allocating to c2 rather than f2 core type.
However, this is not due to less accuracy of the model (no such difference in execution time prediction were observed before)
but because there are fewer allocations to f2 in the best case (32% jobs are allocated to f2, while 68% are allocated to c2).
Finally, it appears here that all models perform similarly and sometimes better than the linear model. This is due to the fact
that the allocation accuracy is a byproduct of a cost decision. That is, after execution time prediction, the allocation is decided
according to cost. Most of the difference in the execution time (estimation error) is masked by the non-linear pricing strategy of
real-time cores of PiCloud. On average, as shown in Table II, a registration takes 37 minutes on a f2 core. This is remarkably
close to the 60% of the hour (36 minutes) decision threshold for real-time core charge. Thus, what it matters for allocation
purposes, at least for f2 core type, is whether both real and predicted execution times are below or above this threshold, and
not exactly how accurate the time prediction is. However, if the pricing strategy changes one would expect these accuracy
figures to change as well, and this is the compelling reason for reporting prediction time as well, since execution time is the
input to any decision problem.

Encouraged by the performance indicators obtained when estimating execution times and allocations, we apply our model to
the estimation of the monetary cost of using the PiCloud platform and illustrate the potential monetary gains for intelligently
allocating resources. We use the proposed approach to drive core allocations which in turn reduce total monetary cost as seen
in the bar plot of Figure 6 (for clarity not all variations are shown). The proposed approaches offer a cost close to the best case
scenario. In the same figure the blue line shows the average execution time of each case. Overall, driving decisions using any
of the proposed approaches, results on an average execution time of 47.1 minutes on par with the 46.4 minutes of the best case.
Thus, adopting any of the proposed approaches one can achieve both lower cost and better performance compared to using
the c2 service (longer time), the f2 service (more costly), or the historical mean (more costly and longer time). Naturally, the
prediction accuracy will improve by adding more data and a more advanced similarity model (one that is still computationally
efficient to estimate).

Several conclusions can be drawn from these findings. The Linear, Random Forest and SVR + Gaussian Kernel models
perform very well in terms of time and cost estimation, leading to an approximate 12–15% cost reduction compared with ’All
f2’ – the most expensive solution. We emphasise that all proposed methods offer quantitatively better results than the historical
mean. This leads to the conclusion that inquiry into the content of the input image data has a great importance for execution
time estimation and ultimately cost prediction and optimization. This approach seems to provide more insight into the correct
allocation patterns than only using data dimension and/or historical information.

In this paper we use a few data points but we can assess how the methods will behave when applied on larger datasets.
Assuming the availability of a large number of independent and homogeneous jobs we expect the result of the historical mean
to improve significantly. Of course, this setting also implies that the results obtained by the proposed methods will improve as
well. Although the difference between the historical mean solution and the proposed solutions may decrease in this case, still
we expect the proposed to always outperform the naive historical mean approach and provide a more reliable time estimation
mechanism, e.g. for scheduling applications. Conversely, if we consider a more complicated setup (such as more core types,
more complex imposed cost function), a more heterogeneous set of imaging volumes, or an application where accurate time
prediction is critical (such as the scheduling of large time dependent workflows of imaging applications), the results of the
proposed solutions will perform well while we expect a degradation in the results of the historical mean.

IV. CONCLUSIONS

In this paper we demonstrate that offloading intensive analyses to the cloud is possible and beneficial, since they are ideally
suited to data parallelism (i.e., they are compute-intensive and not limited by inter-process or intra-cloud communication). While
the PiCloud platform is convenient and facilitates the use of cloud infrastructures, it is possible to implement similar pipelines
using other libraries if the user chooses so. Nevertheless, no matter what environment is used (cloud, cluster, or multi-core
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Fig. 6: Cost (relative to assigning all registrations to the f2 core type) and average time of all registrations for various allocation
scenarios.

workstations) optimizing resource allocation is necessary and the proposed framework for incorporating data dependency does
improve the efficiency of resource allocation methods. While here we demonstrate this potential using simple similarity driven
features (statistics of their distribution and topological shape descriptors) for estimating the computational burden of non-linear
registrations, more sophisticated methods can be developed. It is clear that the more volumes are registered the more accurate
our estimation will be. We are currently developing methods to integrate this prediction process seamlessly, and to extend it to
predicting execution time of other core neuroimaging analysis steps (e.g., segmentation). We will release in the public domain
all source code material to facilitate adoption from users that are interested in performing such an analysis on the PiCloud
platform. Although here we rely on mice data, the same code and approach can be used with any brain MRI data (human
or other), and can be easily extended to accommodate different pipelines as well. With this paper our goal is to provide a
compelling example of how the cloud paradigm is used to create powerful and comprehensive image analysis pipelines that are
simple to use and available to a large community of scientists, thus increasing the democratization of science. The possibility
to perform hundreds of parallel executions with a fraction of the cost of owning a workstation opens the possibility to many
laboratories around the world to develop state-of-the-art image analysis pipelines, without having to rely only or at all on
(shared) distributed computing facilities.
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