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Abstract

This paper shows theoretically and experimentally that hearing expert opinions can

be a double-edged sword for collective decision making. We present a majoritar-

ian voting game of common interest where committee members receive not only

private information, but also expert information that is more accurate than pri-

vate information and observed by all members. In theory, there are Bayesian Nash

equilibria where the committee members’ voting strategy incorporates both types

of information and access to expert information enhances the efficiency of the ma-

jority decision. However, there is also a class of potentially inefficient equilibria

where a supermajority always follow expert information and the majority decision

does not aggregate private information. In the laboratory, the majority decisions

and the subjects’ voting behaviour were largely consistent with those in the class of

inefficient equilibria. We found a large efficiency loss due to the presence of expert

information especially when the committee size was large. We suggest that it may

be desirable for expert information to be revealed only to a subset of committee

members.

Keywords: committee decision making, voting experiment, expert information, strategic

voting
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1 Introduction

When collective decisions are made through voting, typically each voter has not only

private information known solely to themselves but also public information observed by

all voters. Examples of commonly held information in collective decision making include

“expert” opinions solicited by a committee, shared knowledge in a board meeting that

has emerged from pre-voting deliberation, and evidence presented to a jury. Such infor-

mation may well be superior to the private information each individual voter has, and

if so, it would be natural to expect that voting behaviour should incorporate the public

information at least to some extent.

Meanwhile, such public information is rarely perfect, and in particular expert opinions

are often alleged to have excessive influence on decision making. For example, recently

the IMF’s advice to the governments of some highly indebted countries have heavily in-

fluenced their parliamentary and cabinet decisions for austerity. However, the IMF’s

expertise has been questioned by specialists in monetary policy, and it has been reported

that the IMF itself has admitted that they may have underestimated the impact of their

austerity measure in Greece.1 Financial deregulations in the 1990s seem to have been

prompted by endorsements from financial experts at the time, but some politicians reflect

that in retrospect they may have followed expert opinions too naively.2 How would collec-

tive decision making through voting be influenced by shared information? If commonly

observed expert information is better than the information each voter has, would the

presence of such expert information improve the quality of the collective decision? Can

expert information have “too much” influence?

This paper addresses these questions experimentally, by introducing a public signal

into an otherwise classical Condorcet jury setup with majority rule. The public signal is

observed by all voters and assumed to be superior to the private signal each voter receives.

We call such a public signal “expert” information.3

Before reporting on the experiment we first present a majoritarian voting game with

expert information and identifies three types of equilibria of interest, namely i) the sym-

metric mixed strategy equilibrium where each member randomizes between following the

private and expert signals should they disagree; ii) the asymmetric pure strategy equilib-

rium where a certain number of members always follow the expert signal while the others

always follow the private signal; and iii) a class of equilibria where a supermajority and

hence the committee decision always follow the expert signal.4 We find that in the first

1“IMF ’to admit mistakes’ in handling Greek debt crisis and bailout”, Guardian, 4 June 2013, http://

www.guardian.co.uk/business/2013/jun/05/imf-admit-mistakes-greek-crisis-austerity
2“Gordon Brown admits ’big mistake’ over banking crisis”, BBC News, 13 March 2013, http://www.

bbc.co.uk/news/business-13032013
3As we will discuss later in Section 2, the public signal can also be thought of as shared information

(common prior) emerged through pre-voting deliberation.
4While the voters may ignore their private information completely, they cannot ignore the expert

information completely in equilibrium. That is, voting according only to their private signal is never an
equilibrium, since if a voter knows that all the others will follow their private signals, he deviates and

2

http://www.guardian.co.uk/business/2013/jun/05/imf-admit-mistakes-greek-crisis-austerity
http://www.guardian.co.uk/business/2013/jun/05/imf-admit-mistakes-greek-crisis-austerity
http://www.bbc.co.uk/news/business-13032013
http://www.bbc.co.uk/news/business-13032013


two equilibria, the expert signal is collectively taken into account in such a way that it

enhances the efficiency (accuracy) of the committee decision, and a fortiori the Condorcet

jury theorem (CJT) holds so that as the size of the committee becomes larger the prob-

ability that the decision is correct becomes higher and goes to 1. However, in the third

type of equilibria, private information is not reflected in the committee decision and the

efficiency of committee decision is identical to that of expert information, which may well

be lower than the efficiency the committee could achieve in the absence of expert infor-

mation. In other words, the introduction of expert information might reduce efficiency in

equilibrium.

Motivated by the possibility that expert information can enhance or diminish the

efficiency of equilibrium committee decisions, we conducted a laboratory experiment to

study the effect of expert information on voting behaviour and majority decisions. Of

particular interest is to see whether voters can play an efficient equilibrium, not least

because the efficient equilibria seem to require sophisticated coordination among voters.

Specifically, we set the accuracies of the signals in such a way that the expert signal is

more accurate than each voter’s private signal but less accurate than what the aggregation

of the private signals can achieve by informative voting without the expert signal. Such

parameter values seem plausible in that the expert opinion should be taken into account

but should not be decisive on its own. At the same time, they entail the possibility that

expert information may indeed be welfare reducing if more than a half of the voters follow

the expert obediently.

In the experiment we found that the voters followed the expert signal much more

frequently than they should in the efficient equilibria. Specifically, the majority decisions

followed the expert signal most of the time, which is consistent with the class of obedient

equilibria mentioned above. Another interesting finding is the marked heterogeneity in

voting behaviour. While there were voters who consistently followed their private signal

and ignored the public signal, a significant portion of voters followed the expert signal most

of the time. We will argue that the voters’ behaviour in our data can be best described

as that in an obedient equilibrium where a supermajority (and hence the decision) always

follow the expert signal so that no voter is pivotal.

Even if the committees in the laboratory followed expert information most of the time,

this does not necessarily imply that introducing expert information is harmful, because

in the absence of expert information the voters may not play the (efficiency maximizing)

equilibrium strategy of informative voting. Along with the treatments with both private

and expert information, we also ran control treatments where each voter received a pri-

vate signal only, in order to compare the observed efficiency of the committee decisions

with and without expert information. We found that for seven-person committees the

difference in the efficiency between the treatment and the control is insignificant, largely

due to some non-equilibrium behaviour (i.e., voting against private information) in the

follows the expert signal, which is by assumption superior to his private signal.
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control treatment which reduced the benchmark efficiency. However, for fifteen-person

committees, those without expert information performed much better than those with

expert information and the difference is significant, suggesting that expert information

was indeed harmful.

Our results suggest that, from the viewpoint of a social planner who decides whether

to and how to provide a committee with expert information, creating an equilibrium

with higher efficiency does not necessarily mean it is selected among other equilibria, and

in particular there is a possibility that provision of public information may lead to an

inefficient equilibrium being played.5 This concern seems particularly relevant when an

inefficient equilibrium is simple and intuitive to play, like the obedient equilibrium in our

model, while the efficient equilibrium requires subtle coordination. A natural solution to

this problem would be to rule out inefficient equilibria, if possible. In our model, if the

expert information is revealed only to a small subset of voters, the obedient equilibrium

where a supermajority always follow the expert can be ruled out. Moreover, if the size

of the subset is optimally chosen, there will be a simple and efficient equilibrium, where

this subset of the voters receive and vote according to the expert signal, and the others

who do not receive the expert information vote according to their own private signal.

Intuitively, such selective disclosure prevents an expert from having too much influence.

Alternatively, if an expert opinion is heard by all members, a coordination procedure

such as role assignment (e.g., who should follow the expert information and who should

ignore it) may lead to an efficient equilibrium. A contribution of this paper in this regard

is to demonstrate that, without a coordination device, an efficient equilibrium may not

necessarily be played even in a game of common interest especially when there is a simple

but inefficient equilibrium.

In their seminal paper Austen-Smith and Banks (1996) first introduced game-theoretic

equilibrium analysis to the Condorcet jury with independent private signals. They demon-

strated that voting according to the private signal is not generally consistent with equi-

librium behaviour. McLennan (1998) and Wit (1998) studied symmetric mixed strategy

equilibria in the model of Austen-Smith and Banks (1996) and showed that the CJT

holds in equilibrium for majority and super-majority rules (except for unanimity rule).

The experimental study on strategic voting was pioneered by Guarnaschelli et al. (2000)

who tested the model of Austen-Smith and Banks (1996) and found that the subjects’

behaviour was largely consistent with the theory. Focusing on unanimity rule, Ali et al.

(2008) found that the findings by Guarnaschelli et al. (2000) are fairly robust to voting

protocols such as the number of repetitions and timing of voting (simultaneous or se-

quential). The present paper focuses on majority rule, but examines the effect of public

information on voting behaviour and outcomes.

5As in standard models of voting, our model also has equilibria that are implausible from the view
point of application and efficiency, such as uninformative equilibrium where all committee members vote
for a particular option regardless of their private signal, and equilibrium where all members the vote
against the expert signal.

4



The literature on deliberation in voting has studied public information endogenously

generated by voters sharing their otherwise private information through pre-voting delib-

eration (e.g., Coughlan, 2000; Austen-Smith and Feddersen, 2005; and Gerardi and Yariv,

2007). In these models, once a voter reveals his private information credibly, he has no

private information. Goeree and Yariv (2011) found in a laboratory experiment that de-

liberation diminishes differences in voting behaviour across different voting rules.

Battaglini et al. (2010) and Morton and Tyran (2011) report results from experiments

where voters are asymmetrically informed, to study how the quality of the private signal

affects their decision to abstain, in the spirit of the model of Feddersen and Pesendorfer

(1996).6 The quality of the information each voter has in our framework also varies

according to whether the private and expert signals agree, in which case they provide

strong information about the state; or they disagree, in which case the uncertainty about

the state becomes relatively high. However, we do not allow voters to abstain, and more

importantly our primary interest is in the combination of private and public information,

which is fundamentally different from private information with different accuracy levels

in terms of the effect on the voters’ strategic choice, not least because the public signal in

our framework represents a perfectly correlated component of the information each voter

has.

While we focus on simultaneous move voting games, the inclination to ignore pri-

vate information in favour of expert information is reminiscent of rational herding in

sequential decisions. In the original rational herding literature (e.g., Banerjee, 1992;

Bikhchandani, Hirshleifer, and Welch, 1992) each player’s payoff is assumed to be deter-

mined only by his decision but not by others. Dekel and Piccione (2000) and Ali and Kartik

(2012) are among the papers that theoretically study sequential voting in collective de-

cision making where payoffs are intrinsically interdependent. Unlike the expert signal in

our setup, which is exogenously given to all voters, public information in their models

is generated endogenously by the observed choices of earlier voters. Dekel and Piccione

(2000) show that the multiple equilibria include an equilibrium where all voters vote in-

formatively and the outcome is efficient. Ali and Kartik (2012) identify equilibria that

exhibit herding whereby after observing some votes, the rest vote according to what the

earlier votes indicate, regardless of their private information. Hung and Plott (2001) con-

ducted a laboratory experiment on sequential voting with majority rule. They found that

some herding indeed occurred, resulting in inefficiency compared to informative voting.

Our model and experimental design are based on the uniform prior with expert infor-

mation. This structure is theoretically isomorphic to the case of the canonical Condorcet

jury model without public information but with a common non-uniform prior belief. The

symmetric mixed strategy equilibrium we derive in this paper can be thought of as a spe-

cial case of the one shown by Wit (1998) who solved for the equilibrium without assuming

6Bhattacharya et al. (2014) study a related experimental setup but with costly voting.

5



the uniform prior.7 However, we also explicitly derive an asymmetric pure strategy equi-

librium and its optimality, which has not been shown previously in the literature. In doing

so, we draw an important link between our fully strategic setup and the optimal voting rule

with heterogeneously informed but non-strategic voters studied by Nitzan and Paroush

(1982).8

The important advantage of adopting the uniform prior and expert information, rather

than a non-uniform prior without expert information, is that we are able to ask a po-

tentially useful policy question as to whether to, and how to bring expert opinions into

collective decision making. Our experiment is based on this premise, and provides us with

practical implications such as the possibility that the introduction of expert information

can reduce efficiency, even though theoretically it can enhance welfare if the voters coor-

dinate to play an efficient equilibrium. It would be impossible to address such an issue if

we adopted a non-uniform prior analogue without expert information, because in practice

the prior belief is seldom a choice variable in itself, while decision making bodies can often

choose whether to listen to expert opinions.

The role of public information and its welfare implications have been studied especially

in the context of coordination games (e.g. Morris and Shin, 2002; Angeletos and Pavan,

2004 and more recently Loeper et al., 2014). While theoretical models in that literature

point to the possibility that more accurate public information may reduce welfare, our

simple voting game (as in most other jury models) does not feature strategic complemen-

tarities, which means there is no direct payoff from taking the same action since the voters

are concerned only with whether the committee decision is right or wrong. Therefore the

mechanism through which public information has any effect on players’ choice and belief

is very different from that in coordination games. Cornand and Heinemann (2014) con-

ducted a laboratory experiment based on the coordination game of Morris and Shin (2002)

and found that subjects put less weight on public information in their choice, compared

to their unique equilibrium prediction. In our experiment, we found that subjects put

more weight on public information relative to the prediction from the efficient equilibria,

and moreover the subjects’ choices were consistent with the inefficient equilibrium.

The rest of this paper is organized as follows. The next section presents our model,

and its equilibria are derived in Section 2. Section 3 presents the experimental design,

and Section 4 discusses the results. Section 5 concludes.

7For the same information structure, Liu (2015) proposes a voting procedure that leads to an equi-
librium where all agents vote according to their private signal, regardless of the quality of the public
information/common prior.

8While most theoretical studies on strategic voting focus on symmetric strategies, Persico (2004)
establishes the optimality of asymmetric strategy equilibrium in a voting game related to ours. However,
he does not give an explicit solution for such an equilibrium.
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2 Equilibrium Predictions

Consider a committee that consists of an odd number of agents n ∈ N = {1, 2, .., n}. Each

agent simultaneously casts a costless binary vote, denoted by xi = {A, B}, for a collective

decision y ∈ Y = {A, B}. The committee decision is determined by majority rule. The

binary state of the world is denoted by s ∈ S = {A, B}, where both events are ex ante

equally likely Pr[s = A] = Pr[s = B] = 1
2
. The members have identical preferences

ui : Y × S → R and the payoffs are normalized without loss of generality at 0 or 1.

Specifically we denote the vNM payoff by ui(y, s) and assume ui(A, A) = ui(B, B) = 1

and ui(A, B) = ui(B, A) = 0, ∀i ∈ N . This implies that the agents would like the decision

to be matched with the state.

Before voting, each agent receives two signals. One is a private signal about the state

σi ∈ K = {A, B}, for which the probability of the signal and the state being matched is

given by Pr[σi = A | s = A] = Pr[σi = B | s = B] = p, where p ∈ (1/2, 1]. We also have

Pr[σi = A | s = B] = Pr[σi = B | s = A] = 1 − p.

In addition to the private signal, all agents in the committee observe a common public

signal σE ∈ L = {A, B}, which is assumed to be more accurate than each agent’s private

signal. Specifically, we assume Pr[σE = A | s = A] = Pr[σE = B | s = B] = q and

Pr[σE = A | s = B] = Pr[σE = B | s = A] = 1 − q, where q > p. Thus the model has

n private signals and one public signal, and they are all assumed to be independently

distributed. The agents do not communicate before they vote.

The public signal in our model has natural interpretations. It can be thought of

as expert information given to the entire committee as in, e.g. congressional hearings.

Briefing materials presented to and shared in the committee would also have the same

feature. Alternatively, it may capture shared knowledge held by all agents as a result

of pre-voting deliberation. In that case, the private signal represents any remaining un-

communicated information held by each agent, which is individually inferior to shared

information.9 Throughout this paper we often refer to the public information as expert

information. Note that in the absence of the public signal, there exists an informative

voting equilibrium such that xi = σi for any i and the Condorcet Jury Theorem holds

(Austen-Smith and Banks, 1996), so that as the number of agents becomes larger, the

probability of the majority decision approaches 1.

In what follows we consider equilibria in which voting behaviour and the outcome

depend on the signals the agents observe. Specifically, we focus on how agents vote

depending on whether their private and public signals agree or disagree, i.e., vi(A, A) =

9Suppose that every agent receives two independent signals σ
(1)
i

and σ
(2)
i

with accuracy p(1) and
p(2), respectively, but there is no public signal ex ante. Assume also that due to time, cognitive or

institutional constraints, only the first piece of information (σ
(1)
i

) can be shared through deliberation in

the committee before voting. If {σ
(1)
1 , σ

(1)
2 , ..., σ

(1)
n } are revealed to all agents, they collectively determine

the accuracy of public information q, while the accuracy of remaining private information for each agent

{σ
(2)
1 , σ

(2)
2 , ..., σ

(2)
n } is that of the second signal p(2). The collective accuracy of the shared signals depends

on the realization of {σ
(1)
1 , σ

(1)
2 , ..., σ

(1)
n } and we may not necessarily have q > p(2).
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vi(B, B) and vi(A, B) = vi(B, A) for any i. That is, the labelling of the state is assumed

irrelevant, in line with the feature that the payoffs depend only on whether the decision

matches the state, but not on which state was matched or mismatched.

2.1 Symmetric strategies

Let us focus our attention to symmetric strategy equilibria first, where vi(A, A) = vi(B, B) ≡

α and vi(B, A) = vi(A, B) ≡ β for any i. Note that because of the symmetry of the model

with respect to A and B, we can consider the cases of σE = A and σE = B as two in-

dependent and essentially identical games, where only the labelling differs. We start by

observing that expert information cannot be ignored in equilibrium.

Proposition 1. Every agent voting according to their own private signal is not a Bayesian

Nash equilibrium.

Proof. See Appendix I.

The proposition has a straightforward intuition. Suppose that an agent is pivotal and

his private signal and the public signal disagree. In that event, the posterior of the agent

is such that the votes from the other agents, who vote according to their private signal,

are collectively uninformative, since there are equal numbers of the votes for A and B.

Given this, the agent compares the two signals and chooses to follow the public one as it

has higher accuracy (q > p), but such voting behaviour breaks the putative equilibrium

where every agent votes according to their private signal.

In contrast, there is an equilibrium where every agent follows the public signal.

Proposition 2. There exists a Bayesian Nash equilibrium where every agent votes ac-

cording to the public signal.

Proof. Consider agent i. If all the other agents vote according to the public signal, he is

indifferent to which alternative to vote for, and thus every agent adopting obedient voting

is an equilibrium.

We call this equilibrium obedient or the obedient equilibrium.

Next we show that there exists a mixed strategy equilibrium where both private and

public signals are taken into account.

Proposition 3. If q ∈ (p, q̄(p, n)), there exists a unique mixed strategy equilibrium, where

q̄(p, n) =

(

p

1−p

)
n+1

2

1 +
(

p

1−p

)
n+1

2

.

In the equilibrium, the agents whose private signal coincides with the public signal vote

accordingly with probability α∗ = 1. The agents whose private signal disagrees with the

8



public signal vote according to their private signal with probability

β∗ =
1 − A(p, q, n)

p − A(p, q, n)(1 − p)
, where A(p, q, n) =

(

q

1 − q

) 2

n−1
(

1 − p

p

)
n+1

n−1

.

Proof. This partially follows from Wit (1998).10 A direct proof is given in Appendix I.

Note that in order for the mixed strategy equilibrium to exist, the accuracy of the

public signal has to be lower than a threshold q̄(p, n). If this is the case, there are

two symmetric equilibria of interest, namely i) the obedient equilibrium where all agents

follow the public signal; and ii) the mixed strategy equilibrium in which the agents take

into account both signals probabilistically. Meanwhile, if the public signal is sufficiently

accurate relative to the private signals (q ≥ q̄(p, n)), the latter equilibrium does not exist.

Let us consider the efficiency of the mixed strategy equilibrium in relation to that of

the obedient equilibrium.

Proposition 4. The mixed strategy equilibrium in Proposition 3 maximizes the efficiency

of the majority decisions with respect to α and β.

Proof. This follows from Theorem 1 in Wit (1998). A direct proof is given in Appendix

I.

Since the obedient equilibrium requires α = 1 and β = 0, the mixed strategy equilib-

rium outperforms the obedient equilibrium. Another direct implication of Proposition 4

is that providing the committee with expert information is beneficial if the agents play

the symmetric mixed strategy equilibrium:

Corollary 1. The mixed strategy equilibrium identified in Proposition 3 outperforms the

informative voting equilibrium in the absence of public information.

The corollary holds because informative voting is equivalent to α = β = 1, and

Proposition 4 has just shown that the mixed strategy equilibrium (α∗ = 1 and β∗ ∈ (0, 1))

is optimal with respect to the choice of α and β.

2.2 Asymmetric strategies

In this subsection we examine equilibria in asymmetric strategies. As allowing asymmetric

strategies leads to a vast number of possible configurations of equilibria, we focus on i)

asymmetric strategy equilibria where the majority decision is the same as that in the

symmetric obedient equilibrium and ii) asymmetric pure strategy equilibrium that is

unique in an intuitive set of pure strategy profiles and is optimal in the set of all strategy

profiles.

10Cf. The proof of Lemma 2 in Wit (1998).
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2.2.1 Obedient outcome

The first type of asymmetric equilibria are a straightforward extension of the obedient

equilibrium in symmetric strategies (Proposition 2) and take the following “hybrid” form:

Proposition 5. For n ≥ 5 there exist equilibria where (n + 1)/2 + 1 or more agents

(a supermajority) vote according to the public signal and the rest vote arbitrarily. The

decision is obedient: the committee decision coincides with the public signal with probability

1.

Proof. This directly follows from the feature that, if a supermajority always vote according

to the public signal, no agent is pivotal. We have n ≥ 5 because if n = 3 then (n+1)/2+1

members following the public signal corresponds to the symmetric obedient strategy.

Note that it is not sufficient for the equilibria to have (n + 1)/2 agents following the

public signal, because if it is the case, these agents will be pivotal with positive probability.

Clearly Proposition 5 includes a class of payoff equivalent equilibria in which some agents

use pure strategies and the the others randomize:

Definition 1. A hybrid obedient equilibrium is an equilibrium where n ≥ 5 and (n +

1)/2 + 1 or more agents (i.e. a supermajority) are obedient to the public signal and at

least one of the rest adopts a non-obedient strategy.

While the majority decision in the equilibrium is trivial and identical to the symmetric

obedient equilibrium, the hybrid obedient equilibrium will be of significant interest in

interpreting the experimental results, as we will see later.

2.2.2 Asymmetric pure strategies

Let us now consider asymmetric pure strategies for which the committee decision is af-

fected by private signals. Let Γ be the set of all strategy profiles. In what follows we

focus on the strategy profiles where we have two groups of agents who vote differently

when the signals disagree.

Definition 2. M ⊂ Γ is the set of asymmetric pure strategy strategy profiles in which

m ∈ {1, 2, ..., n−1} “obedient” agents vote according to the public signal with probability

1, and n − m agents vote according to their private signal with probability 1.

Before describing the equilibrium, it is useful to define the subset of M in which the

committee decision is not obedient.

Definition 3. M̂ ⊂ M is the set of pure strategy profiles where m ∈ {1, 2, ..., (n + 1)/2 −

1}.

The following proposition states that, unless the accuracy of the public signal q is too

high relative to the accuracy of each private signal p, there is a unique equilibrium in M̂ .

10



Proposition 6. Let

m∗ ∈ N ∩

(

ln[q] − ln[1 − q]

ln[p] − ln[1 − p]
− 1,

ln[q] − ln[1 − q]

ln[p] − ln[1 − p]

]

.

If m∗ < (n + 1)/2, then m = m∗ is the unique Bayesian Nash equilibrium in the set

of strategy profiles M̂ . If m∗ ≥ (n + 1)/2, then any m ≥ (n + 1)/2 in M leads to an

equilibrium that is payoff equivalent to the obedient equilibrium.

Proof. See Appendix I.

It remains to examine the efficiency of the asymmetric pure equilibrium.

Proposition 7. If m∗ < (n + 1)/2, then m∗ uniquely maximizes the expected welfare in

the set of all strategy profiles Γ.

Proof. See Appendix I.

To establish the optimality, we use the feature that the asymmetric equilibrium strat-

egy profile above can be translated into the optimal number of votes each agent should

have according to the accuracy of their signals, in a very different model where the agents

are assumed to vote informatively (Nitzan and Paroush, 1982). The Proposition 7 implies

the following ranking of the equilibria in terms of efficiency.

Proposition 8. The efficiency of equilibria in the voting game with expert information,

when they exist, is ranked as follows:

non-obedient asymmetric pure eqm ≻ symmetric mixed eqm ≻ obedient eqm. (1)

The ranking between the asymmetric pure equilibrium and the symmetric mixed equi-

librium has a natural intuition: insofar as m∗ represents the “optimal weight” to be placed

on the public signal, the symmetric mixed equilibrium achieves this optimal weight (i.e.

the number of agents who follow the public signal) with probability less than 1 and hence

it is dominated by the asymmetric pure equilibrium.

It is straightforward to observe that the sincere voting equilibrium without public

information can be better or worse than the obedient equilibrium, while it is dominated

by the symmetric mixed strategy equilibrium and hence the non-obedient asymmetric

pure equilibrium. This implies that public information may lead the committee to a more

efficient equilibrium or a less efficient equilibrium. From the next section onwards, we

focus on the interesting case where the public signal is not too accurate and thus the

sincere voting equilibrium in the absence of public information is more efficient than the

obedient equilibrium in the presence of public information.
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Table 1: Treatments

Treatment Private signal Public signal Comm. size No. of sessions No. of subjects

1 yes yes 7 3 7 × 2 × 3 = 42

2 yes yes 15 3 15 × 3 = 45

3 yes no 7 3 7 × 2 × 3 = 42

4 yes no 15 3 15 × 3 = 45

3 Experimental Design

So far we have seen that the introduction of expert information into a committee leads

to multiple equilibria of interest. On one hand, we have derived equilibria where such

public information is used to enhance efficiency. They require either subtle mixing or a

certain number of agents following the public signal regardless of their private signal. On

the other hand, however, there are equilibria where the outcome always follows the public

signal so that the CJT fails and the decision making efficiency may be reduced relative

to the informative voting equilibrium in the absence of expert information. Despite the

(potentially severe) inefficiency, these equilibria seem simple to play and require very little

coordination among agents.

In order to examine which equilibria best describe how people respond to expert infor-

mation in collective decision making, we use a controlled laboratory experiment to collect

data on voting behaviour when voters are given two types of information, private and

public. The experiment was conducted through computers at the Behavioural Labora-

tory at the University of Edinburgh.11 We ran four treatments, each of which had three

sessions, in order to vary committee size and whether or not the subjects received public

information. The variations were introduced across treatments rather than within be-

cause, as we will see shortly, we had to let our subjects play over relatively many periods,

in order to ensure that for each setup the subjects have enough (random) occurrences

where the private and public signals disagree. Each treatment involved either private

information only or both private and public information, and each session consisted of

either two seven-person committees or one fifteen-person committee (see Table1). The

committees made simple majority decisions for a binary state, namely which box (blue or

yellow) contains a prize randomly placed before the subjects receive their signals. The in-

structions were neutral with respect to the two types of information: private information

was literally referred to as “private information” and expert information was referred to

as “public information”. After the instructions were given, the subjects were allowed to

proceed to the voting game only if they gave correct answers to all short-answer questions

about the instructions.

For all treatments, the prior on the state was uniform and independent in each period,

and we set the accuracy of each private signal (blue or yellow) at p = 0.65 throughout.

11The experiment was programmed using z-Tree (Fischbacher, 2007).
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For the treatments with a public signal (also blue or yellow) we set its accuracy at q = 0.7.

We presented the subjects with the accuracy of the signals (p = 0.65 and q = 0.7) clearly

and explicitly in percentage terms, which was described by referring to a twenty-sided

dice in order to facilitate the understanding by the subjects who may not necessarily be

familiar with percentage representation of uncertainty.12

The parameter values, which involve a small difference between p and q, were chosen

so as to make the potential efficiency loss from the obedient outcome large. This is

a deliberate design feature to give the subjects strong incentive to avoid the obedient

equilibrium and coordinate on an efficient equilibrium by putting a large weight on the

private signals (if they are to play an equilibrium). From Proposition 6 we have m∗ = 1

in the efficient asymmetric pure equilibrium. That is, for both treatments, in order to

maximize the efficiency only one member in each committee should follow the public

signal and the rest should follow their private signals.13

Let PC(p, n) be the accuracy of the majority decision by an n-person committee with-

out public information when the accuracy of the private signal is p and all voters follow

it.14 In the absence of a public signal, following the private signal is also the most efficient

Bayesian Nash equilibrium (Austen-Smith and Banks, 1996). The predicted accuracy of

decisions by seven-person committees with private signals only is PC(0.65, 7) = 0.8002

and that by fifteen-person committees is PC(0.65, 15) = 0.8868. Thus the accuracy of the

public information q = 0.7 is above each private signal but below what the committees

can collectively achieve by aggregating their private information. This implies that the

obedient equilibrium, in which the accuracy of decisions by committees of any size is

q = 0.7 as they coincide with the public signal, is less efficient than the informative voting

equilibrium without public information. Note that the symmetric mixed and asymmet-

ric pure equilibria we saw earlier for committees with expert information achieve higher

efficiency than PC(·, ·) (Corollary 1 and Proposition 8), although the margins are small

under the parameter values here. Specifically, the predicted efficiency of seven-person

committees with expert information is 0.8027 in the symmetric mixed equilibrium and

0.8119 in the asymmetric pure equilibrium; and the predicted efficiency of fifteen-person

committees is 0.8878 in the symmetric mixed equilibrium and 0.8922 in the asymmetric

pure equilibrium.

Note that from the theoretical viewpoint, the subjects in the treatments with both

types of information would have had a non-trivial decision to make when their private

and public signals disagree. Otherwise (when the two signals agree), they should vote

according to these signals in any of the three equilibria we are concerned with. Since the

probability of receiving disagreeing signals is only 0.44 (= 0.7 × 0.35 + 0.3 × 0.65), the

12Every subject was given a real twenty-sided dice.
13From Proposition 6 and p = 0.65, obedience to expert information is the optimal equilibrium outcome

for q > 0.9225 in a seven-person committee and q > 0.9930 in a fifteen-person committee.

14As is well known, PC(p, n) ≡
n
∑

k= n+1

2

(

n

k

)

pk(1 − p)n−k.
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Table 2: Voting behaviour: subjects’ choice and equilibrium predictions

7-person committees 15-person committees

treatment efficient equilibrium treatment efficient equilibrium

periods with expert sym. asym. with expert sym. asym.

vote for private signal overall 0.3501 0.9381 0.8571 0.3218 0.9745 0.9333

under disagreement 1-20 0.3511 0.2701

21-40 0.3571 0.3503

41-60 0.3421 0.3408

vote for signals overall 0.9488 1 1 0.9521 1 1

in agreement 1-20 0.9547 0.9515

21-40 0.9571 0.9552

41-60 0.9350 0.9498

voting game was run for sixty periods to make sure each subject has enough occurrences

of disagreement. In every treatment the sixty periods of the respective voting game were

preceded by another ten periods of the voting game with only private signals, in order to

increase the complexity of information in stages for the subjects in the public information

treatments.15 We do not use the data from the first ten periods of the treatments without

public signals, but it does not alter our results qualitatively.

After all subjects in a session cast their vote for each period, they were presented with

a feedback screen, which showed the true state, vote counts (how many voted for blue and

yellow respectively) of the committee they belong to, and payoff for the period.16 The com-

mittee membership was fixed throughout each session.17 This is primarily to encourage,

together with the feedback information, coordination towards an efficient equilibrium.

4 Experimental Results

In this section we present our experimental results. We first discuss the individual level

data to consider the change and heterogeneity of the subjects’ voting behaviour in the

treatments with expert information. We then examine the majority decisions in those

treatments and contrast them to the equilibrium predictions we discussed in Section 2

and other predictions based on bounded rationality. Finally we compare the efficiency

of the committee decisions in the treatments with expert information and that in the

treatments without expert information.

15The subjects in the private information treatments played the same game for seventy periods but
they were given a short break after the first ten periods, in order to make the main part (sixty periods)
of all treatments closer.

16The feedback screen did not include the signals of the other agents or who voted for each colour.
This is to capture the idea of private information and anonymous voting, and also to avoid information
overload.

17In the treatments for two seven-person committees, the membership was randomly assigned at the
beginning of each session.
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Figure 1: Distribution of voting behaviour with signals in disagreement

4.1 Voter choices with expert information

Let us first examine voting behaviour in the game with expert information. On Table 2 we

can observe immediately that, when the private and public signals disagree, the subjects

voted against their private signals much more often than they should in the efficiency

improving symmetric mixed and asymmetric pure equilibria.

As the informational advantage of the expert information over private information

is not large (70% versus 65%), in the symmetric mixed equilibrium the agents should

vote according to the private signal most of the time when the signals disagree (93.8% in

the seven-person and 97.5% in the fifteen-person committees, respectively). Also, from

Proposition 6 only one agent should be obedient to the expert in the asymmetric pure

equilibrium for both seven- and fifteen-person voting games, which implies the frequency

of voting for the private signal of 85.7% and 93.3%, respectively.

In the laboratory, by contrast, when the two signals disagreed the subjects voted

against their private signal in favour of the expert signal for the majority of the time, in

both the seven-person and fifteen-person committees. The frequency of following their

private signal was only 35.1% in the seven-person committees and 32.2% in the fifteen-

person committees. This, together with the high frequency of voting according to agreeing

signals which is close to 100%, implies a significant overall tendency to follow expert

information both individually and collectively.

Before discussing the influence of expert information on the voting outcome, let us

look at the heterogeneity and change in the subjects’ voting behaviour within sessions.

According to Figure 1, when the two signals disagreed, the highest fraction of the subjects

15



correlation coefficient = −0.1626

0
.2

.4
.6

.8
1

vo
te

 r
at

io
 fo

r 
pr

iv
at

e 
si

gn
al

 u
nd

er
 d

is
ag

re
em

en
t

.5 .6 .7 .8 .9 1
 

committee size = 7

correlation coefficient = −0.1441

0
.2

.4
.6

.8
1

vo
te

 r
at

io
 fo

r 
pr

iv
at

e 
si

gn
al

 u
nd

er
 d

is
ag

re
em

en
t

.5 .6 .7 .8 .9 1
 

committee size = 15

ratio of votes for signals in agreement

Figure 2: Voting behaviour with signals in agreement and disagreement

(11 out of 42 in seven-person committees; 13 out of 45 in fifteen-person committees) voted

against the private signal always, or almost always (b <5%, where b is each subject’s

the frequency of voting for the private signal when the signals disagree). Apart from

those extreme “followers” of expert information, the subjects’ behaviour in terms of b is

relatively dispersed, while the density is still somewhat higher towards the left. At the

other extreme there were some subjects who consistently followed private information.

Therefore there was significant subject heterogeneity, and the low overall frequency of

following the private signal as documented in Table 2 was largely driven by the extreme

“followers”.

Meanwhile, we do not observe comparable heterogeneity in our subjects’ behaviour

when their signals agreed. Figure 2 indicates that most subjects voted according to signals

in agreement most of the time, and moreover, across the subjects we find no systematic

link between their behaviour when the signals agreed and when they disagreed.18 That

is, while there is a significant variation in voting behaviour with signals in disagreement,

even among the subjects who voted for the signals in agreement almost always (> 95%).

In what follows we focus primarily on voting behaviour when the signals disagreed.

Figure 3 depicts the evolution of voting behaviour over periods of disagreement, where

based on Figure 1 the subjects are divided into four behavioural types (with the bin

width of 25%) according to b, how often they followed the private signal when the signals

disagreed. The number of subjects who belong to each category is in parentheses the

18 The large circles at the right bottom corners in Figure 2 represent 6 (out of 42) subjects in seven-
person committees and 10 (out of 45) subjects in fifteen-person committees who always followed the
public signal. Any other circles represent a single subject.
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Table 3: Proportion of votes for private signal in periods with disagreement

periods with disagreement 7-person committees 15-person committees

vote for 1-5 0.3429 0.2267

private signal 6-10 0.3524 0.3244

11-15 0.3714 0.3378

16-20 0.3541 0.3378

legend of Figure 3. For example, in the seven-person (fifteen-person) committee treatment,

19 out of 42 (22 out of 45) subjects voted for the private signal under disagreement less

than 25% of the time. We computed the ratio of agents who followed the private signal

for each of the four types, according to the order of occurrences of receiving signals that

disagreed.19 The thickness of the lines corresponds to the relative size of each quartile.

Note that although the graphs are drawn over 25 periods, not every subject had 25

(or more) occurrences of disagreement since all signals were generated randomly and

independently. In the seven-person committee treatment all subjects had 19 or more

occurrences of disagreement, and in the fifteen-person committee treatment all subjects

had 22 or more. The shaded areas indicate that not all subjects are included in computing

the average voting behaviour under disagreement.

An interesting feature we observe in Figure 3 is that most subjects followed the public

signal for the first few occurrences of disagreement. However, soon afterwards different

types exhibited different voting patterns. In particular, the “unyielding” type of agents,

who followed the private signal most often (> 75%), quickly developed this distinct char-

acteristic. At the other end, the behavioural pattern of the “obedient” type of agents,

who followed the private signal least often (≤ 25%), was relatively consistent across the

occurrences of disagreement. The subjects who were in-between (frequency of voting for

the private signal between 25% and 75%) started with voting for the public signal more

often in the first few occurrences of disagreement but thereafter we do not observe a clear

change in their voting behaviour over time. Overall, Figure 3 indicates the emergence of

marked heterogeneity in voting behaviour in relatively early occurrences of disagreement.

In particular, few subjects showed voting behaviour that could potentially be consistent

with learning towards the strategy in an efficient equilibrium.

Also in the aggregate we do not observe any clear sign of learning towards an effi-

cient equilibrium. Table 3 suggests that the subjects’ choice under disagreement did not

change significantly or, in the seven-person committees, it was inclined towards the public

signal as they faced more occurrences of disagreement. This is in sharp contrast to the

overwhelmingly high proportion of votes for the private signal predicted for the efficient

equilibria.

Figure 3 also suggests that most subjects changed the way they responded to disagree-

19Thus the subjects had the first (second, third, etc.) occurrence of disagreement in different periods
of the session.
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Table 4: Random effects probit: dependent variable = 1 if voted for private signal under
disagreement

7-person comm. (1032 obs.) 15-person comm. (1173 obs.)

Period of disagreement -0.0066 -0.0112 0.0125** 0.0168**

(0.0067) (0.0095) (0.0059) (0.0083)

Expert was correct in last disag. period -0.2342** -0.3595* -0.5165*** -0.3885*

(0.1009) (0.2112) (0.0960) (0.1987)

Period of disagreement × 0.0092 -0.0085

Expert was correct in last disag. period (0.0135) (0.0116)

Constant -0.3557 -0.2986 -0.7486*** -0.8117***

(0.2355) (0.25045) (0.2439) (0.2586)

Log likelihood -483.7402 -483.5117 -533.0635 -532.7938

Note: Standard errors in parentheses.

*** significant at 1% level; ** significant at 5% level; * significant at 10% level

ment as if they were randomizing. In order to see what potentially influenced voting be-

haviour while taking into account significant individual heterogeneity as observed earlier,

we ran random effects probit regressions for the rounds where the two signals disagreed.

Table 4 shows that the subjects were more likely to vote for the expert signal (and against

their own private signal) when the expert signal was correct (and the private signals was

incorrect) in the previous occurrence of disagreement. Some subjects seem to have linked

their choice to the observational accuracy of the expert signal, at least to some extent.

Note that this would hinder convergence to an efficient equilibrium, which requires a much

higher frequency to vote for the private signal, because if the signals disagree indeed the

expert signal is more likely to be correct.

4.2 Committee decisions with expert information

Let us now consider the majority decisions of the committees in relation to the presence of

the public signal, which are summarized in Table 5. A striking feature for both treatments

is that the decisions followed the expert information most of the time (97.8% for the seven-

person committees and 100% for the fifteen-person committees), while the predictions for

the two efficient equilibria suggest only 67-72%. Moreover, the decisions in the laboratory

were much more likely to have margins of two or more than the predictions from the

symmetric mixed and asymmetric pure equilibria. Also, when for any decision that had

a margin of two or more, the decision followed expert information. Those features are

again far from the predictions of the efficient equilibria (see the last two rows of Table 5).

If anything, as we will discuss shortly, the majority decisions exhibit key aspects of the

hybrid obedient equilibrium we saw earlier.
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Table 5: Majority decisions by committees with expert information

7-person comm. 15-person comm.

treatment with efficient equilibrium treatment with efficient equilibrium

expert (360 obs.) sym. asym. expert (180 obs.) sym. asym.

Decision coincided with public signal 0.9778 0.6654 0.7237 1 0.6731 0.7023

Decisions made with margin ≥ 2 0.8583 0.5958 0.6000 1 0.7993 0.8033

of which followed public signal 1 0.6612 0.8143 1 0.6789 0.7396

4.3 Relation to equilibrium predictions

In Section 2 we considered three equilibria of interest, namely the symmetric mixed,

asymmetric pure, and obedient equilibria. Our subjects’ voting choices and committee

decisions exhibit some essential properties of the hybrid obedient equilibrium, where a

supermajority ((n + 1)/2 + 1 or more agents) vote according to the expert signal and the

other agents’ strategies are arbitrary. The indeterminacy of the minority agents’ strategies

makes it difficult to establish a solid link between the prediction and the data, but in what

follows we argue that the subjects’ behaviour in our data is best construed as that in the

hybrid obedient equilibrium.

First, as we have seen in Table 5, the committee decisions followed the expert signal

most of the time (97.8% for seven-person committees and 100% for fifteen-person com-

mittees) as in the obedient equilibria where the decision follows the expert signal with

probability 1. In the other efficient equilibria we saw, this rate ranges from 67% to 72%

for both treatments. The difference in frequency between the predictions from the two

efficient equilibria and from the data is statistically significant.20

Second, again from Table 5, most decisions were made with the margin of two or

more votes (85.8% of the time for seven-person committees and 100% for fifteen-person

committees), which is an essential feature of the hybrid obedient equilibrium where no

voter should be pivotal. The predicted frequency of the majority decisions having the

margin of two or more in the efficient equilibria is about 60% for seven-person committees

and 80% for fifteen-person committees.

Third, more importantly, most (by the seven-person committees) or all (by the fifteen-

person committees) decisions made with the margin of two or more followed the expert

signal, while in the efficient equilibria such decisions do not need to follow the expert

signal (66-81%: see the last row of Table 5). From the subjects’ perspective, it might

well be that, having looked at the feedback every period, they perceived themselves as

playing an obedient equilibrium in the sense that they anticipated that the decision would

(almost) always follow the expert signal, and moreover they would not be able to influence

the outcome as they would not be pivotal.

Fourth, from the viewpoint of individual voting choices, the marked heterogeneity

20The p-value for the binomial test is 0.0000 for each efficient equilibrium with each committee size.
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makes symmetric strategies less plausible (Figures 1 and 3). Also, while the asymmetric

pure strategy equilibrium requires only one agent to follow the expert in every period,

there were on average more (1.8 subjects in the seven-person committees and 4.3 in the

fifteen-person committees) who followed the expert signal more than 95% of the time.

Combined with the fact that the other subjects also frequently voted for the expert signal

in the face of disagreement, the profiles of voting choices seem much closer to those in

the hybrid obedient equilibrium. Indeed, individual voting choices are largely consistent

with its prediction, although it must be stressed that the arbitrariness of the equilibrium

voting behaviour of a minority makes it difficult to relate the equilibrium and the data

precisely.

Finally, Figure 3 and Table 3 show no clear sign of collective learning towards either

the efficient symmetric mixed or asymmetric pure equilibria, at least for 60 rounds of the

voting game. If anything, although the randomness of the combination of the two signals

makes it very difficult to observe a long-run trend in the laboratory, from our data the

voting pattern seems to have stabilized after several occurrences of disagreement, in the

manner closest to the hybrid obedient equilibrium as we have just discussed.

If we accept that an equilibrium was played (or approximated) and that the one played

was the hybrid obedient equilibrium, then it implies that the subjects selected a less effi-

cient equilibrium. Note that the efficient equilibria in our model may require substantive

coordination among the agents, especially in the presence of underlying uncertainty in

the state and two signals. The apparent simplicity of the obedient equilibrium might be

the reason why it may have been chosen despite its inefficiency.

Also, recall that for the experiment we chose the parameter values, including the rather

small 5% difference between p = 0.65 and q = 0.7, deliberately so that the efficiency gain

from playing an efficient equilibrium relative to the obedient equilibrium was pronounced.

This and the large proportion of votes for the expert signal suggest that the obedient

outcome we saw is unlikely to have resulted from our specific choice of p and q: we would

have observed obedience especially for larger differences in accuracy between expert and

private signals.

Another possibility however is that some or many subjects were following the expert

signal due to some form of irrationality. Even if this was the case, the fact that the

obedient outcome with a supermajority is an equilibrium must have made the outcome

more “robust” than otherwise, since regardless of why such subjects followed the expert

signal, doing the same was rational subjects’ (weak) best response too. Some alternative

interpretations of the data based on bounded rationality are discussed in Appendix II.

4.4 Efficiency comparison

Since the committee decisions mostly followed the expert signal, their efficiency is almost

(in the case of fifteen person committees, completely) identical to that of the expert

signal. If we posit that the subjects play the hybrid obedient equilibrium and that those
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in the treatments without expert information play the informative voting equilibrium by

following each one’s private signal, in expectation we should observe the efficiency loss

of PC(0.65, 7) − 0.7 = 0.1002 (14.3% reduction) for the seven-person committees and

PC(0.65, 15) − 0.7 = 0.1868 (26.7% reduction) due to the presence of expert information.

Table 6: Voting behaviour in committees without expert information

7-person committees 15-person committees

treatment without equilibrium treatment without equilibrium

expert (2520 obs.) expert (2700 obs.)

vote for private signal overall 0.8472 1 0.9141 1

first 30 0.8505 0.9111

last 30 0.8437 0.9170

In the laboratory, the subjects in the treatments without expert information voted

largely according to the equilibrium prediction of informative voting (Table 6). We ob-

served some deviation from the equilibrium strategy, as commonly observed in the liter-

ature on voting experiments for such a benchmark case. In our experiment the deviation

was more pronounced in the seven-person committees than in the fifteen-person commit-

tees, which is probably because subjects tended to deviate after observing the majority

decision being wrong and indeed by construction (conditional on informative voting) the

decisions are less likely to be correct in the seven-person committees (see Appendix III

for details). Note that, from each individual’s perspective, one private signal is less infor-

mative of the true state than a pair of private and public signals in agreement. We have

observed in Table 2 that the proportion of votes for the agreeing signals was about 95%

in both seven-person and fifteen-person committees, which is higher than the proportion

of votes for the public signal when expert information is absent. This is consistent with,

for example, the result from Morton and Tyran (2011) who found that the more accurate

the information subjects receive became, the more likely it was that they voted according

to the information.

Table 7: Observed efficiency

7-person comm. (180 obs. each) 15-person comm. (360 obs. each)

w/o expert with expert w/o expert with expert

Observed efficiency 0.7000 0.7389 0.8278 0.6778

Fisher’s exact test for difference not significant (p = 0.2809) significant (p = 0.0000)

Observed efficiency of expert information n/a 0.7222 n/a 0.6778

Hypoth. efficiency when 0.7972 0.8195 0.8778 0.8667

voting for private signal

Since informative voting achieves the highest efficiency in the voting game without

expert information, any deviation from the equilibrium strategy leads to efficiency loss.
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The first row on Table 7 records the observed (ex post) efficiency in the four treatments.

We can see that the efficiency of the decisions by the seven-person committees without

expert information was merely 70.0%, while if they every member voted according to

the private signal following the equilibrium strategy, given the actual signal realizations

in the treatment, they could achieve 79.7%. Meanwhile the seven-person committees

with expert information achieved 73.9%, even though they could have achieved higher

efficiency (82.0%) had they voted according to the private signal.21 While the precise

comparison of efficiency between the seven-person committees with and without expert

information is difficult due to different signal realizations in each treatment, the difference

in the observed efficiency is not statistically significant.

The last two columns of Table 7 give us a somewhat clearer picture. In the fifteen-

person committees without expert information, since the agents did not deviate much

from the equilibrium strategy of informative voting, the efficiency loss compared to the

hypothetical informative voting was small (82.8% vs. 87.8%). In the fifteen-person com-

mittees with expert information, since all decisions followed the expert information, the

efficiency was exactly the same as that of the expert signals, which was only 67.8%. Al-

though the exact comparison is not possible due to different signal realizations in each

treatment, the reduction in efficiency in the treatment with expert information is large

(82.8% → 67.8%, 22.1% reduction) and statistically significant.

5 Conclusions

This paper has studied the effects of a public signal on voting behaviour in committees

of common interest. In the first part of the paper, we have demonstrated that the pres-

ence of publicly observed expert information changes the structure of voting equilibria

substantially. In particular, every agent voting according to their own private signal is no

longer an equilibrium when the precision of the public signal is better than each agent’s

individual signal, as in expert opinions presented to the entire committee. If the expert

information is not too accurate, there are three informative equilibria of interest, namely

i) the symmetric mixed strategy equilibrium where each member randomizes between

following the private and public signals should they disagree; ii) the asymmetric pure

strategy equilibrium where a certain number of members always follow the public signals

while the others always follow the private signal; and iii) a class of equilibria where the

committee’s majority decision always follows the expert information. When the expert

information is not too accurate, i) and ii) are more efficient but iii) can be less efficient

than the informative voting equilibrium without expert information. If the expert infor-

mation is very accurate, then the only informative equilibrium involves obedient voting,

21Note that every agent voting according to the private signal is not an equilibrium in the presence of
expert information (Proposition 1). Here we record the hypothetical efficiencies for both seven-person
and fifteen-person committees in order to represent the quality of the realized private signals in each
treatment.
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whereby every agent follows expert information, and this equilibrium is indeed efficient.22

In the second part, we have reported on the laboratory experiment we conducted to see

how human subjects react to expert information. In particular we set the parameter values

in such a way that the efficiency of the obedient equilibria is lower than what the agents

could have achieved in the informative voting equilibrium without expert information. We

found that the subjects followed expert information so frequently that most of the time

the committee decisions were the same as what the expert signal indicated. This is in

sharp contrast to the predictions from the efficient equilibria, where only a small number

of agents should (in expectation) follow the expert signal and as a result the committee

decision and expert signal may not necessarily coincide. We also found that the subjects’

behaviour was highly heterogeneous. Moreover the heterogeneity was persistent over many

periods and there was no clear sign of convergence to an efficient equilibrium. Given the

outcome and the heterogeneity in voting behaviour among the subjects, we have argued

that their choices can be interpreted as those in a hybrid obedient equilibrium, where a

supermajority follow expert information and the rest vote arbitrarily.

We have then contrasted the results to those from the control treatments where the

subjects received private signals only. We found that the efficiency without expert in-

formation was significantly higher than the efficiency with expert information for fifteen-

person committees. One interpretation of this result is that, the otherwise efficiency

improving provision of expert information actually reduced efficiency, by creating an in-

efficient equilibrium that is simple to play compared to the efficient equilibria. The dif-

ference in efficiency was not significant for seven-person committees, largely due to the

agents’ frequent non-equilibrium behaviour in the treatment without expert information,

which reduced the efficiency and made it close to the efficiency of the committee decisions

in the treatment with expert information.

Finally, this paper offers a potentially relevant “policy” implication. The optimality

of the asymmetric pure strategy equilibrium suggests that it may be desirable for the

expert to speak only to a subset of the members of a committee, unless his expertise q

is overwhelmingly high. The number of members he should speak to is m∗, as explicitly

computed for Proposition 6. In this case, the outcome of the equilibrium where m∗

members follow the expert and the rest follow the private signal is identical to the outcome

of the asymmetric pure strategy equilibrium we have seen earlier, but this form of selective

information revelation rules out equilibria that are less efficient, such as the symmetric

pure strategy equilibrium and the obedient equilibrium. Alternatively, if an expert is

heard by all members, there should be some coordination device such as role assignment

in place to make sure that the expert will not have excessive influence on committee

members. The results from our experiment suggest that it may not be adequate to

study an efficient equilibrium especially when it requires subtle coordination among many

22Recall from footnote 13 that for the accuracy of private information p = 0.65, obedience is the
optimal equilibrium outcome for q > 0.9225 in a seven-person committee and q > 0.9930 in a fifteen-
person committee.
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players, as is often the case in decision making by voting under uncertainty.

6 Appendix I: Proofs

6.1 Proposition 1 (not intended for publication)

Proof. Consider agent i’s strategy in the putative equilibrium where all the other agents

follow their private signal. He computes the difference in the expected payoff between

voting for A and B, conditional on his private and public signals, in the event where he

is pivotal. The payoff difference is given by

w(σi, σE) ≡ E[ui(A, s) − ui(B, s)|P iv(v−i), σi, σE ]Pr[P iv(v−i), σi, σE ]

=
1

2
Pr[σE|s = A]Pr[σi|s = A]Pr[P iv(v−i)|s = A]

−
1

2
Pr[σE|s = B]Pr[σi|s = B]Pr[P iv(v−i)|s = B], (2)

where the equality follows from the independence of the signals. Without loss of generality,

let us assume σi = B and σE = A. From (2) we have

w(B, A) =
1

2



q(1 − p)
(n − 1)!
[(

n−1
2

)

!
]

2
p

n−1

2 (1 − p)
n−1

2





−
1

2



(1 − q)p
(n − 1)!
[(

n−1
2

)

!
]

2
p

n−1

2 (1 − p)
n−1

2





=
1

2
(q − p)

(n − 1)!
[(

n−1
2

)

!
]

2
p

n−1

2 (1 − p)
n−1

2 > 0.

The inequality holds since q > p. This implies that agent i votes for A despite her private

signal B. Thus every agent voting according to the private signal is not a Bayesian Nash

equilibrium.

6.2 Proposition 3 (not intended for publication)

Before deriving the equilibrium, it is useful to note that the mixed strategy equilibrium

takes a “hybrid” form, where mixing occurs only when the private and public signals

disagree.

Lemma 1. Suppose there exists a symmetric Bayesian Nash equilibrium in mixed strate-

gies. In such an equilibrium, any agent whose private signal coincides with the public

signal votes according to the signals with probability 1.

Proof. Without loss of generality, let us assume σE = A to prove the lemma.
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Define

F (A) ≡ Pr[P iv(v−i)|s = A] =
n−1
∑

k=0

min(k, n−1

2 )
∑

j=0

(

n − 1

k

)

pk(1 − p)n−1−k

×

(

k

j

)

αj(1 − α)k−j

(

n − 1 − k
n−1

2
− j

)

(1 − β)
n−1

2
−jβ

n−1

2
−k+j (3)

and

F (B) ≡ Pr[P iv(v−i)|s = B] =
n−1
∑

k=0

min(k, n−1

2 )
∑

j=0

(

n − 1

k

)

pk(1 − p)n−1−k

×

(

k

j

)

βj(1 − β)k−j

(

n − 1 − k
n−1

2
− j

)

(1 − α)
n−1

2
−jα

n−1

2
−k+j. (4)

Using F (A) and F (B), we rewrite

w(A, A) =
1

2
[qpF (A) − (1 − q)(1 − p)F (B)] (5)

w(B, A) =
1

2
[q(1 − p)F (A) − (1 − q)pF (B)] . (6)

Note that (5) and (6) incorporate each agent’s Bayesian updating on the state and the

private signals other agents may have received, conditional on his own signal and the

public signal.

In order to have fully mixing equilibrium, namely α∗ ∈ (0, 1) and β∗ ∈ (0, 1), we must

have w(A, A) = 0 and w(B, A) = 0 simultaneously for indifference. In what follows, we

show that w(A, A) > 0 for any α and β, which implies in equilibrium we must have α∗ = 1

and if mixing occurs it must be only for β, that is, when the private and public signals

disagree. Specifically, we show that F (A) > F (B), which readily implies w(A, A) > 0

from (5).

From (5) and (6) we have F (A) − F (B) > 0 if

αj(1 − α)k−j(1 − β)
n−1

2
−jβ

n−1

2
−k+j > βj(1 − β)k−j(1 − α)

n−1

2
−jα

n−1

2
−k+j

⇔ β(1 − β) > α(1 − α)

⇔ (α + β − 1)(α − β) > 0. (7)

To see that (7) holds we will show that in equilibrium α∗ + β∗ − 1 > 0 and α∗ − β∗ > 0.

Let us first observe that α∗ + β∗ − 1 > 0. The difference in the difference in payoffs

between voting for A and B is given by

w(A, A) − w(B, A) =
q(2p − 1)

2
F (A) +

(1 − q)(2p − 1)

2
F (B) > 0, (8)
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since both terms in the right hand side are positive since p, q > 1/2. Thus, given σE = A,

the equilibrium probability of voting for A when σi = A must be strictly greater than

that of voting for A when σi = B, which implies23

α∗ + β∗ − 1 > 0. (9)

Second, let us show that α∗ > β∗. We assume instead that α∗ ≤ β∗ in equilibrium and

derives a contradiction. There is no hybrid equilibrium such that α∗ ∈ (0, 1) and β∗ = 1,

because from (7) and (9), α∗ ≤ β∗ implies F (A) ≤ F (B) and we may have a fully mixed

equilibrium, in which case w(A, A) = w(B, A) = 0. From (5) we have

w(A, A) = 0 ⇒
F (A)

F (B)
=

(1 − q)(1 − p)

qp
, (10)

and from (6)

w(B, A) = 0 ⇒
F (A)

F (B)
=

(1 − q)p

q(1 − p)
. (11)

We can see that (10) and (11) hold simultaneously if and only if p = 1/2, which is a

contradiction, since p ∈ (1/2, 1]. Thus we conclude that α∗ > β∗ in any mixed strategy

equilibrium equilibrium.

Combining α∗ > β∗ and (9), we can see that (7) holds. Thus we have F (A)−F (B) > 0

and w(A, A) > 0, which implies any mixed strategy equilibrium has to have a hybrid form,

such that α∗ = 1.

Lemma 1 is not surprising, because when both signals coincide they would jointly be

very informative about the actual state. The non-trivial part of the lemma is that this

intuition holds regardless of the mixing probability when the signals disagree. Thanks to

the lemma we can focus on mixing when the private and public signals disagree.

Proof of Proposition 3. From Lemma 1 any mixed strategy equilibrium involves vi(A, A) =

vi(B, B) = 1 and vi(A, B) = vi(B, A) = β ∈ (0, 1) for any i ∈ N . When the state and

the public signal match, the probability of each individual voting correctly for the state

is given by

ra ≡ p + (1 − p)(1 − β), (12)

and when the state and the public signal disagree, the probability of each individual voting

correctly is

rb ≡ (1 − p) × 0 + pβ = pβ. (13)

23See Lemma 1 in Wit (1998) for a similar argument.
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To have β∗ ∈ (0, 1), we need any agent to be indifference when the two signals disagree:

w(B, A) = q(1 − p)

(

n − 1
n−1

2

)

r
n−1

2
a (1 − ra)

n−1

2 − (1 − q)p

(

n − 1
n−1

2

)

r
n−1

2

b (1 − rb)
n−1

2 = 0 (14)

⇒
1 − pβ

1 − β(1 − p)
=

(

q

1 − q

) 2

n−1
(

1 − p

p

)
n+1

n−1

(15)

⇒ β∗ =
1 − A(p, q, n)

p − A(p, q, n)(1 − p)
, (16)

such that A(p, q, n) =
(

q

1−q

) 2

n−1
(

1−p

p

)
n+1

n−1 . Thus when β∗ ∈ (0, 1) we obtain a mixed

strategy equilibrium of the hybrid form (α∗ = 1).

Finally, solving β∗ = 0 for q, we see that β∗ ∈ (0, 1) if and only if q ∈



p,
( p

1−p
)

n+1
2

1+( p

1−p
)

n+1
2



.

The uniqueness follows from the fact that the left hand side of (15) is strictly decreasing

in β.

6.3 Proposition 4 (not intended for publication)

Proof. In what follows we will find α = vi(A, A) = vi(B, B) and β = vi(B, A) = vi(A, B)

that maximize the probability of the majority outcome matching the correct state. Condi-

tional on the state s = A and σE = A, let the ex ante probability of each agent voting for

A be, from (12), ra ≡ pα + (1 − p)(1 − β). Also from (13), conditional on the state s = A

and σE = B, let the probability of each agent voting for A be rb ≡ pβ + (1 − p)(1 − α).

Using ra and rb, the ex ante probability P (α, β) that the majority decision matches the

state can be written as

P (α, β) =Pr[M = s|s] = Pr[M = A|s = A]P [A] + Pr[M = B|s = B]P [B]

=Pr[M = A|s = A]
1

2
+ Pr[M = B|s = B]

1

2
= Pr[M = A|s = A]

=Pr[σE = A|s = A]Pr[M = A, σE = A|s = A]

+ Pr[σE = B|s = A]Pr[M = A, σE = B|s = A]

=q
n
∑

k= n+1

2

(

n

k

)

rk
A(1 − rA)n−k + (1 − q)

n
∑

k= n+1

2

(

n

k

)

rk
B(1 − rB)n−k. (17)

Note that for

g(x) ≡
n
∑

k= n+1

2

(

n

k

)

xk(1 − x)n−k

we have
dg(x)

dx
= n

(

n − 1
n−1

2

)

(x(1 − x))
n−1

2 .
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Partially differentiating (17) with respect to α and β, we obtain

∂P (α, β)

∂α
= npq

(

n − 1
n−1

2

)

(ra(1 − ra))
n−1

2

− n(1 − p)(1 − q)

(

n − 1
n−1

2

)

(rb(1 − rb))
n−1

2 (18)

and

∂P (α, β)

∂β
= −(1 − p)nq

(

n − 1
n−1

2

)

(ra(1 − ra))
n−1

2

+ pn(1 − q)

(

n − 1
n−1

2

)

(rb(1 − rb))
n−1

2 . (19)

From (19), taking the first order condition with respect β we have

∂P (α, β)

∂β
= 0 ⇔

(

rb(1 − rb)

ra(1 − ra)

)
n−1

2

=
q(1 − p)

(1 − q)p
. (20)

If (20) holds, then the derivative with respect to α, (18), is strictly positive for any

α ∈ [0, 1] since

∂P (α, β)

∂α
> 0 ⇔

qp

(1 − q)(1 − p)
>

(

rb(1 − rb)

ra(1 − ra)

)
n−1

2

⇔
qp

(1 − q)(1 − p)
>

q(1 − p)

(1 − q)p

⇔ p >
1

2
.

Therefore we have a unique corner solution for α, namely α = 1, which coincides with the

equilibrium α∗ in the hybrid mixed strategy identified in Proposition 3. Note that the

first order condition (19) and the indifference condition for the mixed strategy equilibrium

(14) also coincide. Thus β = β∗ satisfies the first order condition.

It remains to show that the second order condition for the maximization with respect

to β is satisfied. Since P (α,β) is a polynomial it suffices to show that

∂2P (α, β)

∂β2
< 0 ⇒ −(1 − p)nq

(

n − 1
n−1

2

)

(ra(1 − ra))
n−3

2 (1 − p − 2β(1 − p)2)

< pn(1 − q)

(

n − 1
n−1

2

)

(rb(1 − rb))
n−3

2 (p − 2βp2). (21)

At β = β∗, (21) reduces to

(1 − pβ)(1 − 2(1 − p)β) > (1 − 2pβ)(1 − (1 − p)β),
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which holds since p > 1
2
. Since P (α, β) is a continuously differentiable function on a closed

interval, the local maximum at {α, β} = {1, β∗} is also the global maximum.

6.4 Proposition 6

Proof. Let us consider first the m obedient agents, assuming the rest always vote according

to the private signal. In order for them to ignore their private signal when the two signals

disagree, we have to have wobedient(B, A) ≥ 0 for those agents. If such an agent is pivotal

given the strategy profile, among the n − m agents who always follow the private signal,

(n − 1)/2 of them must have received the private signal that disagrees with the public

signal, while (n−1)/2− (m−1) of them must have received the private signal that agrees

with the public signal. Therefore, for the obedient agent not to deviate when the two

signals he has received disagree, it has to be that

wobedient(B, A) ≥ 0 ⇒ q(1 − p)

(

n − (m − 1)
n−1

2

)

p
n−1

2
−(m−1)(1 − p)

n−1

2

− (1 − q)p

(

n − (m − 1)
n−1

2

)

p
n−1

2 (1 − p)
n−1

2
−(m−1) ≥ 0

⇒ q(1 − p)p−(m−1) ≥ (1 − q)p(1 − p)−(m−1)

⇒ m ≤
ln[q] − ln[1 − q]

ln[p] − ln[1 − p]
. (22)

In other words, in order for the obedient agent not to deviate, the number of obedient

agents cannot be too large. Given (22), if the public and private signals agree, the obedient

agent votes according to the signals because

wobedient(A, A) = qp

(

n − (m − 1)
n−1

2

)

p
n−1

2
−(m−1)(1 − p)

n−1

2

− (1 − q)(1 − p)

(

n − (m − 1)
n−1

2

)

p
n−1

2 (1 − p)
n−1

2
−(m−1)

> q(1 − p)

(

n − (m − 1)
n−1

2

)

p
n−1

2
−(m−1)(1 − p)

n−1

2

− (1 − q)p

(

n − (m − 1)
n−1

2

)

p
n−1

2 (1 − p)
n−1

2
−(m−1)

= wobedient(B, A) ≥ 0.

The strict inequality follows from wobedient(B, A) ≥ 0 and p > 1/2.

Next, let us consider the n−m agents who always follow their private signal regardless

of the public signal. If an agent in this group is pivotal, it has to be that (n−1)/2 of them

have received the private signal that disagrees with the public signal, while (n − 1)/2 − m

of them have received the private signal that agrees with the public signal. Therefore, in

order for the agent not to deviate when the two signals he has received disagree, it has to
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be that

wind. informative(B, A) < 0 ⇒ q(1 − p)

(

n − m
n−1

2

)

p
n−1

2
−m(1 − p)

n−1

2

− (1 − q)p

(

n − m
n−1

2

)

p
n−1

2 (1 − p)
n−1

2
−m < 0

⇒ q(1 − p)p−m < (1 − q)p(1 − p)−m

⇒ m >
ln[q] − ln[1 − q]

ln[p] − ln[1 − p]
− 1. (23)

In other words, the number of obedient agents cannot be too small. Given (23), if the

public and private signals agree, the agent indeed votes according to the signals because

wind. informative(A, A) = (1 − q)(1 − p)

(

n − (m − 1)
n−1

2

)

p
n−1

2
−(m−1)(1 − p)

n−1

2

− qp

(

n − (m − 1)
n−1

2

)

p
n−1

2 (1 − p)
n−1

2
−(m−1)

< q(1 − p)

(

n − (m − 1)
n−1

2

)

p
n−1

2
−(m−1)(1 − p)

n−1

2

− (1 − q)p

(

n − (m − 1)
n−1

2

)

p
n−1

2 (1 − p)
n−1

2
−(m−1)

= wind. informative(B, A) < 0.

The strict inequality follows from wind. informative(B, A) ≥ 0 and p > 1/2.

In equilibrium both (22) and (23) have to be satisfied, which gives the unique m∗ in M̂

as long as m∗ < (n + 1)/2. If m∗ = (n + 1)/2 then the majority decision always coincides

with the public signal, and hence any m ≥ (n + 1)/2 in M is an equilibrium. Suppose

m∗ > (n + 1)/2. In this case m = (n + 1)/2 is also an equilibrium since none of the

agents who follow the private signal are pivotal and no obedient agent deviates as (22) is

satisfied, which implies any m ≥ (n + 1)/2 in M is an equilibrium.

6.5 Proposition 7

Proof. Nitzan and Paroush (1982) gave the optimal weighted majority rule with i) non-

strategic informative voting; ii) agents each of whom observes a private signal with dif-

ferent accuracy; and iii) no public signal. Let us consider the special case of their setup

where the signal of one “expert” agent has the accuracy of q and those of n − 1 “non-

expert” agents have the same accuracy of p ∈ (0, 1), where q > p. In what follows we

show that the optimal rule in their model and the asymmetric pure strategy equilibrium

in M̂ are isomorphic in terms of efficiency.

Theorem 1 in Nitzan and Paroush (1982) implies that, in the unique optimal majority

rule, the expert has ln[q]− ln[1−q] votes, while each non-expert agent has ln[p]− ln[1−p]
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votes.24 Equivalently, dividing the weights by ln[p] − ln[1 − p], the expert should have
ln[q]−ln[1−q]
ln[p]−ln[1−p]

votes if every non-expert is to have one vote. Moreover, under this optimal rule,

removing the votes of m̄ randomly chosen non-experts ex ante does not affect the ex ante

expected welfare, where m̄ is defined as the largest integer that satisfies m ≤ ln[q]−ln[1−q]
ln[p]−ln[1−p]

(Corollary 1 in Nitzan and Paroush, 1982). This is because the ex ante influence of their

votes on the expected welfare is cancelled by the increased votes of the expert. It is

straightforward to see that the same efficiency is implemented by the majority rule where

ex ante the expert has m̄ votes, each of n−m̄ non-experts has one vote, and m̄ non-experts

have no vote. Clearly we have m̄ = m∗. Therefore m∗ uniquely maximizes the expected

welfare in M .

Moreover, m∗ in M is the unique maximizer of welfare in the set of entire strategy

profiles Γ. To see this, note that Nitzan and Paroush (1982) allow p < 1/2 with infor-

mative voting, which is equivalent to allowing agents to vote against their signal in our

setting where p > 1/2. Also, uninformative voting by any agent clearly reduces efficiency

relative to the optimal weights and thus cannot be part of the optimal rule. For any

mixed strategy profiles, suppose that, without loss of generality, before observing the two

signals, each agent individually decides which alternative to vote for, conditional on each

combination of the two signals, according to his mixing probability. After these “interim

decisions” but before the agents receive the signals, we can compute the expected welfare

for each combination of their “interim decisions”. The profiles of their “interim decisions”

and their expected welfare coincide with those of the optimal rule only with probability

less than 1. Hence the asymmetric pure strategy equilibrium with m∗ achieves the highest

ex ante expected welfare over the set of all strategy profiles Γ.

7 Appendix II: Alternative Interpretations Based on

Bounded Rationality

7.1 Quantal response equilibrium

In the literature on voting experiments, it is common to consider quantal response equi-

librium (QRE; McKelvey and Palfrey, 1995) to see whether the experimental data on

subjects’ actions can be interpreted as deviation from a particular equilibrium prediction

of interest. Let us see whether subjects’ aggregate behaviour can be systematically linked

to the symmetric mixed equilibrium in Proposition 3, which is more efficient than the obe-

dient equilibrium and the informative voting equilibrium without public information.25

Let us derive the logistic quantal response function for the rationality parameter λ,

where λ → ∞ corresponds to perfect rationality and the symmetric mixed equilibrium

24Here we allow non-integer votes and the majority decision is the alternative that received more votes.
25As observed by Guarnaschelli et al. (2000) (see pp.417-8), if one allows asymmetric strategies in

voting games, the QRE correspondence for each voter may bifurcate and as a result become too complex
to obtain numerically or interpret, which is the case in our model.
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under consideration and λ = 0 corresponds to complete randomization (voting for either

alternative with 50% regardless of the information). Let ᾱ = v−i(A, A) = v−i(B, B) and

β̄ = v−i(B, A) = v−i(A, B) for any −i ∈ {1, 2, ..., i − 1, i + 1, ..., n}. That is, ᾱ is the

probability that all agents except agent i vote according to the signals in agreement, and

β̄ is the probability that all agents except agent i vote according to the private signal

when the signals disagree. Given that the expert signal is correct, the probability of each

agent −i voting for the correct state is ra ≡ pᾱ + (1 − p)(1 − β̄). Also, given that the

expert signal is correct, the probability of each agent −i voting for the correct state is

rb ≡ pβ̄ + (1 − p)(1 − ᾱ). Suppose these agents follow the mixed strategy as described in

Proposition 3.

If agent i votes according to the signals in agreement, his expected payoff is given by

E[uAA
i (ᾱ, β̄)] =

pq

pq + (1 − p)(1 − q)
G(n − 1, (n + 1)/2, ra)

+
(1 − p)(1 − q)

pq + (1 − p)(1 − q)
G(n − 1, (n + 1)/2, rb),

where

G(n, l, x) ≡
n
∑

k=l





n

k



xk(1 − x)n−k.

If agent i votes against the signals in agreement, his expected payoff is given by

E[uAO
i (ᾱ, β̄)] =

pq

pq + (1 − p)(1 − q)
G(n − 1, (n + 1)/2, ra)

+
(1 − p)(1 − q)

pq + (1 − p)(1 − q)
G(n − 1, (n + 1)/2 − 1, rb).

If agent i votes according to the private signal when the private and public signals

disagree, his expected payoff is given by

E[uDP
i (ᾱ, β̄)] =

q(1 − p)

q(1 − p) + p(1 − q)
G(n − 1, (n + 1)/2, ra)

+
p(1 − q)

q(1 − p) + p(1 − q)
G(n − 1, (n + 1)/2 − 1, rb).

If agent i votes according to the public signal when the private and public signals

disagree, his expected payoff is given by

E[uDE
i (ᾱ, β̄)] =

q(1 − p)

q(1 − p) + p(1 − q)
G(n − 1, (n + 1)/2 − 1, ra)

+
p(1 − q)

q(1 − p) + p(1 − q)
G(n − 1, (n + 1)/2, rb).
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Figure 4: Data and logistic QRE predictions for symmetric mixed equilibrium

Hence we have

ᾱ(λ) =
exp(λE[uAA

i (ᾱ, β̄)])

exp(λE[uAA
i (ᾱ, β̄)]) + exp(λE[uAO

i (ᾱ, β̄)])
, (24)

β̄(λ) =
exp(λE[uDP

i (ᾱ, β̄)])

exp(λE[uDP
i (ᾱ, β̄)]) + exp(λE[uDE

i (ᾱ, β̄)])
. (25)

The ᾱ and β̄ that satisfy the system of (24) and (25) for p = 0.65, q = 0.7, and

n = 7, 15 as in the experiment are plotted on Figure 4, where the square dots correspond

to λ → ∞ and thus the symmetric mixed equilibrium for each treatment. Clearly the

data, represented by the circle dots, is further away from the QRE predictions.

In particular, with respect to the predictions, the likelihood of making an error when

the signals agree is significantly different from when the signals disagree (as can also be

seen in Table 2 and Figure 2). This is because, while the voting behaviour with signals

in agreement is very close to the equilibrium prediction (voting for these signals with

probability 1), the voting behaviour with signals in disagreement deviates substantially

from that in the symmetric mixed strategy equilibrium. Thus we are unable to assign a

reasonable common parameter to reflect the degree of error for this equilibrium.

Moreover it is easy to show from (25) that, if we fix ᾱ = 1 and posit that the error

occurs only when the signals disagree, we have β̄(λ) ≥ 1/2 for any λ ∈ [0, ∞). This is

inconsistent with the data which indicates β around 32-35% (Table 2).
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Table 8: Proportion of votes for private signal under disagreement

7-person committees 15-person committees

vote for private signal first period of session 0.1000 (2/20) 0.0870 (2/23)

first occurrence of disagreement 0.1190 (5/42) 0.1333 (6/45)

7.2 Cognitive hierarchy

Another approach to understanding the subjects’ behaviour especially in the first period

or the first occurrence of disagreement would be to use a cognitive hierarchy (level-k)

model (Stahl and Wilson, 1995; Nagel, 1995). In such a model, each player in a game has

a type denoted by level-k for a positive integer k. Level-k players anchor their beliefs in a

non-strategic level-0 players and adjust the beliefs with (virtual) iterated best responses,

in such a way that level-k players (for k ≥ 1) rationally best responds based on the belief

that all other players are level-(k − 1).

In order to apply the model we need to determine how level-0 voters should behave,

which seems non-trivial in our setup. If we assume, following Costinot and Kartik (2007),

that level-0 voters vote according to their private signal, level-1 voters should vote accord-

ing to the public signal as observed in Proposition 6, in which case level-2 voters become

indifferent with respect to their own vote, and thus it is impossible to obtain clear pre-

dictions for the behaviour of level-k voters for k ≥ 2. This is also the case if level-0 voters

randomize equally between the two choices regardless of their signal realizations; and if

level-0 voters vote according to the two signals when they agree and randomize equally

when they disagree. Meanwhile, if level-0 voters are to follow the public signal, then

naturally level-1 voters become indifferent and we have no clear prediction for any k.

In Table 8 we observe that a much higher proportion of the subjects voted for the public

signal in the first period or the first period under disagreement, compared to later periods

(see also Tables 2 and 3). One interpretation of this is that a substantive proportion of

the subjects believed that the others would vote for the private signal or disregard the

signals and randomize, as level-0 voters could do, and best responded to such beliefs by

voting for the public signal when the signals disagreed. Unfortunately, the indifference

level-2 voters face makes it impossible for us to clearly infer their k from the data.

7.3 Cursed equilibrium

Eyster and Rabin (2005) introduced another form of bounded rationality, where players

correctly take into account others’ actions, but fail to update their beliefs using the in-

formation implied in these actions. A single parameter χ ∈ [0, 1] represents “cursedness”,

where χ = 0 characterizes the standard Bayesian equilibrium and χ = 1 characterizes the

“fully cursed” equilibrium, in which agents decide on the best response by taking into
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account only the information they have.26

For the symmetric mixed strategies in our voting game, if χ = 0 then the agents play

the equilibrium strategy as described in Proposition 3 and thus vote for the private signal

with probability β∗ when the signals disagree. If χ = 1, the agents play the obedient

equilibrium since they only use their own signals under disagreement and thus from each

agent’s viewpoint the public signal is more likely to be correct.

If χ ∈ (0, 1), each agent’s equilibrium best response is derived based on the belief

that, with probability χ the other agents vote according to the (equilibrium) distribution

of votes regardless of whether their signals agree or disagree; and with probability 1 − χ

votes reflect the respective agents’ signals through the equilibrium strategy. Suppose χ

is large. Then if other agents are to mix under disagreement, the posterior of an agent

with signals that disagree would still be in favour of the public signal, since the agent

underestimates the fact that, in order to be pivotal, there have to be a sufficient number

of private signals contradicting the public signal. As a result the agent votes according

to the public signal and obedience is the only symmetric χ-cursed equilibrium strategy

for large enough χ. On the other hand, there would be votes for the private signal

(under disagreement) as χ becomes smaller, while the agents still underrate their private

signal relative to the case where χ = 0. If we allow χ to vary across agents, a potential

interpretation of Table 8 would be that a significant proportion of our subjects had high

degrees of cursedness.

Although it may be possible to postulate a value of χ to fit the data, however, the

cursed equilibrium predicts that for a given χ, voters are more likely to vote for the

private signal in a fifteen-person committee than in a seven-person committee, because

conditional on the same mixing probability when the signals disagree, the weight on the

public signal in the pivotal event is larger in a larger committee and hence the agents

correct for it by voting for the private signal (more often).27 This contradicts our data

on individual voting behaviour under disagreement presented in Tables 2, 3 and 8, which

indicate that, by and large, higher proportions of the voters voted for the private signal

in the seven-person committees than in the fifteen-person committees.

8 Appendix III: Treatments without Expert Infor-

mation

We use two treatments without expert information as controls, and those are also a di-

rect test of the Condorcet jury. As we saw on Table 6 the frequency of of our subjects

26The obedient equilibrium is also a χ-cursed equilibrium for any χ ∈ [0, 1], since conditional on the
public signal, there is no further information aggregation through votes (i.e. all agents “pool” by voting
for the public signal). Therefore cursedness does not affect the agents’ posterior.

27This is also reflected in the equilibrium strategy: Proposition 3 implies β∗(p, q, n′) > β∗(p, q, n) for
any n′ > n and β∗(p, q, n′) > 0. That is, the larger the committee size is, the higher the probability of
voting for the private signal under disagreement.
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Table 9: Random effects probit: dependent variable = 1 if voted for private signal
7-person comm. (2478 obs.) 15-person comm. (2655 obs.)

Period 0.0003 0.0003 0.0002 0.0004 0.0004 0.0005

(0.0022) (0.0022) (0.0022) (0.0025) (0.0025) (0.0025)

Correct group decision in last period 0.1213 0.1129 0.2512** 0.0850 0.0874 0.2259

(0.0793) (0.0800) (0.1260) (0.1115) (0.1118) (0.1711)

Correct signal in last period 0.0615 0.2106 -0.0258 0.1664

(0.0783) (0.1310) (0.0910) (0.2035)

Correct signal in last period × -0.2346 -0.2400

Correct decision in last period (0.1654) (0.2276)

Constant 1.5223*** 1.4914*** 1.4235*** 2.1564*** 2.1697*** 2.0672***

(0.2273) (0.2308) (0.2368) (0.2723) (0.2764) (0.2923)

Log likelihood -800.8878 -800.5792 -799.5695 -584.6741 -584.6338 -584.0777

Note: Standard errors in parenthesis.

*** significant at 1% level; ** significant at 5% level; * significant at 10% level

voting according to their private signal was 84.7% in the seven-person committees and

91.4% in the fifteen-person committees. The main reason why the seven-person commit-

tees with expert information performed better than the seven-person committees without

expert information, despite the fact that the outcome of the former approximated that

of the inefficient obedient equilibrium, is that the subjects in the seven-person commit-

tees without expert information did not play according to the equilibrium and efficient

strategy often enough. The difference in the frequency between the seven-person and

fifteen-person committees without expert signal also is inconsistent with the notion of

Quantal Response Equilibrium because according to QRE, the agents’ non-equilibrium

behaviour (mistakes) should be more pronounced when the loss from a mistake is small,

which implies that subjects should vote according to the private information more often

in the seven-person committees than in the fifteen-person committees.

The exact cause of the difference in the voting behaviour is difficult to determine, but

Table 9 suggests that, at least in the seven-person committees, the subjects may have been

“experimenting” with voting against their private signal especially after the committee

decision in the previous period was incorrect. This type of (irrational) experimentation

would result in a larger proportion of votes for the private signal in larger committees.

9 Appendix IV: Experimental Instructions28

Thank you for agreeing to participate in the experiment. The purpose of this session is

to study how people make group decisions. The experiment will last approximately 55

minutes. Please switch off your mobile phones. From now until the end of the session, no

communication of any nature with any other participant is allowed. During the experi-

28The instructions here are for the treatments with fifteen-person committees and expert information.
The instructions for the other treatments are available on request.
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ment we require your complete, undistracted attention. So we ask that you follow these

instructions carefully. If you have any questions at any point, please raise your hand.

The experiment will be conducted through computer terminals. You can earn money in

this experiment. The amount of money you earn depends on your decisions, the decisions

of other participants, and luck. All earnings will be paid to you immediately after the

experiment. During the experiment, your payoff will be calculated in points. After the

experiment, your payoff will be converted into British Pounds (GBP) according to the

following exchange rate: 850 points = £1, and rounded to the nearest pound. Please

remain seated after the experiment. You will be called up one by one according to your

desk number. You will then receive your earnings and will be asked to sign a receipt.

All participants belong to a single group of fifteen until the end of this experiment.

The experiment has two parts and consists of a total of 70 rounds. The first part of

the experiment has10 rounds, and the second part has 60 rounds.

At the beginning of each round, the computer places a prize in one of two virtual boxes:

a blue box and a yellow box. [SHOW PICTURE ON FRONT SCREEN] The location of

the prize for each round is determined by the computer via the toss of a fair coin: at the

beginning of each round it is equally likely that the prize is placed in either box. That is,

the prize is placed in the blue box 50% of the time and the prize is placed in the yellow

box 50% of the time. You will not directly see in which box the prize is hidden, but as

we will describe later you will receive some information about it. [SHOW PICTURE ON

FRONT SCREEN] The box that does not contain the prize remains empty.

The group’s task is to choose a colour. In every round, each group member has two

options, either to vote for BLUE or YELLOW. [SHOW PICTURE ON FRONT SCREEN]

The colour that has received the majority of the votes becomes the group decision for the

round. In every round, each member of the group earns:

1. 100 points if the group decision matches the colour of the box that contains the

prize;

2. 5 points if the group decision does not match the colour of the box that contains

the prize.

Note that your payoff for each round is determined exclusively by the group decision. If

the group decision is correct, every group member earns 100 points. If the group decision

is incorrect, every group member earns 5 points. The payoff is independent of how a

particular group member voted.

To summarize, each round proceeds as follows: [SHOW PREVIOUS PICTURES IN

TURN]

1. the computer places a prize in one of two boxes (blue box or yellow box with equal

chance);

2. each group member receives some information about the location of the box;

3. each group member votes for BLUE or YELLOW;

4. group decision is the colour that has received most votes;
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5. each group member receives earnings according to the group decision and the actual

location of the prize.

Consider the following example. Suppose you and six other member voted for BLUE

and the eight other members voted for YELLOW. This means that the group decision is

YELLOW.

If the prize was indeed placed in the yellow box, then each group member, including

you, earns 100 points. On the other hand, if the prize was placed in the blue box, each

group member, including you, earns 5 points.

The experiment is divided into two parts. Both parts follow what we have described

so far, but they are different in terms of i) the information each group member receives

before voting, and ii) the number of rounds.

Part 1

The first part of the experiment will take place over 10 rounds. In each round, after the

prize is placed in one of the two boxes but before group members vote, each participant

receives a single piece of information about the location of the prize. We will call this type

of information Private Information. Private Information will be generated independently

and revealed to each participant separately, and it can be different for different group

members. No other participants of the experiment will see your Private Information.

[SHOW SCREEN FOR DECISION]

Private Information is not 100% reliable in predicting the box containing the prize.

Reliability refers to how often Private Information gives the correct colour of the box.

Specifically, Private Information gives each of you the colour of the box with the prize

65% of the time, and the colour of the empty box 35% of the time.

The reliability of Private Information can be described as follows:

1. In each round, after the prize is placed in one of the boxes, the computer rolls a

fair 20-sided dice for each group member. A real 20-sided dice is on your desk to help

your understanding.

2.

a. If the result of the dice roll is 1 to 13 (1,2,4,5,6,7,8,9,10,11,12 or 13), then that

member’s Private Information is the colour of the box with the prize. Note that 13 out

of 20 times means 65%.

b. If the result of the dice roll is 14 to 20 (14,15,16,17,18,19 or 20), then that

member’s Private Information is the colour of the empty box. Note that 7 out of 20 times

means 35%.

Private Information is more likely to be correct than incorrect. Also, all group members

receive equally reliable Private Information. However, since it is generated independently

for each member, members in the same group do not necessarily get the same informa-

tion. It is possible that your Private Information is BLUE while other members’ Private

Information is YELLOW.

Finally, at the end of each round, you will see the number of votes for BLUE, the
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number of votes for YELLOW, and whether the group decision matched the colour of the

box with the prize.

Part 1 will start after a short quiz to check your understanding of the instructions.

[PART 1 COMMENCES]

Part 2

The second part of the experiment will take place over 60 rounds. In each round,

after the prize is placed in one of the two boxes but before group members vote, each

group member receives two pieces of information, namely Private Information and Public

Information, about the location of the prize. [SHOW SCREEN FOR DECISION] As

before, in each round Private Information will be generated independently and revealed

to each group member separately, and no other participants of the experiment will see

your Private Information. It gives each of you the colour of the box with the prize 65%

of the time, and the colour of the empty box 35% of the time.

The reliability of Private Information can be described as follows:

1. In each round, after the prize is placed in one of the boxes, the computer rolls a

fair 20-sided dice for each group member.

2.

a. If the result of the dice roll is 1 to 13 (1,2,4,5,6,7,8,9,10,11,12 or 13), then that

member’s Private Information is the colour of the box with the prize. Note that 13 out

of 20 times means 65%.

b. If the result of the dice roll is 14 to 20 (14,15,16,17,18,19 or 20), then Private

Information is the colour of the empty box. Note that 7 out of 20 times means 35%.

In addition to but independently of Private Information, Public Information is revealed

to all members of your group. In each round all group members get the same Public

Information. It gives you the colour of the box with the prize 70% of the time, and the

colour of the empty box 30% of the time.

The reliability of Public Information can be described as follows:

1. In each round, after the prize is placed in one of the boxes, the computer rolls a

fair 20-sided dice (one dice roll for all members of your group), separately from the dice

rolls for Private Information.

2.

a. If the result of the dice roll is 1 to 14 (1,2,4,5,6,7,8,9,10,11,12,13 or 14), then

your group’s Public Information is the colour of the box with the prize. Note that 14 out

of 20 times means 70%.

b. If the result of the dice roll is 15 to 20 (15,16,17,18,19 or 20), then your group’s

Public Information is the colour of the empty box. Note that 6 out of 20 times means

30%.

Neither Public Information nor Private Information is 100% reliable in predicting the

box with the prize, but both pieces of information are more likely to be correct than

incorrect.
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Note that those two pieces of information may not give you the same colour (it may

be that one says BLUE and the other says YELLOW), in which case only one of them

is correct. Public Information is more likely to be correct than each member’s Private

Information. However, it could be that your Private Information is correct and the Public

Information is incorrect. Also, even if both pieces of information give you the same colour,

it may not match the colour of the box that contains the prize, since neither is 100%

reliable.

At the end of each round, you will see the number of votes for BLUE, the number of

votes for YELLOW, and whether the group decision matches the colour of the box with

the prize.

Part 2 will start after a short quiz to check your understanding of the instructions.

[PART 2 COMMENCES]
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