

Edinburgh Research Explorer

SQL’s Three-Valued Logic and Certain Answers

Citation for published version:
Libkin, L 2016, 'SQL’s Three-Valued Logic and Certain Answers' ACM Transactions on Database Systems,
vol. 41, no. 1, 1. DOI: 10.1145/2877206

Digital Object Identifier (DOI):
10.1145/2877206

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
ACM Transactions on Database Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

https://doi.org/10.1145/2877206
https://www.research.ed.ac.uk/portal/en/publications/sqls-threevalued-logic-and-certain-answers(68273f24-999e-4834-917f-5815cc4a7095).html

A

SQL’s Three-Valued Logic and Certain Answers

LEONID LIBKIN, School of Informatics, University of Edinburgh

The goal of the paper is to bridge the difference between theoretical and practical approaches to answering
queries over databases with nulls. Theoretical research has long ago identified the notion of correctness of
query answering over incomplete data: one needs to find certain answers, which are true regardless of how
incomplete information is interpreted. This serves as the notion of correctness of query answering, but
carries a huge complexity tag. In practice, on the other hand, query answering must be very efficient, and
to achieve this, SQL uses three-valued logic for evaluating queries on databases with nulls. Due to the
complexity mismatch, the two approaches cannot coincide, but perhaps they are related in some way? For
instance, does SQL always produce answers we can be certain about?

This is not so: SQL’s and certain answers semantics could be totally unrelated. We show, however, that
a slight modification of the three-valued semantics for relational calculus queries can provide the required
certainty guarantees. The key point of the new scheme is to fully utilize the three-valued semantics, and
classify answers not into certain or non-certain, as was done before, but rather into certainly true, certainly
false, or unknown. This yields relatively small changes to the evaluation procedure, which we consider at the
level of both declarative (relational calculus) and procedural (relational algebra) queries. We also introduce
a new notion of certain answers with nulls, which properly accounts for queries returning tuples containing
null values.

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design—Data Models; H.2.1
[Database Management]: Languages—Query Languages; H.2.4 [Database Management]: Systems—
Query Processing

Additional Key Words and Phrases: Null values, incomplete information, query evaluation, three-valued
logic, certain answers

1. INTRODUCTION

SQL’s query evaluation uses three-valued logic when it comes to handling incomplete
information: comparisons involving null values have the truth value unknown [Date
and Darwen 1996]. The design of these features of SQL has been heavily criticized
[Date 2005; Date and Darwen 1996] and in fact leads to a number of well known
paradoxes. Consider, for instance, a relation S with a single numerical attribute A,
and assume that S contains a single row with a null value in it. Then

select S.A from S where S.A = 0 or S.A <> 0 (1)

returns no tuple. However, if we view nulls as missing values (and this is the interpre-
tation we shall concentrate on), the condition in the where clause is a tautology, and
the answer looks intuitively wrong. The reason this happens is that both null = 0
and null <> 0 evaluate to unknown and so does their disjunction. If we have another
relation R with the same numerical attribute A, then for the same reason the query

Author’s address: School of Informatics, University of Edinburgh, Informatics Forum, 10 Crichton Street,
Edinburgh EH8 9AB, United Kingdom.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 0362-5915/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

computing R− S:

select R.A from R where R.A not in (select S.A from S) (2)

returns nothing if S contains a single null, no matter what R is, telling us that we
might well have |R| > |S| and R− S = ∅ at the same time.

These do seem rather counterintuitive, and a number of attempts were made to over-
come the problem, from fixing the underlying many-valued logic [Gessert 1990; Yue
1991] to getting rid of nulls altogether [Darwen and Date 1995]. However, to under-
stand why, and whether, these query answers are wrong, and to state correctness guar-
antees, we must have some yardstick to measure query evaluation procedures against.
Such a yardstick was produced by the theory community a long time ago. Since the
foundational papers [Lipski 1979; Imielinski and Lipski 1984] it has been accepted
that the right way of evaluating queries on incomplete databases is by computing cer-
tain answers to them. Each incomplete database D has an associated semantics [[D]]
that we can think of as the set of possible complete databases that D can represent,
e.g., all databases obtained by substituting values for nulls, if those are interpreted as
missing information. Then certain answers contain tuples that will be in the answer
to Q over all possible complete databases represented by D:

cert(Q,D) =
⋂

{Q(D′) | D′ ∈ [[D]]} (3)

In other words, cert(Q,D) contains tuples that will be in the answer regardless of the
interpretation of the missing information in D.

Taking certain answers as the correct way of answering queries, there could be two
ways in which a specific evaluation procedure (e.g., the one implemented in SQL) dif-
fers from it. It can produce one of the following.

False negatives. In this case the evaluation procedure fails to produce some of the
certain answers (i.e., it says that a tuple is not the answer when it should be).
False positives. In this case the evaluation procedure produces an answer that is
not certain.

We can think of false negatives as hiding some of the truth, while false positives are
an outright lie.

Can SQL query evaluation avoid those? The first observation, based on what we
know about incomplete databases, is this:

SQL query evaluation must produce either false negatives or false positives.

The reason is that certain answers, while providing us with the notion of correctness,
are not easy to find: in fact for full relational calculus they are CONP-hard for most rea-
sonable semantics [Abiteboul et al. 1991]. And yet SQL evaluation is in DLOGSPACE

(in fact, even in the low parallel complexity class AC0, which is properly contained in
CONP). This complexity mismatch tells us that SQL cannot compute certain answers
precisely.

Example (1) is an example of false negatives: we miss a certain answer but at least
we do not produce false ones. Example (2) actually computes the certain answer, but
could easily be modified to generate false negatives. So it seems from those typical
cases used to criticize SQL’s handling of nulls that at least we do not produce false
positives.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

This, however, is not so. Consider the query:

select R.A from R

where R.A not in (select R1.A from R R1 (4)

where R1.A not in (select * from S))

expressing R − (R − S). Now look at a database in which R = {1} and S = {null}.
SQL’s evaluation results in {1}. At the same time the certain answer is empty: if null
is interpreted as any value other than 1, the result of R − (R − S) is ∅. Even avoiding
double negation, the query

(select * from R) except (select * from S)

outputs {1} while the certain answer is empty.
Thus, SQL’s evaluation rules may result in both false positives and false negatives,

and we cannot eliminate both. So the best we can hope for is an evaluation scheme
that eliminates one kind of error. We take the view here that the outright lie (false
positives) is worse than hiding some of the truth (false negatives).

This leads to the main question of the paper: Can we devise an evaluation strategy of
SQL’s queries that completely eliminates false positives? The idea of such a sound eval-
uation is not new. It was considered as early as [Reiter 1986], even before complexity
bounds for certain answers were known. And yet despite some partial attempts (e.g.,
for fixing the null semantics of SQL queries with any or all subquery comparisons
[Klein 1994]) there is currently no answer to this question.

Our goal is to provide this answer, and to present an evaluation strategy that:

— finds query answers fast, without a significant modification of the existing evaluation
techniques, and at the same time

— guarantees that no false positives occur, i.e., every returned tuple is a certain answer.

We achieve this by providing a small modification to the three-valued logic approach
of SQL that restores correctness guarantees: query evaluation no longer produces false
positives, and all returned results are guaranteed to be certain answers.

To understand the idea of the modification, notice that SQL’s query evaluation ac-
tually mixes three- and two-valued logic. Three-valued logic is used to evaluate con-
ditions, but then query results return only those tuples for which conditions evaluate
to true, effectively collapsing unknown and false. This works fine for positive queries,
but once negation, especially negation in subqueries (e.g., not in or not exists) en-
ters the picture, we have a problem, as it flips truth values. Now true flips to false,
but both unknown and false (which were collapsed to one value when a subquery was
evaluated) flip to true! This is exactly how false positives occur in query answers.

So to get correctness guarantees, we just need to be faithful to the three-valued
approach. This means that there will be three possible outcomes for each candidate
answer tuple: it can be either

— certainly in the answer (truth value true); or
— certainly not in the answer (truth value false); or
— possibly in the answer, or possibly not (truth value unknown).

We provide procedures with correctness guarantees for the evaluation of relational
calculus and relational algebra queries. In terms of the SQL fragment, this covers
the usual select-from-where queries, with subqueries, but without grouping and ag-
gregation. Note that we do not work directly on SQL queries, rather on those they
get translated into (in particular, the procedural relational algebra queries, although

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

for understanding what exactly needs to be repaired, it is best to do it first with the
declarative calculus queries).

As for the model of incompleteness, we choose here to work with marked, or naı̈ve
nulls [Abiteboul et al. 1995; Imielinski and Lipski 1984; Lipski 1984] in tables. They
are more general than SQL’s nulls: they can appear multiple times in tables. Marked
nulls are often required by applications such as data integration and exchange [Arenas
et al. 2014; Lenzerini 2002]. In fact they have already been implemented in connection
with such applications [Haas et al. 2005; Marnette et al. 2011]. SQL’s assumption (for
instance, for attribute comparisons) is that different appearances of nulls are distinct.
Thus, SQL’s nulls can be modeled with naı̈ve nulls, simply by forbidding repetition.

The reason we need marked nulls is twofold. Firstly, we want to produce more gen-
eral results. Secondly, we need to overcome an additional (and quite unreasonable)
deficiency of SQL’s handling of nulls: even checking whether a null value equals itself
produces truth value unknown. Indeed, consider a table T(A,B) with a single tuple
(1,null) and a query select T.A from T where T.B=T.B, i.e., πA(σB=B(T)). Instead
of the expected 1, it gives the empty result, as comparing a value with itself does not
evaluate to true.

The plan of the paper is as follows. In Section 2 we present basic definitions. Section 3
describes the evaluation procedure for relational calculus and SQL’s three-valued ap-
proach in the presence of nulls. Section 4 presents the modified evaluation procedure
and states its correctness. In Section 5 we prove a generalization of that result, relying
on a new notion of certain answers with nulls. This generalization properly accounts
for all three possible outcomes of query evaluation (certainly true, certainly false, un-
known). This notion is also useful in that it allows us to have tuples with nulls in query
answers, something that the standard certain answers do not allow. In Section 6 we
look at certainty guarantees at the procedural language, that is, for relational algebra
queries. Section 7 delves deeper into some bizarre behavior of SQL for nested queries
on databases with nulls, and shows that our new evaluation techniques overcome those
instances of unexpected behavior. Concluding remarks are in Section 8.

In the paper, we assume the textbook version of relational algebra and calculus, that
is, the version based on the set semantics. SQL, of course, uses the multiset semantics.
Understanding how to extend results to the multiset semantics is a project for future
work. We do not, at this time, have a proper analog of certain answers and relational
theory of incompleteness for databases with multisets, and thus do not have the same
yardstick as the definition (3) to base the notion of correctness on. This needs to be
done first, before our results can be extended to SQL’s features going beyond relational
calculus/algebra.

2. PRELIMINARIES

Incomplete databases. We begin with some standard definitions [Abiteboul et al.
1995; Imielinski and Lipski 1984]. Incomplete databases are populated by constants
and nulls. The sets of constants and nulls are countably infinite sets denoted by Const

and Null respectively. Nulls are denoted by ⊥, sometimes with sub- or superscripts.
A relational schema (vocabulary) is a set of relation names with associated arities.

An incomplete relational instance D assigns to each k-ary relation symbol S from the
vocabulary a k-ary relation SD over Const ∪ Null, i.e., a finite subset of (Const ∪ Null)k.
When the instance is clear from the context we shall write S, rather than SD, for the
relation itself.

The sets of constants and nulls that occur in D are denoted by Const(D) and Null(D).
If Null(D) is empty, we refer to D as complete. That is, complete databases are those
without nulls. The active domain of D is adom(D) = Const(D) ∪ Null(D).

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

Homomorphisms, valuations, and semantics. Given two relational structures D and
D′, a homomorphism h : D → D′ is a map from the active domain of D to the active
domain of D′ such that:

(1) for every relation symbol S, if a tuple ū is in relation S in D, then the tuple h(ū) is
in the relation S in D′; and

(2) h(c) = c for every c ∈ Const(D).

By h(D) we denote the image of D, i.e., the set of all tuples S(h(ū)) where S(ū) is in
D. If h : D → D′ is a homomorphism, then h(D) is a subinstance of D′.

A homomorphism h : D → D′ is called a valuation if h(x) is a constant for every
x ∈ adom(D); in other words, it provides a valuation of nulls as constant values. If
h is a valuation, then h(D) is complete. We now define the semantics of incomplete
databases by means of valuations:

[[D]] = {h(D) | h is a valuation}.

This is often referred to as the closed-world assumption, or CWA semantics of incom-
pleteness [Imielinski and Lipski 1984; Reiter 1977]. Another common semantics uses
the open-world assumption, or OWA, and allows adding complete tuples to h(D). In the
study of incompleteness, the closed-world semantics is a bit more common [Abiteboul
et al. 1995; Abiteboul et al. 1991; Imielinski and Lipski 1984] since it is better behaved.
We shall also consider evaluation under the OWA semantics in Section 5.2.

Query languages. As our basic query languages we consider relational calculus and
its fragments. Relational calculus has exactly the power of first-order logic, or FO. Its
formulae are built from relational atoms R(x̄) and equality atoms x = y, by closing
them under conjunction ∧, disjunction ∨, negation ¬, existential ∃ quantifiers and uni-
versal ∀ quantifiers. If x̄ is the list of free variables of a formula ϕ, we write ϕ(x̄) to
indicate this. We write |x̄| for the length of x̄.

Conjunctive queries (CQs, also known as select-project-join queries) are defined as
queries expressed in the ∃,∧-fragment of FO. The class UCQ of unions of conjunctive
queries is the class of formulae of the form ϕ1 ∨ . . .∨ϕm, where each ϕi is a conjunctive
query. In terms of its expressive power, this is the existential-positive fragment of FO,
i.e., the ∃,∨,∧-fragment.

We shall use relational algebra, the procedural language equivalent to FO, that has
the operations of selection σ, projection π, cartesian product ×, union ∪, and difference
−. We use the unnamed perspective of relational algebra which does not require the
renaming operator [Abiteboul et al. 1995] (more on this in Section 6, where we shall
add explicit intersection to relational algebra). The fragment without the difference
operator is referred to as positive relational algebra; it has the same expressiveness as
existential positive formulae (and thus unions of conjunctive queries).

3. EVALUATION PROCEDURES FOR FO QUERIES

We shall look at different query evaluation procedures. An evaluation procedure has
as its inputs a database D, a query ϕ(x̄), and a tuple ā of free variables of the query; it
has to say whether ϕ(ā) is true in D.

Thus, formally an evaluation procedure Eval will take a query (an FO formula)
ϕ(x̄), a database D, and an assignment ν of values to the free variables x̄. The out-
put Eval(ϕ,D, ν) is a truth value. For the standard Boolean logic, the domain of truth
values is {0, 1}, with 0 meaning false and 1 meaning true. For the three-valued logic,
used by SQL, the domain is {0, 1

2 , 1}, with 1
2 interpreted as unknown.

An assignment ν maps each free variable to an element of adom(D). Note that such
an element could be a constant or a null; hence assignments are not valuations. We

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

write ν[a/x] for the assignment that changes ν by mapping x to a. Also, given a tu-
ple x̄ = (x1, . . . , xn) of free variables, and a tuple ā = (a1, . . . , an), we write simply
Eval(ϕ,D, ā) if the assignment ν is such that ν(xi) = ai for all i ≤ n.

Given an evaluation procedure Eval, the outcome of query evaluation for ϕ(x̄) with
|x̄| = k is

Eval(ϕ,D) = {ā ∈ adom(D)k | Eval(ϕ,D, ā) = 1} .

As we said earlier, the goal is to make modifications to the standard evaluation ab-
solutely minimal and still achieve correctness. In particular, we do not want to modify
the completely standard evaluation of the Boolean connectives and quantifiers:

Eval(ϕ ∨ ψ,D, ν) = max(Eval(ϕ,D, ν),Eval(ψ,D, ν))
Eval(ϕ ∧ ψ,D, ν) = min(Eval(ϕ,D, ν),Eval(ψ,D, ν))

Eval(¬ϕ,D, ν) = 1 − Eval(ϕ,D, ν)
Eval(∃xϕ,D, ν) = max{Eval(ϕ,D, ν[a/x]) | a ∈ adom(D)}
Eval(∀xϕ,D, ν) = min{Eval(ϕ,D, ν[a/x]) | a ∈ adom(D)}

(5)

Thus, from now we only explain the valuation of atomic formulaeR(x̄) and equalities
x = y. The classical FO evaluation gives us the procedure EvalFO with the range {0, 1}
defined by (5) and:

EvalFO(R(x̄), D, ν) =

{

1 if ν(x̄) ∈ RD

0 if ν(x̄) 6∈ RD

EvalFO(x = y,D, ν) =

{

1 if ν(x) = ν(y)

0 if ν(x) 6= ν(y)

SQL’s evaluation has {0, 1
2 , 1} as the range of values. Again it uses rules (5), and the

rule for EvalSQL(R(x̄), D, ν) is exactly the same as for EvalFO, but for equality atoms the
rule differs:

EvalSQL(x = y,D, ν) =







1 if ν(x) = ν(y) and ν(x), ν(y) ∈ Const

0 if ν(x) 6= ν(y) and ν(x), ν(y) ∈ Const
1
2 if ν(x) ∈ Null or ν(y) ∈ Null

Indeed, SQL’s approach is to declare every comparison as unknown if a null is in-
volved. Note that over complete databases, EvalFO and EvalSQL coincide. Over incom-
plete databases, EvalFO is usually referred to as naı̈ve evaluation [Abiteboul et al. 1995;
Imielinski and Lipski 1984].

How do these relate to certain answers? We now examine FO and SQL evaluation.
But first note that the definition (3) ensures that only tuples of constants are present in
certain answers. There is no such restriction on the standard evaluation procedures. So
to do a fair comparison we only compare sets of constant tuples returned by evaluation
procedures (this will be relaxed later in the paper, when we provide a new definition of
certain answers with nulls).

Definition 3.1. Given a class Q of queries, an evaluation procedure Eval has cer-
tainty guarantees for Q if for every query ϕ(x̄) ∈ Q, every database D, and every tuple
ā of constants with |ā| = |x̄|, we have

ā ∈ Eval(ϕ,D) ⇒ ā ∈ cert(ϕ,D).

In other words,

Eval(ϕ,D) ∩ Const
|x̄| ⊆ cert(ϕ,D).

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

Certain answers and EvalFO

The first observation is immediate:

cert(ϕ,D) ⊆ EvalFO(ϕ,D).

The converse in general is not true, we can have EvalFO(ϕ(x̄), D)∩Const
|x̄| 6⊆ cert(ϕ,D).

Consider for instance ϕ(x) = R(x) ∧ ¬S(x) expressing the difference of R and S. Let D
contain RD = {1} and SD = {⊥}; then Eval(ϕ,D) = {1} while cert(ϕ,D) = ∅.

However, sometimes certainty guarantees can be established. It has long been
known [Imielinski and Lipski 1984] that we get them by excluding universal quan-
tification and negation from first-order logic: EvalFO has certainty guarantees for the
class UCQ. This was recently extended in [Gheerbrant et al. 2014] which showed that
the same is true for queries from a rather significant expansion of the class UCQ, by
adding universal quantification and a limited form of implication. More precisely, we
look at the class Qcert

FO defined as follows:

— atomic formulae R(x̄) and x = y are in Qcert
FO ;

— if ϕ, ψ ∈ Qcert
FO then so are ϕ ∨ ψ and ϕ ∧ ψ;

— if ϕ ∈ Qcert
FO then so are ∃xϕ and ∀xϕ;

— if ϕ(x̄, ȳ) is in Qcert
FO , then so is ∀x̄ (R(x̄) → ϕ(x̄, ȳ)), where R is a relation symbol in the

schema, and x̄ does not have a repetition of variables.

This class extends unions of conjunctive queries with a rather common class of queries
involving negation and/or universal conditions, such as ‘find students that take all
courses’. The EvalFO procedure has certainty guarantees for Qcert

FO queries [Gheerbrant

et al. 2014]. From the point of view of relational algebra, the class Qcert
FO corresponds

to operations σ, π,∪,× and the division operation Q ÷ Q′, where Q′ is written in the
π,∪,×-fragment of relational algebra, see [Libkin 2014b].

Certain answers and EvalSQL

How does SQL change things? Actually, it changes them for the worse: now there is no
connection between EvalSQL(ϕ,D) and cert(ϕ,D) whatsoever. Indeed, we saw that for
the query ϕ(x) = R(x)∧¬(R(x)∧¬S(x)) and database D with RD = {1} and SD = {⊥},
the certain answer is empty while EvalSQL(ϕ,D) = {1}, and for the relation T = {(1,⊥)}
and the query ψ(x) = ∃y (T (x, y) ∧ (x = 1 ∨ ¬(x = 1))), the certain answer is {1}, while
EvalSQL produces the empty set.

In a restricted case we provide correctness guarantees:

PROPOSITION 3.2. EvalSQL has certainty guarantees for unions of conjunctive
queries.

Proof. The result is an immediate consequence of the following observation. If ϕ(x̄) is
a union of conjunctive queries (i.e., an existential positive formula), then

EvalSQL(ϕ,D, ν) = 1 ⇒ EvalFO(ϕ,D, ν) = 1. (6)

Indeed, this implies the result since EvalFO has certainty guarantees for unions of
conjunctive queries [Imielinski and Lipski 1984]. To show (6), we note that it trivially
holds for relational atoms (since the rules are the same) and for equality atoms, by
definition. Then a straightforward induction shows that (6) propagates through the
rules for ∨,∧, and ∃. ✷

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

4. EVALUATION PROCEDURES WITH CERTAINTY GUARANTEES

We now introduce an evaluation procedure that comes with certainty guarantees for
all relational calculus queries. For that, we have to explain what is wrong with the FO
and SQL evaluation procedures shown above, particularly for the evaluation of atomic
formulae.

Problems with atomic relational formulae R(x̄). For both SQL and FO, one simply
checks, for a given assignment ν, whether ν(x̄) belongs to R. However, returning 0 if
ν(x̄) 6∈ R is too strong if we view 0 as saying that the tuple certainly cannot belong to
relation R.

Indeed, consider R = {(⊥1, 1), (2,⊥2)} and let ν be the identity (recall that the range
of ν is the whole active domain). Consider a tuple x̄ = (⊥1,⊥2). It is not in R, but can
it be in R under some valuation h? Of course it can: if h(⊥1) = 2 and h(⊥2) = 1, then
h(x̄) = (2, 1) and h(R) = {(2, 1)}, i.e., h(x̄) ∈ h(R). On the other hand, if h′(⊥1) = 1
and h′(⊥2) = 2, then h′(x̄) = (1, 2) and h′(R) = {(1, 1), (2, 2)}, so h′(x̄) 6∈ h′(R). Thus,
the correct value for evaluating the membership of x̄ in R seems to be 1

2 , not 0. Value 0
should be reserved for cases when no valuation h makes h(x̄) ∈ h(R) possible.

The EvalFO and EvalSQL procedures return 0 too eagerly, and this becomes a problem
when negation is applied to a formula, as 0 becomes a 1, and suddenly we have a false
positive answer that, in fact, is not certain at all. If the value is kept at 1

2 , applying

negation still results in 1 − 1
2 = 1

2 , and thus no false ‘certain answers’ appear.

Problems with equality formulae x = y. FO evaluation results in 0 if ν(x) and ν(y)
are different nulls, but they could still be mapped to the same constant, so the right
value should be 1

2 , not 0. On the other hand, SQL evaluation produces 1
2 if one of ν(x)

or ν(y) is a null. But if we know ν(x) = ν(y), then for every valuation h we will have
h(ν(x)) = h(ν(y)), so the evaluation procedure must return 1 and not 1

2 in this case, or
else it will miss some certain answers.

Now with this in mind, we introduce a proper 3-valued evaluation procedure Eval3v.
For this, we need one additional concept. Given two tuples t̄ and s̄ of the same length
over Const∪Null, we say that they unify if there is a homomorphism h such that h(t̄) =
h(s̄). We then write t̄ ⇑ s̄.

For instance, tuples t̄ = (1, 2,⊥, 2) and s̄ = (1,⊥′, 3,⊥′′) unify, since for the map h
that sends ⊥ to 3 and both ⊥′ and ⊥′′ to 2 we have h(t̄) = h(s̄). On the other hand, t̄ and
ū = (⊥′,⊥′, 3,⊥′′) do not unify, since the first two null components of ū are the same,
but the first two constant components of t̄ are different.

It is easy to see that we can define t̄ ⇑ s̄ by asking for a valuation h so that h(t̄) = h(s̄).
By classical results on unification, it is known that t̄ ⇑ s̄ can be tested in linear time
[Paterson and Wegman 1978].

The evaluation procedure is as follows. It uses rules (5) and the following rules for
atomic formulae, that overcome the issues outlined in the beginning of the section:

Eval3v(R(x̄), D, ν) =







1 if ν(x̄) ∈ RD ,

0 if there is no t̄ ∈ RD such that ν(x̄) ⇑ t̄ ,
1
2 otherwise.

Eval3v(x = y,D, ν) =







1 if ν(x) = ν(y) ,

0 if ν(x), ν(y) ∈ Const and ν(x) 6= ν(y) ,
1
2 otherwise.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

Coming back to the example in the beginning of the section, if we have a database
D with RD = {(⊥1, 1), (2,⊥2)} and ν : (x, y) 7→ (⊥1,⊥2), then Eval3v(R(x, y), D, ν) = 1

2 .

Indeed, even though (⊥1,⊥2) is not in RD, there are valuations h so that h(⊥1,⊥2) ∈
h(RD). On the other hand, no valuation h makes (1, 2) ∈ h(RD) possible, so for ν′ :
(x, y) 7→ (1, 2) we have Eval3v(R(x, y), D, ν′) = 0.

These modifications turn out to be sufficient to ensure certainty guarantees for all
relational calculus queries.

THEOREM 4.1. Eval3v has certainty guarantees for all FO queries.

As an example, consider again query (4), or ϕ(x) = R(x) ∧ ¬(R(x) ∧ ¬S(x)) over D
with RD = {1} and SD = {⊥}. It produced a false positive since EvalSQL(ϕ,D) = {1}
but the certain answer is empty. But now we have Eval3v(ϕ,D) = ∅. Indeed, we had
EvalSQL(R(x) ∧ ¬S(x), D, 1) = 0, and thus EvalSQL(ϕ,D, 1) = 1, but now Eval3v(R(x) ∧
¬S(x), D, 1) = 1

2 and hence Eval3v(ϕ,D, 1) = 1
2 .

As another remark, note that the result of Eval3v need not be contained in the result
of EvalSQL, i.e., Eval3v can produce results that SQL evaluation misses. For instance,
given a database D with RD = {(⊥,⊥)} and a query ψ = ∃x, y R(x, y) ∧ x = y, one can
easily check that Eval3v(ψ,D, ν) = 1 (for the only possible valuation over a singleton
active domain), while EvalSQL(ψ,D, ν) = 1

2 .

Theorem 4.1 will be a consequence of a more general result (Theorem 5.3), that does
not restrict us to constant tuples. But for this we first need to define certain answers
with nulls.

5. CERTAIN ANSWERS WITH NULLS

While the definition of certain answers (3) has been by far the most common in use,
it has a number of deficiencies (see [Libkin 2014a; 2014b] for discussion). One of the
problems is that it only returns tuples containing constants. Consider a database D
with a relation RD = {(1, 2), (3,⊥)} and a query ψ(x, y) = R(x, y). Then cert(ψ,D) =
{(1, 2)} but intuitively we should return the entire relation RD since we are certain its
tuples are in the answer. The reason we are certain about it is that for every valuation
h, the tuple (3, h(⊥)) is in h(D).

These considerations led to a slight extension of the notion of certain answers [Lipski
1984] that, despite being very natural, is not as commonly used as the definition (3).
Note that certain answers (3) can be defined as the set of constant tuples ū (i.e., tuples
without nulls) such that for all valuations h, the tuple ū = h(ū) is in Q(h(D)). The
extended definition of [Lipski 1984] simply removes the condition that query answers
should not contain nulls.

Definition 5.1. Given an incomplete database D and a k-ary query Q defined over
complete databases, certain answers with nulls cert⊥(Q,D) is defined as the set of all
tuples ū ∈ adom(D)k such that h(ū) ∈ Q(h(D)) for all valuations h.

For instance, if a query is given by an FO formula with k free variables, then

cert⊥(ϕ,D) = {ū ∈ adom(D)k | EvalFO(ϕ, h(D), h(ū)) = 1 for every valuation h}.

Returning to the above example, we have cert⊥(ψ,D) = {(1, 2), (3,⊥)}, so the tuple
(3,⊥) is no longer omitted. We remark that [Lipski 1984] did not actually provide a
name for this concept, and it appeared under other names, e.g., sure uni-answer in
[Klein 1999]. We prefer the term ‘certain answers with nulls’ as it conveys the nature
of the concept.

We now summarize properties of certain answers with nulls. The usual certain an-
swers can be obtained from certain answers with nulls by dropping tuples containing

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

nulls, and certain answers with nulls are always contained in the result of the sim-
ple FO evaluation of formulae. Sometimes, but not always, they may coincide with the
result of such an evaluation.

Formally, we have the following.

PROPOSITION 5.2. The following hold:

— cert(ϕ(x̄), D) = cert⊥(ϕ,D) ∩ Const
|x̄|.

— cert⊥(ϕ,D) ⊆ EvalFO(ϕ,D) for every FO query ϕ.
— If ϕ ∈ Qcert

FO , then cert⊥(ϕ,D) = EvalFO(ϕ,D).
— There exist FO queries ϕ so that cert⊥(ϕ,D) 6= EvalFO(ϕ,D).

Proof. We first show a useful auxiliary result that ū ∈ cert⊥(ϕ,D) iff
EvalFO(ϕ, h(D), h(ū)) = 1 for every homomorphism h (rather than every eval-
uation h). To see this, we show that the following conditions are equivalent:
EvalFO(ϕ, h(D), h(ū)) = 1 for each homomorphism h, and EvalFO(ϕ, g(D), g(ū)) = 1 for
each valuation g are equivalent.

Of course if the statement EvalFO(ϕ, h(D), h(ū)) = 1 is true for every homomorphism,
then it also true for every valuation. Conversely, assume that EvalFO(ϕ, g(D), g(ū)) =
1 holds for every valuation g. Let h be a homomorphism defined on Null(D). Let
N0 be the set of nulls in the image of h, and let N = N0 ∪ Null(D). Consider a
set C of constants that do not occur in adom(D), nor in the image of h, so that
|C| = |N |, and let f : N → C be a bijection. Define a valuation g as f ◦ h. By
the assumption, we have EvalFO(ϕ, g(D), g(ū)) = 1, and by the genericity of FO
queries we have EvalFO(ϕ, f−1(g(D)), f−1(g(ū))) = 1. Since g ◦ f−1 = h, this means
EvalFO(ϕ, h(D), h(ū)) = 1 as required. This proves our claim.

We now prove all the items of the proposition. Given ϕ(x̄), if ā ∈ cert(ϕ,D), then ā is

a tuple of constants and ā ∈ cert⊥(ϕ,D) and thus cert(ϕ,D) ⊆ cert⊥(ϕ,D) ∩ Const
|x̄|.

Conversely, if ā is a tuple of constants in cert⊥(ϕ,D), then for every valuation h we
have h(ā) = ā and thus EvalFO(ϕ, h(D), ā) = 1, i.e., ā ∈ ϕ(h(D)), implying ā ∈ cert(ϕ,D).

Hence, cert⊥(ϕ,D) ∩ Const
|x̄| ⊆ cert(ϕ,D).

For the second item, let ū ∈ cert⊥(ϕ,D). By the observation made earlier, for ev-
ery homomorphism h we have EvalFO(ϕ, h(ū), h(D)) = 1. Applying this to the identity
homomorphism h we have ū ∈ EvalFO(ϕ,D).

For the third item, let ϕ belong to Qcert
FO . It is known that in this case ϕ is pre-

served under strong onto homomorphisms [Compton 1983; Gheerbrant et al. 2014].
That is, if EvalFO(ϕ,D, ū) = 1 and h is a homomorphism, then EvalFO(ϕ, h(D), h(ū)) =
1. We already know that cert⊥(ϕ,D) ⊆ EvalFO(ϕ,D). So now conversely assume
ū ∈ EvalFO(ϕ,D). Let h be an arbitrary homomorphism. By preservation, we have
EvalFO(ϕ, h(D), h(ū)) = 1 which implies ū ∈ cert⊥(ϕ,D).

Finally, consider a schema with two unary relations R and S, a database D with
RD = {1} and SD = {⊥}, and ϕ(x) = R(x) ∧ ¬S(x). Then EvalFO(ϕ,D) = {1} but
1 6∈ cert⊥(ϕ,D) as witnessed by the valuation ⊥ 7→ 1. ✷

We can now state a more general description of the evaluation procedure Eval3v: the
output value 1 guarantees that a tuple belongs to certain answers with nulls for query
ϕ, the output value 0 guarantees that it belongs to certain answers with nulls for the
negation ¬ϕ, and output value 1

2 comes with no guarantees.

THEOREM 5.3. For every FO query ϕ(x̄) and every database D,

Eval3v(ϕ,D) ⊆ cert⊥(ϕ,D).

Moreover, if ā ∈ adom(D)|x̄| and Eval3v(ϕ,D, ā) = 0, then ā ∈ cert⊥(¬ϕ,D).

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

Theorem 4.1 is now an immediate corollary: if ā is a tuple of constants and
Eval3v(ϕ,D, ā) = 1, then by Theorem 5.3, ā ∈ cert⊥(ϕ,D), and by Proposition 5.2,
ā ∈ cert(ϕ,D).

Proof. Recall that we use the convention that instead of Eval(ϕ(x̄), D, ν) we may write
Eval(ϕ,D, ū) where ū = ν(x̄). To prove the theorem, in view of the observation made
at the beginning of the proof of Proposition 5.2 (which showed that we can use homo-
morphisms and valuations interchangeably), we need to show the following for each
formula ϕ(x̄) with |x̄| = k and each assignment ν:

Eval3v(ϕ,D, ν) = 1 ⇒ ∀ homomorphism h : EvalFO(ϕ, h(D), h(ν(x̄))) = 1 (*)

Eval3v(ϕ,D, ν) = 0 ⇒ ∀ homomorphism h : EvalFO(ϕ, h(D), h(ν(x̄))) = 0 (**)

We now do this by induction of FO formulae ϕ(x̄).

Case 1: ϕ(x̄) is a relational atom R(x̄).
(*) If Eval3v(ϕ,D, ν) = 1 then ν(x̄) ∈ RD; in particular, h(ν(x̄)) ∈ h(RD) for every
homomorphism h, showing h(ν(x̄)) ∈ EvalFO(ϕ, h(D)).

(**) If Eval3v(ϕ,D, ν) = 0 then for each tuple t̄ ∈ RD we have that ν(x̄) ⇑ t̄ does not
hold. Thus for each homomorphism h, and each tuple t̄ ∈ RD, we have h(ν(x̄)) 6=
h(t̄). This means that h(x̄) 6∈ h(RD), and thus for each homomorphism h we have
EvalFO(ϕ, h(D), h(ν(x̄))) = 0.

Case 2: ϕ(x, y) is an equality atom x = y.
(*) If Eval3v(x = y,D, ν) = 1 then ν(x) = ν(y), and thus for for every homomor-
phism h, we have h(ν(x)) = h(ν(y)); in particular, EvalFO(x = y, h(D), h ◦ ν) = 1.

(**) If Eval3v(x = y,D, ν) = 0, then both ν(x) and ν(y) are constants and ν(x) 6=
ν(y). Since they are constants, every homomorphism leaves them intact, and thus
EvalFO(x = y, h(D), h ◦ ν) = 0.

Case 3: ϕ(x̄) is ϕ1(x̄1) ∧ ϕ2(x̄2) (where x̄ contains all the variables in x̄1 and x̄2).
(*) If Eval3v(ϕ(x̄), D, ν) = 1, then Eval3v(ϕi(x̄i), D, ν) = 1 for i = 1, 2, which, by
the induction hypothesis, implies that for each homomorphism h, we have that
EvalFO(ϕi(x̄i), h(D), h(ν(x̄))) = 1 for i = 1, 2. This in turn implies that for every
homomorphism h, the value of EvalFO(ϕ(x̄), h(D), h(ν(x̄))) is 1.

(**) If Eval3v(ϕ(x̄), D, ν) = 0, then Eval3v(ϕi(x̄i), D, ν) = 0 for at least one of i =
1, 2; assume that Eval3v(ϕ1(x̄1), D, ν) = 0 (the other case is, of course, analogous).
By the induction hypothesis, this implies that for each homomorphism h, we have
EvalFO(ϕ1(x̄1), h(D), h(ν(x̄1))) = 0 and thus EvalFO(ϕ(x̄), h(D), h(ν(x̄))) = 0, as
required.

Case 4: ϕ(x̄) = ϕ1(x̄1) ∨ ϕ2(x̄2) is completely analogous.

Case 5: ϕ(x̄) is ¬ψ(x̄).
(*) If Eval3v(ϕ(x̄), D, ν) = 1, then Eval3v(ψ(x̄), D, ν) = 0, and by the induction
hypothesis we have EvalFO(ψ, h(D), h(ν(x̄))) = 0 for every homomorphism h. This,
by FO rules, implies EvalFO(ϕ, h(D), h(ν(x̄))) = 1 for every homomorphism h.

(**) is analogous to the proof for (*).
Case 6: ϕ(x̄) is ∃y ψ(x̄, y).

(*) If Eval3v(ϕ(x̄), D, ν) = 1, then we can find u0 ∈ adom(D) such that the result
of Eval3v(ψ(x̄, y), D, ν[u0/y]) is 1. Now take an arbitrary homomorphism h defined
on Null(D). We know, by the induction hypothesis, that

EvalFO(ψ(x̄, y), h(D),
(

h(ν(x̄)), h(u0)
)

) = 1

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

and hence EvalFO(ϕ, h(D), h(ν(x̄))) = 1.

(**) If Eval3v(ϕ(x̄), D, ν) = 0, then for each u0 ∈ adom(D) we know that the re-
sult of Eval3v(ψ(x̄, y), D, ν[u0/y]) is 0. Thus, by the induction hypothesis, for an
arbitrary homomorphism h defined on Null(D) we have

EvalFO(ψ(x̄, y), h(D),
(

h(ν(x̄)), h(u0)
)

) = 0

and hence, since u0 was chosen arbitrarily, we see that EvalFO(ϕ, h(D), h(ν(x̄))) =
0 for each such homomorphism.

Case 7: ϕ(x̄) is ∀y ψ(x̄, y) is analogous to Case 6 (or can be obtained by combining
Cases 5 and 6).

This concludes the proof. ✷

So far we dealt only with under-approximations of certain answers, i.e., evaluation
procedures without false positives. One can adopt an alternative point of view and try
to eliminate false negatives. In that case, one would look for over-approximations, i.e.,
procedures that return all certain answers, and perhaps something else. It turns out
that Eval3v can be used to give over-approximations, simply by taking the complement
of the result on the negation of the query.

COROLLARY 5.4. For every FO query ϕ(x̄) we have

cert⊥(ϕ,D) ⊆ adom(D)|x̄| − Eval3v(¬ϕ,D).

The procedure Eval3v is faithful to the usual FO evaluation on complete databases:
in this case, the values of Eval3v are only 0 and 1, and the value 1 is achieved exactly
for tuples in query results. That is, we have the following.

PROPOSITION 5.5. If D is a complete database, then the values of Eval3v(ϕ,D, ν)
are only 0 and 1, and Eval3v(ϕ,D) = EvalFO(ϕ,D) for every FO query ϕ.

Proof. The first statement is immediate by the inspection of the rules: only the presence
of nulls introduces the truth value 1

2 . Since for databases D and assignments ν over
Const the rules of Eval3v for atomic formulae R(x̄) and x = y become identical to those
of EvalFO (again, as seen by a simple inspection of them), the result follows. ✷

As for the complexity of the procedure, one can easily show the following.

PROPOSITION 5.6. For each relational vocabulary σ and α ∈ {0, 1
2 , 1}, from every

FO query ϕ(x̄) one can compute FO queries ϕα(x̄) in the vocabulary that extends σ
with a unary predicate const(·) interpreted as the set of constants, such that, for every
database D,

{ā ∈ adom(D)|x̄| | Eval3v(ϕ,D, ā) = α} = EvalFO(ϕα, D).

Consequently, data complexity of computing Eval3v(ϕ,D) is in AC0.

Proof. The proof is straightforward in all the cases except one as, by simple inspection
of the rules for Eval3v, one sees that each case is definable in FO. The only case requir-
ing proof is that of Eval3v returning 0 for relational atoms. We must show that, for a
relation symbol R of arity k, there is a formula ϕ(x̄) with |x̄| = k so that ϕ(ā) is true
in RD iff ā ⇑ t̄ does not hold for every tuple t̄ in RD. This in turn follows since one can
express, in the vocabulary expanded with const, a formula ψ⇑(x̄, ȳ) so that ψ⇑(ā, b̄) is
true iff ā ⇑ b̄; then ϕ(x̄) is simply ∀ȳ R(ȳ) → ¬ψ⇑(x̄, ȳ).

To show that ψ⇑ is expressible, we define patterns of pairs of k-tuples as pairs π =
(ū, E) where ū is a Boolean tuple of length 2k, and E is an equivalence relation on the

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

set {1, . . . , 2k}. Given two tuples ā = (a1, . . . , ak) and b̄ = (b1, . . . , bk) over Const ∪ Null,
they conform to π if in the 2k-tuple (c1, . . . , c2k) obtained by concatenating ā and b̄, the
following is true:

— the ith position in ū is 1 iff ci is a constant; and
— ci = cj iff (i, j) ∈ E.

Note that for each pattern π, either all pairs conforming to it unify, or none unifies.
Hence, we can express ψ⇑ as the disjunction over all patterns π guaranteeing unifi-
cation of formulae stating that x̄, ȳ conform to π. The latter can be straightforwardly
expressed in FO. Since the number of patterns depends only on k, the formula ψ⇑ is
expressible in FO. ✷

This gives us a complexity argument showing that there are cases when Eval3v fails
to produce all certain answers. A concrete example of strict containment of Eval3v in
cert⊥ will be shown below in Section 5.1.

5.1. CQs and UCQs with inequalities

A common extension of conjunctive queries and their unions is by adding inequalities
[Abiteboul et al. 1995]. This is a very mild form of negation; essentially, we only allow
negation to be applied to equality atoms. Instead of writing them as ¬(x = y), it is
common to use x 6= y in formulae, and refer to them as inequality atoms. Then the
∃,∧-closure of relational, equality and inequality atoms is referred to as CQs with
inequalities, and the ∃,∧,∨-closure as UCQs with inequalities. This class of queries is
denoted by UCQ

6=.
We now present a particularly easy evaluation procedure that correctly accounts

for Eval3v producing value 1 for UCQs with inequalities, and thus gives us correct-
ness guarantees for those queries. This procedure uses two-valued, rather than three-
valued, logic and only one rule that separates it from EvalFO. To understand it, note for
an inequality atom x 6= y, FO evaluation returns true if x and y are assigned different
values – even if they are different nulls. But actually the evaluation of conditions such
as ⊥1 6= ⊥2 must be false, since ⊥1 and ⊥2 can be mapped, by a valuation, to the same
element. For UCQ

6=, there is no risk with assigning false rather than unknown, since
negation will never be applied further on. This lets us define the evaluation procedure
for UCQ

6= by adding the following explicit rule for 6= formulae to the EvalFO rules:

EvalUCQ 6=(x 6= y,D, ν) =

{

1 if ν(x), ν(y) ∈ Const and ν(x) 6= ν(y)

0 otherwise

This evaluation is particularly easy to implement in SQL with the usual is not
null conditions in the where clause. And it has the desired correctness guarantees.

THEOREM 5.7. For every UCQ
6= query ϕ, we have

EvalUCQ 6=(ϕ,D) = Eval3v(ϕ,D) ⊆ cert⊥(ϕ,D).

In particular, EvalUCQ 6= has certainty guarantees for UCQ
6= queries.

Proof. We will show that for a UCQ
6= query ϕ, we have

EvalUCQ 6=(ϕ,D, ν) = 1 ⇔ Eval3v(ϕ,D, ν) = 1 (7)

for every database D and assignment ν.

(⇒) Since a UCQ
6= query ϕ is a disjunction of CQs with inequalities ϕ1 ∨ . . . ∨ ϕm, it

suffices to prove (7) for CQs: if EvalUCQ 6=(ϕ,D, ν) = 1, then EvalUCQ 6=(ϕi, D, ν) = 1 for

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

some i ≤ m, and thus Eval3v(ϕi, D, ν) = 1 would imply Eval3v(ϕ,D, ν) = 1. We show this
by induction on the formula.

— If ϕ is an atomic formula R(x̄), then EvalUCQ 6=(R(x̄), D, ν) = 1 means that ν(x̄) ∈ RD

and hence Eval3v(R(x̄), D, ν) = 1.
— If ϕ is an equality atom x = y, then EvalUCQ 6=(x = y,D, ν) = 1 means that ν(x) = ν(y)

and hence Eval3v(x = y,D, ν) = 1.
— If ϕ is x 6= y, then EvalUCQ 6=(x = y,D, ν) = 1 means that ν(x) 6= ν(y) and both ν(x)

and ν(y) are constants. Thus Eval3v(x = y,D, ν) = 0 and Eval3v(¬(x = y), D, ϕ) = 1.
— If ϕ = ϕ1 ∧ ϕ2 and EvalUCQ 6=(ϕ,D, ν) = 1, then EvalUCQ 6=(ϕi, D, ν) = 1 for i = 1, 2, and

the induction hypothesis implies Eval3v(ϕ,D, ν) = 1.
— The case of ϕ = ∃xψ similarly immediately follows by induction.

(⇐) As for the (⇒) case, it suffices to provide the proof for CQs with inequalities. As-
sume that ϕ(x̄) = ∃ȳ ψ(x̄, ȳ), where

ψ(x̄, ȳ) =
∧

i

Ri(ūi) ∧
∧

j

(zj = z′j) ∧
∧

k

(wk 6= w′
k), (8)

and the variables in the ūis, as well as the zj , z
′
j, wk, w

′
ks are all among x̄, ȳ and all the

Ris are relation symbols in the schema. If Eval3v(ϕ,D, ν) = 1, then for some assignment
ν′ extending ν to variables ȳ we have Eval3v(ψ,D, ν

′) = 1, i.e., each conjunct in (8)
evaluates to 1 under Eval3v. We now look at those conjuncts.

— If Eval3v(Ri(ūi), D, ν
′) = 1, then ν′(ūi) ∈ RD

i and thus EvalUCQ 6=(Ri(ūi), D, ν
′) = 1.

— If Eval3v(zj = z′j, D, ν
′) = 1, then ν′(zj) = ν′(z′j) and thus EvalUCQ 6=(zj = z′j , D, ν

′) = 1.
— If Eval3v(wk 6= w′

k, D, ν
′) = 1, then Eval3v(wk = w′

k, D, ν
′) = 0 and thus ν′(wk) 6= ν′(w′

k)
and both ν′(wk) and ν′(w′

k) are constants. This implies EvalUCQ 6=(wk 6= w′
k, D, ν

′) = 1.

Hence, each conjunct evaluates to 1 under EvalUCQ 6= , and therefore
EvalUCQ 6=(ψ,D, ν′) = 1. Hence Eval3v(ϕ,D, ν) = 1 by using the rule for existential
quantification. This completes the proof of (⇐). ✷

One cannot capture cert⊥(ϕ,D) precisely with the UCQ
6= evaluation procedure. In-

deed, consider the query ψ = ∃x∃y R(x, y) ∧ x 6= y and a database D with RD =
{(⊥, 1), (⊥, 2)}. One easily checks cert⊥(ψ,D) = cert(ψ,D) = true but at the same time
EvalUCQ 6=(ψ,D) = 0. By Theorem 5.7, this also means that Eval3v(ψ,D) fails to capture
cert⊥(ϕ,D); this is the example promised at the end of the last section.

In fact there could be no polynomial-time evaluation procedure for finding certain
answers for UCQ

6= queries since they have CONP-complete data complexity, even with-
out free variables. Indeed, suppose we have a graph G = 〈V,E〉 where the set of ver-
tices is {a1, . . . , an}. Create a binary relation DG with adom(DG) = {⊥1, . . . ,⊥n} and

pairs (⊥i,⊥j) for every edge (ai, aj) ∈ E. Let ϕ ∈ UCQ
6= be given by ∃x DG(x, x) ∨

∃x, y, z, u (x 6= y ∧ x 6= z ∧ x 6= u ∧ y 6= z ∧ y 6= u ∧ z 6= u). Then cert(ϕ,DG) is true iff G
is not 3-colorable.

5.2. Open world semantics

Another semantics of incompleteness is based on the open-world assumption, or OWA

[Abiteboul et al. 1995; Imielinski and Lipski 1984; Reiter 1977]. Under this assump-
tion, an incomplete database can be extended with extra tuples. This semantics is
prominent in several actively studied applications of incompleteness. It is the basic se-
mantics in ontology based query answering, when a database comes with an ontology,
and query answering is defined as certain answers with respect to all extensions of the
database that satisfy the ontology constraints [Calvanese et al. 2007; Calı̀ et al. 2012].

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

In other applications, such as data integration and exchange, both OWA and CWA se-
mantics are used [Abiteboul and Duschka 1998; Arenas et al. 2014; Lenzerini 2002].
We now explain how our approach can be extended to OWA. Note that due to the higher
complexity of query answering under OWA (to be explained shortly), it is harder to get
good approximations.

The OWA semantics state that after applying a valuation h to a database, finitely
many complete tuples can be added to it. That is,

[[D]]
OWA

= {h(D) ∪D′ | h is a valuation and D′ is complete}.

Certain answers under OWA are defined as certOWA(Q,D) =
⋂

{Q(D′) | D′ ∈ [[D]]
OWA

}.
The evaluation procedure Eval3v no longer has certainty guarantees under OWA. To see
this, consider D with relations RD = {(1, 2)} and SD = {(⊥1, 1), (2,⊥2)}. Let ϕ(x, y) =
R(x, y)∧¬S(x, y). Since the tuple (1, 2) does not unify with either tuple in SD, we have
(1, 2) ∈ Eval3v(ϕ,D). However, under OWA, it is not a certain answer: for instance,

the database D′ with RD′

= {(1, 2)} and SD′

= {(1, 1), (2, 2), (1, 2)} is in [[D]]
OWA

, and
EvalFO(ϕ,D′) is empty.

Thus, our question is whether the approach of Eval3v, guaranteeing correctness for
all FO queries under CWA, can be extended to OWA. Of course there is always a trivial
positive answer: the evaluation procedure that always returns 0 vacuously has correct-
ness guarantees. Since [[D]]

CWA
⊆ [[D]]

OWA
, certain answers under OWA will be included

in certain answers under CWA, so the question really is how much we eliminate from
the latter so that the result is still meaningful, and provides certainty guarantees un-
der OWA. Note also that finding certain answers under OWA is undecidable [Abiteboul
et al. 1991] (even for data complexity [Gheerbrant et al. 2012]) which ties our hands
even more in terms of finding suitable approximations.

To understand the changes that need to be made under OWA, consider again rela-
tional atoms. For them, there is no way to assert with certainty that a tuple does not
belong to a relation, since each relation can be expanded under OWA. Hence, the case
when evaluation produces 0 must go.

Next, look at existential formulae. Again we cannot state with certainty that the
result of evaluation of those is 0, as perhaps in some extension of the database there is
a witness for the existential formula, so the lowest value for evaluating such a formula
is 1

2 , not 0. Likewise, for universal formulae, one cannot state with certainty that the
result of evaluation is 1, as it requires checking the universal conditions in all exten-
sions of the database, which is an undecidable problem. Hence, the highest value in
this case is 1

2 and not 1.
This explains the three changes that we make for the evaluation procedure. In par-

ticular, to achieve correctness, evaluation for quantifiers cannot follow the standard
rules (5). Indeed, this simply reflects the fact that under OWA, quantification is not
equivalent to conjunction or disjunction over all elements of the active domain.

The procedure EvalOWA

3v has the range {0, 1
2 , 1} and differs from Eval3v in three rules:

EvalOWA

3v (R(x̄), D, ν) =

{

1 if ν(x̄) ∈ RD

1
2 otherwise

EvalOWA

3v (∃xϕ,D, ν) = max
{

1
2 , max{EvalOWA

3v (ϕ,D, ν[a/x]) | a ∈ adom(D)}
}

EvalOWA

3v (∀xϕ,D, ν) = min
{

1
2 , min{EvalOWA

3v (ϕ,D, ν[a/x]) | a ∈ adom(D)}
}

These modifications are sufficient for correctness under OWA.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

PROPOSITION 5.8. The evaluation algorithm EvalOWA

3v has correctness guarantees
under OWA.

Proof. We follow the proof of Theorem 5.3; the difference is that now we need to show
the following to establish connection with OWA certain answers:

EvalOWA

3v (ϕ,D, ν) = 1 ⇒ ∀ homomorphism h : D → D′ EvalFO(ϕ,D′, h(ν(x̄))) = 1 (∗′)

EvalOWA

3v (ϕ,D, ν) = 0 ⇒ ∀ homomorphism h : D → D′ EvalFO(ϕ,D′, h(ν(x̄))) = 0 (∗∗′)

The proof proceeds exactly as for Theorem 5.3: the cases of equality atoms and Boolean
connectives are identical. For relational atoms, the case for (∗′) is the same as before,
and the case for (∗∗′) disappears, since EvalOWA

3v never returns 0 for relational atoms.
For existential quantification, the case for (∗′) is again the same as before (since the
witness is found within the active domain), and the case for (∗∗′) similarly disappears,
since the minimum possible return value is 1

2 . Likewise, for universal quantification,

the case for (∗′) disappears since the maximum return value is 1
2 , and the case for (∗∗′)

is the same as before. ✷

Returning to the example from the beginning of the subsection, note that the value
of EvalOWA

3v (S(x, y), D, (1, 2)) is 1
2 (for Eval3v it would have been 0), and thus the result

EvalOWA

3v (R(x, y) ∧ ¬S(x, y), D, (1, 2)) is 1
2 as well; in particular, (1, 2) 6∈ EvalOWA

3v (ϕ,D)
while we had (1, 2) ∈ Eval3v(ϕ,D).

6. EVALUATION PROCEDURE FOR RELATIONAL ALGEBRA

Queries that get executed in a DBMS are procedural queries, in particular, in the
relational case, they are written in relational algebra, or some of its extensions. We
now present an algorithm that provides an evaluation with correctness guarantees for
relational algebra expressions. Even though from the point of view of expressiveness,
relational algebra is equivalent to FO, the equivalence itself, established under the
standard two-valued semantics, is not yet a guarantee that it will provide us with a
desired evaluation procedure in the three-valued world.

To expand on this, note that by Proposition 5.6, for every FO query ϕ(x̄) we have
a relational algebra expression eϕ which has access to the extra predicate const(·) so
that eϕ faithfully implements Eval3v(ϕ, ·). So it seems that starting with a relational
algebra query Q, we could find an equivalent FO query ϕQ and then consider eϕQ

to
evaluate Q.

Reasoning of this sort, however, mixes the equivalence of FO and relational algebra
(that is true with respect to the usual two-valued FO evaluation) with the three-valued
evaluation. However, equivalences under the two-valued FO evaluation need not be
true under Eval3v. Consider, for instance, ϕ(x) = ∃y

(

R(x, y) ∧ (y = 1 ∨ y 6= 1)
)

. Under
the two-valued semantics, it is equivalent to ϕ′(x) = ∃yR(x, y), but with respect to
three values, it is not. Indeed, if RD = {(1,⊥)} and ν : x 7→ 1, then EvalFO(ϕ,D, ν) =
EvalFO(ϕ′, D, ν) = 1 = Eval3v(ϕ

′, D, ν), but Eval3v(ϕ,D, ν) = 1
2 .

Still, from the equivalence of EvalFO(ϕQ, ·) and Q one can easily derive eϕQ
(D) =

Eval3v(ϕQ, D) ⊆ cert⊥(Q,D), so we do in fact get correctness guarantees with this ap-
proach. Nonetheless, it is not satisfactory for two reasons. First, the detour via transla-
tion into FO and back to algebra may produce unnecessarily complicated expressions.
Second, this approach assumes a particular translation between relational algebra and
FO (which of course is not unique), and the quality of the resulting query depends on
that translation. For instance, we view expressions R and σA=1(R)∪σA 6=1(R) as equiv-

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

alent, but using the latter in eϕQ
can miss some answers with certainty guarantees

due to the presence of nulls.
The bottom line is that it is better to have a direct evaluation procedure for relational

algebra that gives us correctness guarantees without going through both algebra-to-
FO and FO-to-algebra translations.

In the two-valued world sound translations for relational algebra have been consid-
ered in the past [Reiter 1986]. Our goal is a bit different though as we have to provide
specific correctness guarantees, and relate them to SQL’s way of evaluating queries; in
fact we shall produce approximations for sets of tuples on which Eval3v returns 1 and
0.

We now explain the procedure for correct evaluation of relational algebra queries.
First, recall the operations of the relational algebra. These are selection σ, projection
π, cartesian product ×, union ∪, intersection ∩, and difference −. To avoid the clutter,
and in particular to avoid renaming, we use the unnamed perspective for presenting
relational algebra [Abiteboul et al. 1995], that is, for each expression returning an m-
attribute relation, we simply assume that the names of those attributes are ♯1, . . . , ♯m.
As conditions θ in selections, we use positive Boolean combinations of equalities and
inequalities between attribute values and constants. For instance, (♯1 6= ♯2) ∨ (♯3 = 1)
is a condition that can be used in selections. Note that such conditions are closed under
negation, simply by propagating it all the way to (in)equalities, so we shall also refer
sometimes to conditions ¬θ, meaning the result of such a propagation. We refer to this
standard relational algebra as RA.

We also consider an extension called RAnull. In this extension, conditions θ are posi-
tive Boolean combinations of

— equalities and inequalities between attributes, and
— conditions const(♯n) and null(♯n) stating that the value of attribute ♯n is a constant or

a null, respectively.

Our goal is to provide a translation RA → RAnull that associates with each query Q of
RA a query Q+ of RAnull such that Q+(D) ⊆ cert⊥(Q,D). Recall that cert⊥(Q,D) refers
to certain answers with nulls, see Definition 5.1.

As noticed already, due to CONP-data complexity of cert⊥(Q,D), we cannot hope for
equality, so this correctness guarantee is the best we can count on.

We shall actually produce more. Let Q̄ be the query that computes the complement
of Q, i.e., for an n-ary Q, the result of Q̄(D) is adom(D)n − Q(D). Then we actually
provide a translation

Q 7→ (Q+, Q−)

of RA queries into a pair of RAnull queries such that

Q+(D) ⊆ cert⊥(Q,D) and Q−(D) ⊆ cert⊥(Q̄,D).

When this happens, we say that the translation Q 7→ (Q+, Q−) provides correctness
guarantees.

Since cert⊥(Q,D) ∩ cert⊥(Q̄,D) = ∅, this also means that Q+(D) ∩ Q−(D) = ∅. One
can think of Q+ and Q− as analogs of finding tuples for which Eval3v produces 0 or 1.
Everything that does not fall into the results of these two, is essentially ‘unknowns’.

We now provide the translations. We need three auxiliary elements: a translation
θ 7→ θ∗ from RA conditions to RAnull conditions, one RA query, and one RAnull query.
These are given as follows.

The translation θ 7→ θ∗. It is defined inductively. We assume that in conditions ♯n =
♯m or ♯n 6= ♯m, attributes ♯n and ♯m are different (otherwise they are easily eliminated).

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

R+ = R R− = R⊖

(Q1 ∪Q2)
+ = Q+

1 ∪Q+
2 (Q1 ∪Q2)

− = Q−
1 ∩Q−

2

(Q1 ∩Q2)
+ = Q+

1 ∩Q+
2 (Q1 ∩Q2)

− = Q−
1 ∪Q−

2

(Q1 −Q2)
+ = Q+

1 ∩Q−
2 (Q1 −Q2)

− = Q−
1 ∪Q+

2

(σθ(Q))+ = σθ∗(Q+) (σθ(Q))− = Q− ∪ σ(¬θ)∗(adomar(Q))

(Q1 ×Q2)
+ = Q+

1 ×Q+
2 (Q1 ×Q2)

− = Q−
1 × adomar(Q2) ∪ adomar(Q1) ×Q−

2

(πααα(Q))+ = πααα(Q+) (πααα(Q))− = πααα(Q−) − πααα(adomar(Q) −Q−)

Fig. 1. Relational algebra translations

— If θ is (♯n = ♯m) or (♯n = c), where c is a constant, then θ∗ = θ.
— (♯n 6= ♯m)∗ = (♯n 6= ♯m) ∧ const(♯n) ∧ const(♯m).
— (♯n 6= c)∗ = (♯n 6= c) ∧ const(♯n).
— (θ1 ∨ θ2)∗ = θ∗1 ∨ θ∗2 .
— (θ1 ∧ θ2)∗ = θ∗1 ∧ θ∗2 .

The active domain query. We use adom as an RA query that returns the active do-
main of a database; clearly it can be written as a π,∪-query, that takes the union of all
projections of all relations in the database.

The relative complement query. The relative complement of a k-ary relation R in
database D is

R⊖ = {ū ∈ adom(D)k | ¬∃t̄ ∈ R : ū ⇑ t̄ }.

It is not hard to see that R⊖ is expressible in RAnull. We show this formally in the proof
of Theorem 6.1. In fact this is the only expression where conditions null(♯n) are used in
selections.

With these, translations of relational algebra are given by inductive rules presented
in Figure 1. We use abbreviation ar(Q) for the arity of Q, and ααα refers to a list of
attributes.

THEOREM 6.1. The translation Q 7→ (Q+, Q−) in Figure 1 provides correctness
guarantees.

Proof. As the first step, we need to show that the relative complement query R⊖ is
expressible in RAnull. Note that in the proof of Proposition 5.6 we showed the exis-
tence of an FO formula ψ⇑(x̄, ȳ) which holds iff x̄ and ȳ unify. Such a formula uses
the extra unary predicate const checking for constants. Then R⊖ can be expressed by
∀ȳ R(ȳ) → ¬ψ⇑(x̄, ȳ). Translating this into relational algebra using the standard trans-
lation [Abiteboul et al. 1995], we get an expression that can use arbitrary Boolean com-
binations of equalities and const(x) in selections. Then, propagating negations in such
conditions, we end up with positive Boolean combinations of equalities, inequalities,
const(x), and null(x), i.e., an RAnull expression.

Now we show correctness guarantees. To do so, we shall need to show that, for every
database D, a tuple ū ∈ adom(D)k, and a k-ary relational algebra query Q,

ū ∈ Q+(D) ⇒ ∀ homomorphism h : h(ū) ∈ Q(h(D)) (X)

ū ∈ Q−(D) ⇒ ∀ homomorphism h : h(ū) 6∈ Q(h(D)) (XX)

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

We now prove these by induction on the structure of relational algebra queries Q.
We shall adopt the convention that a k-tuple ū is (u1, . . . , uk); in particular, the value
of attribute ♯n in ū is un.

Case 1: Q is R, where R is a base relation.
(X) Since Q+ is R itself, this is immediate.

(XX) In this case Q− = R⊖. Assume ū ∈ R⊖ and let h be a homomorphism. By
definition, ū does not unify with any of t̄ ∈ R, in particular, h(ū) cannot equal
h(t̄), thus implying h(ū) 6∈ h(R).

Case 2: Q = σθ(Q1).
(X) In this case Q+ = σθ∗(Q+

1). We prove (X) by (sub)induction on the selection
condition.
— Let θ = (♯n = ♯m). Suppose ū ∈ σθ∗(Q1(D)) (in this case, θ∗ = θ), and let h

be a homomorphism. We have ū ∈ Q+
1 (D) which, by the induction hypothesis,

means h(ū) ∈ Q1(h(D)). Furthermore, un = um, and thus h(un) = h(um),
proving h(ū) ∈ σθ(Q1(h(D))), which is the condition (X) in this case.

— If θ = (♯n = c) for a constant c, the proof is the same.
— Let θ = (♯n 6= ♯m). Suppose ū ∈ σθ∗(Q1(D)), and let h be a homomorphism. As

above, we see, by the hypothesis, that h(ū) ∈ Q+
1 (h(D)). Furthermore, since θ∗

holds, we know un 6= um and both un and um are constants. In particular, this
means h(un) 6= h(um), proving h(ū) ∈ σθ(Q1(h(D))).

— The case ♯n 6= c for a constant c is completely analogous.
— Let θ = θ1 ∧ θ2. Then (σθ(Q1))

+ = σθ∗(Q+
1) = σθ∗

1
∧θ∗

2
(Q+

1). Let ū ∈ (σθ(Q1))
+,

and let h be a homomorphism. We have ū ∈ σθ∗
i
(Q+

1) = (σθi
(Q1))

+ for each
i = 1, 2, and thus by the hypothesis (of the induction on the selection condition)
we have h(ū) ∈ σθi

(Q1(h(D))) for i = 1, 2, and hence h(ū) ∈ σθ1∧θ2
(Q1(h(D))) =

σθ(Q1(h(D))), as required.
— Let θ = θ1 ∨ θ2. Then (σθ(Q1))

+ = σθ∗(Q+
1) = σθ∗

1
(Q+

1) ∪ σθ∗
2
(Q+

1). Let ū ∈

(σθ(Q1))
+, and let h be a homomorphism. We have ū ∈ σθ∗

i
(Q+

1) = (σθi
(Q1))

+

for one of i = 1, 2, and thus by the induction hypothesis on the selection con-
dition, we have h(ū) ∈ σθi

(Q1(h(D))) for i = 1 or i = 2, implying h(ū) ∈
σθ(Q1(h(D))).

(XX) In this case Q− = Q−
1 ∪σ(¬θ)∗(adomk) where k is the arity of Q. First assume

that a tuple ū is in Q−
1 (D). Then, by the induction hypothesis, h(ū) 6∈ Q1(h(D))

for every homomorphism h, and thus h(ū) 6∈ σθ(Q1(h(D))).

Thus, we only need to consider the case when ū ∈ σ(¬θ)∗(adomk). Recall that by ¬θ
we mean the negation of θ in which negation has been propagated to the atomic
conditions, i.e., it is still a positive Boolean combination of equalities, inequali-
ties, and statements const(x) and null(x). We prove this case by a (sub)induction
on the selection conditions.
— Let θ = (♯n = ♯m). Then ¬θ is ♯n 6= ♯m and thus (¬θ)∗ is (♯m 6= ♯m)∧const(♯n)∧

const(♯m). Hence if ū satisfies (¬θ)∗, then un and um are distinct constants, and
the same is true for h(un) and h(um) for every homomorphism h; in particular,
h(ū) cannot satisfy θ and thus h(ū) 6∈ σθ(Q1(h(D))).

— The case when θ = (♯n = c) is analogous.
— Let θ = (♯n 6= ♯m). Then ¬θ is ♯n = ♯m and thus (¬θ)∗ is the same condition.

So if ū satisfies (¬θ)∗, then un = um and thus h(un) = h(um) for every homo-
morphism. In particular h(ū) cannot satisfy θ and thus h(ū) 6∈ σθ(Q1(h(D))).
Again, the case when one attribute is replaced by a constant value is com-
pletely analogous.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

— Let θ = θ1 ∧ θ2. Then ¬θ is ¬θ1 ∨ ¬θ2 and thus (¬θ)∗ is (¬θ1)∗ ∨ (¬θ2)∗. As-
sume ū satisfies (¬θ)∗; then it satisfies one of these conditions, say (¬θ1)

∗.
By the induction hypothesis (on the selection condition), we then have
h(ū) 6∈ σθ1

(Q1(h(D))) for every homomorphism h, which implies h(ū) 6∈
σθ1∧θ2

(Q1(h(D))) = σθ(Q1(h(D))).
— Let θ = θ1 ∨ θ2. Then ¬θ is ¬θ1 ∧ ¬θ2 and thus (¬θ)∗ is (¬θ1)∗ ∧ (¬θ2)∗. As-

sume ū satisfies (¬θ)∗; then it satisfies (¬θ1)∗ and (¬θ2)∗. By the induction
hypothesis on the selection condition, we then have h(ū) 6∈ σθi

(Q1(h(D))) for
every homomorphism h and for i = 1, 2, which implies h(ū) 6∈ σθ1

(Q1(h(D))) ∪
σθ2

(Q1(h(D))) = σθ(Q1(h(D))).
This completes the proof of the sub-induction on the selection condition and thus
the proof of (XX) for selection.

Case 3: Q = πααα(Q1).
(X) In this case Q+ = πααα(Q+

1). Let ū ∈ πααα(Q+
1) and let h be a homomorphism.

There is a tuple w̄ ∈ Q+
1 so that ū = πααα(w̄). By the induction hypothesis, h(w̄) ∈

Q1(h(D)) and thus h(ū) = πααα(h(w̄)) ∈ πααα(Q1(h(D))).

(XX) In this case Q− = πααα(Q−
1)−πααα(adomar(Q1)−Q−

1). Suppose ū ∈ Q−(D) and let
h be a homomorphism. Since ū ∈ πααα(Q−

1), there is a tuple w̄, corresponding to at-
tributes not in ααα, such that (ū, w̄) ∈ Q−

1 (D). This implies (h(ū), h(w̄)) 6∈ Q1(h(D)).
So the only way h(ū) could be in Q(h(D)) is if for some tuple w̄′, we have
(h(ū), h(w̄′)) ∈ Q1(h(D)). Suppose this is so. Then clearly (ū, w̄′) 6∈ Q−

1 for other-
wise we would have (h(ū), h(w̄′)) 6∈ Q1(h(D)) by the induction hypothesis. There-

fore, (ū, w̄′) ∈ adomar(Q1) − Q1(D), but this implies ū ∈ πααα(adomar(Q1) − Q1)(D)
which contradicts the assumption ū ∈ Q−(D). Thus, no such w̄′ can exist, and
this implies h(ū) 6∈ Q(h(D)).

Case 4: Q = Q1 ∪Q2.
(X) In this case Q+ = Q+

1 ∪Q+
2 . Assume ū ∈ Q+(D), then ū ∈ Q+

i (D) for at least
one of i = 1, 2 and by the hypothesis h(ū) ∈ Qi(h(D)) for each homomorphism h;
hence h(ū) ∈ Q(h(D)).

(XX) In this case Q− = Q−
1 ∩ Q−

2 . Let ū ∈ Q(D) and let h be a homomorphism.
By the induction hypothesis we know h(ū) 6∈ Qi(h(D)) for both i = 1, 2, and hence
h(ū) 6∈ Q(h(D)).

Case 5: Q = Q1 ∩Q2.
(X) In this case Q+ = Q+

1 ∩ Q+
2 . Assume ū ∈ Q+(D), then ū ∈ Q+

i (D) for i = 1, 2
and thus h(ū) ∈ Qi(h(D)) for each homomorphism h; hence h(ū) ∈ Q(h(D)).

(XX) In this case Q− = Q−
1 ∪Q−

2 . Let ū ∈ Q(D) and let h be a homomorphism. By
the induction hypothesis we know that for one of i = 1, 2 we have h(ū) 6∈ Qi(h(D)),
and hence h(ū) 6∈ Q(h(D)).

Case 6: Q = Q1 −Q2.
(X) In this case Q+ = Q+

1 ∩Q−
2 . Assume ū ∈ Q+(D) and let h be a homomorphism.

By the induction hypothesis we have h(ū) ∈ Q1(h(D)) and h(ū) 6∈ Q2(h(D)) and
thus h(ū) ∈ Q(h(D)) as required.

(XX) In this case Q− = Q−
1 ∪ Q+

2 . Assume ū ∈ Q+(D) and let h be a homo-
morphism. If ū ∈ Q−

1 (D), then h(ū) 6∈ Q1(h(D)) and hence h(ū) 6∈ Q(h(D)). If
ū ∈ Q+

2 (D), then h(ū) ∈ Q2(h(D)) and again h(ū) 6∈ Q(h(D)).
Case 6: Q = Q1 ×Q2.

(X) In this case Q+ = Q+
1 ×Q+

2 . Assume ū ∈ Q+(D); then ū is the concatenation
of tuples ū1 and ū2 in Q+

1 (D) and Q+
2 (D). Hence, for each homomorphism h we

have h(ūi) ∈ Qi(h(D)) and thus h(ū) ∈ Q(h(D)).

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

(XX) In this case Q− = Q−
1 × adomar(Q2) ∪ adomar(Q1) × Q−

2 . Let ū ∈ Q(D). The
tuple ū is the concatenation of tuples ū1 and ū2 of lengths ar(Q1) and ar(Q2)
respectively. Consider the case when ū1 ∈ Q−

1 and ū2 is an arbitrary tuple over
the active domain (the other case is analogous). Then, by the hypothesis, h(ū1) 6∈
Q1(h(D)), and thus (h(ū1), h(ū2)) 6∈ Q1(h(D)) ×Q2(h(D)), i.e., h(ū) 6∈ Q(h(D)).

This concludes the proof. ✷

Like in the case of Eval3v, these translations are faithful to the usual interpretation
of relational algebra on complete databases. For a k-ary relational algebra query Q,
by Q we mean its complement, i.e., the query that for a database D returns Q(D) =
adom(D)k −Q(D).

PROPOSITION 6.2. If D is a complete database, andQ is a relational algebra query,
then

Q+(D) = Q(D) and Q−(D) = Q(D).

Proof. First, observe that if no nulls occur in the database, the translated condition θ∗ is
equivalent to θ, and thus the rules for selection are (σθ(Q))+ = σθ(Q

+) and (σθ(Q))− =

Q− ∪ σ¬θ(adomar(Q)).
With these, we proceed by induction. It is immediate from the definition thatR⊖ = R

for complete relations R. The rules for the Boolean connectives are immediate from
De Morgan laws. For selection, we have (σθ(Q))+(D) = σθ(Q

+(D)) = σθ(Q(D)) and

(σθ(Q))−(D) = Q−(D) ∪ σ¬θ(adomar(Q)) = Q(D) ∪ σ¬θ(adomar(Q)) = σθ(Q)(D).
For Cartesian product, the positive case is immediate from the induction hypothesis,

and for the negative case we have, again by the hypothesis, (Q1 ×Q2)
−(D) = Q1(D) ×

adomar(Q2) ∪ adomar(Q1) ×Q2(D) = Q1 ×Q2(D).
Finally, for the projection case, (πααα(Q))+(D) = πααα(Q+(D)) = πααα(Q(D)) by the in-

duction hypothesis. Next, (πααα(Q))−(D) = πααα(Q(D)) − πααα(adomar(Q) − Q(D)). Since

Q(D) = adomar(Q) −Q(D), we have

(πααα(Q))−(D) = πααα(Q(D)) − πααα(Q(D))

= πααα(adomar(Q) −Q(D)) − πααα(Q(D))

= πααα(adomar(Q)) − πααα(Q(D))

= adomar(πααα(Q)) − πααα(Q(D)) = πααα(Q)(D)

by the induction hypothesis and the usual relational algebra equivalences. Specifically,
to go from line 2 to line 3, we use the following, which can be easily verified: if R ⊆ S,
then πααα(S −R) − πααα(R) = πααα(S) − πααα(R). This completes the proof. ✷

6.1. The flexibility of the translation

The translation in Figure 1 provides correctness guarantees, but some of the queries
look rather inefficient. Consider, for instance, the rule for (Q1 × Q2)

− which gives us

Q−
1 × adomar(Q2) ∪ adomar(Q1) × Q−

2 . This is a rather inefficient query, involving an
expensive cartesian product. Can we replace it by a more efficient query, say, Q−

1 ×Q−
2 ,

which immediately comes to mind?

As another example, consider the rule for (σθ(Q))− giving us Q−∪σ(¬θ)∗(adomar(Q)).
Again, the query involves an expensive cartesian product, and one possible way to deal
with it is simply to replace this query by Q−.

Can we always do this? And are there other possible queries we can use? The an-
swer to these questions is positive. Note that in both cases we replaced a query from

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22

the translation in Figure 1 by a query contained in it. It turns out that any such re-
placement preserves correctness guarantees.

To be more precise, the translation in Figure 1 can be viewed as not just one trans-
lation but a family of translations, due to the following observation. A translation can
be seen as a mapping F that assigns to each relational algebra operation ω (includ-
ing nullary operations for base relations) two queries F+

ω and F−
ω . These queries are

simply the queries that appear on the right in the translation; for instance, for the
translation scheme we used, F+

∩ is the intersection (since the result of (Q1 ∩ Q2)
+ is

the intersection of Q+
1 and Q+

2) and F−
∩ is the union (since the result of (Q1 ∩ Q2)

− is
the union of Q−

1 and Q−
2).

Such a mapping F results in a translation Q 7→ F+
Q ,F

−
Q , where F+

Q and F−
Q are

queries of the same type as Q (i.e., they operate on databases of the same schema and
have the same arity). Intuitively, these are analogs of Q+ and Q− that we had for the
translation in Figure 1.

Formally, they are defined as follows.

— If ω is a base relation R, then F+
R and F−

R take no arguments and F+
R = F+

R and
F−

R = F−
R .

That is, F+
R and F−

R are queries that give us certainly positive and certainly negative
information about R.

— If ω is a unary operation (σ or π), then F+
ω and F−

ω take two arguments and F+
ω(Q) =

F+
ω (F+

Q ,F
−
Q) and F−

ω(Q) = F−
ω (F+

Q ,F
−
Q).

That is, if we already have queries F+
Q and F−

Q describing certainly positive and

certainly negative answers for Q, the queries describing such answers for ω(Q) are
obtained by applying F+

ω and F−
ω to those.

— If ω is a binary operation (∪,∩,−,×), then F+
ω and F−

ω take four arguments and
F+

ω(Q1,Q2)
= F+

ω (F+
Q1
,F+

Q2
,F−

Q1
,F−

Q2
) and F−

ω(Q1,Q2) = F−
ω (F+

Q1
,F+

Q2
,F−

Q1
,F−

Q2
).

That is, if we already have queries F+
Qi

and F−
Qi

describing certainly positive and

certainly negative answers for Qi, with i = 1, 2, the queries describing such answers
for ω(Q1, Q2) are again obtained by applying F+

ω and F−
ω to those.

Given a translation F and another translation G that assigns to each operation ω
queries G+

ω and G−
ω , we say that F is contained in G if F+

ω ⊆ G+
ω and F−

ω ⊆ G−
ω , where

⊆ refers to the usual query containment.

PROPOSITION 6.3. Every translation that is contained in the translation of Figure
1 provides correctness guarantees.

Proof. It is the same as the proof of Theorem 6.1: one just follows the proof, and notices
that as long as we take a query contained in the query used on the right hand side
of the translation, the correctness guarantees of the induction hypothesis continue to
hold. ✷

This lets us adjust translations for the sake of efficiency without having to worry
about correctness guarantees. Indeed, in the rule for (Q1 ×Q2)

− we can use Q−
1 ×Q−

2 ,
and in the rule for (σθ(Q))− we can just use Q−, as suggested earlier. These result in
more efficient queries still giving us correctness guarantees. There is a price to pay for
the efficiency though: we can get fewer answers in the result. Hence one should decide
how to resolve the efficiency versus the quality of approximation trade-off.

Another corollary concerns positive relational algebra, even extended with inequali-
ties, and it just follows from examining the basic translation of Figure 1. Define PosRA

6=

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:23

as the positive fragment of RA (i.e., σ, π,×,∪) where conditions in selections are allowed
to use inequalities. In terms of its expressiveness, this fragment corresponds to UCQ

6=.

COROLLARY 6.4. Let Q be a PosRA
6= query, and let Q∗ be obtained from it by chang-

ing each selection condition θ to θ∗. Then, for every database D, we have Q∗(D) ⊆
cert⊥(Q,D).

7. NESTED QUERIES AND EXTENDED ALGEBRA OPERATIONS

We have seen that nested SQL queries tend to cause problems when they are evalu-
ated on databases with nulls. In fact, even some equivalences one would expect to hold
are broken, and this is in fact written into the specification of the SQL semantics. The
goal of this section is to illustrate that some of this unpleasant and unwanted behavior
of SQL can be eliminated by using adjusted three-valued evaluation techniques pre-
sented in the earlier sections. We recall one more time that in this paper we use set
semantics, i.e., in all the examples and results below we assume that relations contain
no duplicates.

To illustrate additional issues one can have with nested queries, consider again the
difference query (2) from the Introduction, i.e.,

select R.A from R where R.A not in (select S.A from S), (2)

whereR and S have one attribute A each. We normally expect this query to correspond
to relational algebra difference operation, i.e., R − S. The difference of two relations
can be expressed in another way in SQL, namely

(select * from R) except (select * from S). (9)

In fact one can often see statements that these are two equivalent ways of expressing
the difference query, but in fact they are not, if nulls are present. To see this, assume
that R = {1, 2} and S = {⊥}. Then query (2) returns the empty set, but query (9)
returns {1, 2}. Thus, the queries are not the same after all in the presence of nulls1.

To explain what is going on here, we need to delve a bit deeper into the meaning of
such queries and their implementation. We shall use R−S for the usual set difference,
implemented by (9), and R \ S for the result of the nested query (2). Of course if no
nulls are present we have R− S = R \ S.

7.1. Relational calculus

Let us now look at how these queries are defined in relational calculus. If R and S have
the same attributes, then R − S is defined by the query ϕ(x̄) = R(x̄) ∧ ¬S(x̄). On the
other hand, R \ S checks for each element of R whether it belongs to S, so the formula
defining it is

ψ(x̄) = R(x̄) ∧ ¬∃ȳ (S(ȳ) ∧ ȳ = x̄) , (10)

where for tuples x̄ = (x1, . . . , xn) and ȳ = (y1, . . . , yn), we use the abbreviation ȳ = x̄ for
(x1 = y1) ∧ . . . ∧ (xn = yn). At first one may think that ∃ȳ (S(ȳ) ∧ x̄ = ȳ) is equivalent
to S(x̄) but this is not the case for the three-valued semantics. The table below shows
what the truth values are for the database D with RD = {1} and SD = {⊥} (in the
previous example we used R = {1, 2} but the situation for values 1 and 2 is completely
symmetric). Note that the certain answer in this case is empty.

1The behavior of query (9) is for the majority of DBMSs that have the except operator, or minus for Oracle.
For those without, e.g., MySQL, the same result is achieved with the outerjoin query select R.A from R
left outer join S on (S.A is null).

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24

ϕ(x) = R(x) ∧ ¬S(x) ψ(x) = R(x) ∧ ¬∃y (S(y) ∧ ȳ = x)

EvalFO(·, D, 1) 1 1
EvalFO(·, D,⊥) 0 0

EvalSQL(·, D, 1) 1 1/2
EvalSQL(·, D,⊥) 0 0

Eval3v(·, D, 1) 1/2 1/2
Eval3v(·, D,⊥) 0 0

Thus, both FO and SQL evaluation produce a false positive for the difference query
ϕ(x). Furthermore, under the FO evaluation, formulae ϕ and ψ are equivalent, so FO
produces a false positive for ψ as well. On the other hand, SQL evaluation returns the
correct value 1

2 for ψ. Then Eval3v fixes these issues, returning the correct – and the

same – value 1
2 for both formulae.

The equivalence of R(x̄) ∧ ¬S(x̄) and (10) boils down to the equivalence of S(x̄) and
of tuple-by-tuple definition of S. That is, for a database D, we define

SD(x̄) =
∨

{x̄ = t̄ | t̄ ∈ SD}.

Then we expect, in the case of the usual two-valued logic, that S(x̄) ↔ SD(x̄) in D. In
general, if this equivalence holds, then R(x̄) ∧ ¬S(x̄) and (10) are equivalent.

However, in the case of SQL, the formulae S(x̄) and SD(x̄) can be completely unre-
lated.

PROPOSITION 7.1. There is a database D with a unary relation S in it and two
assignments ν, ν′ such that

EvalSQL(S(x), D, ν) < EvalSQL(S
D(x), D, ν)

EvalSQL(S(x), D, ν′) > EvalSQL(S
D(x), D, ν′) .

Proof. Consider a database D with two relations RD = {⊥2} and SD = {⊥1}. Let
ν : x 7→ ⊥2 and ν′ : x 7→ ⊥1. Then

— EvalSQL(S(x), D, ν) = 0;
— EvalSQL(S

D(x), D, ν) = 1
2 ;

— EvalSQL(S(x), D, ν′) = 1;
— EvalSQL(S

D(x), D, ν′) = 1
2 . ✷

For Eval3v, on the other hand, we can establish a clear connection between the
two definitions of a relation by formulae. In fact, for SQL’s model of nulls (i.e., non-
repeating nulls), the two are equivalent under Eval3v, i.e., Eval3v restores the equiva-
lence S(x̄) ↔ SD(x̄).

PROPOSITION 7.2. Given a databaseD with a relation S in it, for every assignment
ν we have

Eval3v(S(x̄), D, ν) ≤ Eval3v(S
D(x̄), D, ν) .

Moreover, the equality is achieved if nulls in SD do not repeat.

Proof. Consider a database D with a relation S in it and an assignment ν : x̄ 7→ ā.
First assume Eval3v(S(x̄), D, ν) = 1. Then ā ∈ SD, i.e., ā = t̄ for some t̄ ∈ SD. Hence

Eval3v(x̄ = t̄, D, ν) = 1 and thus Eval3v(S
D(x̄), D, ν) = 1.

Next assume Eval3v(S(x̄), D, ν) = 1
2 . Then ā is not a tuple in SD but there is a tuple

t̄ ∈ SD such that ā ⇑ t̄. Let ā = (a1, . . . , am) and t̄ = (t1, . . . , tm). Since ā and t̄ unify, there
is no position i such that ai and ti are different constants. Hence Eval3v(xi = ti, D, ν) 6=

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:25

0 for every i ≤ m. Thus, Eval3v(x̄ = t̄, D, ν) ≥ 1
2 and hence Eval3v(S

D(x̄), D, ν) ≥ 1
2 . If,

on the other hand, Eval3v(S
D(x̄), D, ν) = 1, then we have a tuple t̄ such that Eval3v(x̄ =

t̄, D, ν) = 1, and hence Eval3v(xi = ti, D, ν) = 1 for each i ≤ m. But this means ν(xi) =
ai = ti for all i ≤ m, and thus ā = t̄ ∈ SD, contradicting Eval3v(S(x̄), D, ν) = 1

2 . This

implies Eval3v(S
D(x̄), D, ν) = 1

2 .

The above proves Eval3v(S(x̄), D, ν) ≤ Eval3v(S
D(x̄), D, ν). To show equal-

ity for databases without repeating nulls, it suffices to show that for them,
Eval3v(S(x̄), D, ν) = 0 implies Eval3v(S

D(x̄), D, ν) = 0. Consider an arbitrary tuple
t̄ ∈ SD. We know that it does not unify with ā, since Eval3v(S(x̄), D, ν) = 0. Since in
t̄ nulls do not repeat, the only way for it to not unify with ā is if ai and ti are distinct
constants for some position i (otherwise we just define a homomorphism that sends
each ti that is a null to ai, which is well-defined due to non-repetition of nulls, and the
tuples unify). But in this case Eval3v(xi = ti, D, ν) = 0 and thus Eval3v(x̄ = t̄, D, ν) = 0.
Since this is true for every tuple in SD, we have Eval3v(S

D(x̄), D, ν) = 0, as required.
This completes the proof. ✷

Note that the condition that nulls do not repeat is necessary for equality in Propo-
sition 7.2. Indeed, consider a database D with a binary relation SD = {(1, 2)} and
assume adom(D) contains a null ⊥. Then, for the assignment ν : (x, y) 7→ (⊥,⊥), we
have Eval3v(S(x̄), D, ν) = 0 while Eval3v(S

D(x̄), D, ν) = 1
2 .

To sum up, Eval3v behaves in a much more reasonable way compared with EvalSQL
and, in addition to providing correctness guarantees, eliminates some of the bizarre
types of behavior of SQL when it comes to processing nested queries.

7.2. Relational algebra

We now look at the procedural implementation of queries that cause issues with
databases with nulls. The except query, or R(x̄) ∧ ¬S(x̄) is of course the relational
algebra difference, i.e., R − S. But what about nested queries?

Those using in and not in conditions are implemented with semi-joins and anti-
joins operators. Given a relation R and a list ααα of its attributes, and a relation S and a
list βββ of its attributes so that |ααα| = |βββ|, the semi-join R ⊲<ααα,βββ S is defined as the set of
tuples t̄ in R that match a tuple s̄ in S, i.e., πααα(t̄) = πβββ(s̄). The anti-join is simply the
complement R ⊲<ααα,βββ S = R− (R ⊲<ααα,βββ S). It consists of all the tuples in R that do not
match any tuple in S.

When ααα and βββ are the sets of all attributes of R and S, we drop the subscript ααα,βββ.
Note that for complete relations we have R ⊲< S = R ∩ S and R ⊲< S = R − S. The
connection with nested queries is as follows. The query

select * from R where R.ααα in (select S.βββ from S)

is R ⊲<ααα,βββ S while the query

select * from R where R.ααα not in (select S.βββ from S)

is R ⊲<ααα,βββ S.
We now extend the translation of Theorem 6.1 to handle semi- and anti-joins. We

then see that queries Q+ are identical for the difference query implemented as R − S
or as R ⊲< S over databases with nulls, thus providing a procedural fix to the problem
outlined earlier in the section.

We need one bit of notation. Recall that we use the unnamed perspective of relational
algebra, i.e., n attributes of a relation are ♯1, . . . , ♯n. Now let R be a relation of arity
m < n, and S a relation of arity n − m, and let βββ be a list of m attributes among
♯1, . . . , ♯n. Then R ×βββ S returns tuples in the cartesian product R × S rearranged so

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26

that the components of tuples from R occupy the positions given by βββ. That is,

R×βββ S = {(a1, . . . , an) | (ai)i∈βββ ∈ R and (ai)i6∈βββ ∈ S} .

Here (ai)i∈βββ is the subtuple (ai1 , . . . , aik
) of (a1, . . . , an), where βββ consists of ♯i1, . . . , ♯ik

and i1 < . . . < ik (and likewise for (ai)i6∈βββ). For instance, if R = {(1, 2)}, S = {(3)}, and
β = {♯1, ♯3}, then R×βββ S = {(1, 3, 2)}.

Now we are ready to define translations for semi-joins and anti-joins.

(Q1 ⊲<ααα,βββ Q2)
+ = Q+

1 ⊲<ααα,βββ Q
+
2

(Q1 ⊲<ααα,βββ Q2)
− = Q−

1 ∪
(

(πβββ(Q2))
− ×βββ adomar(Q2)−|βββ|)

(Q1 ⊲<ααα,βββ Q2)
+ = Q+

1 ∩
(

(πβββ(Q2))
− ×βββ adomar(Q2)−|βββ|)

(Q1 ⊲<ααα,βββ Q2)
− = Q−

1 ∪ Q+
1 ⊲<ααα,βββ Q

+
2

(11)

THEOREM 7.3. Extending translations of Theorem 6.1 with rules (11) for semi-joins
and anti-joins preserves correctness guarantees.

Proof. The equations for anti-joins follow from those for semi-joins and the equa-
tions for difference from the table in Figure 1, so we only need to prove correctness
guarantees for (Q1 ⊲<ααα,βββ Q2)

+ and (Q1 ⊲<ααα,βββ Q2)
−. For this, we simply extend the

inductive proof of Theorem 6.1 with these rules. The positive case is immediate (as in
fact semi-join is a positive query and for positive queries the + operation propagates).

For the negative case, we need to show that for every database D and every
ū ∈ (Q1 ⊲<ααα,βββ Q2)

−(D) we have h(ū) 6∈ Q1(h(D)) ⊲<ααα,βββ Q2(h(D)) for every homo-

morphism h. If ū ∈ Q−
1 (D) then, by the induction hypothesis, h(ū) 6∈ Q1(h(D)) for

every homomorphism h, and thus it cannot be in the result of the semi-join. If ū is
a tuple whose projection on the βββ-attributes is in (πβββ(Q))−(D), then we know that for
every homomorphism h, the tuple πβββ(ū) is not in πβββ(Q(h(D))), by the hypothesis. Thus,
h(ū) cannot be in Q1(h(D)) ⊲< Q2(h(D)), as the join condition cannot be satisfied. This
concludes the proof. ✷

When ααα is the set of all attributes of Q1 and βββ is the set of all attributes of Q2, (11)
gives us:

(Q1 ⊲< Q2)
+ = Q+

1 ⊲< Q+
2

(Q1 ⊲< Q2)
− = Q−

1 ∪ Q−
2

(Q1 ⊲< Q2)
+ = Q+

1 ∩ Q−
2

(Q1 ⊲< Q2)
− = Q−

1 ∪ Q+
1 ⊲< Q+

2

(12)

In particular, we have the following.

COROLLARY 7.4. (Q1 ⊲< Q2)
+ = (Q1 −Q2)

+.

Thus, if we adopt the view that in the case of databases with nulls, the correct imple-
mentation of a relational algebra query Q is Q+, then the anti-join and set difference
become the same, unlike in SQL’s implementation. In particular, there is no longer
any difference between queries (2) and (9). Thus, our approach fixes this inconsistency
in SQL at both the declarative level (with the help of Eval3v) and the procedural level
(with the help of queries Q+).

8. CONCLUSIONS AND PRACTICAL CONSIDERATIONS

We have shown that small changes to the 3-valued query evaluation used in SQL
produce sound query answers, i.e., answers without false positives. We have presented
such evaluation procedures at the levels of both relational calculus and algebra.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:27

Our goal was to address the often criticized aspects of SQL’s handling of nulls.
Clearly the next step after showing that correctness can in principle be restored, is
to show how to do this in practice. We now outline the next steps that need to be done
in this direction.

How bad the problem is. Do we often have the problem of false positives in SQL
query answers? We know there are some classes of queries (e.g., positive queries ex-
tended with the division by a base relation) where the problem does not occur. On the
other hand, having the except operator is an easy way to get false positives, as is dou-
ble negation, which is common in nested queries expressing universal conditions. We
need an experimental study showing how common the problem actually is. A starting
point could be a set of benchmark queries on randomly generated data; the main chal-
lenge is comparing with real certain answers which are computationally very costly.

Efficiency. The theoretical complexity of the procedures we proposed is very low, in
fact it is as low as evaluating relational calculus and algebra themselves, in terms of
data complexity. The next obvious step is to implement these algorithms to study their
real-life applicability. It is clear that some adjustments will need to be made. First
of all, we assumed a single domain for all attributes (which is a standard theoretical
simplification) while in reality all columns have their own types. This is easy to deal
with; a more challenging problem is handling fairly large cartesian products that the
translation produces. While not increasing theoretical complexity (it is still AC0), they
definitely increase practical complexity of query answering. It is worth remembering
though that our translations at the procedural level are really families of algorithms.
This gives plenty to play with, to find good quality approximations of certain answers
that are real-world efficient.

Duplicates and multiset semantics. Another natural question is to consider the mul-
tiset (bag) semantics of SQL. As explained in the introduction, everything we have
done here assumes the textbook set semantics, but SQL evaluation, by default, does
not eliminate duplicates. We need to understand the right notion of correctness, sim-
ilar to certain answers, in the case of databases with bags. Such a notion can then
be used a basis for obtaining correctness guarantees of evaluation procedures in the
presence of duplicates.

Quality of approximations. How good are our approximations of certain answers?
Propositions 5.5 and 6.2 say that they do not needlessly miss answers. but there is
much more to be done, both in terms of their experimental evaluation, and theoretical
analysis (as we are producing polynomial time approximations of a CONP-complete
problem).

Query optimization. With the change to the evaluation procedure, we must also con-
sider the usual optimization rules: do they continue to be valid? On the positive side,
we know that queries Q+ do provide correctness guarantees, and thus standard opti-
mizations can be applied to them, but we also would like to know whether optimiza-
tions can be applied to Q itself first before producing the Q+ translation.

Acknowledgment I thank Chris Date, Hugh Darwen, Ron Fagin, and Cristina Sir-
angelo for discussions, comments and suggestions. I am also very grateful to the refer-
ees of both this paper and its earlier conference version for their careful reading of the
paper and numerous helpful suggestions. Work partially supported by EPSRC grants
J015377 and M025268.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28

REFERENCES

ABITEBOUL, S. AND DUSCHKA, O. 1998. Complexity of answering queries using materialized views. In
ACM Symposium on Principles of Database Systems (PODS). 254–263.

ABITEBOUL, S., HULL, R., AND VIANU, V. 1995. Foundations of Databases. Addison-Wesley.

ABITEBOUL, S., KANELLAKIS, P., AND GRAHNE, G. 1991. On the representation and querying of sets of
possible worlds. Theoretical Computer Science 78, 1, 158–187.

ARENAS, M., BARCELÓ, P., LIBKIN, L., AND MURLAK, F. 2014. Foundations of Data Exchange. Cambridge
University Press.

CALÌ, A., GOTTLOB, G., AND LUKASIEWICZ, T. 2012. A general datalog-based framework for tractable query
answering over ontologies. J. Web Sem. 14, 57–83.

CALVANESE, D., DE GIACOMO, G., LEMBO, D., LENZERINI, M., AND ROSATI, R. 2007. Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. Autom. Reasoning 39, 3, 385–
429.

COMPTON, K. 1983. Some useful preservation theorems. Journal of Symbolic Logic 48, 2, 427–440.

DARWEN, H. AND DATE, C. J. 1995. The third manifesto. SIGMOD Record 24, 1, 39–49.

DATE, C. J. 2005. Database in Depth - Relational Theory for Practitioners. O’Reilly.

DATE, C. J. AND DARWEN, H. 1996. A Guide to the SQL Standard. Addison-Wesley.

GESSERT, G. H. 1990. Four valued logic for relational database systems. SIGMOD Record 19, 1, 29–35.

GHEERBRANT, A., LIBKIN, L., AND SIRANGELO, C. 2014. Naı̈ve evaluation of queries over incomplete
databases. ACM Trans. Database Syst. 39, 4, 31:1–31:42.

GHEERBRANT, A., LIBKIN, L., AND TAN, T. 2012. On the complexity of query answering over incomplete
XML documents. In International Conference on Database Theory (ICDT). 169–181.

HAAS, L. M., HERNÁNDEZ, M. A., HO, H., POPA, L., AND ROTH, M. 2005. Clio grows up: from research
prototype to industrial tool. In SIGMOD. 805–810.

IMIELINSKI, T. AND LIPSKI, W. 1984. Incomplete information in relational databases. Journal of the
ACM 31, 4, 761–791.

KLEIN, H. 1994. How to modify SQL queries in order to guarantee sure answers. SIGMOD Record 23, 3,
14–20.

KLEIN, H. 1999. On the use of marked nulls for the evaluation of queries against incomplete relational
databases. In Fundamentals of Information Systems, T. Polle, T. Ripke, and K. Schewe, Eds. Kluwer,
81–98.

LENZERINI, M. 2002. Data integration: a theoretical perspective. In ACM Symposium on Principles of
Database Systems (PODS). 233–246.

LIBKIN, L. 2014a. Certain answers as objects and knowledge. In Principles of Knowledge Representation
and Reasoning (KR). 328–337.

LIBKIN, L. 2014b. Incomplete information: what went wrong and how to fix it. In ACM Symposium on
Principles of Database Systems (PODS). 1–13.

LIPSKI, W. 1979. On semantic issues connected with incomplete information databases. ACM Transactions
on Database Systems 4, 3, 262–296.

LIPSKI, W. 1984. On relational algebra with marked nulls. In Proceedings of ACM Symposium on Principles
of Database Systems (PODS). 201–203.

MARNETTE, B., MECCA, G., PAPOTTI, P., RAUNICH, S., AND SANTORO, D. 2011. ++Spicy: an opensource
tool for second-generation schema mapping and data exchange. PVLDB 4, 12, 1438–1441.

PATERSON, M. AND WEGMAN, M. N. 1978. Linear unification. J. Comput. Syst. Sci. 16, 2, 158–167.

REITER, R. 1977. On closed world data bases. In Logic and Data Bases. 55–76.

REITER, R. 1986. A sound and sometimes complete query evaluation algorithm for relational databases
with null values. Journal of the ACM 33, 2, 349–347.

YUE, K. 1991. A more general model for handling missing information in relational databases using a 3-
valued logic. SIGMOD Record 20, 3, 43–49.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

