

Edinburgh Research Explorer

Fence Placement for Legacy Data-Race-Free Programs via
Synchronization Read Detection

Citation for published version:
McPherson, AJ, Nagarajan, V, Sarkar, S & Cintra, M 2016, 'Fence Placement for Legacy Data-Race-Free
Programs via Synchronization Read Detection' ACM Transactions on Architecture and Code Optimization,
vol. 12, no. 4, 46. DOI: 10.1145/2835179

Digital Object Identifier (DOI):
10.1145/2835179

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
ACM Transactions on Architecture and Code Optimization

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43716503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/2835179
https://www.research.ed.ac.uk/portal/en/publications/fence-placement-for-legacy-dataracefree-programs-via-synchronization-read-detection(ea6d2b97-6f03-410a-962e-4367bd3d9b8f).html

Fence Placement for Legacy Data-Race-Free Programs
via Synchronization Read Detection

Andrew J. McPherson
University of Edinburgh
ajmcpherson@ed.ac.uk

Vijay Nagarajan
University of Edinburgh
vijay.nagarajan@ed.ac.uk

Susmit Sarkar
University of St. Andrews
ss265@st-andrews.ac.uk

Marcelo Cintra
Intel

marcelo.cintra@intel.com

Abstract
Shared-memory programmers traditionally assumed Se-
quential Consistency (SC), but modern systems have relaxed
memory consistency. Here, the trend in languages is towards
Data-Race-Free (DRF) models, where, assuming annotated
synchronizations and the program being well-synchronized
by those synchronizations, the hardware and compiler guar-
antee SC. However, legacy programs lack annotations, so
even well-synchronized (legacy DRF) programs aren’t rec-
ognized. For legacy DRF programs, we can significantly
prune the set of memory orderings determined by automated
fence placement, by automatically identifying synchroniza-
tion reads. We prove our rules for identifying them conserva-
tive, implement them within LLVM, and observe a 30% av-
erage performance improvement over previous techniques.

1. Introduction
1.1 The Problem
A memory consistency model is at the heart of shared mem-
ory concurrency, and specifies the value that each read in
the program can return. Sequential consistency (SC) [26] in
which each read returns the last value written to that loca-
tion in a global order found by interleaving the actions of
each thread, is arguably the most intuitive of memory mod-
els [11, 24, 28, 37].

Unfortunately, as is now well-known, modern hardware
does not provide SC to the programmer. Instead, different
hardware architectures produce different varieties of relaxed
consistency behavior [2]. Also, an agnostic compiler could
perform optimizations which could violate SC.

The primary means by which the compiler can provide
support is to insert appropriate fences to enforce sufficient
orderings to restore SC. Each processor architecture pro-
vides different fences to enforce various types of orderings.
The challenge is to insert sufficient fences to restore SC,

while at the same time not inserting too many. Fences are
expensive, since they limit many of the optimization oppor-
tunities available to hardware because of the relaxed mem-
ory consistency. Indeed, placing fences between every pair
of accesses would guarantee SC, but would be far too ex-
pensive.

The starting point of understanding the required place-
ment of fences is the seminal Delay-set analysis of Shasha
and Snir [36]. They observed that to ensure SC, it is not nec-
essary to order all pairs of accesses. Only conflicting pairs
of accesses (the delay sets) that can potentially lead to SC
violations need to be ordered – where conflicting accesses
are two accesses to the same address, at least one of which is
a write. The memory orderings produced by Delay-set anal-
ysis are then subject to fence minimization [28], which seeks
to minimize the number of fences required to enforce the
above memory orderings.

One major issue that limits the practicality of Delay-set
analysis is its reliance on alias analysis which is notoriously
imprecise for programs that make heavy use of pointers. In
addition to this, scalability is also an issue for large pro-
grams. To overcome the scalability issue, approximations
of Delay-set analysis using escape analysis have been de-
veloped, notably by the the Pensieve project [17, 38]. More
recently, attempts have also been made to address the scal-
ability issue without resorting to escape analysis [5] – al-
though recursion and dynamic thread creation continues to
limit applicability. For either approach however, the impre-
cision issue remains unresolved, even with state-of-the-art
alias analysis. This causes Delay-set analysis to produce a
large number of superfluous orderings for real-world pro-
grams [2, 29, 37].

1.2 Our Approach
We take a fresh look at fence placement. Our point of depar-
ture is that we do not seek to enforce SC for the general case.

Instead, we insert sufficient fences to ensure that those mem-
ory accesses that are race free1 in the SC world continue to
be race free in the relaxed world. To put it succinctly, we
guarantee SC behavior only for race free accesses.

Our approach is based on the realization that SC (which
strongly orders all accesses) is not an end in itself to pro-
grammers; rather it is enough for programmers to have SC
semantics only for synchronization accesses (where syn-
chronization accesses are those accesses that are used to
guard other data accesses from racing). Therefore, it suffices
if we identify such synchronization accesses and provide SC
semantics for only those accesses. In order to understand
this better, let us consider the two examples shown in Fig-
ures 1(a) and 1(b).

In the producer-consumer example shown in Figure 1(a),
the programmer synchronizes using the flag variable, to en-
sure that the read b2 returns the value produced by a1 (and
not the old value). In this example, accesses a2 and b1 are
synchronization accesses. Therefore, providing SC seman-
tics to these accesses ensures that b2 reads the correct value.
The second example, shown in Figure 1(b), is a piece of
code similar to that found in a relaxation solver [13, 19],
in which the four accesses involved are unsynchronized ac-
cesses (by design). Here, it is permissible for the accesses
in either thread to be reordered, e.g., for the read of x in P2
to return a stale value (occurring before a1 in P1) while b1
reads the value written by a2. In other words, they are data
races, albeit benign in this case. Therefore, providing SC se-
mantics to such unsynchronized accesses is not required.

(a)
P1 P2

a1 : data = 1;
a2 : flag = 1; b1 :while(flag == 0);

b2 : x = data;

(b)
P1 P2

a1 : x = C1;
a2 : y = C2; b1 : local2 = y;

b2 : local1 = x;

Figure 1. Examples of well-synchronized (a), and not well-
synchronized (b) programs.

Although we do not promise SC in general, it is im-
portant to note that our approach guarantees SC for well-

1 A memory access is said to be race free if in all legal SC executions, it
is ordered with its conflicting accesses in each execution, via the ordering
chain introduced in section 3 (following [20])

synchronized programs i.e., legacy data-race-free programs2.
Figure 1(a) is an example of a well-synchronized program,
whereas Figure 1(b) is not.

Our approach is similar in spirit to DRF (data-race-free)
programming models, which form the basis of recent con-
current programming language models, such as the C11 con-
currency model [7, 10] and the Java Memory Model speci-
fication [30]. This is a programming model which gives se-
mantics to only DRF programs: programs in which synchro-
nization operations are correctly labelled and the program is
well-synchronized using those operations. In return for this
discipline the system (hardware + compiler) guarantees SC.
However, legacy programs lack the distinction between data
and synchronization. Our approach automatically discovers
synchronization operations for such legacy programs.

1.3 Our Solution
We look for ways to conservatively identify synchronization
operations. If we can be relatively precise, we can prune un-
necessary orderings found by more traditional approaches.
The existing fence minimization techniques can then be ap-
plied on the pruned orderings to achieve improved perfor-
mance. An alternative application would be to use this iden-
tification to provide minimal annotations to make the pro-
gram DRF, such that a compliant compiler and the hardware
will prevent incorrect reorderings.

We have identified two signatures, at least one of which
must be fulfilled for a read to be a synchronization, i.e., an
acquire operation:

• Control acquire: a read feeds its value to a predicate
tested for in a branch in its forward slice.

• Address acquire: a read provides the address value for a
subsequent data access that the read (acquire) protects.

We formally prove that at least one of these must hold
for a read to be an acquire. The second signature (address
acquire) is less prevalent, and in particular is observed to
appear along with the first signature (control acquire) in all
cases in our experiments. We do not improve the identifica-
tion of releases and, as in Pensieve, conservatively consider
every shared write (escaping write) to be a release.

To evaluate the significance of our contribution, we next
design and implement practical algorithms for identifying
the acquires. Our simpler first algorithm (Fast) detects only
control acquires, and does not do interprocedural flow anal-
ysis (which is expensive). This does mean that the algorithm
theoretically does not detect all acquiring reads. In particu-
lar, it does not detect cases where the acquiring read and the
branch (both of which intuitively form the acquire) are split

2 More formally, these refer to a class of programs whose behavior is
characterized by values returned by only those reads that are race free under
SC.

across two functions3. We believe this will only rarely if ever
be violated. In all our experiments we never see such a split,
though contrived programs can be written.

Fast will also not detect address acquires. Again, in all
our experiments, we have never seen an address acquire
which is not also a control acquire. However, for complete-
ness, we also develop a conservative variant of our algorithm
(Safe). This variant detects address acquires in addition to
control acquires.

We implemented our analysis in LLVM and applied it to
the SPLASH-2 benchmark suite and a set of lock-free pro-
grams. Our experimental results show that on average, Fast
reduces the number of orderings considered by 66% on av-
erage. Applying a fence minimization technique, this trans-
lates to an average of 62% fewer fences on x86-TSO and up
to 2.64x speedup over an existing practical technique. Safe
on average reduces orderings considered by 32%, fences
placed by 27% and produces speedup of up to 1.54x.

The contributions of this paper are:

1. We improve fence insertion for legacy programs by dis-
covering synchronization read operations.

2. We prove that for all the necessary orderings (essential
orderings) involving a synchronization read, the read has
to satisfy at least one of two specific signatures: (a) that
there is a conditional branch whose condition depends on
the value returned by the read in the forward slice of the
read. (b) that a read provides the address for a subsequent
access that would otherwise be unknown.

3. We propose two practical algorithms: Fast that detects
only control acquires and Safe that detects both address
and control acquires. Both algorithms work in the pres-
ence of pointers.

4. We implement our algorithm within LLVM, and observe
an average of 62% fewer fences and up to 2.64x speedup
over an existing practical technique with the simpler al-
gorithm, and an average of 27% fewer fences and up to
1.54x speedup with the conservative algorithm.

2. Our Approach
2.1 Fence Placement: Background
The starting point of understanding the required placement
of fences is Shasha and Snir’s Delay-set analysis. Its key
insight is that not all pairs of memory accesses need to be
ordered to ensure SC. Only pairs of memory accesses that
conflict with accesses from other threads, potentially leading
to (minimal) SC violations known as critical cycles need to
be ordered. Identifying such critical cycles however, presents
a scalability issue on real-world programs (with pointers,
recursion etc.), as it relies on heavyweight interprocedural

3 Note that the data accesses which the acquire protects are subject to no
such assumption, and can be located in a separate function.

static analysis. To overcome this, practical tools such as
Pensieve [17, 38], approximate Delay-set analysis.

This conservative approximation is attained by such tools
in a two step process. Firstly, a conservative thread-escape
analysis is performed on each access in a function, to deter-
mine a set of potentially escaping accesses, E. Secondly, for
u, v ∈ E, if analysis of the control flow graph shows that v
can occur after u, then an ordering, u→ v, is recorded.

While this does generate a correct set of orderings, it
produces a large number of false positives due to the thread-
escape analysis being necessarily conservative. In practice
this means that all references to memory that cannot be
proven to be restricted to the local function, must be marked
as potentially escaping.

Once a set of orderings has been identified, these order-
ings are fed as input to a fence minimization algorithm. Such
an algorithm will determine where to minimally place fences
to ensure that all the orderings are enforced. It may also dis-
tinguish between types of orderings, to minimize the cost of
enforcement. This can be achieved by using different types
of fences or compiler directives, depending on the memory
consistency model of the target architecture. For example,
x86-TSO only requires orderings of the type w → r to be
enforced with full memory fences, as other orderings are en-
forced by the hardware. These other orderings however, still
have to be preserved during the compilation (optimization)
process.

2.2 Fence Placement for DRF Programs
Now let us consider fence placement for a DRF program.
Recall that in a DRF program, synchronization is achieved
using special memory operations – a write known as a re-
lease and a read known as an acquire – such that there are no
races amongst data operations. This implies that given such
a well-synchronized program without data races, enforcing
the orderings defined in Table 1 is sufficient to ensure cor-
rectness [1].

In more detail, the first rule requires that all accesses to
shared data must be performed before a release. Similarly,
the second rule requires that all accesses to shared data must
be performed only after an acquire. These two, combined
with the third rule, ordering all acquires and releases, ensures
correctness.

With precise information as to which of the reads (writes)
are acquires (releases), determining the minimal set of re-
quired orderings is trivial. Specifically, orderings that do not
conform to one of the definitions in Table 1, could be safely
ignored. The set of required orderings could then be fed as
input to a fence minimization algorithm.

4 Weaker models which relax some of these requirements, such as
RCPC [2] in hardware and C11 [7, 10] at the language level also exist.

r/w → wrel All reads and writes before the release (in program order) should be ordered before the release
racq → r/w All reads and writes after the acquire (in program order) should be ordered after the acquire

wrel/racq → wrel/racq All synchronization operations should be ordered among themselves4

Table 1. Sufficient orderings for correctness in a DRF program

Legacy DRF Code Delay-set Fence Placement Pruned Orderings Fence Placement
P1 P2 P1 P2 P1 P2
a1 : x = b1 : ∗p1 = a1 : x = b1 : ∗p1 = a1 : x = b1 : ∗p1 =

—(F1)— —(F3)—
a2 := y b2 := ∗p2 a2 := y b2 := ∗p2 a2 := y b2 := ∗p2

—(F2)— —(F2)—
a3 : flag = 1 b3 : while(flag! = 1); a3 : flag = 1 b3 : while(flag! = 1); a3 : flag = 1 b3 : while(flag! = 1);

—(F4)— —(F4)—
b4 : y = b4 : y = b4 : y =

—(F5)—
b5 := x b5 := x b5 := x

Figure 2. An Example of (full) fence placement on legacy DRF code for Delay-set and pruned orderings.

2.3 Identifying Acquires for Legacy DRF
There exists however, a large body of (legacy) code which
is correctly synchronized, but the distinction between a read
(r) and an acquiring read (racq), and a write (w) and a release
(wrel) is not made explicit by the programmer. We call such
programs Legacy DRF.

One way to perform fence placement for such programs
is to treat it like a general multithreaded program, i.e., use
Delay-set analysis (or its conservative approximation) fol-
lowed by fence minimization techniques. Our key insight is
that we can do better if we can conservatively identify syn-
chronization operations. In this paper, we focus on detecting
acquires.

We prove that for a read to be an acquire it must match
at least one of two signatures. The first is that there exists
a branch whose predicate is data dependent on the read, in
the forward slice of that read. The second is that the read
provides the address value for a subsequent data access that
the read protects. Any read that fails to satisfy at least one of
these signatures cannot be an acquire.

Intuitively, an acquire is a read which determines if shared
data can be accessed. This necessarily involves either check-
ing the value read and acting upon it (the first signature), or
providing the address of data, which would otherwise be in-
accessible (the second signature). A formal proof of these
assertions can be found in Section 3.

By applying the two signatures to every read which may
be thread-escaping, we determine a subset that includes ev-
ery potential acquire.

Having identified a conservative subset of the shared
reads as potential acquires, we are able prune the order-
ings. Starting from the set of orderings given by Delay-set
analysis (or its approximation that uses escape analysis), we
prune all those orderings which do not adhere to one of the
definitions in Table 1. Despite not identifying a subset of
the shared writes and therefore having to consider all shared
writes as releases, we are still able to prune a number of
potentially expensive orderings.

Specifically, any ordering of the form r1 → r2 requires at
least r1 to be an acquire to avoid being pruned, i.e., it must
be of the form racq → r. Similarly, any ordering of the form
w1 → r2 requires r2 to be an acquire to avoid being pruned,
i.e., of the form w → racq .

This reduced number of orderings is provided as (an
improved) input to a fence minimization algorithm, resulting
in a much reduced number of fences.

2.4 An Example
To illustrate the impact of pruning orderings, we now
demonstrate the application of Delay-set analysis to a sec-
tion of legacy DRF code and the fences that this would re-
quire. Then, using the acquire signatures and applying the
pruning rules defined above, we determine the reduced set
of fences required to enforce the remaining orderings.

In Figure 2, we present a section of legacy DRF code
which contains a busy-waiting synchronization. For the pur-
poses of this example we assume that alias analysis has de-
termined that ∗p1 and ∗p2 may potentially alias with both
x and y, but not flag. If one were to apply Delay-set anal-
ysis, the following orderings would be determined to avoid
the following critical cycles:

• a1 → a3, b3 → b5: to avoid (a1, a3, b3, b5, a1).
• a2 → a3, b3 → b4: to avoid (a2, a3, b3, b4, a2).
• a1 → a2, b4 → b5: to avoid (a1, a2, b4, b5, a1).
• a1 → a2, b1 → b2: to avoid (a1, a2, b1, b2, a1).

In the final cycle our assumption regarding ∗p1 and ∗p2
potentially aliasing with x and y but not flag comes into
play.

Using these orderings as input to a fence minimization
algorithm, 5 (full) fences are required to be placed to enforce
the orderings. Placement of these fences is shown as “Delay-
set Fence Placement” in Figure 2.

Pruning the orderings by applying the signatures defined
in Section 2.3, we find that only the following remain:

• a1 → a3, b3 → b5: to avoid (a1, a3, b3, b5, a1).
• a2 → a3, b3 → b4: to avoid (a2, a3, b3, b4, a2).

Of the orderings which have been pruned: a1 → a2,
b1 → b2 and b4 → b5 are not required as none of a2, b2 or b5
are acquires. Using this reduced set of orderings as input to
the same fence minimization algorithm, only 2 (full) fences
are required to be placed. These fences are shown as “Pruned
Orderings Fence Placement” in Figure 2.

F1, F3 and F5 are no longer required and have been
removed. However, F2 and F4 are still required. Together
they prevent (a1, a3, b3, b5, a1) and (a2, a3, b3, b4, a2), with
F2 enforcing a1 → a3 and a2 → a3, and F4 enforcing
b3 → b4 and b3 → b5.

In summary, we expect our signatures to considerably re-
duce the number of orderings that need to be enforced. With
reference to our example, there are three major benefits.

• Acquire detection allows us to avoid enforcing many or-
derings that are not necessary (e.g., data → data order-
ings such as a1 → a2 and b4 → b5), since the program is
well-synchronized.

• The inherent imprecision of Delay-set analysis (or its ap-
proximation) in the presence of pointers results in the
enforcement of orderings which are not necessary. Ac-
quire detection allows us to prune some of these order-
ings (e.g., b1 → b2).

• This reduction in the number of orderings, allows a fence
minimization algorithm to place fewer fences, (in this
case, not placing F1, F3 and F5).

3. Correctness of Acquire Signatures
In this section we formally prove the basis of our assertions
above, that is, a synchronization read (acquire) matches (at
least) one of two signatures. One is that in its forward slice,
there must be a conditional dependent on the value returned
by the read. The other is that the acquire reads a value
determining the address of a subsequent access.

Language For concreteness, we define our programming
language to be a simple multi-threaded “while” language
with pointers. Expressions e are pure, defined as making
no shared-memory loads or stores, though local variables
(marked with an r are allowed. Statements then can deref-
erence pointers, load from and store to shared-memory loca-
tions, either explicitly or via pointers. The language is pre-
sented in Figure 3.

This tiny language captures all the essential features
needed for our results. Note that in comparison to a full-
scale language such as C, key simplifications are that all
shared-memory loads and stores from a single thread are
explicitly sequenced, and that function calls and returns are
ignored. We also ignore read-modify-writes, but these can
easily be added to the proof below, by considering them to
be a read followed by a write to the same location.

Shared locations x; Local variables r
Expressions e ::= &x | r | e+ e | . . .
Statements s ::= x := e | r := x

| r := ∗e | ∗e := e
| skip | if (e) then s else s
| while (e) do s
| s; s | s||s | . . .

Figure 3. The programming language for proofs

Intended Behavior Given a program in the above lan-
guage, we assume that there is some intended marking of
accesses (shared-memory loads and stores) into data and
synchronization accesses. Data accesses are programmer-
intended accesses; more formally, the behavior intended by
the programmer is defined by the values read by the data
reads. The rest of the accesses are assumed to be synchro-
nization accesses; these are assumed to be written only to
make sure there are no races on the data accesses. Follow-
ing standard practice, we call synchronization reads acquire
reads and synchronization writes release writes.

Behavior under SC A sequentially consistent execution is
an execution trace (a linear order of read and write actions)
which is a free interleaving of thread-wise actions, such that
actions belonging to any thread appear in the execution trace
in the order they occur in that thread, and each memory read
reads the value of the last write to that location in the trace.
Note that in general, a single access in the program might
lead to one or more actions in the trace (due to loops), or
none (in case of a conditional). There is a straightforward
way of associating each action in the trace to at most one
program access, and we associate the corresponding kind
(data or synchronization) of program access to the actions.
Of course, because there might be several possible interleav-
ings, a program has a set of allowed sequentially consistent
executions. For each such execution, we intuitively consider
the results of the execution to be the values returned by the
data reads. We formally consider the intended behavior of
the program to be the set of data read actions of any possible
sequentially consistent execution.

Behavior under relaxed consistency A program actually
executes not on a sequentially consistent machine but on a
machine with relaxed consistency. We follow the approach
of Adve and Hill [3] (the approach of Gharachorloo [22] is
very similar), and define that a program is correct iff it has
no more behavior in a relaxed consistency setting than in the
sequentially consistent world.

We define happens-before following Gharachorloo [20]
by first defining conflict order and program order. Define
conflict order con−−→ to be an order relation between conflict-
ing actions in an execution (the order says one happens be-
fore the other), where two actions conflict if they are to the

same address and at least one is a write. In particular, a write
is conflict-ordered before a read if the read reads from that
write. Also, there is an obvious program order relation

po−→
between actions from the same thread.

Given two actions u and v, u happens-before v (written
u

hb−→ v) in that execution if either u
po−→ v or u

po−→ w1
con−−→

r1
po−→ w2

con−−→ r2 . . . wn
con−−→ rn

po−→ v. We consider
only executions in which each synchronization read reads
from the last write to that location in happens-before. The
behavior of a program is determined by the data reads (value
and location) of all such executions.

Well synchronized programs We call a program (legacy)
data-race-free if in all executions (where synchronization
reads read from the last write in happens-before as above),
all conflicting data actions are ordered by hb−→. It has been
proved [3, 22] that data-race-free programs have no more
behavior in this sense than sequentially consistent behavior
of the same program. However, since legacy programs do
not have explicit markings of data and synchronization, and
to avoid confusion with the standard data-race-free notion,
we equivalently call legacy data-race-free programs well-
synchronized.

Ordering edges: Essential and Non-essential We call a
program order edge essential if ignoring that edge allows
a data read to read a value not possible under SC, and all
other program order edges non-essential. Thus enforcing all
essential program order edges is sufficient to preserve SC
behavior for the data reads.

We now prove a happens-before characterization of es-
sential edges. Specifically, we prove that an edge in a well-
synchronized program, i.e. (legacy) data-race-free program,
is essential iff ignoring that edge in happens-before defined
as above allows an execution with a data race.

LEMMA 1. For a program which is data-race-free for a cer-
tain mapping, and U → V a program order edge, the edge
is essential iff deleting U → V from happens-before allows
an execution with a data race involving a read and write.

Proof Both directions follow easily from unfolding the def-
initions.

For one direction, ignoring an essential edge allows a data
read to read a value not possible under SC. That data read
and the write it reads from must be in a data race, since if
they are ordered via happens-before, then the read is still
possible under SC.

In the other direction, suppose deleting U → V from
happens-before allows an execution with a data race between
a read and a write. Consider that read. Since the program is
well-synchronized (that is, no data races before removing
that edge), the read could not have read from that write. �

Intuitively, if we disregard an essential ordering edge, the
program is no longer data-race-free, and thus the DRF guar-
antees of [3] and [22] do not apply. In that case (disregarding

essential orderings), there will be data reads observable that
are not possible in sequentially consistent executions. This
happens-before characterization is easier to prove with, as
we can now analyze the shapes of happens-before.

Informal explanation We are now in a position to give the
formal proof of our main result, Theorem 2. Before that,
to orient the reader, we give the main idea of the proof
informally.

The key insight is that if there is an essential ordering in-
volving an acquire, then the acquire must have been guard-
ing a data access; only then will relaxing the above ordering
result in a data race (and thus, by Lemma 1, non-SC behavior
for the data reads). We illustrate 3 different ways in which an
acquire can guard data. The formal proof will essentially say
that these are the only cases to consider, which allows us to
safely deduce the acquire signatures.

The first way in which an acquire can guard data is il-
lustrated via the classic Producer-Consumer or MP (Fig-
ure 4). Here the data access (of x) is guarded by control-
dependency, that is, control only flows to it if the (acquire)
read of flag reads 1.

MP
P1 P2
a1 : x :=
a3 : flag := 1 b3 : while (r1! = 1){r1 := flag}

b5 : r = x

Figure 4. The MP example

The second way is when the value read by the acquire is
used to calculate the address touched by the data access (that
is, it only reads from the location if the acquire read a certain
value). This could happen in the example in Figure 5, an
example adapted from Gharachorloo. Here y (analogous to
flag above) stores the address of z initially, and the second
read on the second thread reads from x only if the prior read
reads x (otherwise it reads from z).

MP with Pointers
Initially z = 0, y = &z, x = 0
P1 P2
a1 : x =
a3 : y = &x b3 : r = y;

b5 : r1 = ∗r

Figure 5. The MP example with pointer arithmetic

The third possible way is to have some form of mutual
exclusion, in which the data access is in a critical region. In
this case (seen in the Dekker’s example in Figure 6), the data
access is prevented from performing in an execution where
the synchronization read reads the wrong value.

Formal proofs Given a program, and if we knew the mark-
ing into data and synchronization, we call two accesses po-
tentially racing if they are on different threads, at least one

Dekker
P1 P2
a1 : x := 1 b1 : y := 1
a2 : if(y == 0){ b2 : if(x == 0){
a3 : touch z} b3 : touch z}

Figure 6. The Dekker Example

of them is a data write, and they are either statically to the
same location, or at least one of them is is to a statically un-
known location (this can happen if it is to a location derived
from a value read before on the same thread).

LEMMA 2. For two potentially racing accesses U and V in
the program, and any legal execution X according to the
relaxed consistency model, at least one of the following must
happen:

1. U and V correspond to two actions which form a data
race in X;

2. U and V correspond to actions u and v respectively in
X that are ordered u

po−→ w1
con−−→ r1

po−→ w2
con−−→

r2 . . . wn
con−−→ rn

po−→ v in X;
3. U and V correspond to actions u and v respectively in

X that are to different locations (this can only happen
for statically unknown locations);

4. at least one of U and V do not correspond to any actions
in X;

Proof Immediate from the definitions of data races and
happens-before. �

Lemma 2 intuitively says that for static program accesses
that potentially race, in any execution either there is an actual
race, or there is a proper happens-before ordering such as in
Figure 4 between the actions corresponding to the race, or
one or the other access is to a different locations (such as in
Figure 5) or absent altogether (such as in Figure 6).

LEMMA 3. For all essential orderings which are of the fol-
lowing form:

1. R → A, where R is an acquire and A is a subsequent
access; or

2. W→ R, where W is a write and R is a subsequent acquire,

the value read from the acquire must feed into:

• Either a conditional which guards a subsequent access;
• Or an address computation which determines the loca-

tion of a subsequent access.

Proof Given the essential ordering edge in the premise of
the theorem. It can be of two types: R → A, or W → R.
Consider disregarding this ordering edge in happens-before.
Since the ordering edge is essential, by Lemma 1 there is
a data race in some execution. Call that execution X , and
consider the two data accesses U and V involved in the race.
Since they correspond to racing actions in an execution, they

must be potentially racing accesses. Consider the execution
Y with the ordering edge present, and otherwise is the same
as X , except that because reads may read different values,
some actions may not occur or occur with different values in
Y than in X . Apply Lemma 2 to the legal execution Y . Then
one of the four cases must apply.

Case 1: In Y , U and V correspond to two actions u and v
which form a data race. Since the program is assumed data-
race-free, and Y is a legal execution, this case cannot occur.

Case 2: In Y , U and V correspond to actions u and v

respectively in X that are ordered u
po−→ w1

con−−→ r1
po−→

w2
con−−→ r2 . . . wn

con−−→ rn
po−→ v in X . The ordering

edge in question must occur in this chain. Since there is no
W → R ordering edge in this chain, the essential ordering
edge we are dealing with must be of the form R → A. We
now see where the action corresponding to R occurs in this
chain. It cannot be the first step (u

po−→ w1), since u is a
data access. It can be rn in the last step (rn

po−→ v), or ri
in an intermediate thread (ri

po−→ wi+1). In each case, R
reads the value of a synchronization write in this execution
Y . Furthermore, v or wi+1 respectively is the access A in
question. Consider now a different execution where R does
not read the value of the same synchronization write. Then it
must be the case that either A does not occur, or A exists but
accesses a different location, since otherwise the ordering
chain does not exist and the program has a race. Thus either
R feeds into a conditional guarding A or is used to calculate
the address touched by A, as required.

Case 3: U and V correspond to actions u and v respec-
tively in Y that are to different locations.

Since U and V correspond to racing actions u′ and v′

in X , at least one of the pairs (u, u′) and (v, v′) must be
to different locations. Without loss of generality, let u and
u′ be to different locations. Then U must be to a statically
unknown location, that is in fact different in X and Y . Since
X differs from Y in that the essential ordering edge (either R
→A or W→R) is not required, in either case the calculation
of the location for U must be derived from the value returned
by R.

Case 4: At least one of U and V do not correspond to any
actions in Y .

Without loss of generality, let there be no actions corre-
sponding to U in Y . Since U corresponds to an action u in
X , U must be guarded by a conditional that is true in X but
not in Y . Since X differs from Y in that the essential order-
ing edge (either R→ A or W→ R) is not required, in either
case this conditional must be derived from the value returned
by R.

�

THEOREM 2. For all essential orderings involving an ac-
quire R, the value read from the acquire must feed into:

• Either a conditional which guards a subsequent access;

• Or an address computation which determines the loca-
tion of a subsequent access

Proof The possible orderings involving an acquire R are:
Case 1: R1 → R, where R1 should also be an acquire

(since data → acquire ordering is not essential). Proof is
from Lemma 3 (treating R1 as the acquire, first form ap-
plies).

Case 2: W → R, where W is a write. Proof is from
Lemma 3, second form applies.

Case 3: R → A, where A is any access. Proof is from
Lemma 3, first form applies. �

4. Implementation
In this section we present two algorithms for identifying
synchronization reads, as used in our implementation. The
first algorithm (Fast) only identifies acquires that meet our
control signature, while the second (Safe) is conservative, as
it additionally identifies acquires that only match our address
signature.

While conservatism demands application of the address
signature, in practice we find that only the control signature
is required. In all the experiments we perform (see Section 5)
we find no acquires that only meet the address signature. To
reinforce this point we performed an empirical study of 9
common synchronization primitives, the results of which are
presented as Table 2. It is worth noting that these primitives
represent common patterns used in synchronization, indeed
some underpin programs we examine later in Section 5.
As we can see, acquires that match the control signature
are far more prevalent. While there are acquires that meet
the address signature, all of those also meet the control
signature.

Acquires
Addr Ctrl Pure Addr Source

Chase Lev WSQ 3 3 8 [12]
Cilk-5 WSQ 8 3 8 [18]
CLH Lock 3 3 8 [14]
Dekker 8 3 8 [16]
Lamport 8 3 8 [27]
MCS Lock 3 3 8 [32]
Michael Scott LFQ 3 3 8 [33]
Peterson 8 3 8 [35]
Szymanski 8 3 8 [39]

Table 2. Breakdown of the types of acquires found in com-
mon synchronization kernels. Notably, no acquires are found
to only meet the address signature.

We make one simplifying assumption in our implementa-
tions, this is that the synchronizing reads occur in the same
function as the condition to which they lead. While an inter-
procedural algorithm would be a necessary step to achieving
soundness, such a guarantee would also require access to all

libraries/functions used, at compile time. We believe that this
assumption is reasonable, since it is extremely rare for these
two operations, which intuitively form the synchronization,
to be split across two functions (although it is possible to
construct a contrived example). Indeed in none of the imple-
mentations of the primitives examined (implementations for
CLH Lock and MCS Lock from [15], all others from [5]),
nor the real programs examined in Section 5 is this separa-
tion found.

Both of the algorithms depend on an intraprocedural
static slicer that performs the actual identification of the
synchronizing reads, this is presented in Section 4.1. All the
algorithms operate on infinite register load-store intermedi-
ate representations. We will now examine each algorithm in
detail, before finally outlining the generation of orderings
and the fence minimization algorithm to which we input
them. We assume that the set of escaping loads and stores
has previously been identified, using a thread-escape analy-
sis as in Pensieve.

4.1 Identifying Control Acquires
The algorithm for identifying escaping reads that match our
control signature (Fast) is presented as Listing 1. To deter-
mine reads that meet our control signature we must deter-
mine which reads have branches (conditions) in their for-
ward slice. To determine this efficiently, the algorithm in
fact focuses on each conditional branch and examines the
reads in its backwards slice. For each conditional branch in
a function we retrieve the instructions that define the branch
operands (lines 8 and 9). Then we initiate the backwards
slicer to populate sync reads with escaping loads from the
backwards slice of the conditional branch, line 11.

1 sync_reads = ∅
2 seen = ∅
3
4 for cond_branch in function

5 {

6 work_list = ∅
7
8 for operand in cond_branch

9 work_list.insert(get_def(operand));

10
11 slicer (&work_list , &seen , &sync_reads);

12 }

Listing 1. Algorithm Fast, for matching the control signa-
ture.

Backwards Slicing - The algorithm for backwards slic-
ing and populating sync reads is presented as Listing 2. This
algorithm performs a conservative intraprocedural back-
wards slice from the initial contents of work list. Every load
found while processing the work list is compared against the
results of the prior escape analysis (line 14), and if escaping,
added to sync reads (line 15).

To ensure conservatism, whenever a load is found, alias
analysis is used to find all stores in the function that poten-
tially wrote the value being read (line 17). These stores are
added to the work list to be processed later. For instructions
that are not a load, each operand is processed and the defin-
ing instructions of those operands are added to the work list
(lines 22 and 23).

To avoid becoming trapped in cycles and to improve ef-
ficiency, both of the signature matching algorithms maintain
sets of previously examined instructions, seen. The slicing
algorithm is responsible for populating (line 10) and check-
ing against (line 7) these sets. Once the work list has been
exhausted, the algorithm terminates.

1 slicer (*work_list , *seen , *sync_reads)

2 {

3 while (!work_list ->empty ())

4 {

5 inst = work_list ->first ();

6 work_list ->remove(inst);

7 if (seen ->count(inst))

8 continue;

9
10 seen ->insert(inst);

11
12 if (inst.is_load ())

13 {

14 if (escaping_reads.count(inst))

15 sync_reads ->insert(inst);

16
17 for store in potential_writers(inst)

18 work_list ->insert(store);

19 }

20 else

21 {

22 for operand in inst

23 work_list ->insert(get_def(operand));

24 }

25 }

26 }

Listing 2. Algorithm for backwards slicing and the registra-
tion of escaping reads contained in the slice.

4.2 Identifying Both Control and Address Acquires
As we previously stated, the algorithm presented in the pre-
vious sections provides sufficient coverage for all the real
programs we have seen. It is however possible that an ac-
quire only meets the address signature. To contend with this
eventuality we develop a conservative variant of our algo-
rithm (Safe), presented as Listing 3. This variant identifies
escaping reads that meet either or both of the signatures
identified.

As with the algorithm for the control signature, we use
a backwards slice. In addition to conditional branches, the
slicing is performed from every instruction that is either
a dereference or an address calculation. This ensures that
any escaping reads that contribute to a value used as an
address are added to sync reads. In the case of a dereference,

the slicer is applied to the operand of the instruction, i.e.,
the address (line 16). In the case of an address calculation
(for example a GetElementPtr instruction in LLVM IR), the
offset is sliced (line 13). As is to be expected, these two cases
often overlap with an address calculation in the backwards
slice and therefore subordinate to a dereference. Here again,
the use of the seen set prevents reiteration.

1 sync_reads = ∅
2 seen = ∅
3
4 for inst in function

5 {

6 if (inst.is_address_calculation () or

7 inst.is_dereference () or

8 inst.is_cond_branch ())

9 {

10 work_list = ∅
11
12 if (inst.is_address_calculation ())

13 work_list.insert(get_def(

14 inst.offset ()));

15 else

16 work_list.insert(get_def(

17 inst.operand ()));

18
19 slicer (&work_list , &seen , &sync_reads);

20 }

21 }

Listing 3. Algorithm Safe, that identifies escaping reads
that match either signature.

4.3 Generating Pruned Orderings
Whichever algorithm has been used to populate sync reads,
the next step is the generation of orderings. Ordering gener-
ation is done in line with Pensieve, generating an ordering
for every pair of variables in the set of potentially escaping
loads and stores, if there exists a path between them. Within
a basic block the order of statements gives a directed linear
sequence of accesses. Whether there exists a path between
basic blocks is determined prior to this process with an ex-
amination of the CFG, to create a lookup table of reachabil-
ity. This can then be queried during ordering generation.

The addition that we make to ordering generation is to
prune w → r and r → r orderings which do conform
to w → racq and racq → r respectively. The pruning is
achieved by querying orderings of the form w → r and
r → r for previously identified synchronizing reads.

4.4 Fence Minimization
Given the set of orderings to enforce, a fence minimization
algorithm is used to place as few fences as possible, while
still enforcing all required orderings. To place fences, we use
the locally-optimized fence placement algorithm described
in Fang et al. [17]. The only alteration we make to this algo-
rithm is to not automatically place a fence at the beginning

of each function, such a fence is only placed if the func-
tion contains synchronizing reads. The rationale for placing
this fence is to enforce interprocedural orderings, under x86-
TSO if the function contains no synchronizing reads then no
interprocedural w → r orderings can terminate within the
function and the absence of a full fence does not affect cor-
rectness.

When determining full fence placement we need only
consider orderings that the hardware will not enforce. Our
technique is generally applicable, but in our experiments we
target x86-TSO and therefore we only consider orderings of
the form w → r, as the other orderings are enforced au-
tomatically by hardware. However, to prevent incorrect re-
orderings by the compiler, we place compiler directives to
enforce orderings of any other form. Specifically, these di-
rectives take the form of empty memory-clobbering assem-
bly instructions which have no presence in the final binary
but prevent reordering of memory related statements around
them. The same minimization algorithm is used here, with
the decision as to whether to place a full fence or a com-
piler directive determined by whether the set of orderings
that would be enforced contains one of the form w → r.

5. Results
We implemented our algorithms and a locally-optimized
fence minimization algorithm based on Fang et al. [17], in
LLVM 3.4.1. The programs were all compiled using the O2
optimizations.

Using a set of lock-free programs and the SPLASH-2 [43]
benchmarks, we compare both the Fast (control acquires
only) and Safe (control and address acquires) variants of
our approach with an implementation of Pensieve5 using
locally-optimized fence minimization (as described in Fang
et al. [17]). To establish a performance baseline we also
compare against a (minimal) manual fence placement. The
lock-free programs are introduced in Table 3.

Canneal A kernel that seeks to minimize routing cost for
chip design using cache-aware simulated anneal-
ing. This program was drawn from the PARSEC
suite [8], and was run with the Simlarge input set.

Matrix A parallel implementation of matrix multiplication,
that takes in two matrices and outputs both poten-
tial matrix products. To allow 64 threads to com-
pete for work, it is built on top of a lock-free queue
as described by Michael & Scott [33]. It was ap-
plied to two square matrices both of dimension
1,024.

SpanningTree An implementation of a parallel spanning tree al-
gorithm, built on top of a work-stealing queue as
described by Bader et al. [6]. It was applied to a
graph of 10,000 nodes, each of degree 1,000.

Table 3. Descriptions of the lock-free programs used.

It is worth noting that the programs considered are well-
synchronized because they employ user-defined synchro-

5 We use the term Pensieve throughout this section to refer to the version
presented in Fang et al. [17] with locally-optimized fence minimization,
rather than the later Sura et al. [38].

nization6 and hence require fences on relaxed models for
correctness.

Our results are organized as follows. Firstly, we examine
how many reads marked as potentially thread-escaping that
our algorithms mark as an acquire, giving us a measure of the
effectiveness of our technique. Secondly, we compare and
breakdown by type the number of orderings generated by the
naive and both variants of our approach. Thirdly, we present
the reductions in the number of full memory fences placed
for an x86-TSO machine, where only orderings of the form
w → r require such enforcement. Finally, we present the
performance improvements achieved over Pensieve. For the
performance experiments, we used an Intel i3-2100 running
Linux 3.2.0-67 (Ubuntu 12.04.4). All the programs were run
using 64 threads.

5.1 Synchronization Read Detection
Applying the algorithms as defined in Section 4, we are
able to mark a subset of the potentially escaping reads as
acquires. The percentage of these reads that are marked
acquires by each variant of our approach is presented as
Figure 7.

 0%

 20%

 40%

 60%

 80%

 100%

B
ar

n
es

C
h
o

le
sk

y

F
F

T

F
M

M

L
U

−
co

n

L
U

−
n

o
n
co

n

O
ce

an
−

co
n

O
ce

an
−

n
o

n
co

n

R
ad

io
si

ty

R
ad

ix

R
ay

tr
ac

e

V
o

lr
en

d

W
at

er
−

N
S

q
u

ar
ed

W
at

er
−

S
p

at
ia

l

C
an

n
ea

l

M
at

ri
x

S
p

an
n
in

g
T

re
e

g
eo

m
ea

n

P
er

ce
n

ta
g

e
o
f

sh
ar

ed
 r

ea
d

s
m

ar
k

ed
 a

cq
u

ir
e

Safe
Fast

Figure 7. Static percentage of potentially thread-escaping
reads that our analysis marks as an acquire.

As we can see, the Fast form of our analysis is able to
greatly reduce the number of reads which must be treated
as acquires. In the best case (Water-NSquared), only 7% are
potentially acquires. On average7 we see 18% of the reads
marked as acquires. Even in the worst case our analysis is
able to significantly reduce the number of reads that must
be treated as acquires. We see this in Raytrace, with 33%
marked as acquires.

6 While the lock-free programs use user-defined synchronization exclu-
sively, the SPLASH-2 programs make use of both user-defined synchro-
nization (in programs such as FMM [40] and Volrend [34]), and also employ
library calls to locks and barriers.
7 Geometric mean is used for all normalized results.

Using the Safe variant, we are still able to reduce the
number of reads marked as acquires in all cases. On average
we see 60% marked as acquires. In the best case (Water-
Spatial), only 39% need be marked.

5.2 Ordering Pruning
Using the acquire detection results, we are able to prune the
orderings considered by the fence placement algorithm. As
detailed in Section 2.3, identifying acquires allows pruning
of those w → r and r → r orderings that do not conform
to the rules in Table 1. Figure 8 presents the results of this
pruning.

 0%

 20%

 40%

 60%

 80%

 100%

B
ar

n
es

C
h
o

le
sk

y

F
F

T

F
M

M

L
U

−
co

n

L
U

−
n

o
n
co

n

O
ce

an
−

co
n

O
ce

an
−

n
o

n
co

n

R
ad

io
si

ty

R
ad

ix

R
ay

tr
ac

e

V
o

lr
en

d

W
at

er
−

N
S

q
u

ar
ed

W
at

er
−

S
p

at
ia

l

C
an

n
ea

l

M
at

ri
x

S
p

an
n
in

g
T

re
e

P
er

ce
n

ta
g

e
o

f
P

en
si

ev
e

o
rd

er
in

g
s

r−>r
r−>w
w−>r
w−>w

Figure 8. A breakdown of orderings by type for Pensieve
(left), Safe (center), and Fast (right).

As Figure 8 shows, our Fast approach significantly re-
duces the number of w → r and r → r orderings required to
be considered for fence placement. This result holds across
all the programs tested, with an average of 34% orderings re-
maining after application of our approach. As r → r order-
ings form the majority of orderings in all but two of the pro-
grams, reducing them has the largest overall impact on the
number of orderings considered. w → r orderings are also
pruned significantly, though as they often form only a small
percentage of overall orderings, the impact of this on the to-
tal number of orderings is smaller. As we do not identify a
specific subset of writes as releases, r → w and w → w or-
derings are unaffected by the pruning process. With w → r
and r → r orderings forming the majority of the orderings,
the correlation between the percentage of reads marked as
acquires (Figure 7) and the percentage of orderings that sur-
vive pruning is not unexpected.

Examining the results for the Safe variant, we see that re-
ductions in w → r and r → r are still achieved. Specifically,
only 68% orderings remain on average.

5.3 Fence Placement
In placing fences, we consider the requirements of an x86-
TSO hardware model. Here, only w → r orderings require
enforcement by a full memory fence. Other orderings are au-

tomatically enforced by the hardware and are enforced dur-
ing the compilation process with empty memory-clobbering
assembly instructions, that have no presence in the final pro-
gram. As Figure 8 showed, our pruning was very effective at
reducing the number of w → r orderings.

Applying the fence minimization algorithm to the pruned
sets of orderings for both variants of our approach and Pen-
sieve for comparison, we determine the percentage of full
fences that are still placed when using pruned orderings.
This is shown as Figure 9.

 0%

 20%

 40%

 60%

 80%

 100%

B
ar

n
es

C
h
o

le
sk

y

F
F

T

F
M

M

L
U

−
co

n

L
U

−
n

o
n
co

n

O
ce

an
−

co
n

O
ce

an
−

n
o

n
co

n

R
ad

io
si

ty

R
ad

ix

R
ay

tr
ac

e

V
o
lr

en
d

W
at

er
−

N
S

q
u
ar

ed

W
at

er
−

S
p

at
ia

l

C
an

n
ea

l

M
at

ri
x

S
p
an

n
in

g
T

re
e

g
eo

m
ea

nP
er

ce
n

ta
g

e
o

f
fe

n
ce

s
re

m
ai

n
in

g

Safe
Fast

Figure 9. Static percentage of full fences that remain on
x86-TSO after using pruned orderings.

As Figure 9 shows, the impact of pruning orderings is
significant in reducing the static number of fences that the
algorithm places to enforce w → r orderings. As we can see,
the percentage of fences placed is quite strongly correlated
with the percentage of reads marked as acquires (Figure 7).
For the Fast algorithm we see on average 38% of Pensieve’s
fences required, with Canneal receiving a 89% reduction in
the number of fences placed. For the Safe variant, on average
73% of Pensieve’s fences are required.

5.4 Performance Improvements
To examine the impact of reducing the number of fences,
we executed the programs having applied Pensieve, both
variants of our approach and normalize these against manual
fence placement. Each of the experiments was repeated 100
times and averages taken. The results of these experiments
are presented as Figure 10.

As we can see, in all cases the fences placed using ei-
ther variant of our approach results in a performance im-
provement over using a naive set of orderings. On average
we see that Pensieve is 1.94x slower than the baseline, with
our Fast approach being only 1.44x slower than the base-
line. The Safe approach is 1.69x slower than the baseline. In
other words, on average, our Fast approach results in a 30%
speedup over Pensieve, while the Safe approach results in
executions 14% faster than Pensieve. In the best case (Ma-
trix) we achieve a 90% improvement over Pensieve using

 0x

 0.5x

 1x

 1.5x

 2x

 2.5x

 3x

 3.5x

 4x

 4.5x
B

ar
n
es

C
h

o
le

sk
y

F
F

T

F
M

M

L
U

−
co

n

L
U

−
n
o

n
co

n

O
ce

an
−

co
n

O
ce

an
−

n
o

n
co

n

R
ad

io
si

ty

R
ad

ix

R
ay

tr
ac

e

V
o

lr
en

d

W
at

er
−

N
S

q
u

ar
ed

W
at

er
−

S
p

at
ia

l

C
an

n
ea

l

M
at

ri
x

S
p

an
n

in
g

T
re

e

g
eo

m
ea

n

N
o

rm
al

iz
ed

 E
x

ec
u

ti
o
n

 T
im

e

5
.8

4
x

Manual
Pensieve
Safe
Fast

Figure 10. Execution time with fences placed using Pen-
sieve, Safe, and Fast, normalized against manual fence
placement.

Fast. For the Safe approach, the best case (Water-Spatial) is
42% faster than Pensieve.

Examining the performance results for individual pro-
grams, we see that the speedups achieved over the naive
are not strongly correlated with the changes in static fence
placement. This is due to specific fences being reached more
than others during the execution of the program. This is best
highlighted by the case of Raytrace, where significant re-
ductions in the number of static fences is not reflected in
performance improvement. When looking at the results for
Safe, we see that in some cases it is closer to Pensieve (e.g.,
Ocean-noncon) and in others (e.g., Water-Spatial) closer to
Fast. To which result Safe is most similar depends on the
propensity of the use of escaping reads as addresses in heav-
ily executed code regions. In one program (Radix), we see
Safe outperforming the simple algorithm. This is likely due
to the short running time and small number of fences placed,
making the result susceptible to noise. This also accounts for
why Fast achieves a 1% improvement over the baseline for
SpanningTree.

In terms of performance comparison with the manual
baseline, we see that there is still some improvement pos-
sible. There are two reasons for this discrepancy. First is the
difficult orthogonal problem of optimal fence minimisation
given a set of orderings to enforce. In extremis this may even
require profiling to determine the fence insertion points that
have the minimal impact on performance. Secondly, while
our signatures significantly prune the number of shared reads
considered as acquires, some false positives still remain.

6. Related Work
Programmer-centric memory models Adve and Hill [3]
and Gharachorloo [22] were the first to propose programmer
centric memory consistency models, where the system en-
forces SC as long as the programmer writes data-race-free
(DRF) programs and provides information about synchro-

nization operations. Indeed Adve’s DRF based models [1]
and Gharachorloo’s PL based models [20] are the precur-
sors to the memory consistency models adopted by lan-
guages such as C [10] and Java [30]. The main difference
between the above works and ours is that, while they as-
sume programmer-annotated synchronization labels, we as-
sume unlabeled data-race-free programs.
Delay-set analysis Shasha and Snir [36] were the first to
consider the problem of computing the minimum number
of memory orderings (delays) to ensure that a concurrent
shared memory program satisfies SC. In this work, we focus
on how the above orderings can be pruned if the shared
memory program is a DRF (but unlabelled) program. To put
it succinctly, we do Delay-set analysis for unlabelled DRF
programs.

A more recent work [5] attempts to address the scalability
issues inherent in Delay-set analysis by examining an over-
approximation of the critical cycles. It is however limited
in failing to handle recursion and dynamic thread creation,
the latter of which is common in the programs examined
in our evaluation. Specifically, this tool does not handle
pthread create calls in loops that could not be statically
unrolled. We note, however, that our signatures would be
equally applicable to [5] and our choice to build on top of
Pensieve is due to its lack of the limitations described above.
Fence minimization There have been a number of works [17,
25, 42] which focus on computing the minimal number of
fences for satisfying the orderings given by Delay-set analy-
sis. These works are orthogonal to our work, as these can
very well be applied for satisfying the pruned orderings
given by our analysis.
Synchronization detection Our work is related to prior
work [40, 41, 44] on busy-wait synchronization detection.
Tian et al. [40, 41] proposed a dynamic analysis tech-
nique for identifying user-defined busy-wait synchroniza-
tions. Since the above work uses dynamic analysis, they
suffer from false negatives – in other words, some synchro-
nizations can be missed. Subsequently, Xiong et al. [44]
showed how synchronizations can be identified using static
analysis, so that there can be no false negatives. Our work
differs from the above in one important aspect. The above
analysis is only applicable for busy-wait synchronization;
thus it will miss identifying acquires used in non-blocking
algorithms such as those used in our evaluation. It is worth
noting that missing such acquires leads to correctness is-
sues in our context which explains why the above detectors
cannot be used in the context of our work. Indeed, one of
the nice side-effects of our work is that to the best of our
knowledge, ours is the first general acquire detector.
Hardware based memory ordering There have been a
number of recent works [9, 21, 23, 29, 37] which have pro-
posed techniques for efficiently enforcing memory ordering.
In contrast with the above works each of which involve hard-
ware support, we do not use any hardware support. Further-

more, each of the above works are orthogonal to us, in that,
they can very well be used to efficiently enforce the pruned
orderings given by our work.
SC-preserving compiler Ahn et al. [4] proposed the Bulk
compiler which together with Bulk hardware (which en-
forces hardware SC at chunk level) guarantees SC at the
language level. In other words, the Bulk compiler preserves
SC by ensuring that it does not reorder memory operations
across chunks. More recently, Marino et al. [31] proposed
the SC-preserving compiler which together with SC hard-
ware (which enforces SC at the hardware level) guarantees
SC at the language level. Their main result is that it is possi-
ble for the compiler to preserve SC without significant slow-
down (<5% on average across a suite of parallel programs).
On the other hand, they assume that the hardware cannot
reorder operations, i.e., they assume that the hardware en-
forces SC. In contrast, our work considers the problem of
how to enforce SC on hardware that could reorder mem-
ory operations. Of course, to preserve SC at the language
level we would need a compiler that preserves SC (i.e., the
above works). Recall that in our implementation we ensure
that the compiler cannot reorder shared memory operations
by inserting an empty memory-clobbering assembly instruc-
tion between such operations, which LLVM interprets as a
compiler fence. It is worth noting that this corresponds to
the naive-SC variant [31]. We could have very well used the
SC-preserving compiler proposed (with all optimizations),
which could potentially translate into better performance. In
this respect, our work is orthogonal to the above works.

7. Conclusions
Relaxed hardware memory consistency models are used to
ensure performance in multicore computers. A large body
of legacy code assumes SC. Placing sufficient but minimal
fences is challenging. The starting point of understanding
the required placement is Delay-set analysis. However, in
practice approximations are applied, resulting in many su-
perfluous orderings.

With Delay-set analysis too hard in the general case and
with languages converging to DRF based memory models,
we for the first time attack the problem of Delay-set analysis
for legacy DRF programs. We prove that a read of shared
data must match at least one of two signatures to be an
acquire. We determine that this enables the pruning of a
large number of orderings, reducing the set that need be
considered for fence placement.

Developing both simple (control acquires) and conser-
vative (control and address acquires) algorithms, we imple-
ment them in LLVM and demonstrate the significance of our
contribution. Applying our control acquire detection on a set
of lock-free programs and to SPLASH-2, we reduce the av-
erage number of orderings considered by 66%. Using a fence
minimization technique, this translates to an average of 62%

fewer fences on x86-TSO and up to 2.64x speedup over an
existing practical technique.

References
[1] Sarita Vikram Adve. 1993. Designing memory consistency

models for shared-memory multiprocessors. Ph.D. Disserta-
tion. University of Wisconsin, Madison, WI, USA.

[2] Sarita V. Adve and Kourosh Gharachorloo. 1995. Shared
Memory Consistency Models: A Tutorial. IEEE Computer
29 (1995), 66–76.

[3] Sarita V. Adve and Mark D. Hill. 1990. Weak Ordering - A
New Definition. In ISCA. 2–14.

[4] W. Ahn, S. Qi, M. Nicolaides, J. Torrellas, J.-W. Lee, X.
Fang, S.Midkiff, and David Wong. 2009. BulkCompiler:
High-Performance Sequential Consistency through Coopera-
tive Compiler and Hardware Support. IEEE Micro (2009).

[5] Jade Alglave, Daniel Kroening, Vincent Nimal, and Daniel
Poetzl. 2014. Don’t Sit on the Fence - A Static Analysis
Approach to Automatic Fence Insertion. In CAV. 508–524.

[6] David A. Bader and Guojing Cong. 2005. A fast, paral-
lel spanning tree algorithm for symmetric multiprocessors
(SMPs). J. Parallel Distrib. Comput. 65, 9 (2005), 994–1006.

[7] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and
Tjark Weber. 2011. Mathematizing C++ concurrency. In
POPL. 55–66.

[8] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and
Kai Li. 2008. The PARSEC benchmark suite: characterization
and architectural implications. In PACT.

[9] Colin Blundell, Milo M. K. Martin, and Thomas F. Wenisch.
2009. InvisiFence: performance-transparent memory ordering
in conventional multiprocessors. In ISCA.

[10] Hans-Juergen Boehm and Sarita V. Adve. 2008. Foundations
of the C++ concurrency memory model. In PLDI.

[11] Luis Ceze, James Tuck, Pablo Montesinos, and Josep Torrel-
las. 2007. BulkSC: bulk enforcement of sequential consis-
tency. SIGARCH Comput. Archit. News 35, 2 (2007), 278–
289.

[12] David Chase and Yossi Lev. 2005. Dynamic Circular Work-
stealing Deque. In Proceedings of the Seventeenth Annual
ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA ’05). ACM, New York, NY, USA, 21–28.

[13] Daniel Chazan and Willard Miranker. 1969. Chaotic relax-
ation. Linear algebra and its applications 2, 2 (1969), 199–
222.

[14] Travis Craig. 1994. Building FIFO and priority-queuing spin
locks from atomic swap. Technical Report. Technical Report
93-02-02, University of Washington, Seattle, Washington.

[15] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis.
2013. Everything you always wanted to know about synchro-
nization but were afraid to ask. In SOSP. 33–48.

[16] E. W. Dijkstra. 1965. Solution of a Problem in Concurrent
Programming Control. Commun. ACM 8, 9 (Sept. 1965), 569–
.

[17] Xing Fang, Jaejin Lee, and Samuel P. Midkiff. 2003. Auto-
matic fence insertion for shared memory multiprocessing. In
ICS. 285–294.

[18] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall.
1998. The Implementation of the Cilk-5 Multithreaded Lan-
guage. SIGPLAN Not. 33, 5 (May 1998), 212–223.

[19] Andreas Frommer and Daniel B Szyld. 2000. On asyn-
chronous iterations. Journal of computational and applied
mathematics 123, 1 (2000), 201–216.

[20] Kourosh Gharachorloo. 1995. Memory Consistency Mod-
els for Shared-Memory Multiprocessors. Ph.D. Dissertation.
Stanford University.

[21] Kourosh Gharachorloo, Anoop Gupta, and John L. Hennessy.
1991. Two Techniques to Enhance the Performance of Mem-
ory Consistency Models. In ICPP (1). 355–364.

[22] Kourosh Gharachorloo, Daniel Lenoski, James Laudon,
Phillip Gibbons, Anoop Gupta, and John Hennessy. 1990.
Memory Consistency and Event Ordering in Scalable Shared-
Memory Multiprocessors. In ISCA. 15–26.

[23] Chris Gniady, Babak Falsafi, and T. N. Vijaykumar. 1999. Is
SC + ILP=RC?. In ISCA. 162–171.

[24] Mark D. Hill. 1998. Multiprocessors Should Support Simple
Memory-Consistency Models. Computer 31, 8 (1998), 28–
34.

[25] Amir Kamil, Jimmy Su, and Katherine Yelick. 2005. Making
Sequential Consistency Practical in Titanium. In SC. IEEE,
Washington, DC, USA, 15.

[26] L. Lamport. 1979. How to Make a Multiprocessor Computer
That Correctly Executes Multiprocess Progranm. IEEE Trans.
Comput. 28, 9 (1979), 690–691.

[27] Leslie Lamport. 1987. A Fast Mutual Exclusion Algorithm.
ACM Trans. Comput. Syst. 5, 1 (Jan. 1987), 1–11.

[28] Jaejin Lee and David A. Padua. 2001. Hiding Relaxed Mem-
ory Consistency with a Compiler. IEEE Trans. Comput. 50, 8
(2001), 824–833.

[29] Changhui Lin, Vijay Nagarajan, and Rajiv Gupta. 2010. Ef-
ficient sequential consistency using conditional fences. In
PACT. ACM, 295–306.

[30] Jeremy Manson, William Pugh, and Sarita V. Adve. 2005. The
Java memory model. In POPL. ACM, New York, NY, USA,
378–391.

[31] Daniel Marino, Abhayendra Singh, Todd D. Millstein,
Madanlal Musuvathi, and Satish Narayanasamy. 2011. A
Case for an SC-Preserving Compiler. In PLDI.

[32] John M. Mellor-Crummey and Michael L. Scott. 1991. Algo-
rithms for Scalable Synchronization on Shared-memory Mul-
tiprocessors. ACM Trans. Comput. Syst. 9, 1 (Feb. 1991), 21–
65.

[33] Maged M. Michael and Michael L. Scott. 1996. Simple, Fast,
and Practical Non-Blocking and Blocking Concurrent Queue
Algorithms. In PODC.

[34] Adrian Nistor, Darko Marinov, and Josep Torrellas. 2010. In-
stantCheck: Checking the Determinism of Parallel Programs
Using On-the-Fly Incremental Hashing. In MICRO. 251–262.

[35] Gary L. Peterson. 1981. Myths About the Mutual Exclusion
Problem. Inf. Process. Lett. 12, 3 (1981), 115–116.

[36] Dennis Shasha and Marc Snir. 1988. Efficient and correct
execution of parallel programs that share memory. ACM
Trans. Program. Lang. Syst. 10, 2 (1988), 282–312.

[37] Abhayendra Singh, Satish Narayanasamy, Daniel Marino,
Todd D. Millstein, and Madanlal Musuvathi. 2012. End-to-
end sequential consistency. In ISCA.

[38] Zehra Sura, Xing Fang, Chi-Leung Wong, Samuel P. Midkiff,
Jaejin Lee, and David Padua. 2005. Compiler Techniques for
High Performance Sequentially Consistent Java Programs. In
PPoPP. ACM, New York, NY, USA, 2–13.

[39] B. K. Szymanski. 1988. A Simple Solution to Lamport’s Con-
current Programming Problem with Linear Wait (ICS ’88).
ACM, New York, NY, USA, 621–626.

[40] Chen Tian, Vijay Nagarajan, Rajiv Gupta, and Sriraman Tal-
lam. 2008. Dynamic recognition of synchronization opera-
tions for improved data race detection. In ISSTA. 143–154.

[41] Chen Tian, Vijay Nagarajan, Rajiv Gupta, and Sriraman Tal-
lam. 2009. Automated dynamic detection of busy-wait syn-
chronizations. Softw., Pract. Exper. 39, 11 (2009), 947–972.

[42] Chi-Leung Wong, Zehra Sura, David A. Padua, Xing Fang,
Jaejin Lee, and Samuel P. Midkiff. 2002. The Pensieve
Project: A Compiler Infrastructure for Memory Models. In IS-
PAN. 239–244.

[43] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie,
Jaswinder Pal Singh, and Anoop Gupta. 1995. The SPLASH-
2 Programs: Characterization and Methodological Considera-
tions. In ISCA. 24–36.

[44] Weiwei Xiong, Soyeon Park, Jiaqi Zhang, Yuanyuan Zhou,
and Zhiqiang Ma. 2010. Ad Hoc Synchronization Considered
Harmful. In OSDI. 163–176.

