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Gaussian Processes for Switching Regimes

Amos Storkey

Neural Systems Group� Imperial College� London amoss�ic�ac�uk

Abstract� It has been shown that Gaussian processes are a competi�
tive tool for nonparametric regression and classi�cation� Furthermore
they are equivalent to neural networks in the limit of an in�nite num�
ber of neurons� Here we show that the versatility of Gaussian processes
at de�ning di�erent textural characteristics can be used to recognise
di�erent regimes in a signal switching between di�erent sources�

� Introduction

The use of Gaussian processes ��� to tackle many of the standard neural net�
work problems was reintroduced by Williams ��� and prompted by recent work
showing that neural networks and Gaussian processes were closely related�
Neal ��� showed that in the limit of an in	nite number of neurons
 the two
were equivalent� It was also noted the linear models and radial basis functions
were special cases of Gaussian processes ���� Rasmussen showed that Gaussian
processes were competitive on a number of benchmark problems ���� Here we
look at the problems of non stationary signals
 speci	cally the case of switch�
ing signals� This situation has received attention in the past ��� Here we show
that Gaussian processes are a useful tool for tackling this problem�

� Gaussian Processes for Regression

Consider a set of points fxig
 which consist of the points in input space at
which we will later receive data fxig i � �� �� � � � � n and the points fxig i �
n��� �� � � � �m at which we would like to make predictions� We use a superscript
D �for DATA� to denote an m�vector truncated to the elements i � �� �� � � � � n

and a superscript P �for PREDICTION� to denote an m�vector truncated to
the elements i � n� �� � � � �m�

We suppose for now that there is a true unknown function f�x� which
generates datum fi at point xi� This datum is corrupted by measurement
noise �i
 assumed for now to be Gaussian
 mean zero
 variance ��� We de	ne
the random variable yi by

yi �

�
fi � �i i � �� �� � � � � n
fi i � n� �� � � � �m

So yi combines the possible values of the data to be received �including mea�
surement noise� with the possible values of the predictions �without measure�
ment noise�� Now y � �y�� y�� � � � � ym� contains all the values of interest
 and
so we wish to 	nd some prior distribution over y�



We de	ne this distribution in two stages� First of all we have assumed
that �i is Gauss��� ���� We now assume that the prior function over f �
�f�� f�� � � � � fm� can be expressed as a multivariate Gaussian

P �f jH� �
�

Z �
exp

�
�
�

�
�f � ��TC���f � ��

�

where � � ��H� is some mean vector
 C � C�H� is some covariance ma�
trix and Z � is the relevant normalisation constant� H stands for any set of
hyperparameters
 which
 for now
 are assumed to be known�

Then f and � are independent Gaussian random variables
 and so y is a
sum of independent Gaussian distributed random variables
 and therefore has
a prior distribution of

P �yjH� �
�

Z
exp

�
�
�

�
�y � ��TQ���y � ��

�

where

Qij �

�
Cij � �ij�

� i� j � n

Cij otherwise

For future use
 we partition Q into the form�
QDD QDP

QPD QPP

�

where QDD is n�n and QPP is �m�n�� �m�n�� Note that QPD � �QDP �T �
Suppose we have now received data at points xD given by yD � y�� Then

we obtain the posterior distribution

P �yP jyD � y�� H� �
P �y�yD � y�jH�

P �yD � y�jH�

�
ZD

Z
exp

�
�
�

�
�y � ��TQ���y � ���

�

�
�yD � �D�T �QDD����yD � �D�

�
This simpli	es to the posterior distribution we want

P �yP jyD � y�� H� �
�

ZP
exp

�
�
�

�
�yP � �y�TS���yP � �y�

�

where S � �QPP �QPD�QDD���QDP � and �y � QPD�QDD���yD �� by the
partitioned inverse equations� Note that we only need to invert matrices QDD

and S
 which are n� n and �m� n�� �m� n� respectively� There is no need
to invert any m �m matrices such as Q� Here the formulation in ��
 �
 �� is
extended to the multivariate predictor case�

This Gaussian process approach has a number of advantages� These are

� The posterior distribution can be calculated analytically�
� The prior form is very �exible� many di�erent forms of covariance matrix
can be used
 each giving a di�erent type of textural structure to the signal�



� Prior knowledge about functional forms can meaningfully be represented
by a Gaussian process� the hyperparameters relate directly to length scales�

There is a computational disadvantage to this method� It involves calcu�
lating the inverse of an n � n matrix
 involving o�n�� computations� Hence
the computational power needed increases signi	cantly with the size of the
dataset
 making it less suitable for cases where many data are available�

� Types of Covariance Functions

We have said nothing yet of the form of the covariance function C� In fact
for the Gaussian distributions above to be meaningful for all points in input
space
 the distributions need to satisfy the Chapman�Kolmogorov equations�
This is done if the covariance function is that of a Gaussian process� For this to
be the case
 the covariance function must be positive semide	nite symmetric

and Cij must depend on variables xi and xj 
 and no other xk� Furthermore
the mean �i � ��xi��

Given a set of scaling hyperparameters ��� ��� rl
 a common choice for C is

C�xi�xj �H� � �� exp

�
�
�

�

LX
l��

�x
�l�
i � x

�l�
j ��

r�l

�
� ��

where L is the dimension of the input space
 and l counts through each dimen�
sion� This corresponds to saying that the closer points are in input space
 the
more correlated their function values will be
 and that the function is smooth�

� Determining Di�erent Signal Regimes� Gaussian

Process Mixtures

Very often the data under study has not been generated from a stationary
process� A common example of this is where a number of di�erent signal sources
are present
 and the observable signal is created by switching between these
di�erent regimes�

Here this situation is modelled with a mixture of Gaussian processes� La�
tent variables represent which of the current regimes generated a sample da�
tum� Then di�erent hyperparameters or covariance structures can be used to
represent the characteristics of the di�erent regimes�

The great bene	t of Gaussian processes is that the covariance matrix struc�
ture can represent many di�erent signal structures and textures
 from smooth
curves to random fractal textures�

As it is not known which regime is generating the signal at any point
 and
the structure of the signals is unknown
 these variables�parameters are given
prior distributions which should be integrated over�



Let sk denote the regime which generated datum k� For now let us assume
there are two possible regimes� Then we can form the Gaussian process prior

P �yjH� �
X

s�B�m�

ps	s�y�H�

where B�m� is the set of binary vectors of length m� 	 is a Gaussian kernel of
the form

	s �
�

Zs
exp

�
�
�

�
�y � ��H��TQs�H����y � ��H��

�

with ��H� � ��s� � �s� � � � � � �sm�
T where ��� �� � H � The covariance function

Qs is given by

�Qs�ij �

��
� ��s exp

�
� �

�

PL

l��

�x
�l�
i
�x

�l�
j

��

r�
ls

�
� ��s � �ij�

� for s � si � sj

� otherwise

which says that within a given regime we have the usual smooth functions

but there is no correlation between the points in di�erent regimes�

Now let us assume that the switching regime is a Poisson process
 rate 
�
Therefore the probability of y�tk� � y�tk��� is given by the probability of an
even number of switches between the two time points�

cosh�
�tk � tk���� exp��
�tk � tk����

Hence P �y�tk� �� y�tk���� � sinh�
�tk � tk���� exp��
�tk � tk���� where 
 is
a hyperparameter� Other switching priors could equally well be used
 and this
formalism could easily be extended to multiple regimes�

All the priors are now de	ned
 and the problem can be passed through
the usual Gaussian process machinery� The 	rst level of inference involves a
tractable Gaussian marginalisation� The second level of inference involves an
intractable integration over the hyperparameters and latent variables�

� Integrating�Out or Maximisation	

Calculating the inverse covariance for a Gaussian process is computationally in�
tensive� Therefore integrating out hyperparameters using Monte�Carlo Markov
chain approaches can be very slow for large data sizes� The approach we take
here is to sample from the posterior over the latent variables and the use a
maximum posterior value for the hyperparameters� This is a form of GEM
algorithm
 where a sample distribution over the latent indicator variables is
used instead of the true distribution�

The great bene	t of this approach is that the latent variables can be Gibbs
sampled
 and each Gibbs sample step involves changing only one row�column
of the covariance matrix� Hence the partitioned inverse equations can be used
to calculate the inverse of the matrix in o�n�� �ops
 reducing the computational



load signi	cantly� Furthermore
 because the covariance matrix has a block
structure
 the cost of inverting matrices is reduced� The steps of the algorithm
are�

� Choose suitable values of the hyperparameters
 H �

� Choose suitable starting values for the latent variables s�

� Gibbs sample the latent variables to get an E�step expression for P �sjdata��

P �sjdata�� P �sjH� data� �
�

Z

Z
dsP �datajH� s�P �s� �

X
k

��s� sk�

for a sample fskg

� Move towards the maximum posterior value of the hyperparameters
 as�
suming that this distribution is the true distribution for s� This involves
maximising

Z
dP �sjdata� lnP �H js� data� �

�

G

GX
g��

lnP �H jsg � data�

where G is the chosen sample size �the GM step��

� Repeat the steps until suitably near convergence�


 Example

These methods were tested on a number of toy problems� We introduce one
of them� Here a signal is generated from two smooth functions of di�erent
regularity and size� In this example
 the signal in 	gure � was used� It was
generated by the function illustrated
 made up of two separate sin waves� The
only prior information given was that mentioned above� Hence no knowledge
was presumed about the functional form
 or periodicity of the data�

When the Gaussian process was tested on this problem it was generally able
to distinguish the di�erent regimes� The graphs in 	gure � give the predictive
mean
 and error bars for the two signals� The true signals are given as solid
lines�

The methods were also tested on other similar problems
 and problems
where the signal mean di�ered between the signals� The model distinguished
between the di�erent regimes� Problems are sometimes encountered when the
Poisson prior is such that switching is infrequent� This means that local max�
ima in the posterior of the latent variables are surrounded by regions of very
low probability
 and so the Gibbs sampler can get stuck
 and not properly
sample the whole data space� Occasionally resetting the Gibbs sampler with
di�erent starting positions appears to help solve this problem�
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Fig� �� A test problem� Predictors �dashed	 and error bars �dotted	 for the two
generating functions �solid	

� Conclusions

Gaussian processes can represent many types of functions because of the ver�
satility of the covariance structure� This enables regimes with di�erent second
order statistical properties to be recognised
 while at the same time allow�
ing prior information about the signal form to be properly represented� These
methods could be extended to higher dimensions
 for example to recognise
di�erent textures in two dimensional data�
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