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Single-Molecule Magnetism, Enhanced Magnetocaloric 

Effect and Toroidal Magnetic Moments in a Family of 

Ln4 Squares  

Chinmoy Das,a Shefali Vaidya,a Tulika Gupta,a Jamie M. Frost,c Euan K Brechin,c  

Mattia Righi,b Marco Affronte*,b Gopalan Rajaraman*,a and Maheswaran 

Shanmugam*,a 

Three cationic  [Ln4] squares (Ln = lanthanide) have been isolated as single crystals and their structures 

solved as [Dy4(µ4-OH)(HL)(H2L)3(H2O)4]Cl2·(CH3OH)4·(H2O)8 (1), [Tb4(µ4-

OH)(HL)(H2L)3(MeOH)4]Cl2·(CH3OH)4· (H2O)4 (2) and [Gd4(µ4-

OH)(HL)(H2L)3(H2O)2(MeOH)2]Br2·(CH3OH)4·(H2O)3 (3). Their structures describe an hydroxo-centred 

square of lanthanide ions, with each edge of the square bridged by a doubly deprotonated H2L2- ligand. 

Alternating current (ac) magnetic susceptibility measurements show frequency dependent out-of-phase 

signals with two different thermally assisted relaxation processes for 1, but no maxima in χM" appears 

above 2.0 K for complex 2. For 1, the estimated effective energy barrier for these two relaxation 

processes is found to be 29 K and 100 K. Detailed ab initio studies reveal that complex 1 possesses a 

toroidal magnetic moment. Ab initio calculated anisotropies of complex 1 and 2 are employed to 

simulate the magnetic susceptibility using the Lines model (POLY_ANISO) and this procedure yields J1 

= +0.01 and J2 = -0.01 cm-1 (for 1); J1 = +0.11 and J2 = -0.01 cm-1 (for 2) as the two distinct exchange 

interactions between the Dy(III) and Tb(III) ions. Similar parameters are also obtained for complex 1 and 

2 from specific heat measurements.  A very weak antiferromagnetic super exchange interaction (J1 = -

0.043 cm-1 and g = 1.99) is witnessed between the metal centres in 3. The magnetocaloric effect (MCE) 

was estimated using field dependent magnetization and temperature dependent heat capacity 

measurements. An excellent agreement is found in the -ΔSm values extracted from these two 

measurements for all three complexes. As expected, 3 shows the largest -ΔSm variation (23 J Kg-1 K-1) 

among the three complexes. The negligible magnetic anisotropy of Gd indeed ensures near degeneracy in 

the (2S +1) ground state microstates, and the weak super-exchange interaction facilitates dense 

population of low-lying excited states all of which are likely to contribute to the MCE, making complex 

3 an attractive candidate for cryogenic refrigeration.  

 

Introduction 

The large magnetic moments and unquenched first order orbital 

angular momenta associated with certain lanthanide ions makes their 

coordination complexes potentially useful in various applications 

such as information storage,1 spintronics,2 molecular switches,3 spin 

valves 4 and qubits5. The academic investigation of the magnetic 

behaviour of lanthanide-based molecular cages has been 

reinvigorated since the discovery of single-molecule-magnet (SMM) 

behaviour in a mononuclear terbium phthalocyanine complex.6 

Following this, several lanthanide based SMMs, in particular 

dysprosium based clusters ranging from monomers to 

tetracosanuclear species, have been reported.1h, 7 Among them more 

often, multinuclear clusters show unusual magnetic properties, for 

fascinating recent examples include Dy3 triangles in which SMM 

behaviour was observed to originate from the excited states,8 Dy5 

and Dy4K2 clusters exhibiting enormous Ueff values1b, and the 

presence of magnetic bistability in symmetric oligomeric lanthanide 

complexes due to a toroidal arrangement of anisotropic axes.7b 

Although various promising synthetic approaches have been 

reported to increase the effective energy barrier to the reorientation 

of the magnetization of SMMs, the blocking temperature (TB) 

associated with the onset of hysteresis in molecular systems still sits 

below T = 14 K,9 hampering any realistic development of molecular 

devices for practical application. This is partly due to the lack of 

understanding of the combined roles of orbital (L) and spin (S) 

angular momenta to the resultant magnetic moment of the molecule. 

Moreover, further complication may arise due to the changing 

contribution of L and S with changing geometry around the 

lanthanide ions.10 Molecular complexes constructed by metal ions 
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with negligible magnetic anisotropy such as Gd(III) have been 

proposed for various applications, including contrast agents in 

magnetic resonance imaging,11 spin-labeling,12 dynamic nuclear 

polarization,13 and  cryogenic refrigeration,  which takes advantage 

of the materials intrinsic magnetocaloric effect (MCE).14 

Traditionally 3He-4He has been used to attain sub-milli Kelvin 

temperatures, but as well as being environmentally unfriendly; the 

transfer of cryogenic liquid 3He-4He requires a complicated 

mechanical set-up. Following the proposed idea of employing 

nanoparticles for magnetic refrigeration by Shull and co-workers,15 a 

plethora of 0-3D molecule-based materials have been reported as 

promising candidates, particularly by Evangelisti and co-workers 

who recently pointed out the importance of a large magnetic density 

(i.e. the use of lightweight ligands) in achieving improved MCE 

efficiency, together with large S and weak J.14e, 16 

In this line of interest and to reveal a new generation of lanthanide 

based clusters with both isotropic and anisotropic lanthanide metal 

ions we have employed an underemployed multidentate Schiff-base 

ligand (H4L, Scheme 1), which has previously been used to make 

just  seven transition metal complexes,17 four 3d-4f metal complexes 

(four complexes),18 and three 4f complexes.19   

 

Scheme. 1 Synthetic scheme followed to make H4L See the Experimental section for 

full details. 

In this article, we report three analogous LnIII
4 squares of 

general formula [Ln4(µ4-OH)(HL)(H2L)3(Y)4]X2 cluster (Ln = 

Dy(III), Tb(III), Gd(III); Y = solvent, X = halide) whose structures 

were determined by single crystal X-ray diffraction, whose 

magnetothermal properties have been gauged via variable 

temperature, variable field susceptibility, magnetization and specific 

heat measurements.  To further support our experimental findings we 

have performed CASSCF+RASSI-SO calculations.  This detailed 

experimental and theoretical investigation reveals that complex 1 

exhibit a rare toroidal magnetic moment which is evident from the 

magnetization measurements (vide infra) and complex 3 shows large 

variation in -Sm, making it a promising candidate for cryogenic 

refrigeration.    

Results and Discussion 

    The reaction between the Schiff-base ligand H4L and lanthanide 

halide (DyCl3·6H2O or TbCl3·6H2O or GdBr3·6H2O) in the presence 

of NaOMe in methanol results in the formation of pale yellow single 

crystals of complexes 1-3 after one week.  X-ray diffraction reveals 

the structure to be [Ln4(µ4-OH)(HL)(H2L)3(Y)4]X2 (where Ln = 

Dy(III), Y = H2O, X = Cl (1); Ln = Tb(III), Y = MeOH, X = Cl (2); 

and Ln = Gd(III), Y = MeOH, X = Br (3)). The molecular structures 

of all the three (isomorphous) complexes are given in Figure 1, and 

their corresponding crystallographic data listed in Table 1.  

 

Fig 1. Ball and stick representation of single crystal X-ray structures of the cations of 

complexes 1 (A), 2 (B) and 3 (C).  D) The general metal core found in 1-3. The same 

labelling scheme has been followed for all the three complexes.  

The lanthanide ions are in their usual trivalent oxidation 

state, and occupy the corners of a square, at the centre of which lies a 

µ4-OH- ion, linking all the four lanthanide ions. The oxidation state 

of this µ4-bridging O-atom was confirmed by bond valence sum 

calculation (Table S1).20  The Ln ions in these complexes are 

however not co-planar, there being a small twist of 19º (for 1) and 

18.8º (for 2 and 3) in the dihedral angle within the Ln4 plane (Figure 

2D). The µ4-OH- ion possesses distorted square planar geometry in 

all the three complexes (Figure 2). The average diagonal bond angles 

found in these complexes are Ln1O1Ln3 = 166.2º and 

Ln2O1Ln4 = 166.6º. 

The bond lengths between Ln(III) ions and the central hydroxide ion 

range from 2.506 Å to 2.529 Å (for 1), 2.494 Å to 2.553 Å (for 2) 

and from 2.506 Å to 2.586 Å (for 3). The average Ln-Ln distance is 

found to be 3.577 Å (for 1), 3.592 Å (for 2) and 3.623 Å (for 3). 

Each edge of the square is bridged by one phenoxo oxygen (from the 

o-vanillin moiety) from one H2L2- and an alkoxo group from 

hydroxymethyl arm of a second H2L2- ligand. The remaining 

coordination sites of the Ln ions are filled by methoxy oxygen atoms 

of o-vanillin, azomethine nitrogen atoms, the O-atom from the 

second arm of the hydromethyl group of H2L2- (the third arm of the 

latter remains protonated and non-bonded), and terminally bonded 

water and methanol molecules. There is a significant difference in 

the observed Ln-O bond lengths between the bridging alkoxide 

(2.262-2.320 Å (1), 2.278- 2.322 Å (2) and 2.297- 2.362 Å (3)) and 
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the terminally bonded alcohol (2.453-2.514 Å (1), 2.457-2.492 Å 

(2), and 2.479- 2.511 Å (3)), suggesting the latter to be protonated. 

Table 1. Crystallographic parameters for the complexes 1-3 

 

The charge balance requirements further support this assumption, 

two halide counter ions present in the crystal lattice neutralizes the 

cationic charge on the coordination sphere. The third arm of the 

hydromethyl group of H2L2- (which remains uncoordinated) 

facilitates the intermolecular hydrogen bonding (O13….O73 = 2.721 

Å; O33…O53 = 2.611 Å; C12….O73 = 2.636 Å; C17….O73 = 

2.657 Å).  

 

 

 

 

 

 

 

 

 

 

 

Fig 2. Average bond lengths and bond angles for 1-3 (A-C). D) A view showing the 

distortion observed in Ln4 square (The average dihedral angle is 19). 

By careful analysis of bond length of uncoordinated hydromethyl 

group of all the Schiff base ligands in 1 reveals that C19-O13 (1.332 

Å) has significantly shorter bond length than the other three (C39-

O33 (1.401 Å), C59-O53 (1.425 Å), and C79-O73 (1.410 Å)) 

unbound hydromethyl arms. This evidently suggests that among the 

four non-bonded hydromethyl arm of ligand, C19-O13 arm is 

deprotonated, thus balancing the trivalent cationic charge on the 

coordination sphere along with two halides in the crystal lattice. (See 

ESI Figure S1 for complete molecule labelling) A similar trend is 

also followed in case of structurally analogous 2 and 3.  

     Each lanthanide ion (in 1-3) is surrounded by nine donor atoms 

(LnO8N1) and exists in a distorted monocapped square anti-prismatic 

geometry, as confirmed by continuous SHAPE measurement 

software.21 The square [Ln4-µ4-OH] core is rather rare, limited to 

only three complexes, based on a search of the Cambridge Structural 

Database (CSD).22 For example, Wong and co-workers reported the 

complex [Ln4(µ4-O)L2(NO3)4(MeOH)2] (Ln = Gd and Tb; L = 1,3-

bis(2-hydroxy-3-methoxybenzylamino)propan-2-ol) in 2001, in 

which the Ln ions are eleven coordinate,22c and Thompson et al 

reported a series of [2 X 2] square grids of formula [Ln4(L1)4(μ4–

O)(μ2–1,1–N3)4] (Ln = Dy and Tb) using carbohydrozone (L1) 

ligands.22b,23 In the latter each metal ion is surrounded by nine donor 

atoms with capped square anti-prismatic geometry around the metal 

ions. 

Magnetic susceptibility  

 Temperature dependent dc magnetic susceptibility 

measurements on polycrystalline samples of 1 - 3 were carried out 

between 300 and 2.0 K in an external magnetic field of H = 0.1 T 

(Figure 3). The observed room temperature χMT values of 55.60 (for 

1), 47.20 (for 2) and 30.98 cm3 K mol-1 (for 3) are slightly lower 

than the expected values of 56.67 cm3 K mol-1 (g = 4/3; S = 5/2; L 

=5; 6H15/2 for 1), 47.25 cm3 K mol-1 (g = 3/2; S = 3; L = 3; 7F6 for 2) 

and 31.5 cm3 K mol-1 (g = 2.0; S = 7/2; L = 0, 8S7/2 for 3) for a 

magnetically dilute Dy(III), Tb(III) and Gd(III) ions, respectively. 

The χMT values for 1 and 2 gradually decrease from room 

temperature to 45 K, likely due to the depopulation of e mJ levels, 

with the depopulation effect being more evident in 1 than 2. The χMT 

value drops rapidly below 45 K, and reaches a value of 25.4 cm3 K 

mol-1 (for 1), 26.99 cm3 K mol-1 (for 2) at 5.0 and 2.5 K respectively. 

On the contrary, for 3, the χMT value remains constant from room 

temperature to 100 K, below which it steadily decreases before 

rapidly reducing below 35 K to a value of 12.95 cm3 K mol-1 at 2.31 

K. The decrease in χMT value of all the three complexes at lower 

temperature is due to the combined effects of some or all of the 

following phenomena: magnetic anisotropy (1, 2), intramolecular 

antiferromagnetic exchange interactions, Intermolecular dipolar 

exchange interactions, thermal depopulation effects. 

 Isothermal magnetization M(H) measurements performed on 

polycrystalline samples of 1- 3 are summarized in Figure 3, with full 

details reported in the ESI (Figures S2-S4). From Figure 3 it is 

evident that complexes 1 and 2 show saturation at ~19.3 M/NµB and 

~15.3 M/NµB at 2.0 and 2.2 K, respectively – values which are 

approximately half the expected value for  four very weakly coupled 

 1 2 3 

Formula C48H68N4O25Cl2Dy4 C52H72N4O25Cl2Tb4 C52H72N4O25Br2Gd4 

Size [mm] 0.17 x 0.12 x 0.09 0.16 x 0.11x 0.08 0.16 x 0.13 x 0.09 

System Triclinic Triclinic Triclinic 

Space group P-1 P-1 P-1 

a [Å] 14.000(3) 13.914(5) 14.029(7) 

b [Å] 15.650(3) 15.625(6) 15.692(8) 

c [Å] 17.790(4) 18.201(7) 18.363(9) 

α[°] 101.07(3) 102.620(4) 103.411(7) 

β [°] 91.48(3) 92.951(5) 92.689(5) 

[°] 106.25(3) 105.233(5) 105.499(7) 

V [Å3] 3659.3(13) 3701(2) 3764(3) 

Z 2 2 2 

ρcalcd[g/cm-3] 1.654 1.669 1.714 

2ϴmax 47.64 58.26 50.64 

radiation MoKα MoKα MoKα 

λ [Å] 0.71073 0.71075 0.71073 

T [K] 100 100 100 

Reflns 27407 65208 50807 

Ind. reflns 11213 19250 13500 

reflns with 

I>2σ(I) 

6798 15596 11560 

R1 0.0660 0.0689 0.0806 

wR2 0.1562 0.1825 0.2266 
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lanthanide ions, indicating the presence of significant magnetic 

anisotropy,1h  and consistent with the non-superimposable reduced 

magnetization curves (Figure S5). On the contrary the magnetization 

of complex 3 is as one might expect for four weakly coupled, 

isotropic Gd(III) ions, with M close to saturating at a value of M/NµB 

= 28.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3. A) Variable-temperature dc χMT plot of polycrystalline samples of 1–3, measured 

with an applied field of 0.1 T. The red line denotes the best fit obtained for the 

parameters given in the text; B) Isothermal field dependent magnetization measurement 

of 1-3 measured from 0-7 T at T = 2.2 K. 

    In order to extract the spin Hamiltonian parameters for the 

isotropic cluster 3, magnetic susceptibility data were fitted by matrix 

diagonalization using Phi software.24 Based on the crystal structure 

parameters of 3, we initially employed two different J values:  J1 

corresponding to nearest neighbour interactions round the ‘outside’ 

of the square where the super-exchange interaction is mediated 

between the metal ions via phenoxo, alkoxo and µ4-hydroxide 

bridges, whereas J2 relates to next nearest neighbour (diagonal) 

interactions (Gd1O1Gd3 and Gd2O1Gd4) mediated exclusively by 

the central µ4-hydroxide. The Heisenberg Hamiltonian used for 

fitting the data is shown in the equation below. The experimental 

data were very well reproduced with the following parameters J1 = -

0.043 cm-1, J2 = -0.043 cm-1 with g = 2.0. Since J1 = J2 we repeated 

the fit with just one J value which afforded J1 = -0.043 cm-1 and g = 

1.99 (Figure 3). The fitting parameters clearly suggest that the 

exchange is very weak and the cluster can essentially be regarded as 

a paramagnet.  Such weak exchange interactions between the metal 

centres is an essential ingredient for observing an enhanced MCE 

(vide infra). 

𝐻 =  −2(𝐽1𝑆𝐺𝑑1. 𝑆𝐺𝑑2 + 𝐽1𝑆𝐺𝑑2. 𝑆𝐺𝑑3 + 𝐽1𝑆𝐺𝑑3. 𝑆𝐺𝑑4

+  𝐽1𝑆𝐺𝑑1. 𝑆𝐺𝑑4) − 2 (𝐽2𝑆𝐺𝑑1. 𝑆𝐺𝑑3

+  𝐽2𝑆𝐺𝑑2. 𝑆𝐺𝑑4) + 𝑚𝑠𝑔𝐵𝐻  

In order to probe the magnetization relaxation dynamics of  

both 1 and 2, alternating current (ac) magnetic susceptibility 

measurements were performed on polycrystalline sample of 1 

(Figure 4) and 2 (Figures S6-S7 ) at various frequencies. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4. Frequency dependent A) in-phase, B) out-of-phase ac magnetic susceptibility 

(χM”) for 1 at the indicated frequencies. C) Arrhenius plot constructed for the both slow 

and fast relaxation processes.  

For 2, the maxima in M" is well below the instrument 

temperature limit under zero external magnetic field (Figure S7). On 

the contrary, for complex 1 there are two thermally assisted χM" 

signals with maxima clearly evident corresponding to fast and slow 

magnetization relaxation processes  at low (T = 2.5 - 5.2 K) and high 

(T = 3.0 - 15 K) temperatures, respectively (Figure 4). Similar 
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behaviour was recently reported in analogous tetrameric clusters by 

Layfield and co-workers.25 However, the origin of two 

magnetization relaxations in this reported complex is distinctly 

different from 1 (Vide infra). Lanthanide complexes are prone to 

exhibit fast quantum tunneling of magnetization (QTM),1b likely to 

be operable in the low temperature region, however the thermally 

assisted Orbach process appears to be the dominant relaxation 

process in complex 1. Observation of frequency dependent out-of-

phase susceptibility (χM") signals (for 1) is a characteristic signature 

of SMM behaviour under zero applied external magnetic field. The 

Arrhenius plot constructed for these high and low T regimes are 

shown in Figure 4C. The effective energy barrier (Ueff) for the 

reorientation of magnetization for the fast and slow relaxation 

processes are 29 K and 100 K with 0 = 1.324 10-7 s and 0 = 

1.179 10-8 s, respectively. The deviation from linearity for the slow 

relaxation process below 7.0 K suggests that other relaxation 

processes, such as Raman and Direct processes, are also likely to be 

operable.10e,26  

Theoretical Studies 

In order to understand the electronic structures of anisotropic metal 

complexes 1 and 2 detailed ab initio calculations were performed 

(see ESI for computational details and Figure S8). Two sets of 

calculations were performed on complex 1. The first, using the 

SINGLE_ANISO program, calculated the magnetic anisotropy of the 

individual Dy(III) ions; the second, using the POLY_ANISO 

program, was employed to extract the exchange-coupled energy 

levels and the exchange parameters. We begin our discussion with 

the calculation of the single ion anisotropy parameters.  

 

Single-ion anisotropy of Dy(III): The energy spectrum and g-

tensors for the Kramers doublets of the ground 6H15/2 multiplet for 

the four Dy(III) ions in compound 1 are shown in the ESI (Tables 

S2-S5), with the excited states lying at 3000 cm-1. In 1, the ground 

state (GS) Kramers Doublet (KD, Figure 5) shows an almost Ising 

type anisotropy for all four metal sites (Table 2) i.e. gzz is close to 

20, with a small transverse anisotropy in the y direction. The axiality 

of the g-tensors gradually decreases up to Kramers doublets 3 and 4 

(Tables S2-S5), thereafter increasing reaching axiality for the eighth 

Kramers doublet which is comparable to the value of lowest 

Kramers Doublet (close to 20). The observation of such mirror 

symmetry in the magnetic properties in the Kramers doublets is in 

sharp contrast to the trend in perfectly axial systems. The relative 

energies of the eight lowest lying KDs along with the computed 

anisotropy for all four Dy(III) ions in complex 1 are given in Tables 

S2-S5). The ground state is found to possess zero magnetic moment 

in the xy plane and it is entirely oriented along the z-axis (Lz). The 

two lowest Kramers doublets, shown in Figure 6, are characterised 

by definite projection of the total angular moment of the anisotropy 

axis. In the Dy4 site, the ground and the first excited state 

anisotropic axes are in opposite directions, while in other three sites 

they are co-parallel.  

       To probe the mechanism of single-ion relaxation, data beyond 

the ground state KDs need to be analysed. The magnetic relaxation 

in lanthanides is found to occur due to three main factors, in the 

absence of intermolecular interactions,10e (i) via QTM between the 

ground state KDs which occurs due to large transverse anisotropy in 

the ground state KDs, (ii) via Orbach/Raman processes27 which 

accounts for the relaxation via the excited states and occurs due to 

the non-coincidence of the principle anisotropic axes, (iii) via 

thermally assisted QTM (TA-QTM) which accounts for relaxation 

via the excited states due to the non-Ising nature of the excited KDs. 

A qualitative mechanism of the relaxation for 1 obtained from ab 

initio calculations is shown in Figure 6. Here the states are arranged 

according to the values of their magnetic moments. The number at 

each arrow connecting any two states is the mean absolute value of 

the matrix elements of the transition magnetic moments between the 

corresponding states. For all the Dy sites (Dy1, Dy2, Dy3 and Dy4) 

the transverse anisotropy observed is small, and the QTM between 

the ground state KDs is expected to be weak.  

 

Table 2. Calculated energy spectrum, g-tensors and tilt angles (θ) of the 

principal anisotropy axes of first excited state (ES) on Dy1, Dy2, Dy3 and 

Dy4 with respect to the ground state (GS) for complex 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.5. Ab initio computed ground Kramers Doublet state anisotropy axis along z-

direction in 1. The arrows exhibit coupled state orientation (ferromagnetic interaction 

between neighbours) Colour code: Dy(III): Green, O : red, N, C and H atoms have been 

removed for clarity. 

Our calculations confirm this point, as shown in Figure 6a, where for 

both Dy1 and Dy4 centres the QTM between the ground state KDs is 

negligible. The next excited states (ES) are located at 135 cm-1, 148 

cm-1 and 145 cm-1 for Dy1, Dy2 and Dy3 centres, respectively, and 

these states possess significant transverse anisotropy. The gzz axis 

deviates from the direction of the ground state KD by 14.6, 10.47 

and 5.47° for Dy1, Dy2 and Dy3 centres,  respectively (tilt angle, θ). 

            

          Sites  

gxx gyy gzz energy 

(cm-1) 

θ (ᵒ) 

Dy1 GS KD 

1st ES KD 

0.049 

0.976 

0.103 

    1.982         

19.794 

  15.819 

0.00 

134.6 

- 

14.6 

Dy2 GS KD 

1st ES KD 

0.043 

1.192 

0.069 

3.127 

19.768 

14.998 

0.00 

147.8 

- 

10.5 

Dy3 GS KD 

1st ES KD 

0.091 

1.799 

0.199 

5.654 

19.554 

12.629 

0.00 

145.0 

- 

5.5 

Dy4 GS KD 

1st ES KD 

0.09 

0.168 

0.023 

0.253 

19.868 

16.968 

0.00 

190.0 

- 

168.9 
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This naturally activates the Orbach/Raman type relaxation via the 

first excited state and, as expected, a significant magnetic moment 

matrix element is observed for this process Figure 6a. As the 

transverse anisotropy of the first excited state is large, this leads to a 

significant TA-QTM process, and this is also reflected in the 

computed parameters. The calculations find that ground and first 

excited state are predominantly |+-15/2>: 0.99 |+-15/2> and |+-

13/2>: 0.91 |+-13/2>, respectively, for the Dy1, Dy2 and Dy3 sites.  

The Dy4 site on the other hand is distinctly different from other three 

sites in complex 1, where the transverse anisotropy is not prominent 

in the ground state or first excited state. However as the tilt angle is 

large, this leads to relaxation via the first excited state. Thus for Dy4, 

the computed effective energy barrier (Ucal) is 190.0 cm-1 which is 

marginally higher than other sites. Thus, for the uncoupled Dy(III) 

sites, two relaxation processes are theoretically expected to operate, 

one at an average Ucal of 144 cm-1 (Dy1, Dy2 and Dy3) and other at 

190 cm-1 (Dy4). In accordance with the theoretical prediction, there 

are two relaxations processes that are experimentally observed at 

20.15 cm-1 and 69.5 cm-1 (29 and 100 K respectively, Figure 4). 

Hence, we can tentatively assign the faster relaxation process which 

occurs at lower temperature to the Dy1, Dy2 and Dy3 sites, and the 

slower magnetization relaxation process which occurs at higher 

temperature to Dy4. The large deviation in Ueff values between the 

calculated and experimental results can be attributed to the fact that 

the ground state QTM and the dipolar/exchange interactions (intra 

and inter) are not taken in to account in the estimate of the computed 

barriers. These issues have been discussed in detail in a previous 

experimental and theoretical study of Er(III) SMMs.28 The argument 

of magnetization relaxation based on single-ion anisotropy is valid 

since the estimate of the exchange coupling between Dy(III) ions is 

extremely small (vide infra).  

 

To offer a rationale on the differences observed between the four Dy 

sites, we have examined at the structural distortion (using SHAPE 

software)21 at the individual Dy sites. The deviations are found to be 

1.18, 1.22, 1.20 and 1.08 for Dy1, Dy2, Dy3 and Dy4 sites 

respectively (see Figure S9 in ESI), compared to an ideal mono-

capped square anti-prismatic geometry. These numbers represent the 

extent of deviation from the ideal mono-capped square anti-prismatic 

geometry. Thus the larger distortion of Dy1, Dy2 and Dy3 compared 

to Dy4 leads to concomitant smaller barrier heights. To gain more 

insight into the mechanism of magnetization relaxation, we have also 

computed the crystal field parameters. Assuming that intermolecular 

and hyperfine interactions are small or negligible, the probability of 

QTM between the ground state KDs is best described by the crystal 

field (CF) parameters.10h,29 The corresponding crystal field 

Hamiltonian is given by q q

CF k kH B O , where q

kB  is the crystal field 

parameter, and q

kO  is the Steven’s operator. QTM effects are 

expected to be dominant in a system where the non-axial q

kB (where 

q 0, and k = 2, 4, 6) terms are larger than the axial q

kB  (where q= 

0, and k = 2, 4, 6) terms (Table S6).  The observation of small 

transverse anisotropy for all the Dy sites in 1 is also well reproduced 

in the computed CF parameters, where the non-axial 1

2B , 2

2B , 3

4B  

and 5

6B  terms are larger than the axial terms ( 0

2B , 0

4B , 0

6B ) (Table 

S6). We have also employed an electrostatic model to gain 

information regarding the orientation of the anisotropy axis of the 

ground state in complex 1.30 This axis is calculated to be close to the 

ground state ab initio anisotropic axis, with the deviation being 

approximately 12.91⁰, 9.28⁰, 14.09⁰ and 12.45⁰ for Dy1, Dy2, Dy3 

and Dy4, respectively (Figure S9) suggesting that the orientation of 

the anisotropy axis is controlled predominantly by the electrostatic 

charges of the ligands. 

 

 
Fig 6. The ab initio computed magnetization blocking barrier for a) the Dy1 site (a 

similar picture is found for Dy2 and Dy3),  b) the Dy4 site. The thick black line indicates 

the Kramers doublets (KDs) as a function of magnetic moment. The dotted green lines 

show the possible pathway of the Orbach process. The dotted blue lines show the most 

probable relaxation pathways for magnetization reversal. The dotted red lines represent 

the presence of QTM/TA-QTM between the connecting pairs. The numbers provided at 

each arrow are the mean absolute value for the corresponding matrix element of 

transition magnetic moment.  
 

Exchange coupled {Dy4} molecule:  Due to the axiality of the Dy 

sites, we have simulated the magnetic interactions between Dy ions 

by incorporating contributions from magnetic dipole-dipole and 

exchange interactions within an Ising exchange Hamiltonian. We 

have also calculated the exchange spectrum (Figure 7) of complex 1 

using the POLY_ANISO program. An excellent agreement between 

the simulated and experimental magnetic data (MT (T) and M (H)) 

was observed with the parameters J1 = +0.01 cm-1 and J2 = -0.01 cm-

1 (Figure 8). This is further corroborated by specific heat 

measurements that show a well-defined Schottky anomaly at liquid 

helium temperatures (vide infra). Our computed g-tensor for the 

exchange coupled system shows zero transverse anisotropy 

contribution,   it is completely Ising in nature. Most importantly, the 

principal g-tensor (magnetic moment, Table S7) anisotropy of the 
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lowest (ground) exchange level of the exchange spectrum is 3.96. 

This observation of a conventional magnetic moment (a deviation 

from zero) in the ground state can be ascribed to the low-symmetry 

nature of the complex.  

 

 
Fig 7. The low-lying exchange spectrum and magnetization blocking barrier in complex 

1. We have placed every exchange state in compliance with the value of its magnetic 

moment (bold black lines).The blue curved arrows signify tunneling of magnetization 

within each doublet state, green curved arrows represent spin-phonon transitions (the 

numbers are averaged transition moments in μB connecting the corresponding states).[31] 

 

 The first excited doublet of the exchange spectrum lies at a larger 

energy separation (4.4 cm-1) with respect to the ground state,  

compared to a previously studied Dy4 complex32 (2.97 cm-1) which 

introduces a very small low field S shape to the magnetization curve 

(Figure 8B inset) in complex 1. This intramolecular coupling may 

facilitate preferential information storage compared to conventional 

SMMs.7b An analysis of the exchange spectrum of 1 (Table S7) 

clearly reveals a small magnetic moment matrix element for the 

ground-state exchange doublet (non-Kramers system) which 

subsequently suppresses the QTM completely (Figure 7, Table S7). 

These values for all other low-lying states (including excited states) 

are found to have low magnitudes, resulting in complete suppression 

of TA-QTM contributions to the magnetic relaxation. These 

observations lead to the occurrence of relaxation via a spin-phonon 

tunnelling mechanism through the excited states, as indicated by the 

green arrows in Figure 7. 

Significant matrix elements computed between ±5 and ±6 (0.22) 

describes a barrier of reversal of magnetization of approximately 4.6 

cm-1 (Figure 7, Table S7). Another important spin-phonon transition 

has been observed from the ground-state -1 component to the -9 

excited state components, followed by transition from -9 to -10, -10 

to -11, -11 to -12, -12 to -13 and eventually to the time-reversed 

states in the opposite order (green arrows in Figure 7).   This is the 

sole pathway with concomitant substantial magnetic matrix elements 

connecting the ground state -1 with other excited states. 

Additionally, direct tunnelling transitions between higher excited 

states (i.e. between -9 and +9, -10 and -10) are less efficient due to 

the extremely small value of magnetic moment matrix elements 

being of the order of 10-10 μB. Hence, another barrier height can be 

envisioned occurring at approximately 138 cm-1 (as shown by the 

dotted orange line in Figure 7), which is similar to the slower 

magnetization relaxation observed from the ac susceptibility 

measurements. The observation of such a multi-level-exchange 

spectrum corroborates the presence of a slow magnetization 

relaxation time in complex 1 due to the significantly quenched QTM 

and TA-QTM processes. 

  

Fig 8. Poly_ANISO simulated (solid lines) (A) magnetic susceptibility and (B) 

magnetization data with respect to experimental (scattered symbol) in complex 1. It is 

notable that intermolecular interaction zJ’ was kept fixed at -0.14 cm-1 

     The calculated ab initio and electrostatic anisotropy axes lie at a 

position which faces the least repulsion from the negatively charged 

µ4-hydroxo ligand. Although not all four gzz axes create a circular 

pattern, the projected magnetic moment due to gzz being in the plane 

of the four lanthanide ion leads to a toroidal magnetic moment.7b,33 

This is rather clearly visible in the magnetization data measured at T 

= 2 K. This is similar to the toroidal moment observed in other Dy 

structures, such as the Dy6 wheel, Dy3 triangles, and Dy4 butterfly 

complexes.8,32-33  Analysis of the structural details of complex 1 

indicates that it possesses a pseudo C4 axis of symmetry. The gzz axis 

of Dy1, Dy2 and Dy3 are in plane with respect to the pseudo C4 axis, 

with tilts of 6.2, 15.9 and 13.2 for Dy1, Dy2 and Dy3, 

respectively (Figure 5) and the deviations are within ~10 degrees. 

The Dy4 ion on the other hand deviates significantly from the 

pseudo C4 axis with a tilt angle of 41.5. However, the projected 

magnetic moment of all four Dy sites is expected to be on the square 

plane of the molecule leading to a toroidal moment. Although 

analogous square based complexes have been reported in the 

literature,22,23 this is the first example where such a complex has 
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been shown, by ab initio calculations, to possess a toroidal magnetic 

moment.  

Single Ion Anisotropy of Tb(III) in complx 2: Complex 2 has ideal 

Ising type anisotropy, computed for all 13 states in all four Tb(III) 

ions (Tables S8-S11) which is also well reproduced by computed 

crystal field parameters (Table S12). For Tb1, Tb2, Tb3 and Tb4 five 

pseudo-doublets and three singlets were obtained (Table 3).  

 

Table 3. Calculated energy spectrum, g-tensors and angles (°) of the        

principal anisotropy axes of the first excited states on Tb1, Tb2, Tb3 and Tb4 

with respect to the ground state for complex 2  

 

Here, as in complex 1, mirror symmetry of the magnetic energy 

levels is observed, i.e. a decrease of gzz up to energy level four or 

five after which an increase is observed. This implies the presence of 

a low-symmetry environment around the Tb(III) centres (see Figure 

9 and ESI S8 for the fragmented structure considered for 

calculation). The ground state is computed to be doubly degenerate 

with another state lying very close (0.1 cm-1). 

 

 

 

 

 

 

 

 

Fig 9. Ab inito computed ground state anisotropy axis along z direction in  complex 2 for 

all the individual TbIII ions separately.(colour scheme: TbIII: Violet O : red, N : blue, C 

:grey and hydrogen atoms have been removed for clarity){Arrow colour scheme: Orange 

indicates gz orientation of ground pseudo-doublet whereas blue denotes first excited 

pseudo-doublet}  

The computed principal g-tensor anisotropy of the ground pseudo 

doublet in all the four Tb sites in 2 is found to possess large gzz value 

(17.46-17.80). This value is close to the expected pure Ising gzz 

value (18.0) expected for a mj = ±6 and this large gzz magnitude is 

also reflected for the highest energy pseudo-doublet. Substantial 

intrinsic tunnel splitting (i..e >10-4 cm-1) in all the Tb sites of 

complex 2 induces major tunneling via the ground state which 

subsequently quenches the relaxation probability via the higher 

excited states deterring 2 to exhibit any SMM characteristics which 

is in line with the experimental ac measurements.1b, 34  

Exchange coupled {Tb4} molecule:  Adapting  same  strategy 

employed in complex 1 for fitting the magnetic data, we have 

performed simulation for complex 2 using POLY_ANISO program 

(see Figure 10). Our simulation able to reproduce the magnetic data 

[MT (T)] which consequences the observation of exchange 

parameters as +0.11 and -0.01 cm-1 as J1 and J2 respectively (Figure 

11 and Figure S10). Exchange coupled anisotropy for complex 2 is 

evidenced by complete Ising nature (Table S13) with zero 

transversal contribution. As per the SINGLE_ANISO analysis 

significant tunnel splitting (Δtun= 10-1 cm-1) in the ground doublet 

facilitate tunnelling and preclude any SMM characteristics in 

complex 2. 

 

Fig 10. The low-lying exchange spectrum in complex 2. We have placed every exchange 

state in compliance with the value of its magnetic moment (bold black lines).The blue 

curved arrows signify tunneling transitions within each doublet state 

(Δtun=corresponding tunnel gaps), green curved arrows represent spin-phonon transitions 

(the numbers are averaged transition moments in μB connecting the corresponding 

states) 

Negligible magnetic moment matrix element (blue text and blue 

arrow in Figure 10) in the form of quantum tunnelling of 

magnetization (i.e. 10-14 μB) within the ground state doublets pushes 

up the relaxation further towards higher excited state. This is also 

corroborated by the non-significant (i..e Δtun <10-4 cm-1: purple text 

in Figure 10) intrinsic tunnel splitting  within the ground doublets 

owing to the non-Kramers nature of the Tb(III) ions. Siginificant 

tunneling transition has been detected within ±5 (10-2 cm-1) and ±4 

(10-3 cm-1) states and these relaxations thus corresponds to TA-QTM 

process.  Also the Orbach/Raman process are computed to be 

efficient between these levels (see green text and green arrows in 

Figure 10), revealing the likelyhood of complete relaxation of 

magnetization at this level which lies 3.3 cm-1 away from the ground 

 

Tb1 site 

Level Energy(cm-1) gz angle(ᵒ) 

1 0.0 17.64 - 

 2 0.13 

3 98.77 14.45 9.41 

4 100.01 

 

 

Tb2 site 

1 0.0 17.73 - 

 2 0.095 

3 111.92 14.37 49.03 

4 112.34 

 

Tb3 site 

1 0.0 17.80 - 

 2 0.06 

3 128.64 14.50 

 

17.46 

173.03 

 

- 

 

4 129.58 

 

Tb4 site 

1 0.0 

2 0.18 

3 142.96 13.85 5.23 

4 145.61 
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state. Significantly low energy gap between the ground and first 

exicted state rationalizes why complex 2 relaxes faster than 1 which 

is consistent with the experimental (small raise in M” at low 

temperature and high frequency limit) observations.  

 

Fig 11. Poly_ANISO simulated (solid lines) magnetic susceptibility with respect to 

experimental (symbol) in complex 2. 

Estimation of Magnetocaloric Effect (MCE): 

In order to evaluate the MCE efficiency of all the three complexes 

(1-3) detailed magnetization measurements (ESI Figures S2-S4) and 

field dependent heat capacity (Figure 12) measurements were 

performed on bulk samples. The change in magnetic entropy (-S) 

and change in temperature (ΔTad) of the molecular cluster are the two 

essential thermodynamic parameters of MCE which can be precisely 

extracted from magnetization measurements using Maxwell’s 

thermodynamic relation: 

𝑆𝑚(𝑇, 𝐻) =  ∫ [
𝜕𝑀 (𝑇,𝐻)

𝜕𝑇
]

𝐻
𝑑𝐻

𝐻𝑓

𝐻𝑖
     

where Hi and Hf are the initial and final applied magnetic field, 

respectively. Complex 3 shows the maximum change in entropy (-

ΔSm = 23 J Kg-1 K-1) compared to 1 and 2. The zero field splitting 

due to large spin-orbit coupling associated with 1 and 2 results in 

significantly lower degeneracy of the ground state. This leads to a 

smaller change in magnetic entropy value compared to a more 

isotropic clusters.  Such scenario has been witnessed already in other 

lanthanide metal complexes reported elsewhere.14h, 35 

To evaluate and validate the -Sm extracted from magnetization 

measurements for 1-3, heat capacity measurements were performed 

on polycrystalline samples at various temperature ranges (Figure 

12). A large field independent contribution is observed above ca. 5K 

which is attributed to the lattice. This lattice contribution can be 

modelled by using an effective Debye model36 Clatt= A Tα, with α = 

2.4 (for 1, 2 and 3) and A = 0.0095±10% (for 1), A = 0.011±10% 

(for 2), A = 0.010±10% (for 3). This contribution is comparable for 

the three molecules, as expected from the near-identical structures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 12. A-C) Temperature dependence of the heat capacity measured on polycrystalline 

samples of 1-3 at the indicated magnetic field (data normalized to gas constant R), 

Markers indicate the experimental data, while lines are the calculations described in the 

text. 

A Schottky anomaly is evident in the low temperature specific heat 

of all three derivatives with a maximum at 1-2 K, arising from the 

magnetic exchange interactions between the magnetic ions. To get a 

rough idea of the strength of interaction we modelled this Schottky 

anomaly considering an effective split between two equally 

degenerate states separated by an energy gap T0. 

                  Cint/R = B (T0/T)2 e(T0/T)/(1+e(T0/T))2 

      Data fitting on the three C(T) curves provides these values for 

the parameters B = 3.7 and T0 = 7.78 K for 1, B = 2.45 and T0 = 5.1 

K for 2, B = 10 and T0 = 2.35 K for 3. In a first approximation the 

mean value of the exchange interactions J between four lanthanides 

leads to an effective gap T0 = 6 J2 gJ
2 JSE.  In this way we are 

considering six equivalent interactions between the four magnetic 

ions, so what is found here is a mean value for JSE. We found for 1 
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JSE = 0.0131K, for 2 JSE = 0.0105K and for 3 JSE = 0.0080K, 

comparable to J1 and J2 values theoretically estimated above.  For 2, 

another term is required to describe the upturn of the specific heat 

below 0.7K: the hyperfine coupling can be modelled using the 

hyperfine energy levels of terbium (0.120 K, 0.149 K and 0.178 K as 

respective gaps between the four hyperfine sublevels of the J = 6 

multiplet and a multi-level Schottky anomaly expression. 

The magnetic entropy (Sm) also can be evaluated from 𝑆𝑚(𝑇, 𝐻) =

 ∫ 𝐶𝑚/𝑇  𝑑𝑇 where Cm is magnetic heat capacity directly obtained 

from heat capacity measurements. Notably, the extracted values are 

consistent with the values obtained from magnetization 

measurements. As expected, complex 3, shows the largest -ΔSm 

among the three complexes (Figure 13). The maximum value 

obtained for a 7T – 0 demagnetization is -ΔSm=(5.8 ± 0.6)R = 23 J 

Kg-1 K-1 at T ≃ 3K for 3; -ΔSm=(2.2 ± 0.4)R at T ≃ 6K for 1 and -

ΔSm=(2.0 ± 0.4)R at T ≃ 5K for 2 (Figures S11-S12).  

The observed -Sm value for 3 is one of the largest known for an 

isotropic complexes, however this is significantly lower than the 

other isotropic metal complexes reported in the literature.14e, 14h, 16, 37 

Interestingly the -Sm value expressed in J kg-1 K-1 units for 3 is 

larger than what reported for Gd4Zn8
14c which contain similar 

squared Gd4 core: this is in part due to the lighter mass of our 3 

derivative, confirming the strategy of using lighter compound to 

enhance MCE. 

 

Fig 13. Entropy variation estimated from both magnetization measurements (points) and 

specific (lines) heat measurements for 1 for different magnetic field changes. 

For an uncoupled four Gd(III) ions, the theoretically expected -Sm 

value is 20.8 J kg-1 K-1, however experimentally we observe more 

than the uncoupled value signifying that the excited states also 

participate in polarizing the spins. Accessibility of these excited 

states possible in case of 3 even at low temperature is likely due to 

the weak exchange interactions.  

 

 

 

Experimental 

All reagents and solvents were purchased from commercially 

available sources (Alfa Aesar and Sigma-Aldrich) and were used 

without further purification. All reactions were carried out under 

aerobic conditions unless otherwise stated. The ligand H4L was 

synthesized as per the literature report,18d  with a slight modification 

to improve the yield of the reaction; see below for details. 

The chosen crystal was mounted on a Goniometer using 

paraffin oil and the crystal cooled in stream of liquid nitrogen to 100 

K (for 1 and 3), for 2 data were collected at room temperature. The 

data collection was done on a Rigaku Saturn CCD diffractometer 

(for 1 and 3) and an Oxford CCD diffractometer for 2 using a 

graphite monochromator (λ = 0.71073º) equipped with an Oxford 

cryosystems cooler device. The unit cell determination and data 

reduction were performed using Rigaku CrystalClear-SM Expert 2.1 

software. The structures were solved by direct methods and the 

refined by least-squares procedures on F2 with SHELXTL package. 

All non-hydrogen atoms were refined anisotropically.  Hydrogen 

atoms were placed based on the geometry and refined with a riding 

model. The solvents molecules were heavily disordered which we 

could not model it due to diffused electron density for all the three 

complexes. We have used the SQUZEE routine from PLATON 

resulted in smooth refinement of the structures. The loop 

corresponds to residual electron density void (from PLATON) found 

in the structure is appended in its corresponding CIF files. 

NMR spectra were recorded for the H4L ligand on a 

Bruker Avance III 400 MHz instrument at room temperature. The 

data were calibrated with listed deuterated solvents. Infrared spectra 

were collected for the solid samples using KBr pellets on a Perkin-

Elmer FT-IR spectrometer in the 400 to 4000 cm-1 range. Variable 

temperature dc susceptibility measurements were performed on a 

Quantum Design MPMS-SQUID Magnetometer. Diamagnetic 

corrections were applied for the constituent atoms using Pascal’s 

constants. Heat capacity measurements were measured on a PPMS-

7T system using the two tau method. Microcrystals were pressed 

into thin pellets and cut in thin slices of 1-2 mg in weight.  

Synthesis of H4L 

In a 250 mL RB flask a methanolic solution of o-vanillin (5.0002 g, 

0.0328 mol, 100 mL MeOH) was added  5-6 drops of glacial acetic 

acid (0.3 mL)  added drop by drop in order to activate the carbonyl 

group in o-vanillin and stirred for 10 minutes. Into the reaction flask, 

solid tris(hydroxymethyl)aminomethane (3.981 g, 0.0328 mol) was 

then added and the reaction mixture heated under reflux for 24 

hours. The light yellow precipitate formed was filtered and washed 

with n-hexane several times and dried under vacuum. The purity of 

the ligand was confirmed by 1H NMR and 13C NMR recorded in 

DMSO-d6. 1H NMR (400 MHz): δ (ppm) 14.7(s, 1H), 8.48(s, 1H), 

6.92(dd, J=7.88 Hz, 2H), 6.57(t, J=7.84 Hz, 1H), 4.84(s, 3H), 3.73(s, 

3H), 3.6 (d, 6H). 13C NMRδ (ppm): 164.11(C=N), 158.17, 149.53, 

124.15, 117.12, 114.86, 114.33, 66.43, 61.11, 55.72. FT-IR (KBr 
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pellet, cm-1): 2919 cm-1 (s, (Ar-H)), 1644 cm-1 (s, (C=N)). Yield =7.56 

g, 90%). 

Synthesis of complex 1: 

A methanolic solution (30 mL) of H4L (0.300 g, 1.175 mmol) was 

deprotonated by using NaOMe (0.1269 g, 2.350 mmol) and the 

solution stirred for 30 minutes before charging  DyCl3·xH2O (0.3159 

g, 1.175 mmol) into the reaction flask. The resultant reaction mixture 

was stirred for 24 hours and then filtered. The filtrate volume was 

reduced to one-third of its initial volume and kept for crystallization 

without any disturbance. Pale yellow block-shaped single crystals 

were grown from the filtrate after one week, and were suitable for X-

ray diffraction. Yield: 142 mg, (27%, based on Dy). Elemental 

analysis (air dried sample) (%): Calculated: C, 29.8; H, 4.9; N, 2.7; 

Found: C, 30.1; H, 4.6; N, 2.6; FT-IR (KBr pellet, cm-1): 2921 cm-1 

(s, (Ar-H)), 1648 cm-1 (s, (C=N)).  

Synthesis of complexes 2 and 3: 

The same procedure was followed for complex 1, but using the 

corresponding equivalence of lanthanide halides (TbCl3·6H2O 

(0.4388 g, 1.175 mmol for 2 and GdBr3·xH2O (0.4665 g, 1.175 

mmol) for 3) in place DyCl3.xH2O. For 2: Yield: 137mg, (25%, 

based on the Tb). Elemental analysis (air dried sample) (%): 

Calculated: C, 32.6; H, 4.7; N, 2.7; Found: C, 32.1; H, 4.8; N, 2.6; 

FT-IR (KBr pellet, cm-1): 2924 cm-1 (s, (Ar-H)), 1644 cm-1 (s, (C=N)). 

For 3: Yield: 145 mg, (26%, based on the Gd). Elemental analysis 

(dried sample) (%): Calculated: C, 31.6; H, 4.6; N, 2.6; Found: C, 

31.2; H, 4.7; N, 2.6; FT-IR (KBr pellet, cm-1): 2926 cm-1 (s, (Ar-H)), 

1646 cm-1 (s, (C=N)). 

Conclusions 

In this article we have reported an unusual family of O-centred 

Ln4 (where Ln = Dy, Tb or Gd) squares whose structures were 

determined by single crystal X-ray diffraction. DC magnetic 

susceptibility data on complexes 1-3 show the presence of weak 

antiferromagnetic interactions between the metal ions. 

Unambiguous evidence for the existence of antiferromagnetic 

interaction between the anisotropic lanthanide ions is confirmed 

through ab initio calculations and heat capacity measurements. 

Ac susceptibility measurements performed on anisotropic 

complexes 1 and 2 in the 2.0 - 35 K temperature range reveal 

both complexes to show frequency dependent out-of-phase 

signals (χM"), although the maxima in χM" for 2 is below the 

instrument temperature limit. On the other hand, complex 1 

shows two different magnetization relaxation processes, one at 

high temperature and one at low temperature. The Arrhenius 

plot constructed from these two relaxation processes reveals the 

barrier height for magnetization vector reversal of 29 K and 100 

K. We have rationalized the origin of these two relaxations 

processes in complex 1 by detailed ab initio calculations, which 

demonstrated that the Dy4 site in complex 1 behaves differently 

compared to the other three sites. Calculations reveal the 

existence of a toroidal magnetic moment complex 1, with 

experimental evidence confirmed from the S-shaped 

magnetization curve measured at 2.0 K. The exchange 

interaction extracted using the POLY_ANISO program is in 

agreement with experimentally derived parameters. The MCE 

of all the three complexes were estimated from two different 

experimental techniques, field dependent magnetization and 

heat capacity measurements, with complex 3 showing the 

largest change in magnetic entropy (23 J Kg-1 K-1), due to the 

near isotropic nature of the ground state and weak exchange 

interactions. The three analogous square based complexes are 

therefore a family of complexes exhibiting unusual physical 

properties, including toroidal magnetic moments, SMM 

behaviour and an enhanced MCE.      

Acknowledgements 
MS likes to thank CSIR (01(2768)/13/EMR-II), DST (SR/S1/IC-

32/2011), DST-Nanomission (SR/NM/NS-1119/2011), and IIT 

Bombay for financial support. GR thanks DST-Nanomission  

(SR/NM/NS-1119/2011),, AISRF. MA ….EKB thanks the EPSRC. 

MS and GR thank Liviu Ungur and L. F. Chibotaru, Belgium for 

their additional MOLCAS routine. 

 
Notes and references 
aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, 

Mumbai, Maharashtra, India-400076. 

bCNR, Institute of Nanosciences S3 and Dipartimento di Scienze Fisiche, 

Informatiche e Matematiche, Università di Modena e Reggio Emilia, via G. 

Campi213/A, 41125 Modena, Italy 

cEaStCHEM School of Chemistry, The University of Edinburgh, David 

Brewster Road, Edinburgh, EH9 3FJ, UK.  

Electronic Supplementary Information (ESI) available: The relevant 

magnetic, thermal data and computational details along with energy 

profiles for the computed energy levels are given in ESI. CCDC numbers: 

1060622-1060624. See DOI: 10.1039/b000000x/ 

 

 

References: 

 

1  a) G. Aromi and E. K. Brechin, Struct. Bonding. 2006, 122, 1-67; b) 

R. J. Blagg, L. Ungur, F. Tuna, J. Speak, P. Comar, D. Collison, W. 

Wernsdorfer, E. J. L. McInnes, L. F. Chibotaru and R. E. P. 

Winpenny, Nat. Chem. 2013, 5, 673-678; c) D. Gatteschi, A. 

Caneschi, L. Pardi and R. Sessoli, Science.  1994, 265, 1054-1058; d) 

M. Mannini, F. Pineider, C. Danieli, F. Totti, L. Sorace, P. Sainctavit, 

M. A. Arrio, E. Otero, L. Joly, J. C. Cezar, A. Cornia and R. Sessoli, 

Nature. 2010, 468, 417-421; e) M. Mannini, F. Pineider, P. 

Sainctavit, C. Danieli, E. Otero, C. Sciancalepore, A. M. Talarico, 

M.-A. Arrio, A. Cornia, D. Gatteschi and R. Sessoli, Nat. Mater. 

2009, 8, 194-197; f) R. Sessoli, D. Gatteschi, A. Caneschi and M. A. 

Novak, Nature.  1993, 365, 141-143; g) R. Sessoli, H. L. Tsai, A. R. 

Schake, S. Wang, J. B. Vincent, K. Folting, D. Gatteschi, G. Christou 

and D. N. Hendrickson, J. Am. Chem. Soc. 1993, 115, 1804-1816; h) 

D. N. Woodruff, R. E. P. Winpenny and R. A. Layfield, Chem. Rev. 

2013, 113, 5110-5148. 



ARTICLE Journal Name 

12 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012 

2  a) L. Bogani and W. Wernsdorfer, Nat. Mater. 2008, 7, 179-186; b) 

S. Sanvito and A. R. Rocha, J. Comput. Theor. Nanosci. 2006, 3, 

624-642; c) W. Wernsdorfer, Int. J. Nanotechnol. 2010, 7, 497-522. 

3  a) C. P. Collier, G. Matterstei, E. W. Wong, Y. Luo, K. Beverly, J. 

Sampaio, F. M. Raymo, J. F. Stoddart and J. R. Heath, Science.  

2000, 289, 1172-1175; b) A. R. Pease, J. O. Jeppesen, J. F. Stoddart, 

Y. Luo, C. P. Collier and J. R. Heath, Acc. Chem. Res. 2001, 34, 433-

444. 

4  a) F. R. Renani and G. Kirczenow, Phys. Rev. B Condens. Matter 

Mater. Phys. 2013, 87, 121403/121401-121403/121405; b) M. 

Urdampilleta, S. Klyatskaya, J. P. Cleuziou, M. Ruben and W. 

Wernsdorfer, Nat. Mater. 2011, 10, 502-506. 

5  D. Aguila, L. A. Barrios, V. Velasco, O. Roubeau, A. Repolles, P. J. 

Alonso, J. Sese, S. J. Teat, F. Luis and G. Aromi, J. Am. Chem. Soc. 

2014, 136, 14215-14222. 

6  N. Ishikawa, M. Sugita, T. Ishikawa, S.-Y. Koshihara and Y. Kaizu, 

J. Am. Chem. Soc. 2003, 125, 8694-8695. 

7  a) H. L. C. Feltham and S. Brooker, Coord. Chem. Rev. 2014, 276, 

1-33; b) L. Ungur, S.-Y. Lin, J. Tang and L. F. Chibotaru, Chem. Soc. 

Rev. 2014, 43, 6894-6905; c) R. A. Layfield, Organometallics 2014, 

33, 1084-1099; d) L.-X. Chang, G. Xiong, L. Wang, P. Cheng and B. 

Zhao, Chem. Commun. 2013, 49, 1055-1057. 

8  J. Tang, I. Hewitt, N. T. Madhu, G. Chastanet, W. Wernsdorfer, C. 

E. Anson, C. Benelli, R. Sessoli and A. K. Powell, Angew. Chem., 

Int. Ed. 2006, 45, 1729-1733. 

9  J. D. Rinehart, M. Fang, W. J. Evans and J. R. Long, J. Am. Chem. 

Soc. 2011, 133, 14236-14239. 

10.  a) M. A. AlDamen, S. Cardona-Serra, J. M. Clemente-Juan, E. 

Coronado, A. Gaita-Arino, C. Marti-Gastaldo, F. Luis and O. 

Montero, Inorg. Chem. 2009, 48, 3467-3479; b) M. A. AlDamen, J. 

M. Clemente-Juan, E. Coronado, C. Marti-Gastaldo and A. Gaita-

Arino, J. Am. Chem. Soc. 2008, 130, 8874-8875; c) S. Cardona-Serra, 

J. M. Clemente-Juan, E. Coronado, A. Gaita-Arino, A. Camon, M. 

Evangelisti, F. Luis, M. J. Martinez-Perez and J. Sese, J. Am. Chem. 

Soc. 2012, 134, 14982-14990; d) S. Ghosh, S. Datta, L. Friend, S. 

Cardona-Serra, A. Gaita-Arino, E. Coronado and S. Hill, Dalton 

Trans. 2012, 41, 13697-13704; e) N. Ishikawa, M. Sugita, T. 

Ishikawa, S. Koshihara and Y. Kaizu, J. Phys. Chem. B 2004, 108, 

11265-11271; f) N. Ishikawa, M. Sugita, N. Tanaka, T. Ishikawa, S.-

Y. Koshihara and Y. Kaizu, Inorg. Chem. 2004, 43, 5498-5500; g) J. 

Kan, H. Wang, W. Sun, W. Cao, J. Tao and J. Jiang, Inorg. Chem. 

2013, 52, 8505-8510; h) J. J. Le Roy, M. Jeletic, S. I. Gorelsky, I. 

Korobkov, L. Ungur, L. F. Chibotaru and M. Murugesu, J. Am. 

Chem. Soc. 2013, 135, 3502-3510; i) J. D. Rinehart and J. R. Long, 

Chem. Sci. 2011, 2, 2078-2085. 

11  a) S. Aime, M. Botta and E. Terreno, Adv. Inorg. Chem. 2005, 57, 

173-237; b) P. Caravan, Chem. Soc. Rev. 2006, 35, 512-523; c) A. 

Datta and K. N. Raymond, Acc. Chem. Res. 2009, 42, 938-947; d) P. 

Hermann, J. Kotek, V. Kubicek and I. Lukes, Dalton Trans. 2008, 

3027-3047; e) J. Lee, M. J. Zylka, D. J. Anderson, J. E. Burdette, T. 

K. Woodruff and T. J. Meade, J. Am. Chem. Soc. 2005, 127, 13164-

13166; f) E. C. Wiener, M. W. Brechbiel, H. Brothers, R. L. Magin, 

O. A. Gansow, D. A. Tomalia and P. C. Lauterbur, Magn. Reson. 

Med. 1994, 31, 1-8; g) C.-T. Yang, P. Chandrasekharan, T. He, Z. 

Poh, A. Raju, K.-H. Chuang and E. G. Robins, Biomaterials 2014, 

35, 327-336. 

12  a) A. Martorana, G. Bellapadrona, A. Feintuch, E. Di Gregorio, S. 

Aime and D. Goldfarb, J. Am. Chem. Soc. 2014, 136, 13458-13465; 

b) A. M. Raitsimring, C. Gunanathan, A. Potapov, I. Efremenko, J. 

M. L. Martin, D. Milstein and D. Goldfarb, J. Am. Chem. Soc. 2007, 

129, 14138-14139. 

13  a) B. Corzilius, A. A. Smith, A. B. Barnes, C. Luchinat, I. Bertini 

and R. G. Griffin, J. Am. Chem. Soc. 2011, 133, 5648-5651; b) J. W. 

Gordon, S. B. Fain and I. J. Rowland, Magn. Reson. Med. 2012, 68, 

1949-1954. 

14  a) E. Colacio, J. Ruiz, G. Lorusso, E. K. Brechin and M. Evangelisti, 

Chem. Commun. 2013, 49, 3845-3847; b) I. A. Gass, E. K. Brechin 

and M. Evangelisti, Polyhedron 2013, 52, 1177-1180; c) T. N. 

Hooper, J. Schnack, S. Piligkos, M. Evangelisti and E. K. Brechin, 

Angew. Chem., Int. Ed. 2012, 51, 4633-4636, S4633/4631-

S4633/4633; d) G. Lorusso, M. A. Palacios, G. S. Nichol, E. K. 

Brechin, O. Roubeau and M. Evangelisti, Chem. Commun. 2012, 48, 

7592-7594; e) G. Lorusso, J. W. Sharples, E. Palacios, O. Roubeau, 

E. K. Brechin, R. Sessoli, A. Rossin, F. Tuna, E. J. L. McInnes, D. 

Collison and M. Evangelisti, Adv. Mater. 2013, 25, 4653-4656; f) V. 

K. Pecharsky and K. A. Gschneidner, Jr., J. Magn. Magn. Mater. 

1999, 200, 44-56; g) A. M. Tishin, A. V. Derkach, Y. I. Spichkin, M. 

D. Kuz'min, A. S. Chernyshov, K. A. Gschneidner and V. K. 

Pecharsky, J. Magn. Magn. Mater. 2007, 310, 2800-2804; h) Y.-Z. 

Zheng, M. Evangelisti, F. Tuna and R. E. P. Winpenny, J. Am. Chem. 

Soc. 2012, 134, 1057-1065. 

15  R. D. McMichael, R. D. Shull, L. J. Swartzendruber, L. H. Bennett 

and R. E. Watson, J. Magn. Magn. Mater. 1992, 111, 29-33. 

16  M. Evangelisti, O. Roubeau, E. Palacios, A. Camon, T. N. Hooper, 

E. K. Brechin and J. J. Alonso, Angew. Chem., Int. Ed. 2011, 50, 

6606-6609, S6606/6601-S6606/6605. 

17  a) G. Asgedom, A. Sreedhara, J. Kivikoski, J. Valkonen, E. 

Kolehmainen and C. P. Rao, Inorg. Chem. 1996, 35, 5674-5683; b) 

D. F. Back, C. R. Kopp, G. Manzoni de Oliveira and P. C. Piquini, 

Polyhedron 2012, 36, 21-29; c) V. Chandrasekhar, A. Dey, A. J. 

Mota and E. Colacio, Inorg. Chem. 2013, 52, 4554-4561; d) D. Liu, 

Q. Zhou, Y. Chen, F. Yang, Y. Yu, Z. Shi and S. Feng, Dalton Trans. 

2010, 39, 5504-5508; e) C. P. Rao, A. Sreedhara, P. V. Rao, M. B. 

Verghese, K. Rissanen, E. Kolehmainen, N. K. Lokanath, M. A. 

Sridhar and J. S. Prasad, J. Chem. Soc., Dalton Trans. 1998, 2383-

2394; f) Y. Sui, X. Zeng, X. Fang, X. Fu, Y. a. Xiao, L. Chen, M. Li 

and S. Cheng, J. Mol. Catal. A Chem. 2007, 270, 61-67; g) X. Zhang, 

P. Wei, J. Dou, B. Li and B. Hu, Acta Crystallogr., Sect. E Struct. 

Rep. Online 2009, 65, m293-m294, m293/291-m293/211. 

18  a) H. Ke, L. Zhao, Y. Guo and J. Tang, Dalton Trans. 2012, 41, 

9760-9765; b) H. Ke, L. Zhao, Y. Guo and J. Tang, Dalton Trans. 

2012, 41, 2314-2319; c) H. S. Ke, Y. Guo, L. Zhao and J. K. Tang, 

Sci. China Chem. 2012, 55, 906-909; d) G. Wu, I. J. Hewitt, S. 

Mameri, Y. Lan, R. Clerac, C. E. Anson, S. Qiu and A. K. Powell, 

Inorg. Chem. 2007, 46, 7229-7231. 

19  a) R. Bircher, B. F. Abrahams, H. U. Guedel and C. Boskovic, 

Polyhedron 2007, 26, 3023-3028; b) H. Ke, G.-F. Xu, L. Zhao, J. 

Tang, X.-Y. Zhang and H.-J. Zhang, Chem. - Eur. J. 2009, 15, 

10335-10338; c) H. Ke, L. Zhao, G.-F. Xu, Y.-N. Guo, J. Tang, X.-Y. 

Zhang and H.-J. Zhang, Dalton Trans. 2009, 10609-10613. 

20  I. D. Brown and K. K. Wu, Acta Crystallogr., Sect. B 1976, B32, 

1957-1959. 



Journal Name ARTICLE 

This journal is © The Royal Society of Chemistry 2012 J. Name., 2012, 00, 1-3 | 13  

21  a) H. Zabrodsky, S. Peleg and D. Avnir, J. Am. Chem. Soc. 1992, 

114, 7843-7851; b) H. Zabrodsky, S. Peleg and D. Avnir, J. Am. 

Chem. Soc. 1993, 115, 8278-8289. 

22  a) P.-H. Lin, I. Korobkov, W. Wernsdorfer, L. Ungur, L. F. 

Chibotaru and M. Murugesu, Eur. J. Inorg. Chem. 2011, 1535-1539; 

b) N. M. Randell, M. U. Anwar, M. W. Drover, L. N. Dawe and L. K. 

Thompson, Inorg. Chem. 2013, 52, 6731-6742; c) A. Wai-Hing Lam, 

W.-T. Wong, G. Wen, X.-X. Zhang and S. Gao, New J. Chem. 2001, 

25, 531-533. 

23  M. U. Anwar, L. K. Thompson, L. N. Dawe, F. Habib and M. 

Murugesu, Chem. Commun. 2012, 48, 4576-4578. 

24  N. F. Chilton, R. P. Anderson, L. D. Turner, A. Soncini and K. S. 

Murray, J. Comput. Chem. 2013, 34, 1164-1175. 

25  D. N. Woodruff, F. Tuna, M. Bodensteiner, R. E. P. Winpenny and 

R. A. Layfield, Organometallics 2013, 32, 1224-1229. 

26  a) J. M. Zadrozny, M. Atanasov, A. M. Bryan, C.-Y. Lin, B. D. 

Rekken, P. P. Power, F. Neese and J. R. Long, Chem. Sci. 2013, 4, 

125-138; b) A. Arauzo, A. Lazarescu, S. Shova, E. Bartolome, R. 

Cases, J. Luzon, J. Bartolome and C. Turta, Dalton Trans. 2014, 43, 

12342-12356; c) S. M. J. Aubin, Z. Sun, L. Pardi, J. Krzystek, K. 

Folting, L.-C. Brunel, A. L. Rheingold, G. Christou and D. N. 

Hendrickson, Inorg. Chem. 1999, 38, 5329-5340. 

27  R. Orbach, Proc. R. Soc. London, Ser. A 1961, 264, 485-495. 

28  a) S. K. Singh, T. Gupta, M. Shanmugam and G. Rajaraman, Chem. 

Commun. 2014, 50, 15513-15516; b) C. Das, A. Upadhyay, S. 

Vaidya, S. K. Singh, G. Rajaraman and M. Shanmugam, Chem. 

Commun. 2015, 51, 6173. 

29  S. K. Langley, D. P. Wielechowski, V. Vieru, N. F. Chilton, B. 

Moubaraki, L. F. Chibotaru and K. S. Murray, Chem. Sci. 2014, 5, 

3246-3256. 

30  F. Chilton Nicholas, D. Collison, J. L. McInnes Eric, E. P. Winpenny 

Richard and A. Soncini, Nat Commun. 2013, 4, 2551. 

31  S. K. Langley, D. P. Wielechowski, V. Vieru, N. F. Chilton, B. 

Moubaraki, B. F. Abrahams, L. F. Chibotaru and K. S. Murray, 

Angew. Chem., Int. Ed. 2013, 52, 12014-12019. 

32  P.-H. Guo, J.-L. Liu, Z.-M. Zhang, L. Ungur, L. F. Chibotaru, J.-D. 

Leng, F.-S. Guo and M.-L. Tong, Inorg. Chem. 2012, 51, 1233-1235. 

33  L. Ungur, S. K. Langley, T. N. Hooper, B. Moubaraki, E. K. 

Brechin, K. S. Murray and L. F. Chibotaru, J. Am. Chem. Soc. 2012, 

134, 18554-18557. 

34  a) L. Ungur, M. Thewissen, J.-P. Costes, W. Wernsdorfer and L. F. 

Chibotaru, Inorg. Chem. 2013, 52, 6328-6337; b) F.-S. Guo, J.-L. 

Liu, J.-D. Leng, Z.-S. Meng, Z.-J. Lin, M.-L. Tong, S. Gao, L. Ungur 

and L. F. Chibotaru, Chem. - Eur. J. 2011, 17, 2458-2466, 

S2458/2451-S2458/2452. 

35  Y.-Z. Zheng, M. Evangelisti and R. E. P. Winpenny, Angew. Chem., 

Int. Ed. 2011, 50, 3692-3695, S3692/3691-S3692/3694. 

36  M. Evangelisti, F. Luis, L. J. de Jongh and M. Affronte, J. Mater. 

Chem. 2006, 16, 2534-2549. 

37  a) S. K. Langley, N. F. Chilton, B. Moubaraki, T. Hooper, E. K. 

Brechin, M. Evangelisti and K. S. Murray, Chem. Sci. 2011, 2, 1166-

1169; b) J.-B. Peng, Q.-C. Zhang, X.-J. Kong, Y.-Z. Zheng, Y.-P. 

Ren, L.-S. Long, R.-B. Huang, L.-S. Zheng and Z. Zheng, J. Am. 

Chem. Soc. 2012, 134, 3314-3317. 

 

 


