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Abstract—Peak power consumption is the first order design
constraint of data centers. Though peak power consumption
is rarely, if ever, observed, the entire data center facility must
prepare for it, leading to inefficient usage of its resources. The
most prominent way for addressing this issue is to limit the
power consumption of the data center IT facility far below its
theoretical peak value. Many approaches have been proposed
to achieve that, based on the same small set of enforcement
mechanisms, but there has been no corresponding work on
systematically examining the advantages and disadvantages
of each such mechanism. In the absence of such a study,
it is unclear what is the optimal mechanism for a given
computing environment, which can lead to unnecessarily poor
performance if an inappropriate scheme is used. This paper
fills this gap by comparing for the first time five widely used
power capping mechanisms under the same hardware/software
setting. We also explore possible alternative power capping
mechanisms beyond what has been previously proposed and
evaluate them under the same setup. We systematically analyze
the strengths and weaknesses of each mechanism, in terms of
energy efficiency, overhead, and predictable behavior. We show
how these mechanisms can be combined in order to implement
an optimal power capping mechanism which reduces the
slowdown compared to the most widely used mechanism by
up to 88%. Our results provide interesting insights regarding
the different trade-offs of power capping techniques, which
will be useful for designing and implementing highly efficient
power capping in the future.

Keywords-Power Optimization; Power Capping; Compiler;
DVFS; RAPL

I. INTRODUCTION

Data centers provide the IT infrastructure that powers

many of today’s computing environments – from big data

and cloud computing to large-scale Internet services. With

more and larger data centers being built every year, they are

now among the largest consumers of electricity in advanced

countries [1], with individual data centers consuming from

tens of kilowatts to tens of megawatts [2]. To deal with this

high power consumption and even higher power density, data

centers are equipped with expensive and extensive power

conversion and cooling systems which represent a significant

part of the initial investment. According to [3] the power

supply system alone costs $10 to $20 for each deployed Watt

of peak power, even though this peak power consumption is

rarely, or ever, reached [4]. This means that the cooling and

power supply systems end up being over-provisioned during

typical load conditions, wasting limited capital resources.

The most prominent way to tackle this inefficiency is to

set external lower limits to the peak power consumption.

With a combination of server-level power limiting mecha-

nisms and system-wide power measurements and manage-

ment, the power consumption can be guaranteed to stay far

below the theoretical peak value [4]. This in turn allows

the deployment of many more servers for the same power

supply or, conversely, a smaller capital investment for the

same number of servers. Using real data from Google’s data

centers, a recent study [5] shows that such a scheme allows

39% more servers to be deployed with no performance loss.

Most approaches to enforcing power caps at the proces-

sor level leverage some form of DVFS and DFS [5]–[7],

concurrency throttling [8], or idle states [9], [10], combined

with OS-level control. Each one exhibits different advan-

tages: higher efficiency, ease of control, finer granularity,

or wider range of enforceable power limits. While many

research papers have focused on different ways of using and

controlling these mechanisms, little attention has been paid

on how these interact with and compare against each other.

Even less papers have focused on hardware-centric power

management schemes, exemplified by Intel RAPL [11]. In

contrast to software-centric approaches which operate at

coarser granularities (typically seconds), these hardware-

centric methods can operate at finer granularities (millisec-

onds to seconds) [12]. Hardware approaches have more

access to low-level hardware information and the internals of

the DVFS subsystem, offering fine-grained power cap con-

trols and tight feedback-based control loops. As hardware-

centric capping mechanisms are becoming ubiquitous on

computing systems, it is necessary to understand whether

such a scheme is better than other power capping approaches

and how we can improve on it when it is not.

This paper attempts to shed some light on the state of

power capping. Using a common hardware setting and the

same set of representative benchmarks, we evaluate five

widely used power limit enforcement mechanisms in terms

of achievable performance under the same power budget,



overhead, and predictability. We also explore alternative

ways to control the power consumption, examining two

mechanisms not previously discussed in the literature as

power capping techniques. This is the first comprehensive,

quantified analysis for those schemes. Our results provide

interesting insights and trade-offs for power capping tech-

niques, which will be useful for future implementations.

The technical contributions of this work are as follows.

• We provide a comprehensive comparison, using repre-

sentative application workloads, of existing and new

power capping mechanisms including DVFS, DFS,

RAPL, thread packing, forced idleness, NOP insertion,

and compiler-based power control.

• We explain when and why each technique is efficient

at limiting the power consumption.

• We examine how different techniques affect each other

when used at the same time.

• We identify the most efficient combination of power

capping mechanisms.

The remainder of this paper is organized as follows. Sec-

tion II describes and explains the power management tech-

niques used in this paper, including two not discussed

before in the literature. Our experimental setup and results

are presented in Sections III and IV respectively. This is

followed in Section V by a discussion over the relative

advantages of each technique and how they can be combined

to enforce power caps in the most efficient way. We close

this paper with some concluding remarks.

II. POWER CAPPING TECHNIQUES

This section gives an overview of seven techniques that

are evaluated in this work.

DVFS: Dynamic Voltage-Frequency Scaling (DVFS)

is the most convenient and commonly used knob for con-

trolling power at the processor level. Using DVFS, perfor-

mance can be increased by using a higher supply voltage

or frequency for hardware components (e.g. processors or

memory) and power consumption can be reduced by de-

creasing the voltage or frequency – often at the cost of

longer application runtime. Earlier works used DVFS mainly

for minimizing energy consumption, but in the last ten years

research has also focused on enforcing power/thermal caps

through DVFS [5], [7], [13], [14]. Typical approaches use

either online heuristics or simple models to find the optimal

frequency without violating the power limit.

DFS: Under dynamic frequency scaling (DFS) run-

time and dynamic power consumption scale linearly with

frequency, while keeping the dynamic energy consumption

roughly constant. While DFS manages to limit the overall

power consumption, it does so inefficiently. In modern inte-

gration technologies dynamic power consumption represents

only a part of the total power consumption, so the power

consumption does not scale down as much as the runtime

scales up, leading to increased energy consumption.

RAPL: Running Average Power Limit (RAPL) is a

management interface provided by Intel processors [11],

which combines automatic DVFS and clock throttling in

order to keep the power consumption of the processor

below a user-defined threshold. RAPL employs an internal

model of energy consumption, to estimate the average power

consumption over a window of time, and uses DVFS to bring

it as close as possible to the power cap and clock throttling to

enforce it precisely. Power can be controlled and measured

in three distinct domains, including the cores and caches,

the entire CPU, or the DRAM.

RAPL improves on plain DVFS in two major ways. First

it integrates power monitoring and control inside the chip,

making it more accurate and faster to identify and adapt to

workload changes. Second, by combining DVFS and clock

throttling, RAPL can provide more performance levels than

DVFS alone and therefore finer management granularity.

Forced Idleness & Thread Packing: Putting cores into

low power idle modes is another way of limiting the power

consumption of a program. Multiple techniques depend on

it indirectly (e.g. [10], [15], [16]) by reducing the CPU

load and enabling the operating system to put some of the

cores into an idle mode. Two mechanisms which employ

sleep modes more directly as a power capping technique are

Forced Idleness [9] and Thread Packing [8]. In the former,

the application is periodically forced to pause execution

causing the whole processor to go into a low power sleep

mode. In the latter, multi-threaded applications are restricted

to run on a subset of the available cores, reducing the

active concurrency and forcing some of the cores in an

idle mode. While offering easily predictable and energy

efficient power/performance scaling, both interfere with the

communication patterns of the application, in the case of

Thread Packing with the communication between threads,

in the case of Forced Idleness with the communication

between the application and other process, including the OS.

Depending on the workload, this can have adverse effects

on the performance, which might limit their usefulness.
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Figure 1. Power consumption vs Execution Time for different compiled
versions of bodytrack from the PARSEC benchmark suite. The line
connects the binaries forming the pareto-optimal front that describes the
optimal trade-offs between runtime and power consumption.



Compiler-based power control: Prior work has shown

that different compiler optimizations can have significantly

different effects on the power consumption of applications,

by e.g. changing the IPC of the application, the instruction

sequences [17], or loop-level code optimization [18], [19].

In this work, we examine whether this behavior can be

exploited in order to enforce power caps. Many of the

proposed methods use analytic models or search to gen-

erate energy-efficient code through changing the compiler

flag (such as the loop unroll factor). In this work, we

implemented a typical compiler-based approach similar to

MILEPost GCC [20], which first generates many different

binaries using different compiler flag settings and then uses

profiling runs to identify the binaries forming the pareto-

optimal front, i.e. the binaries providing different but optimal

trade-offs between performance and power consumption.

As an example, Figure 1 shows 517 unique binaries for

bodytrack. These binaries are generated using over 2,000

different compiler flag options where identical binaries are

removed. The line connecting some of the points is the

pareto-optimal front. This front can vary up to 24.9% for the

execution time and up to 8.6% for the power consumption

for this application. Using this information, a runtime power

capping system can determine which binary to use in order

to reduce the power consumption below the power limit with

as little performance loss as possible.

NOP insertion: Another approach to reducing the

power consumption without explicit hardware support is

inserting redundant NOP instructions into the binary. De-

pending on the underlying architecture, NOP instructions

either insert bubbles into the pipeline or are replaced with

low power instructions. The x86/x86 64 architecture is an

example of the former case, with NOP instruction being

simply removed at the decode stage, which means that they

cause switching activity and power consumption only at

the front-end of the core. By inserting NOP instructions at

compile time, we can thus limit the power consumption.

NOP insertion can be seen as a benchmark of the efficiency

of the compiler-based approach: if it achieves similar trade-

offs between power and performance, then the compiler

reduces power just by executing more instructions, if not,

the compiler changes the binary and its power consumption

in more complex and potentially interesting ways.

III. EXPERIMENTAL SETUP

This section describes the details of the experimental

case studies that we undertook, including the platform and

benchmarks used, the implementation details of the power

capping techniques, and the evaluation methodology.

A. Hardware Platform

We evaluated our approach on a server platform with

one Intel Xeon E5-2650 processor and 64 GB DDR3

RAM. Hyper-threading and Turbo Boost were disabled.

Table I
HARDWARE AND SOFTWARE CONFIGURATIONS

Processor Intel Xeon E5-2650, 8 cores, 32KB/32KB I/D-Cache
per core 2MB L2 cache, 20MB L3 cache

DVFS 2.0GHz Max Frequency (no turbo), 1.2GHz Min Frequency

Memory 64 GB DDR3

O.S. CentOS 6.5 with kernel 2.6.32

Compiler gcc 4.8.2 -march=native

Table II
BENCHMARKS, INPUTS AND RUNTIME/POWER CONSUMPTION UNDER

NO POWER CAP

Benchmark Suite Input Time (sec) Power (W)

kmeans MineBench ”edge” 7 - 15 31.4 - 34.3

x264 PARSEC ”native” 20 - 44 29.5 - 33.6

bodytrack PARSEC ”native” 30 - 36 25.0 - 27.5

blender Blender cornellbox 72 - 79 31.7 - 32.5

DVFS is controlled through the Linux cpufreq module,

while RAPL limits are set using the power_gov program

provided by Intel. On the software side, the server runs

CentOS 6.5 (kernel-2.6.32). We used gcc 4.8 with the best-

found compiler options for compiling C/C++ applications.

A brief overview of the platform’s characteristics is given

in Table I.

B. Benchmarks

We selected the multi-threaded applications among those

suggested by [21] as representatives of typical data center

workloads. These applications include kmeans from the

MineBench suite, the application Blender, and x264 and

bodytrack from PARSEC. We run all benchmarks with

eight threads, one thread per physical core. We used inputs

provided by the benchmark suites that are most similar to

the ones suggested by [21]. Since with these inputs of the

benchmarks can take up to one minute to run, performing

many profiling runs will take unacceptably long time. This

makes it impractical for the compiler-based technique to

construct the pareto-optimal front of power and runtime

(as described in Section II) using these inputs. To mitigate

the problem, we used smaller inputs to search for the most

power-efficient binary for a given performance target instead.

More details about the benchmarks and their inputs can be

found in Table II.

C. Experimental methodology

The aim of this work is to compare the efficiency of

different power control mechanisms: DVFS, DFS, RAPL,

forced idleness, thread packing, compiler-based power con-

trol, and NOP insertion. To achieve this, we executed all

our benchmarks under multiple settings for the control

knobs (detailed in Section III-D) of these mechanisms and

compared the measured runtime and power consumption.

For the comparison between the different techniques to be

clear and fair, we need their highest performance/power state

to be the same. Since for the compiler-based technique that

state is using the fastest binary found during the profiling



Table III
CONTROL MECHANISMS PARAMETERS

DVFS/DFS RAPL Core Idleness NOPs

count (msec)

kmeans 1.2 - 2.0GHz 12-36W 1-8 5-38/50 1 - 512

x264 1.2 - 2.0GHz 12-36W 1-8 5-38/50 1 - 13

bodytrack 1.2 - 2.0GHz 12-32W 1-8 5-38/50 50 - 1000

blender 1.2 - 2.0GHz 12-34W 1-8 5-38/50 1 - 64

runs, we used the fastest binary for all techniques. This

ensures all schemes use the same, highly optimized binary.

We performed energy measurements using ALEA [22],

an in-house energy profiler based on statistical sampling

of power consumption. The profiler operates in user space

and provides fine-grain energy profiling at the granularity

of basic blocks. On our Xeon platform, the profiler in-

terfaces with the RAPL MSRs (Machine Specific Regis-

ters) to perform energy accounting, which gives us fine-

grained, highly-accurate energy information. Runtime mea-

surements were done through the C standard library function

gettimeofday. All measurements on real hardware have

some inherent amount of noise that we have to deal with.

The problem becomes even worse with parallel applica-

tions which often have variable runtime due to the non-

determinism of thread ordering and communication. For this

reason, all our experiments were repeated enough times until

the 95% confidence interval around runtime and power falls

under 0.5% of the expected value, with an upper limit of 80

repeated executions.

D. Control knobs parameters

A brief overview of the parameters of the power control

mechanisms used in our experiments is provided in Table III.

More specifically, the control mechanism parameters are the

following:

DVFS & DFS: Frequency for DVFS ranges from

the maximum frequency without turbo (2.0GHz) to the

minimum (1.2GHz) in steps of 100MHz.

RAPL: The power limit for RAPL varies from the

maximum power consumption observed during the DVFS

experiments down to 12 Watts in steps of 1 Watt. While

RAPL in Sandy Bridge servers monitors three power planes

(Package, PP0 and DRAM), in this work we only control

PP0 which includes the core and the caches.

Forced Idleness & Thread Packing: Idleness was

enforced using a helper program which periodically sent

SIGSTOP and SIGCONT signals to the benchmark process.

The period of the helper’s program main loop was 50

milliseconds and the time spent with the application stopped

during each cycle varied from 5 to 38 milliseconds. For

thread packing, we varied the number of active cores from

one to eight, in steps of one core.

Compiler-based Power Control: We used the binaries

which form the pareto-optimal front in the experiments as

described in Section II. For the search of the pareto-optimal

sets of compiler optimizations, we performed two searches

using a genetic algorithm, one optimizes for execution time,

another optimizes for power.

NOP Insertion: We added various numbers of NOP

instructions in the hot loops of the benchmarks. The number

of NOP instructions was chosen empirically so that the range

of measured runtimes would be close to the range observed

in the DVFS based experiments.

IV. RESULTS

In this section we present the results of our evaluation.

First we compare the efficiency of each mechanism by

investigating the performance slowdown under the same

power budget. Next, we quantify the overhead introduced

by each mechanism. Finally, we examine how predictable

they are in affecting power and performance.

A. Comparison of efficiency

Figure 2 compares the runtime for seven power capping

mechanisms (as described in Section II) under different static

power caps, while Figure 3 focuses on the upper left corner

to better illustrate the differences between the mechanisms

for high power limits. All parameters affecting the power

consumption (e.g. frequency, cores), except for the one used

by each mechanism, are fixed to their default value.

DVFS & DFS: As a commonly used power man-

agement scheme, DVFS is the overall winner in terms

of efficiency. No other mechanism gives faster application

performance within the same power budget when compared

to DVFS. As it can be deduced by comparing DVFS with

DFS, it is voltage scaling which makes DVFS efficient.

Changing the voltage reduces not only the amount of activity

per unit of time like other mechanisms, but also the cost of

each instruction, something that no other mechanism can

achieve. However, DVFS still suffers from two drawbacks:

coarse granularity and limited range. Specifically, on our

experimental setup, DVFS offers only nine distinct operating

points and it cannot reduce the power consumption to less

than 17 Watts. If we need to restrict the power consumption

more than that or we need finer power control, we need to

augment DVFS with other power capping mechanisms.

RAPL: By combining DVFS and clock throttling RAPL

can get the best of both techniques. While the power limit

lies within the range supported by DVFS, RAPL relies mainly

on it alone and achieves similar performance to DVFS.

Outside that range, RAPL is still able to enforce power

caps, even if its efficiency in doing so is much lower. In

some cases, RAPL starts behaving significantly worse than

DVFS for power caps towards the lower end of the DVFS-

supported range. The reason for that is power spikes: while

on average the power consumption stays below the requested

power limit using the lowest voltage-frequency level, the

actual running average fluctuates enough for the power limit

to be violated for long periods of time. As a response,

RAPL introduces, at a cost, clock throttling to limit the
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Figure 2. Power consumption vs Execution Time with various power
control mechanisms for four different benchmarks. Each curve represents
one mechanism. All curves start from the same point on the left side which
represents the case of no power limit. The closer to the start of the axes a
curve, the more energy efficient the mechanism is.

power consumption during the peaks. At the worst case, for

bodytrack, runtime under management with RAPL can be

up to 16.7% higher than under DVFS, while at the best case,

for x264, the additional slowdown never exceeds 10%.

Forced Idleness: As seen in Figure 2 for all bench-

marks except bodytrack forced idleness performs just

slightly worse than DVFS, always within 10% of the runtime

under DVFS. At the same time it produces a much wider

range of enforceable power limits, from 30+ down to a

couple of Watts, and does so with a very fine granularity.

The reason for its efficiency is its high power proportionality.

While most mechanisms offer performance proportional to

the dynamic power consumption, forced idleness scales

proportionally both the dynamic and the static power con-

sumption by switching between the most energy efficient

on state and the lowest power off state, which in our case

consumes about 1 Watt. The only benchmark were forced

idleness fails to achieve that is bodytrack. The reason

for that is that IO requests initiated by the application keep

the processor busy even after the application is stopped. So

while the application process itself is idle, the processor does

not stay idle long enough to enter a power saving sleep

mode. A more sophisticated forced idleness implementation

should be able to deal with this issue, but we wanted to

keep our implementation as simple and close to the original

as possible.
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Figure 3. Detail of the Figure 2 subplots.

Thread Packing: This technique has a similar but

slightly better effect on power over DFS. By leaving whole

cores idle, both the dynamic power consumption and the

performance are almost proportionally affected, similarly to

DFS. For x264, deactivating each core reduces the power

consumption by 2.7 to 3.0 Watts, while performance is

reduced by 12% to 12.6% compared to the case of 8 cores.

How much thread packing can outperform DFS depends on

the scalability of the workload. For example, kmeans does

not scale very well, especially when going from 7 to 8 cores,

so thread packing can limit the power consumption without

a proportional effect on performance.

Compiler-based Power Control: As we see in Figure 3,

the compiler does provide us with some control over the

power consumption, with the range of enforceable power

limits being between 4 Watts for x264 to less than 1 Watt

for blender, but it is not a very efficient way to control

power. For x264 and kmeans the compiler produces a

worse trade-off between performance and power than every

other mechanism and in the case of x264 it is even worse

than just inserting NOP instructions in the benchmark binary.

For blender and bodytrack the results are slightly

better. For the former, changing the power consumption from

32.1 to 31.3 Watts can be achieved with less performance

degradation than DVFS, while for the latter the performance

achieved is similar to that of forced idleness. Overall,

this compiler-based technique can be occasionally useful to

control power, but its narrow range of enforceable power

limits and low efficiency mean that it cannot be used on its



own.
NOP-insertion: Inserting NOP instructions is, as ex-

pected, a very inefficient way to control power. For two of

our benchmarks, blender and kmeans, it fails to reduce

the power consumption at all, while for the other two it

does to a limited degree but with much higher performance

degradation than the other mechanisms examined. Since

NOP instructions are executed without affecting the pro-

cessor’s state or creating dependencies, they just consume

extra energy with little impact on performance and ”useful”

power consumption.

B. Comparison of overhead

It is also important to understand the runtime overhead

of each mechanism as a good scheme should have little

overhead. To do so, we executed x264 while switching

between the highest and the lowest performance state for

each mechanism every 100 milliseconds. Additionally, we

executed the benchmark using the same setup but with

no switching, every 100 milliseconds resetting the same

performance state, either the highest or the lowest, in order

to measure the runtime for those states. By comparing the

runtimes between the case with switching and the cases

with no switching, we can estimate the runtime overhead

introduced by each of the power control mechanisms. For

all cases, we repeated each experiment enough times for the

confidence interval of its runtime to fall below 0.01%.

Figure 4. Delay and Overhead per power/performance state switch for
DVFS, forced idleness, RAPL, thread packing when running x264.

Figure 4 shows the runtime overhead for each mechanism

when running x264. The first bar of each group represents

the delay between initiating a state switch and completing

it, the second represents the runtime overhead introduced

by the power management actions even when they do not

affect the performance state, and the third bar represents the

runtime overhead solely due to state switches.
For DVFS and forced idleness both the switching and the

management overhead are similarly low, 70-90 microsec-

onds for the switching overhead and 550-650 microseconds

for the management overhead. Thread packing has the lowest

delay in changing the state and introduces little management

overhead, but the actual process of continuously preempting

and moving the application’s threads has a high cost, on

average 42 milliseconds per switch. For RAPL we did not

estimate its switching overhead. Its relatively long aver-

age delay (about 120 milliseconds) introduces significant

amounts of noise into the lengths of the high performance

and low performance parts of the 200 milliseconds cycle,

making it impossible to estimate accurately the switching

overhead. Still, since RAPL is based on DVFS and DFS,

we would expect it to have a similarly low switching

overhead. While its non-switching management overhead is

high, almost 4 milliseconds per switch, the actual overhead

in a more realistic scenario should be low: RAPL does not

need software intervention to adapt to changing workloads

or power spikes, which means that software initiated man-

agement actions are very infrequent, only when the power

cap has to change.

C. Predictability of power and performance scaling

For each power capping mechanism, we would like to

determine how performance and power are affected by the

actual value of control knob of the technique and whether

the effect can be easily predicted or not. If the effect is

predictable, that means that we can accurately scale the

power consumption below any given power limit, while

knowing exactly how performance will change. In turn this

allows us to choose which mechanism to use to enforce

a power limit, just by calculating their predicted effect on

performance and choosing the one which hurts it the least,

without having to first measure the effect.

Figure 5 depicts how power consumption and performance

are affected by the control knob of each technique. For RAPL

that knob is the requested power consumption, for DVFS

and DFS it is the frequency, for forced idleness it is the per-

centage of time spent in the active state, for thread packing

is the number of active cores, and for the compiler-based

technique it is the power/performance measured during the

search phase using a different input. Both the x and the y-

axis are normalized to the maximum value of that axis.

1) Power Modeling: Regarding power, for all techniques

except the compiler-based one there is a strong linear

relation between the value of the main power knob of the

technique and the enforced power consumption, with the co-

efficient of determination R
2 ranging from 99.74% to 100%.

Exactly how the scaling of each technique’s main knob

and the scaling of the power consumption are connected

is presented in Table IV. These linear relationships fit well

with how each mechanism affects power. Dynamic power

consumption, which represents 64-65% of the total power

consumption, scales linearly with frequency scaling and core

deactivation, while static power consumption (35-36% of

the total) remains unaffected. DVFS causes the dynamic

power consumption to scale quadratically, but for the limited

range of voltage and frequency levels supported by our

processor the relationship can be modeled as a linear scaling

of the whole power consumption, static and dynamic. Forced

idleness is modeled as a straight line connecting the full-on

power consumption and the power consumption while in

the idle state, 46% of the total for bodytrack, 4% of the



Figure 5. Power knob value vs power consumption (top) and performance (bottom) for all the power control techniques. Both axes are normalized to
their maximum values. Straight lines indicate strong linear correlation between knob value scaling and power/performance scaling.

Table IV
RELATIONSHIP BETWEEN SCALING OF THE CONTROL KNOB VALUE AND

SCALING OF THE POWER CONSUMPTION/PERFORMANCE FOR ALL

MECHANISMS

power performance

DFS 0.64 * knob + 0.36 1.0017 * knob - 0.001

DVFS 1.05 * knob - 0.05 1.0016 * knob - 0.001

RAPL 1.00 * knob - 0.00 1.4707 * knob - 0.385

forced idleness (all) 0.86 * knob + 0.14 0.9991 * knob

forced idleness (bodytrack) 0.54 * knob + 0.46

forced idleness (rest) 0.96 * knob + 0.04

thread packing 0.65 * knob + 0.35 0.9707 * knob + 0.042

compiler-based management low correlation 0.9046 * knob + 0.087

NOP-insertion low correlation low correlation

total for the other benchmarks. And RAPL enforces almost

perfectly the requested power limit, as it was expected.

The compiler-based power management technique does

not behave as orderly. As we see in Figure 5, there is high

correlation between the previously seen power consumption

scaling and the one seen during the evaluation only for

bodytrack and blender. For x264 and kmeans the

power consumption scaling is more unpredictable. This

means that using the compiler to control the power con-

sumption is not straightforward: we have to first determine

how changing the application binary affects the power

consumption, by testing all the binary versions.

In Figure 6 we see in more detail how accurately we can

predict their effect on power. The average error is less than

0.5% (0.16 Watts) and the worst case error less than 1.0%

(0.31 Watts) for DFS, DVFS, and RAPL. Thread packing and

forced idleness have slightly less predictability. The model

for thread packing produces 1.5% average and 3.6% worst

case error, while for forced idleness the error can reach

6.8% on average and 23% in the worst case. The reason for

this behavior is the failure of forced idleness in putting the

processor into a sleep mode, when bodytrack is executed.

As seen in Table IV, for the other three benchmarks the idle

state is a low power sleep state with the power consumption

around 1.2 Watts, but for bodytrack this “idle” state

consumes almost 14 Watts, making it impossible to describe

the effects of forced idleness with a single linear model.

Treating separately bodytrack from the other benchmarks

allows us to predict the scaling of the power consumption

accurately, as seen in the fourth and fifth bar of Figure 6.

Overall, these results mean that it is easy to predict with high

accuracy how DFS, DVFS, RAPL, and thread packing will

affect the power consumption, which allows these technique

to safely enforce power caps. Forced idleness can be more

difficult to use safely.
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Figure 6. Error when modeling the relationship between the power knob
value and the power consumption as linear. The error is normalized to the
maximum power consumption for each benchmark. Boxes cover the area
between the first and third quartiles of the error distribution (Interquartile
Range/IQR). The horizontal line inside the box indicates the median error.
Red dots show the outliers.



2) Performance Modeling: Again most of the mecha-

nisms display a strong linear relation between knob value

and performance scaling, with all of them except RAPL

exhibiting a coefficient of determination between 99.2% to

100%. This is especially true for DFS, DVFS, and forced

idleness which scale performance almost the same as they

scale their knob values (Table IV). Thread packing displays

some non-linearity, mainly for bodytrack and kmeans.

Depending on the communication patterns of the threads,

restricting them on a fewer number of cores might reduce

the communication overheads and therefore cause the impact

on performance to be less than expected. While beneficial,

this also means that it is more difficult to predict accurately

how power capping will affect performance. Compiler-

based management produces better results when predicting

performance compared to predicting power consumption.

Finally, RAPL displays non-linear behavior. While it uses

two mechanisms, DVFS and DFS, with easily predictable

effects on performance, using a higher level control knob,

the power limit, obfuscates this predictability.

Summary: Overall, DFS and DVFS are the two most

predictable power control mechanisms in terms of effects

both on performance and power consumption. Forced idle-

ness is similarly predictable as long as we can determine

whether it will manage to force the processor into a sleep

mode or not. Thread packing exhibits more variability. RAPL

scales the power consumption perfectly, as expected, but its

effects on performance are harder to determine beforehand.

Finally, the compiler-based technique can be unpredictable

in terms of power scaling but its effects on performance are

more easily predicted.

V. IDEAL POWER CAPPING

As we saw in the previous section each power capping

mechanism has its own advantages and disadvantages. DVFS

is clearly the most efficient way to control power but has

limited range of enforceable power limits. As integration

technology scales down, the gap between the supply voltage

and the threshold voltage will continue to narrow, limiting

further the range of power limits enforceable by DVFS.

DFS is fast, fine-grained, and provides a wide range of

enforceable power levels, but is inefficient. RAPL combines

the benefits, but also the drawbacks, of the two techniques:

fast, fine-grained control, but efficient only in the same

range of power limits as DVFS. Forced idleness can be

anything between as efficient as DVFS and as inefficient

as DFS depending on the application, with a wide range

of enforceable power limits. Thread packing behaves better

than DFS and has consistent and predictable effects on

power, but it incurs significant overheads and is not as fine-

grained as the other techniques or as efficient as DVFS,

RAPL, and (usually) forced idleness. Compiler-assisted man-

agement can occasionally outperform DVFS and provide a

wide range of power levels, but usually does not.

A better power capping technique should be able to

combine the benefits of all these mechanisms: fast, fine-

grained, with as little performance degradation as possible,

and predictable. RAPL already does a very good job, failing

only in terms of performance for low power limits, so it

is reasonable to assume that any near optimal technique

could build on top of RAPL (or any similar mechanism).

To deal with low power limits, we can combine it with any

mechanism orthogonal to DVFS, providing low performance

degradation, and able to enforce low power limits. The most

appropriate mechanisms for this task are forced idleness

and thread packing. In the rest of this section, we combine

RAPL with other power capping mechanism and compare

the results of the combined techniques.

RAPL + Forced Idleness/Thread packing: In Figures 7

and 8 we see how combining RAPL and either forced

idleness or thread packing affects performance and power,

with the different curves representing management under

RAPL for different cores counts or time spent paused. For

thread packing, the curves cross each other, their relative

efficiency in controlling power changing as the power limit

changes. For the higher power limits it is almost always

better to use eight threads, meaning that thread packing is

disabled, except for kmeans where using seven instead

of eight threads increases the energy efficiency of the

benchmark. For lower power limits, the optimal number of

cores to use changes steadily towards lower values, until

eventually for power limits below 10-9 Watts packing all

the thread in one core becomes the optimal management

decision. Similarly for forced idleness the optimal ratio of

time spent in the on state changes with the power limit, from

always on for the highest limits to almost always off for the

lowest limits. Again the exception is bodytrack where

forced idleness fails to put the processor into a sleep mode,

which makes disabling forced idleness always preferable.

For both combinations the optimal policy is roughly as

follows: while RAPL power limits are enforced primarily

through DVFS, keep forced idleness and thread packing

disabled, and beyond that use the additional mechanisms

to keep RAPL from using clock throttling.

RAPL + Force Idleness/Thread Packing/Compiler-

based Technique: In Figure 9 we see how combining RAPL

with forced idleness, thread packing, and compiler-based

management compares against RAPL for our evaluation

benchmarks. The x-axis is the power consumption, while the

y-axis is the runtime achieved for this power consumption,

normalized to the runtime under RAPL. The curves represent

the pareto-optimal front of power-runtime points presented

in the previous figures. Almost all mechanisms behave

identically for high power limits, since they use exclusively

DVFS in this range to control power. The exception is

kmeans where, as we saw before, using seven instead of

eight cores is more efficient, so RAPL combined with thread

packing outperforms the other mechanisms. For power limits



Figure 7. Power consumption vs Execution Time for RAPL with thread
packing. Each curve corresponds to a different number of active cores. The
optimal number of cores is decreased as the power limit is reduced.

below those enforced by DVFS, forced idleness usually

outperforms by far all other mechanisms, both in terms of

achievable performance under the same power cap (up to

5x faster than RAPL, up to 72% faster than RAPL + thread

packing) and in terms of lowest enforceable limit (down

to 4-5 Watts). Only for bodytrack do the results differ

with thread packing being more efficient. RAPL combined

with compiler-assisted management behaves almost always

identically to RAPL: with compiler-assisted management

being less efficient than DFS, we prefer to reduce the

power consumption with clock throttling than by using the

compiler. The sole exception is blender. There we manage

to enforce the power limits between 10 and 17 Watts with

less performance degradation than RAPL, in the best case

with up to 21% less runtime.

Best Combined Technique: Overall, RAPL combined

with forced idleness seems to be the best out of the three

combined policies: both of them are fast, low-overhead

mechanisms and they produce the best results for three out

of our four benchmarks. Thread packing is still useful for the

cases where forced idleness does not work as intended or for

the cases where using the maximum number of cores is not

the most energy efficient choice. Considering their relative

advantages and disadvantages, the ideal policy should use

all three mechanisms in complementary roles of different

granularity. Thread packing for infrequent decisions based

on long term power limit trends and maximizing the energy

efficiency, forced idleness for management at the millisecond

scale aiming at keeping RAPL from using clock throttling,

Figure 8. Power consumption vs Execution Time for RAPL combined
with forced idleness for different periods of the application being paused.
For all benchmarks, except bodytrack, the optimal amount of time spent
paused is increased as the power limit decreases.

and finally RAPL enforcing the power limit precisely by

constant monitoring of the power consumption.

Figure 9. Power consumption vs Runtime normalized to the one of
RAPL, for RAPL combined with thread packing, RAPL combined with
compiler-based management,RAPL combined with forced idleness and
RAPL combined with thread packing and forced idleness.

How this policy would fare is presented by the last curve

of Figure 9. As expected the ideal power capping policy



matches the performance of the best mechanism for x264,

bodytrack, and blender. When kmeans is executed,

all three underlying policies help enforce the power limit,

allowing the ideal policy to outperform all the others.

Overall, it manages to limit the power consumption with

up to less 88% slowdown than RAPL, 72% than RAPL with

thread packing, and 83% than RAPL with forced idleness.

VI. CONCLUSIONS

In this paper we systematically examined five prominent

power capping mechanisms and two mechanisms not pre-

viously discussed in the literature, compiler-based power

capping and NOP insertion. Our study investigates not only

the relative efficiency of these mechanisms in enforcing

power limits, but also the predictability of their effects on

performance and power as well as the overheads associated

with each technique. Our results provide valuable insights,

showing that RAPL and DVFS are highly effective and

fast power capping techniques when the desired power

limit is high enough, while forced idleness and thread

packing are usually a better choice for low power limits.

Clock throttling and DFS while widely used, e.g. in RAPL,

are among the worst performing techniques. Alternative

mechanisms, like the compiler-based management or NOP

insertion, are unsuitable as power capping techniques both

in terms of effectiveness and predictability. Overall, the

results presented in this paper suggest that to fully optimize

power capping, we need to use RAPL together with thread

packing and forced idleness, in a coordinated way which

fully exploits their advantages, while minimizing the effects

of their disadvantages.
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