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Abstract

We make a thorough comparison between a
variationally-based learning approach and
exact EM using tractable fixed architecture
tree-structured belief networks, and so gain
valuable insights into learning with mean
field methods. We then introduce discon-
nections into the model showing how they
can be folded into a single structure by
viewing them as degeneracies in the con-
ditional probability tables, and investigate
learning with them. The results suggest
that mean field performs sufficiently well
to be useful in learning in more complex
models where standard approaches are in-
tractable.

1. Introduction

Dynamic Trees (DTs) are a generalisation of the
fixed architecture balanced tree structured belief net-
work (TSBN). The TSBN has has been shown [3, 4]
to be attractive for image segmentation because it is
hierarchically structured, so providing a multi-scale
interpretation of the image. Unlike other standard
techniques — such as Markov Random Fields — TS-
BNs also have efficient inference algorithms [6].

The fixed architecture of balanced TSBNs makes
their segmentation prone to blockiness. DTs pro-

vide a prior over tree structures. Thus the posterior
over tree structures will favour those trees compat-
ible with the structure of a given image; as seen in
[8] this reduces the blockiness problem. Nodes can
also choose to disconnect and form their own tree,
thus allowing objects to be represented. However the
number of possible tree structures in the DT grows
exponentially with tree depth and exact techniques
are no longer tractable. Simulated annealing was
found [8] to provide an effective (though slow) way
of searching for maximum a posteriori (MAP) con-
figurations.

The alternative to sampling is variational methods,
of which mean field is the simplest using a factorised
distribution. In [2] mean field was seen to find com-
parable MAP solutions to annealing in order of 100
times faster, and is also far more informative than
annealing as it attempts to model the full posterior
distribution.

To apply the DT model to useful real world problems
such as the segmentation of images, learning of the
model parameters from data is necessary. The speed
and good performance of mean field methods for in-
ference in the Dynamic Tree makes it an attractive
candidate to base the learning algorithm upon. In
this paper a mean field EM algorithm for learning
in the Dynamic Tree is given. It is applied to the
fixed architecture TSBN network — a special case
of the DT — and contrasted with exact EM which



is tractable in these networks. This provides some
interesting insights into the capabilities of the tech-
nique and is an important step towards learning in
the full DT, currently work in progress.

Section 2 describes exact and mean field EM learn-
ing for the conditional probability tables (CPTs). A
novel way of viewing disconnections in the DT is
then introduced in Section 3 in which they are folded
into a single tree structure, and the results of exper-
iments comparing exact and variational learning in
these models is given in Section 4.

2. Learning in Dynamic Trees
2.1 An EM update for learning the CPTs

The Dynamic tree model is made up of two compo-
nents. A prior P(Z|¢) defines a probability distri-
bution over the tree structure Z and is conditional
on a set of parameters ¢, which are used in its con-
struction and to be learned during training. The
nodes of the network are arranged hierarchically on
layers with the same number on each layer as in a
balanced TSBN of the same complexity. Numbering
these nodes 1...n from top level root to the final leaf
node an n x (n+ 1) connectivity matrix Z is created,
with each element z;; a boolean variable denoting the
connectivity of node i to parent j, or disconnected.

Each node can take on one of C states and P(z%) is
defined as the probability that node i is in state k.
The image vector is instantiated at the leaves of the
tree, X, and all other nodes are hidden units Xy.
The joint distribution for the whole tree P(X, Z),
where X = X, U X, is conditioned on the CPTs
0. These describe the state transition probabilities
between parent and child on connected links. Using
this notation and a training set of p = 1... P pat-
terns, the log likelihood of the data under the model
is given by

log P(X Zlog Z P(XY, XVZ7,0)P(Z"|¢)

p=1 ZP7XP
(1)

Note that the Zs are summed over T tree configu-
rations, and for each there will be a different X,.
Notation for this is omitted for clarity.

To assign each parent-child combination its
own unique CPT would lead to massive over-
parameterisation for the limited training data
usually available, so it was deemed sensible to share

the CPTs among nodes at the same level (scale).
@1 is used to denote the shared CPT for the set of
nodes X7 .

Standard calculus and the use of Lagrange multi-
pliers to ensure that the CPTs are valid probabili-
ties produces the following EM update for the CPT
element f7% representing the transition probability
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The As and 7s are the Pearl messages used to pass
information to a node about the states of its children
and parents respectively [6], and s(z;) is the set of
siblings of node i. This derivation is an extension
of that of [4] used for fixed architecture TSBNs, full
details of which are given in [1].

2.2 Mean Field EM in Dynamic Trees

In the mean field Dynamic Tree [2] the true pos-
terior distribution P(X4, Z|X,,0,¢) is approxi-
mated by a factorised distribution, Q(Xp, Z|X,) =
Q(X1r)Q(Z). This can be used to find a lower bound
on the log-likelihood of the data

logP(X,) > Y Q(X}, 2Z°|X7)
» X3, Z"
P(X?, X}, 2%10, ¢)
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(4)

which can be shown to be tightest when the KL-
divergence between the approximating distribution
and the true posterior is minimised, and suggests an
iterative EM-style algorithm for variational meth-
ods [5]. In the E-step the bound (variational log-
likelihood) is maximised wrt @ holding 6 and ¢ fixed



(by minimising the KL-divergence). Then in the M-
step ( is fixed and the bound is maximised wrt to @
and ¢. For DTs this optimisation gives the following
update rule for the CPTs
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The derivation of the update uses a similar method-
ology to that of exact EM (see [1]), and so it is no
surprise that they are of a similar form.

3. The Disconnecting Tree

The disconnecting tree is an intermediate step be-
tween a single fixed architecture TSBN and the Dy-
namic Tree. In it each node is allowed the choice
of connecting to a single parent (we restrict this to
the natural parent which is the one it would have if
it were part of a balanced TSBN) or being discon-
nected.

In the Dynamic Tree disconnections are modelled by
having a null parent on each layer which a node can
choose to connect to with a particular probability.
This gives excellent interpretability as it is imme-
diately obvious from a node’s indicator vector z;
whether it has disconnected or chosen to connect to a
particular parent, however for learning this presents
a problem. The reason is clear, that for a discon-
necting tree of n nodes with each having the choice
of connecting or disconnecting, then there are 2"~!
distinct configurations (the top level node can only
be a root), which quickly becomes intractable to enu-
merate.

There is an alternative way of handling disconnec-
tions which arises by viewing the prior state vector as
a degenerate CPT made up of identical row vectors
each a copy of the prior. By making the assumption
that any degeneracy in a CPT is a contribution to
the prior then it is possible to fold the prior into the
CPT, and after training exactly recover the prior,
disconnection probability and CPT from the learned
CPT. Defining P; as the prior disconnection proba-
bility for a node, 7 as the prior (a row vector), and
0 the CPT, then we can fold in disconnections using

Beff = (l—Pd)9+Pd17r (6)

to get an effective CPT, .7f. To recover the proba-
bilities after learning use

pd = Z minl (05}1‘) (7)
k

ﬁk = minl (QS}f)/Pd (8)

0 = (0ers — Pali)/(1— Py) 9)

where 1 is a vector of 1s, and 6%} the effective CPT
whose rows index the child state k, and columns the
parent state . Equation (7) extracts the degener-
ate probability component for each child state and
attributes it to the disconnection probability. Equa-
tion (8) finds the normalised ratio of these which is
the prior vector, and in (9) these are weighted by Py
and subtracted from the effective CPT. By folding
in disconnections in this way the disconnecting tree
can be represented in a single structure and learning
then is identical to the fixed architecture TSBN.

4. Experiments

We now wish compare mean field EM learning
against exact EM. We first apply the algorithms to
a fixed architecture TSBN before assessing the effect
of introducing disconnections has on learning. The
theory described in the previous section is for the
most general case, the Dynamic tree, but is read-
ily simplified to each of the above scenarios. For
the fixed architecture tree the Zs are superfluous as
there is only a single structure. In the disconnecting
tree probabilities of disconnection P,,, are assigned
to each node 7 and z; is a binary indicator variable
over the two connectivity states, taking on a 1 for
connection to the parent and zero for disconnection.

In Section 4.1 we evaluate the performance of mean
field EM learning against exact EM on a fixed archi-
tecture balanced TSBN, before seeing how it learns
in the disconnecting tree in Section 4.2.

4.1 Learning in a fixed architecture tree

For the experiments a generative model was used to
provide the training data. It was constructed to be
a 4 level binary tree having binary node states. The
CPTs were set to be 0.9 on diagonal and 0.1 off di-
agonal, with uniform priors for roots. With this ar-
chitecture we have 1-d images of 8 pixels, giving a
maximum of 256 possible image vectors counting re-
flections as different. The training set comprised of
all 256 of these images vectors, each weighted by the



probability of seeing it under the generative model.
Thus we effectively use an infinite training set. This
was done so as to find the best possible performance
that each model can achieve, and so set an upper
bound on what can be realistically achieved in prac-
tice.

-4.28

——  Variational LL
-=-- Log-likelihood
Exact EM

-4.32

-4.34F 4

-4.36 - il

-4.38 —

Average (variational) log likelihood

!

IS

S
T
L

-a.421 B

—4.44 I I I I I I I I
1 2 3 4 5 6 7 8 9 10
Training cycle

(a)

Average (variational) log likelihood

——  Variational LL
-5.1F --- Log-likelihood |
Exact EM

52 L L L L L L L L L L L
10 20 30 40 50 60 70 80 90 100 110 120

Training cycle
(b)
Figure 1. Comparison of mean field with exact EM learn-

ing starting at (a) the generative model, and (b) per-
turbed CPTs of 0.7 on the diagonal.

Experimental runs were performed with both exact
EM and mean field EM for two distinct starting po-
sitions. The first was at the parameters of the gener-
ative model and designed to test the stability of the
algorithms. The second was with CPTs of 0.7 on the
diagonal, some way from the generative model, to as-
sess whether the generative model parameters could
be learned. FEach run was performed for a maxi-
mum of 300 iterations, though in practice all had
converged long before this time. The results are plot-
ted in Figure 1 showing the learning curves prior to

convergence, where the variational log-likelihood and
true log-likelihood of the mean field EM approach
are given by the continuous and dashed lines respec-
tively, and the dotted line is the log-likelihood for
exact EM.

From Figure 1(a) it can be seen that the exact EM
run starting at the generative model does not devi-
ate. This is to be expected as exact EM is working
on the true posterior and will not be able to find
a higher likelihood solution than this given that we
are effectively using an infinite data set so the pos-
terior is exact. For mean field EM the log-likelihood
decreases slightly before stabilising. This would ap-
pear worrisome until it is noted that with variational
methods we are only approximating the true poste-
rior and though it was shown in [2] that mean field
performed rather well, the fact that it uses a fully
factorised distribution whereas the true joint distri-
bution is definitely not fully factorisable makes it far
from perfect. Thus it is not possible to find a Q = P
and reduce the KL-divergence to zero so the M-step
is then optimising with respect to a slightly different
distribution to the true posterior. The VLL which
it is maximising (Equation (4)) does increase as ex-
pected.

Examination of the final learned CPTs of mean field
EM shows them to have remained fairly close with
the worst probability only differing by 0.0334, and
most being significantly less.

Starting perturbed from the generative model can be
seen in Figure 1(b) to produce quite interesting re-
sults. Exact EM again performs as expected, mono-
tonically increasing the log-likelihood until by train-
ing cycle 26 it has recovered the generative model
parameters exactly and can do no better. Ordinar-
ily we would not necessarily expect EM to do so
well, except in the limit of an infinite data set as
we have here. Mean field EM starts off well, but
on cycle 57 we see a dramatic fall in the variational
log-likelihood. For exact EM, the log-likelihood is
guaranteed not to decrease on each iteration, but
we have no such assurance for mean field EM. A
close investigation of the CPTs around this point
show that at cycle 55 the prior on the root has a
probability of P(W hite) = 0.46, so favouring black
states and of the 256 images the means found by
mean field at the root node prefer to be white for
only 81 patterns. In the next step P(W hite) = 0.54
and for 142 of the patterns the root node prefers be-
ing white, but the slight perturbation off the uniform
prior P(W hite) = P(Black) = 0.5 pushes mean field



from its unstable equilibrium of not favouring any
particular state and in the next cycle 255/256 pat-
terns prefer to have a white root node, an example of

spontaneous symmetry breaking well known in mean
field.

After 120 iterations the resultant prior has a
P(White) = 0.91, and at the lower levels the CPT
entry for P(X; = Black|Pa; = Black) is forced to
1 to try to offset this. Prior to cycle 57 the CPTs
were moving towards that of the generative model.
Clearly then it is possible to over-train using mean
field EM even on an infinite data set, and spotting
and stopping training prior to the point of sponta-
neous symmetry breaking could be the answer.

4.2 Learning in the disconnecting tree

Introducing disconnections to the fixed architecture
produces a more interesting model, while folding
them into the CPTs as described in Section 3 al-
lows the 27! configurations to be represented in a
single structure. This makes it tractable to compare
mean field with exact EM, as was done with the fixed
architecture model.

We use the same generative model as in the previous
Section with CPTs of 0.9 on the diagonal and uni-
form node prior. The disconnection probabilities Py
considered will be 0.1, and 0.5. Substituting these
parameters into Equation (6) thus gives an effective
CPT 6.5 for the folded-in model

09 0.1 1
s = a=r (07 0g) + () 05 09).

Equations (7)—(9) can then be used to determine
the set of parameters where all CPT degeneracy
is absorbed into the disconnections. This produces
0 = I, the identity matrix, and & = (0.5,0.5). The
disconnection probabilities P; of 0.1 and 0.5 produce
Py of 0.28 and 0.6 respectively.

Runs were made for mean field keeping the prior and
CPTs distinct! (Standard MF EM), mean field with
CPTs folded in (CPT.;y MF EM) and exact EM
with folded in CPTs (Exact EM), for the two dis-
connection probabilities. Their learning curves are
compared in Figure 2.

Standard mean field EM performs the worst in each
case. This is perhaps not surprising as by keeping

!Unlike the folded-in case we are required to use
the Q(Z) distribution in mean field. The disconnec-
tion probabilities were also fixed to avoid the over-
parameterisation problem.
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Figure 2. Learning of the CPTs from a start CPT of 0.7,
for generative model disconnection probabilities Py of (a)
0.28, and (b) 0.6.

the CPTs and priors distinct gives more degrees of
freedom. Folding in the CPTs greatly improves the
mean field performance, though exact EM is still no-
ticeably better.

An examination of the effective disconnection prob-
abilities found after 40 training cycles is interest-
ing. They were extracted from the final CPTs using
Equation (7) and are given in the table for levels 2 to
the leaves at level 4, for each run performed?. The
prior and CPT associated with each was as for the
generative model.

From the table it can be seen that mean field tends
to choose to make all the upper levels independent
by preferring to disconnect and the structure of the

2The top level contains only the root node which is
permanently disconnected.



Target P; = 0.28
Level | CPT.;y MF | Exact EM

2 1.000 0.281
3 0.991 0.280
4 0.28 0.28

Target P; = 0.6
Level | CPT sy MF | Exact EM

2 1.0 0.797
3 1.0 0.734
4 0.6 0.590

Table 1. Comparison of learned disconnection probabili-
ties from exact and mean field EM approaches for a start
CPT of 0.7, with generative model disconnection proba-
bilities Py of (a) 0.28 and (b) 0.6.

CPTs learned is degenerate. In the lowest level (clos-
est to the data) it recovers the generative model pa-
rameters exactly. This type of behaviour is not re-
ally surprising considering that mean field uses a fac-
torised approximation. Exact EM nearly finds the
generative model for low disconnection probabilities,
but for high disconnections it struggles on the higher
levels, getting progressively worse the further from
the data the parameters are.

5. Discussion

We have seen that an EM style learning algorithm
based upon mean field performs encouragingly in
a comparison with exact EM in fixed architecture
trees, and shows good potential for use in larger
structures where exact EM becomes intractable. Us-
ing small tractable models has enabled us to make
a thorough comparison between the two approaches
and given valuable insights into the capabilities of
mean field EM learning invaluable for future work.
Spontaneous symmetry breaking was seen to be a
weakness of mean field which can affect learning,
but with careful monitoring of training error can be
avoided.

In the disconnecting tree mean field EM finds the
generative model parameters at the level nearest the
data, but higher levels become degenerate. It means
that mean field has collapsed down the hierarchical
model into a single layer as it can still obtain good
log-likelihoods for the toy dataset considered. It was
noted in [2] that mean field driven by its factorised
approximation has a tendency to do this, but for
more complex datasets it made use of higher levels.
A more structured variational approach such as in [7]

could improve this, and is an active area of interest.

Armed with the insights gained by comparing a vari-
ational learning approach with an exact method, and
given the promise it has shown we are currently ex-
tending the work to larger models for real images and
moving on to allowing nodes to choose their own par-
ent with probabilities that we also hope to learn by
the same method. This will complete an implemen-
tation of learning in the full Dynamic Tree model
which it is hoped will make it tractable on real world
images.
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