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Abstract—In this paper a novel photon counting receiver for
optical communication applications is proposed. The proposed
receiver is a single photon avalanche diode (SPAD) array which
can provide a significantly improved detection sensitivity com-
pared to conventional photodiodes. First, the detection statistics
and main characteristics of a single SPAD receiver is presented,
and the effects of the SPAD dead time, which is introduced
by the quenching process, on the counting probability and
effective count rate are studied. The approach is then extended
to account for SPAD arrays. Using a Gaussian approximation,
the counting distribution of a large size SPAD array is derived
and effective count rate of arrays with different sizes is evaluated
and compared. It is found that even in SPAD arrays, dead time
still has a significant role in the maximum achievable count rate,
and the fill factor of the array greatly affects the performance
and count rate and has to be carefully dealt with. The impact of
SPAD background counts and fill factor on the error performance
of an on-off keying (OOK) modulation optical communication
system is also investigated. It is shown that the bit error rate
(BER) depends critically on back ground counts and improves
with increasing fill factor.

Keywords—Single Photon Avalanche Diode (SPAD), SPAD
arrays, photon counting, optical receivers, on-off keying (OOK).

I. INTRODUCTION

Visible light communications (VLC) has recently been
an area of interest, and new devices have been proposed as
potential transmitters and/or receivers for VLC systems. There
has been significant progress towards the realization of optical
receivers fully integrated with the standard digital CMOS
technology. Recent trends towards integrated CMOS high-
speed optical receivers have specially employed avalanche
photodiodes (APDs), but the maximum achievable gain of an
APD is limited due to low sensitivity and the gain-dependent
excess noise. This requires the use of intricate high gain
transimpedance amplifiers (TIAs), limiting amplifiers (LA) and
adaptive equalizers.

To address these challenges, APDs can be used in the
so-called ‘Geiger mode’ as single photon avalanche diodes
(SPADs). In Geiger mode, the SPAD is biased beyond its
breakdown voltage. As a result, due to the high electric field,
the absorption of a single photon will initiate an avalanche
of charge carriers which leads to a large internal gain. The
extremely high gain allows single photon events to be detected
effectively and single-photon detection sensitivity can then be
improved. However, after each photon detection event, the
SPAD needs to be quenched to recover from the excess charge
carriers. This quenching process introduces a finite recovery

time, known as the ‘dead time’, during which the device
does not respond to another incident photon. Two approaches
can be followed to recover the SPAD after a successful
detection: passive quenching and active quenching. In general,
passively quenched circuits show an extended or paralyzable
dead time behavior, whereas active quenching generates a short
constant or nonparalyzable dead time. In a SPAD device with
nonparalyzable deadtime, any photon arriving during the dead
time is neither counted nor has any influence on the dead time
duration; while for the paralyzable case, any photon arrival
occurring during the dead time is not counted but is assumed
to extend the dead time period [1].

Various types of SPADs have been successfully employed
in a number of applications, including three-dimensional imag-
ing [2], quantum key distribution [3], and deep space laser
communications [4]. The high sensitivity and time resolution
of SPADs have recently highlighted the potential of employing
SPADs as photon counting receivers for VLC systems [5]–
[8]. They can be used with the long term aim of power
efficient and highly sensitive receivers and are particularly
attractive because they are able to closely approach quantum-
limited sensitivity in the detection of weak optical signals in
long distance communications, such as in the gas extraction
industry, or in downhole monitoring systems [9].

Nevertheless, to the best of authors’ knowledge, there
is limited published research on the detection statistics of
SPAD receivers in literature. In [10], we presented a thorough
characterization and detailed analysis of detection statistics of
a single SPAD with nonparalyzable dead time, operating as an
optical receiver. In this paper, we extend our previous approach
and characterize an array of SPADs for optical communication
applications. In particular, analytical modelling and simulation
results are provided which predict the performance of a SPAD-
based array receiver. Throughout this paper, a SPAD device
with a nonparalyzable dead time is considered.

The rest of the paper is organized as follows. The photo-
count statistics and count rate of a single SPAD and a SPAD
array are discussed in Section II, and how the count statistics
and effective count rate are affected by SPAD dead time is
explained. An approximate mathematical model for the count
probability of a SPAD array is developed and Monte Carlo
methods are employed to verify the validity of the analytical
models. Furthermore, the major constraints which limit the
achievable count rate of SPAD receivers are addressed. The
mathematical counting distribution of the SPAD array derived
in Section II is then used in Section III to predict the error
performance of an on-off keying (OOK) modulation optical
system. Finally, concluding remarks are given in Section IV.



II. PHOTOCOUNT STATISTICS

A. Single SPAD

1) Probability Mass Function (PMF): In the absence of
SPAD dead time, the detection of photon arrival events can be
modeled as a Poisson arrival process for which the probability
of detecting k photons over a time period of [0, Tb) is given
by:

p0(k;λTb) =
(λTb)

ke−λTb

k!
, (1)

where the constant λ is the average photon arrival rate, hence,
λTb is the average number of photons arriving at the SPAD
during the observation time of Tb seconds. The photocount
rate λ is related to the power of the optical signal by:

λ =
ηQEPs

hν
, (2)

where ηQE is the quantum efficiency of SPAD; Ps denotes the
power of the incident optical signal; h is the Planck’s constant;
and ν represents the frequency of the optical signal.

When the SPAD dead time is considered, however, the
actual count statistics can be very different from the photon
arrival statistics and the photon counts are no longer Poisson
distributed. Any incident photons which arrive after the initial
photon event and before the end of the quenching process,
go undetected. In this study, a SPAD detector with constant
dead time is considered which cannot record counts for a
time interval of fixed duration, τ , immediately following the
registration of a count. It is assumed that SPAD is ready to
operate at the beginning of the counting interval of [0, Tb).
Therefore, the maximum observable count during this period
is kmax = ⌊δ⌋ + 1, where δ = Tb/τ and ⌊x⌋ denotes the
largest integer that is smaller than x. In [10], the detection
statistics of a single SPAD was investigated and it was shown
that the probability of k photons being detected during the
time interval of [0, Tb) is given by [10]:

pK(k) =























k
∑

i=0

ψ(i, λk)−
k−1
∑

i=0

ψ(i, λk−1) k < kmax

1−
k−1
∑

i=0

ψ(i, λk−1) k = kmax

0 k > kmax

(3)

where λk = λ(Tb − kτ), λk−1 = λ(Tb − (k − 1)τ) and the
function ψ(i, λ) is defined as:

ψ(i, λ) =
λie−λ

i!
. (4)

2) First and second moments: The mean and variance of
the photocount distribution in (3) are:

µK = kmax −
kmax−1
∑

k=0

k
∑

i=0

ψ(i, λk), (5)

σ2
K =

kmax−1
∑

k=0

k
∑

i=0

(2kmax − 2k − 1)ψ(i, λk)

−
(

kmax−1
∑

k=0

k
∑

i=0

ψ(i, λk)

)2

.

(6)

Figure 1. Geometry of a SPAD array.

It can readily be verified that as dead time goes to zero,
the PMF in (3) approaches the ideal Poisson distribution. In
such a case, the limiting relations limτ→0 µK = λTb and
limτ→0 σ

2
K = λTb in (5) and (6) can also be confirmed, where

λTb is the mean value of the ideal Poisson distribution.

3) Approximation of PMF for large mean counts: In the
case where the mean count is large, it can be shown that the
count distribution of (3) may be approximated as

pK(k) ≈ ψ(k, λk), (7)

for k ≤ kmax.

4) Effective count rate: In a SPAD-based receiver, back-
ground noise and dead time losses limit the minimum and/or
maximum achievable count rate. While dead time gives re-
strictions on the highest measurable count rate, noise is the
limitation in the low count rate region. The maximum count
rate of commercial SPADs is restricted to a few MHz, due to
the slow recharging process, also called ‘quenching process’,
after a detection event, and it is also affected by afterpulsing,
which is an additional source of counting errors and refers to
avalanche events that originate from the emission of carriers
that were trapped in the multiplication region during previous
avalanche events.

SPADs can be considered as a new generation of Geiger-
Muller (GM) detectors which have been widely studied in
published research [11], [12]. Provided that all the device
characteristics concerning noise and afterpulsing are taken into
account, a SPAD with constant dead time can be treated as
a nonparalyzable GM counter, in which any photon arriving
during the dead time is neither counted nor has any influence
on the dead time duration. According to the nonparalyzable
dead time count rate model, the relationship between the true
counting rate (i.e. photon rate), λ, and the effective count rate
(i.e. observed rate), λ′, is given by [11]:

λ′ =
λ

1 + λτnonp
, (8)

where τnonp is the nonparalyzable dead time. Note that as-
suming a time interval of Tb seconds, the maximum predicted
count rate for the nonparalyzable case would be 1/τnonp,
which is termed ‘saturation count rate’, meaning that a SPAD
is not able to reach count rates higher than this value.



B. SPAD Array

To increase the capacity of the photon counts, an array of
SPADs may be considered which outputs the superposition of
the photon counts from the individual SPADs. Other than the
dead time of the single SPADs, the Fill Factor (FF) of the
SPAD array affects the photocount distribution. FF is defined
as the ratio of the SPAD total active area to the total array area
and it represents the probability that the incoming photons hit
the active area.

Figure 1 illustrates the configuration of a rectangular SPAD
array consisting of R × C single SPADs as the cell element
of the array. The FF coefficient of this array is given by:

CFF =
lw

(l + g)(w + g)
. (9)

Array elements are indexed with the subscripts mn , where
1 ≤ m ≤ R and 1 ≤ n ≤ C, to denote their position within
the array.

1) Probability distribution, mean and variance: In the ab-
sence of dead time, Poisson counting process will be observed
at each element of the array. However, when dead time is
present and the effect of FF is considered, the PMF in (3) can
be rewritten for the mnth element of the array as pK(kmn)
with parameters

kmax,mn =

⌊

Tb
τmn

⌋

+ 1 ,

λ′kmn
= CFFλmn(Tb − kmnτmn) ,

where λmn is the average photon arrival rate at mnth SPAD
and τmn is the dead time of the mnth element.

Assuming independent statistics for each SPAD in the
array, the joint sample function density of the SPAD array
can be described as:

Pr(n) =

R
∏

m=1

C
∏

n=1

pK(kmn), (10)

where n ≡ [k11, k12, ..., kR(C−1), kRC ].

Considering independent random variables, Kmn , as the
number of photon counts at mnth element of the array, a new
random variable can be defined as:

X =

R
∑

m=1

C
∑

n=1

Kmn , (11)

Therefore, the probability distribution of X is expressed as:

pX(x) =
∑

k11

∑

k12

...
∑

kR(C−1)

Pr(n′),
(13)

where n
′ ≡ [k11, k12, ..., kR(C−1), x−

R
∑

m=1

C−1
∑

n=1
kmn ].

It is in general challenging to obtain a closed-form ex-
pression for (13), nevertheless, an approximate expression for
pX(x) can be obtained when the number of array elements is
large. In that case, according to Central Limit Theorem (CLT),
the dead time modified counting distribution of a SPAD array
can be approximated by a Gaussian distribution:

pX(x) ∼ N (µX , σ
2
X), (14)
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Figure 2. Probability distribution of a 64× 64 SPAD array photocounts for
Tb = 1 µs, λ = 3× 107 photon/s, CFF = 0.64 and δ = 0.005.
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Figure 3. Probability distribution of a 64× 64 SPAD array photocounts for
Tb = 1 µs, λ = 3× 107 photon/s, CFF = 0.64 and different values of δ.

where,

µX =

R
∑

m=1

C
∑

n=1

µmn ,

σ2
X =

R
∑

m=1

C
∑

n=1

σ2
mn .

Here, µmn and σ2
mn are the mean and variance of the photo-

count distribution of the mnth SPAD in the array.
The exact counting distribution in (13), calculated using

numerical methods, and the approximate counting distribution
obtained in (14) are plotted in Fig. 2 and compared with the
Monte Carlo simulation results. In Fig. 3, (14) is plotted for
different values of δ = τ/Tb. As shown, the Monte Carlo sim-
ulation results and the Gaussian approximation are perfectly
matched and this confirms the validity of the approximation
approach. Also note that as the dead time increases, both
the mean and variance of the photon counts decrease and
this is in total agreement with the analytical approximations.
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effective count rate of different SPAD arrays with CFF = 0.64 for various
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Furthermore, note that throughout this paper, in all simulation
results, practical values for SPAD parameters are assumed
which are all adoped from [6] and [7].

2) Effective count rate: For a SPAD array, the achievable
count rate is expected to be improved as the number of array
elements increases. Assuming identical array elements and
constant photon arrival rate, the nonparalyzable count rate
model in (8) can be modified for a SPAD array of size R×C
elements as:

λ′ =
λRC

1 + λτnonp
, (15)

The comparison between the Monte Carlo simulations and the
above dead time modified count rate model for a SPAD array,
is given in Fig. 4 where the observed count rate for arrays of
different sizes are compared. According to these curves, the
saturation count rates are scaled by the size of array compared
to a single SPAD. Also note that the dead time has a significant
effect on the maximum achievable count rate and it determines
the saturation level of the count rate.

III. PERFORMANCE EVALUATION

SPADs can be used as photon counting receivers in optical
communication systems. In a photon counting receiver the
dominant noise source is the background counts which mainly
arises from dark counts, afterpulsing and ambient light, and
will determine the achievable BER. However, the dead time is
another limiting factor for the performance of any SPAD-based
receiver. In the following, the effect of background counts and
the dead time on the performance of a SPAD-based receiver is
investigated and the bit error probability for OOK modulation
is provided.

In OOK modulation each bit is transmitted by either
pulsing the light source on or off during each bit time interval,
say Tb seconds duration, so that one data bit is sent every Tb
seconds. Hence the system transmits at the bit rate Rb = 1/Tb.

Assuming λs and λn as the average photon arrival rates
from source and background noise, respectively, Ks = λsTb
and Kn = λnTb are the contributions to the average count
from the signal and background noise counts per bit interval
Tb for each array element. When a “0” bit is transmitted, the
average number of photons impinged on each single SPAD per
bit time interval is Kn, and when a “1” bit is transmitted, the
average number of received photons per bit time interval is
Ks +Kn. Therefore, according to (13), p0(x) and p1(x), the
probability that exactly x photons are counted by the SPAD
array in the counting interval of Tb seconds, when “0” or “1”
are sent, respectively, are given by:

p0(x) = pX(x;λn) ,

p1(x) = pX(x;λs + λn) .
(16)

In this system, decoding is simply achieved by a threshold
comparison. The number of counted photons is compared with
a threshold xT. A decoding error will occur if x ≤ xT when
a “1” bit is sent, or if x > xT, when a “0” bit is sent. Hence
the probability of error for equally likely bits is [13]:

Pe =
1

2
Pr {x > xT|0}+

1

2
Pr {x ≤ xT|1} . (17)

Considering the count probabilities in (16):

Pe =
1

2

∞
∑

x=xT+1

p0 (x) +
1

2

xT
∑

x=0

p1 (x) . (18)

In order to calculate the probability of error in (18), the
Gaussian approximation in (14) can be applied to p0(x) and
p1(x) so that p0(x) ∼ N (µ0, σ

2
0) and p1(x) ∼ N (µ1, σ

2
1).

Note that the array size is assumed to be sufficiently large,
hence, this approximation is valid. Therefore, Pe can be
approximated as:

Pe
∼= 1

2

∫

∞

xT

p0(x) dx +
1

2

∫ xT

0

p1(x) dx

=
1

2
Q

(

xT − µ0

σ0

)

+
1

2
Q

(

µ1 − xT
σ1

)

.

(19)

where, Q(x) = 1/
√
2π
∫

∞

x
exp(−α2/2) dα is the Q-function.

The error probability, Pe, highly depends on xT which can be
selected to yield the lowest probability of occurring an error.
This occurs at the value of xT where dPe/dxT = 0. It can
be shown that the threshold value xT which minimizes Pe is
given by (20) which can be further approximated as:

xT =
µ1σ0 + µ0σ1
σ0 + σ1

. (21)

When this threshold is used, the resulting Pe in (19) is
simplified to:

Pe
∼= Q

(

µ1 − µ0

σ1 + σ0

)

. (22)

xT =

µ0

σ2
0
− µ1

σ2
1
+

√

(

µ0

σ2
0
− µ1

σ2
1

)2

−
(

1
σ2
0
− 1

σ2
1

){(

µ2
0

σ2
0
− µ2

1

σ2
1

)

+2 ln
(

σ0

σ1

)}

1
σ2
0
− 1

σ2
1

, (20)
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Figure 5. Analytical (solid curves) and simulation (asterisks) BER results of a
64×64 SPAD array receiver for different values of CFF and Kn (Tb = 1 µs
and τ = 1 ns).

Note that with the assumption of a Gaussian distribution,
Pe depends only on the difference of the photodetected mean
values. Thus any contribution to both means, such as from
dark current or background noise, would not effect the µ1−µ0

term, these will however contribute to the variances. Defining
the signal-to-noise-ratio (SNR) as:

SNR =
(µ1 − µ0)

2

(σ1 + σ0)
2 (23)

Pe can also be written as:

Pe = Q
(√

SNR
)

. (24)

The probability of error given in (22) is evaluated and
compared with simulation results in Fig. 5, using the threshold
obtained in (21). Independent count statistics are assumed for
each transmitted bit, and it is assumed that the array elements
are identical and Tb = 1 µs. In this figure, BER is plotted
as a function of Ks for different values of Kn and CFF. As
shown, Monte Carlo simulations and analytical models result
in perfectly matching curves. Also note that the threshold
depends on the average number of received photons from
both the source and background noise, and this highlights a
technical challenge with the OOK system, as λs and λn must
be known exactly to optimally set the threshold.

According to this figure, it can also be concluded that
the array FF has an important role in the performance of a
SPAD-based array receiver where the increase in the array FF
improves the system performance.

IV. CONCLUSION

In this paper, a comprehensive study of SPAD-based op-
tical receivers is conducted. The detection statistics and main
characteristics of single SPAD and SPAD array receivers are
discussed and it is shown that, the counting distribution of a
large size SPAD array can be well approximated by Gaussian
distribution. The effects of SPAD dead time and array fill
factor on the photon counting process and the maximum
achievable count rate is also investigated. In addition, the

error performance of an OOK modulation optical system is
studied and it is concluded that as the background counts
increase, a higher signal power is needed to maintain the
system performance.
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