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Abstract

We construct a biologically motivated stochastic differential model of the neu-
ral and hemodynamic activity underlying the observed Blood Oxygen Level De-
pendent (BOLD) signal in Functional Magnetic Resonance Imaging (fMRI). The
model poses a difficult parameter estimation problem, both theoretically due to the
nonlinearity and divergence of the differential system, and computationally due to
its time and space complexity. We adapt a particle filter and smoother to the task,
and discuss some of the practical approaches used to tackle the difficulties, includ-
ing use of sparse matrices and parallelisation. Results demonstrate the tractability
of the approach in its application to an effective connectivity study.

1 Introduction
Functional Magnetic Resonance Imaging (fMRI) poses a large-scale, noisy and altogether difficult
problem for machine learning algorithms. The Blood Oxygen Level Dependent (BOLD) signal,
from which fMR images are produced, is a measure of hemodynamic activity in the brain – only an
indirect indicator of the neural processes which are of primary interest in most cases.

For studies of higher level patterns of activity, such as effective connectivity [1], it becomes neces-
sary to strip away the hemodynamic activity to reveal the underlying neural interactions. In the first
instance, this is because interactions between regions at the neural level are not necessarily evident at
the hemodynamic level [2]. In the second, analyses increasingly benefit from the temporal qualities
of the data, and the hemodynamic response itself is a form of temporal blurring.

We are interested in the application of machine learning techniques to reveal meaningful patterns
of neural activity from fMRI. In this paper we construct a model of the processes underlying the
BOLD signal that is suitable for use in a filtering framework. The model proposed is close to that
of Dynamic Causal Modelling (DCM) [3]. The main innovation over these deterministic models is
the incorporation of stochasticity at all levels of the system. This is important; under fixed inputs,
DCM reduces to a generative model with steady state equilibrium BOLD activity and independent
noise at each time point. Incorporating stochasticity allows proper statistical characterisation of the
dependence between brain regions, rather than relying on relating decay rates1.

Our work has involved applying a number of filtering techniques to estimate the parameters of
the model, most notably the Unscented Kalman Filter [4] and various particle filtering techniques.
This paper presents the application of a simple particle filter. [5] take a similar filtering approach,
applying a local linearisation filter [6] to a model of individual regions. In contrast, the approach
here is applied to multiple regions and their interactions, not single regions in isolation.

Other approaches to this type of problem are worth noting. Perhaps the most commonly used tech-
nique to date is Structural Equation Modelling (SEM) [7; 8] (e.g. [9; 10; 11]). SEM is a multivariate

1A good analogy is the fundamental difference between modelling time series data yt using an exponentially
decaying curve with observational noise xt = axt−1+c, yt = xt +εt, and using a much more flexible Kalman
filter xt = axt−1 + c + ωt, yt = xt + εt (where xt is a latent variable, a a decay constant, c a constant and ε
and ω Gaussian variables).
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regression technique where each dependent variable may be a linear combination of both indepen-
dent and other dependent variables. Its major limitation is that it is static, assuming that all observa-
tions are temporally independent and that interactions are immediate and wholly evident within each
single observation. Furthermore, it does not distinguish between neural and hemodynamic activity,
and in essence identifies interactions only at the hemodynamic level.

The major contributions of this paper are establishing a stochastic model of latent neural and hemo-
dynamic activity, formulating a filtering and smoothing approach for inference in this model, and
overcoming the basic practical difficulties associated with this. The estimated neural activity relates
to the domain problem and is temporally consistent with the stimulus. The approach is also able to
establish connectivity relationships.

The ability of this model to establish such connectivity relationships on the basis of stochastic tem-
poral relationships is significant. One problem in using structural equation models for effective
connectivity analysis is the statistical equivalence of different causal models. By presuming a tem-
poral causal order, temporal models of this form have no such equivalence problems. Any small
amount of temporal connectivity information available in fMRI data is of significant benefit, as it
can disambiguate between statically equivalent models.

Section 2 outlines the basis of the hemodynamic model that is used. This is combined with neural,
input and measurement models in Section 3 to give the full framework. Inference and parameter
estimation are discussed in Section 4, before experiments and analysis in Sections 5 and 6.

2 Hemodynamics
Temporal analysis of fMRI is significantly confounded by the fact that it does not measure brain
activity directly, but instead via hemodynamic activity, which (crudely) temporally smooths the
activity signal. The quality of temporal analysis therefore depends significantly on the quality of
model used to relate neural and hemodynamic activity.

This relationship may be described using the now well established Balloon model [12]. This models
a venous compartment as a balloon using Windkessel dynamics. The state of the compartment is
represented by its blood volume normalised to the volume at rest, v = V/V0 (blood volume V , rest
volume V0), and deoxyhemoglobin (dHb) content normalised to the content at rest, q = Q/Q0 (dHb
content Q, rest content Q0). The compartment receives inflow of fully oxygenated arterial blood
fin(t), extracts oxygen from the blood, and expels partially deoxygenated blood fout(t). The full
dynamics may be represented by the differential system:

dq

dt
=

1
τ0

[
fin(t)

E(t)
E0

− fout(v)
q

v

]
(1)

dv

dt
=

1
τ0

[fin(t)− fout(v)] (2)

E(t) ≈ 1− (1− E0)
1

fin(t) (3)

fout(v) ≈ v
1
α (4)

where τ0 and α are constants, and E0 is the oxygen extraction fraction at rest.

This base model is driven by the independent input fin(t). It may be further extended to couple in
neural activity z(t) via an abstract vasodilatory signal s [13]:

df

dt
= s (5)

ds

dt
= εz(t)− s

τs
− (f − 1)

τf
. (6)

The complete system defined by Equations 1-6, with fin(t) = f , is now driven by the independent
input z(t). From the balloon model, the relative BOLD signal change over the baseline S at any
time may be predicted using [12]:

∆S
S

= V0

[
k1(1− q) + k2

(
1− q

v

)
+ k3(1− v)

]
. (7)

Figure 1 illustrates the system dynamics. Nominal values for constants are given in Table 1.
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Figure 1: Response of the balloon model to a 1s burst of neural activity at magnitude 1 (time on x
axis, response on y axis).

3 Model
We define a model of the neural and hemodynamic interactions between M regions of interest. A
region consists of neural tissue and a venous compartment. The state xi(t) of region i at time t is
given by:

xi(t) =





zi(t) neural activity
fi(t) normalised blood flow into the venous compartment
si(t) vasodilatory signal
qi(t) normalised dHb content of the venous compartment
vi(t) normalised blood volume of the venous compartment

The complete state at time t is given by x(t) = (x1(t)T , . . . ,xM (t)T )T .

We construct a model of the interactions between regions in four parts – the input model, the neural
model, the hemodynamic model and the measurement model.

3.1 Input model
The input model represents the stimulus associated with the experimental task during an fMRI ses-
sion. In general this is a function u(t) with U dimensions. For a simple block design paradigm a
one-dimensional box-car function is sufficient.

3.2 Neural model
Neural interactions between the regions are given by:

dz = Az dt+ Cu dt+ c + Σz dW, (8)

where dW is the M -dimensional standard (zero mean, unit variance) Wiener process, A an M ×M
matrix of efficacies between regions, C an M × U matrix of efficacies between inputs and regions,
c an M -dimensional vector of constant terms and Σz an M ×M diagonal diffusion matrix with
σz1 , . . . , σzM

along the diagonal.

This is similar to the deterministic neural model of DCM expressed as a stochastic differential equa-
tion, but excludes the bilinear components allowing modulation of connections between seeds. In
theory these can be added, we simply limit ourselves to a simpler model for this early work. In
addition, and unlike DCM, nonlinear interactions between regions could also be included to account
for modulatory activity. Again it seems sensible to keep the simplest linear case at this stage of
the work, but the potential for nonlinear generalisation is one of the longer term benefits of this
approach.

3.3 Hemodynamic model
Within each region, the variables fi, si, qi, vi and zi interact according to a stochastic extension of
the balloon model (c.f. Equations 1-6). It is assumed that regions are sufficiently separate that their

Constant τ0 τf τs α ε V0 E0 k1 k2 k3

Value 0.98 1/0.65 1/0.41 0.32 0.8 0.018 0.4 7E0 2 2E0 − 0.2

Table 1: Nominal values for constants of the balloon model [12; 13].
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hemodynamic activity is independent given neural activity[14]. Noise in the form of the Wiener
process is introduced to si and the log space of fi, qi and vi, in the latter three cases to ensure
positivity:

d ln fi =
1
fi
si dt+ σfi dW (9)

dsi =
[
εzi − s

τs
− (f − 1)

τf

]
dt+ σsi dW (10)

d ln qi =
1
qiτ0

[
fi

1− (1− E0)
1
fi

E0
− v

1
α−1
i qi

]
dt+ σqi dW (11)

d ln vi =
1
viτ0

[
fi − v

1
α
i

]
dt+ σvi dW. (12)

3.4 Measurement model
The relative BOLD signal change at any time for a particular region is given by (c.f. Equation 7):

∆yi = V0

[
k1(1− qi) + k2

(
1− qi

vi

)
+ k3(1− vi)

]
. (13)

This may be converted to an absolute measurement y∗i for comparison with actual observations by
using the baseline signal bi for each seed and an independent noise source ξ ∼ N (0, 1):

y∗i = bi(1 + ∆yi) + σyiξ. (14)

4 Estimation
The model is completely defined by Equations 8 to 14. This fits nicely into a filtering framework,
whereby the input, neural and hemodynamic models define state transitions, and the measurement
model predicted observations. For i = 1, . . . ,M , σzi , σfi , σsi , σqi and σvi define the system noise
and σyi the measurement noise. Parameters to estimate are the elements of A, C, c and b.

For a sequence of time points t1, . . . , tT , we are given observations y(t1), . . . ,y(tT ), where
y(t) = (y1(t), . . . , yM (t))T . We seek to exploit the data as much as possible by estimating
P (x(tn) |y(t1), . . . ,y(tT )) for n = 1, . . . , T – the distribution over the state at each time point
given all the data.

Because of non-Gaussianity and nonlinearity of the transitions and measurements, a two-pass parti-
cle filter is proposed to solve the problem. The forward pass is performed using a sequential impor-
tance resampling technique similar to CONDENSATION [15], obtaining P (x(tn) |y(t1), . . . ,y(tn))
for n = 1, . . . , T . Resampling at each step is handled using a deterministic resampling method [16].
The transition of particles through the differential system uses a 4th/5th order Runge-Kutta-Fehlberg
method, the adaptive step size maintaining fixed error bounds.

The backwards pass is substantially more difficult. Naively, we can simply negate the derivatives of
the differential system and step backwards to obtain P (x(tn) |y(tn+1), . . . ,y(tT )), then fuse these
with the results of the forwards pass to obtain the desired posterior. Unfortunately, such a backwards
model is divergent in q and v, so that the accumulated numerical errors of the Runge-Kutta can
easily cause an explosion to implausible values and a tip-toe adaptive step size to maintain error
bounds. This can be mitigated by tightening the error bounds, but the task becomes computationally
prohibitive well before the system is tamed.

An alternative is a two-pass smoother that reuses particles from the forwards pass [17], reweighting
them on the backwards pass so that no explicit backwards dynamics are required. This sidesteps the
divergence issue completely, but is computationally and spatially expensive and requires computa-
tion of p(x(tn) = s(i)

tn
|x(tn−1) = s(j)

tn−1
) for particular particles s(i)

tn
and s(j)

tn−1
. This imposes some

limitations, but is nevertheless the method used here.

The forwards pass provides a weighted sample set {(s(i)
t , π

(i)
t )} at each time point t = t1, . . . , tT

for i = 1, . . . , P . Initialising with ψtT
= πtT

, the backwards step to calculate weights at time tn is
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as follows [17]2:

α
(i,j)
tn

= p(x(tn+1) = s(i)
tn+1

|x(tn) = s(j)
tn

) for i, j = 1, . . . , P
γtn = αtnπtn

δtn = αT
tn

(ψtn+1 ® γtn) where® is element-wise division,
ψtn = πtn ⊗ δtn where⊗ is element-wise multiplication.

These are then normalised so that
∑
ψ

(i)
tn

= 1 and the smoothed result {(s(i)
tn
, ψ

(i)
tn

)} for i = 1, . . . , P
is stored.

There are numerous means of propagating particles through the forwards pass that accommodate the
resampling step and propagation of the Wiener noise through the nonlinearity. These include var-
ious stochastic Runge-Kutta methods, the Unscented Transformation [4] or a simple Euler scheme
using fixed time steps and adding an appropriate portion of noise after each step. The requirement to
efficiently make P 2 density calculations of p(x(tn+1) = s(i)

tn+1
|x(tn) = s(j)

tn
) during the backwards

pass is challenging with such approaches, however. To keep things simple, we instead simply prop-
agate particles noiselessly through the transition function, and add noise from the Wiener process
only at times t1, . . . , tT as if the transition were linear. This reasonably approximates the noise of
the system while keeping the density calculations very simple – transition s(j)

tn
noiselessly to obtain

the mean value of a Gaussian with covariance equal to that of the system noise, then calculate the
density of this Gaussian at s(i)

tn+1
.

Observe that if system noise is sufficiently tight, αtn becomes sparse as negligibly small densities
round to zero. Implementing αtn as a sparse matrix can provide significant time and space savings.

Propagation of particles through the transition function and density calculations can be performed
in parallel. This applies during both passes. For the backwards pass, each particle at tn need only
be transitioned once to produce a Gaussian from which the density of all particles at tn+1 can be
calculated, filling in one column of αtn .

Finally, the parameters A, C, c and b may be estimated by adding them to the state with artificial
dynamics (c.f. [18]), applying a broad prior and small system noise to suggest that they are generally
constant. The same applies to parameters of the balloon model, which may be included to allow
variation in the hemodynamic response across the brain.

5 Experiments
We apply the model to data collected during a simple finger tapping exercise. Using a Siemens
Vision at 2T with a TR of 4.1s, a healthy 23-year-old right-handed male was scanned on 33 separate
days over a period of two months. In each session, 80 whole volumes were taken, with the first
two discarded to account for T1 saturation effects. The experimental paradigm consists of alternat-
ing 6TR blocks of rest and tapping of the right index finger at 1.5Hz, where tapping frequency is
provided by a constant audio cue, present during both rest and tapping phases.

All scans across all sessions were realigned using SPM5 [19] and a two-level random effects analysis
performed, from which 13 voxels were selected to represent regions of interest. No smoothing or
normalisation was applied to the data. Of the 13 voxels, four are selected for use in this experiment
– located in the left posterior parietal cortex, left M1, left S1 and left premotor cortex. The mean
of all sessions is used as the measurement y(t), which consists of M = 4 elements, one for each
region.

We set t1 = 1TR = 4.1s, . . . , tT = 78TR = 319.8s as the sequence of times, corresponding to
the times at which measurements are taken after realignment. The experimental input function u(t)
is plotted in Figure 2, taking a value of 0 at rest and 1 during tapping. The error bounds on the
Runge-Kutta are set to 10−4. Measurement noise is set to σyi

= 2 for i = 1, . . . ,M and the prior
and system noise as in Table 2. With the elements of A, C, c and b included in the state, the state
size is 48. P = 106 particles are used for the forwards pass, downsampling to 2.5 × 104 particles
for the more expensive backwards pass.

2We have expressed this in matrix notation rather than the original notation in [17]
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Figure 2: Experimental input u(t), x axis is
time t expressed in TRs.
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Figure 3: Number of nonzero elements in αtn

for n = 1, . . . , 77.

Prior Noise
µ σ σ

Ai,i i = 1, . . . , N −1 1/2 10−2

Ai,j i, j = 1, . . . , N , i 6= j 0 1/2 10−2

Ci,1 i = 1, . . . , N 0 1/2 10−2

zi i = 1, . . . , N 0 1/2 10−1

fi, si, qi, vi, ci i = 1, . . . , N 0 1/2 10−2

bi i = 1, . . . , N ȳi 10 10−2

Table 2: Prior and system noise.

The experiment is run on the Eddie cluster of the Edinburgh Compute and Data Facility (ECDF) 3

over 200 nodes, taking approximately 10 minutes real time. The particle filter and smoother are
distributed across nodes and run in parallel using the dysii Dynamic Systems Library 4.

After application of the filter, the predicted neural activity is given in Figure 4 and parameter esti-
mates in Figures 6 and 7. The predicted output obtained from the model is in Figure 5, where it is
compared to actual measurements acquired during the experiment to assess model fit.

6 Discussion
The model captures the expected underlying form for neural activity, with all regions distinctly
correlated with the experimental stimulus. Parameter estimates are generally constant throughout
the length of the experiment and some efficacies are significant enough in magnitude to provide
biological insight. The parameters found typically match those expected for this form of finger
tapping task. However, as the focus of this paper is the development of the filtering approach we
will reserve a real analysis of the results for a future paper, and focus on the issues surrounding the
filter and its capabilities and deficiencies. A number of points are worth making in this regard.

Particles stored during the forwards pass do not necessarily support the distributions obtained during
the backwards pass. This is particularly obvious towards the extreme left of Figure 4, where the
smoothed results appear to become erratic, essentially due to degeneracy in the backwards pass.
Furthermore, while the smooth weighting of particles in the forwards pass is informative, that of
the backwards pass is often not, potentially relying on heavy weighting of outlying particles and
shedding little light on the actual nature of the distributions involved.

Figure 3 provides empirical results as to the sparseness of αtn
. At worst at least 25% of elements

are zero, demonstrating the advantages of a sparse matrix implementation in this case.

The particle filter is able to establish consistent neural activity and parameter estimates across runs.
These estimates also come with distributions in the form of weighted sample sets which enable the
uncertainty of the estimates to be understood. This certainly shows the stochastic model and particle
filter to be a promising approach for systematic connectivity analysis.

3http://www.is.ed.ac.uk/ecdf/
4http://www.indii.org/software/dysii/

6



 0

 0.14

-1

 0

 1

 0

 0.14

-1

 0

 1

 0

 0.14

-1

 0

 1

 0

 0.14

 0  319.8

-1

 0

 1

Figure 4: Neural activity predictions z (y axis)
over time (x axis). Forwards pass results as
shaded histogram, smoothed results as solid line
with 2σ error.
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Figure 5: Measurement predictions y∗ (y axis)
over time (x axis). Forwards pass results as
shaded histogram, smoothed results as solid line
with 2σ error, circles actual measurements.
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Figure 6: Parameter estimates A (y axis) over time (x axis). Forwards pass results as shaded his-
togram, smoothed results as solid line with 2σ error.

The authors would like to thank David McGonigle for helpful discussions and detailed information
regarding the data set.
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Figure 7: Parameter estimates of C (y axis) over time (x axis). Forwards pass results as shaded
histogram, smoothed results as solid line with 2σ error.
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