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Abstract. We consider a generic convex-concave saddle point problem
with a separable structure, a form that covers a wide-ranged machine
learning applications. Under this problem structure, we follow the frame-
work of primal-dual updates for saddle point problems, and incorpo-
rate stochastic block coordinate descent with adaptive stepsizes into this
framework. We theoretically show that our proposal of adaptive stepsizes
potentially achieves a sharper linear convergence rate compared with the
existing methods. Additionally, since we can select “mini-batch” of block
coordinates to update, our method is also amenable to parallel process-
ing for large-scale data. We apply the proposed method to regularized
empirical risk minimization and show that it performs comparably or,
more often, better than state-of-the-art methods on both synthetic and
real-world data sets.

Keywords: large-scale optimization, parallel optimization, stochastic
coordinate descent, convex-concave saddle point problems

1 Introduction

The generic convex-concave saddle point problem is written as

min
x∈Rd

max
y∈Rq

{L(x,y) = g(x) + 〈x,Ky〉 − φ∗(y)} , (1)

where g(x) is a proper convex function, φ∗(·) is the convex conjugate of a convex
function φ(·), and matrix K ∈ Rd×q. Many machine learning tasks reduce to
solving a problem of this form [6, 3]. As a result, this saddle problem has been
widely studied [16, 14, 2, 1, 4, 5].

One important subclass of the general convex concave saddle point problem
is where g(x) or φ∗(y) exhibits an additive separable structure. We say φ∗(y)
is separable when φ∗(y) = 1

n

∑n
i=1 φ

∗
i (yi), with yi ∈ Rqi , and

∑n
i=1 qi = q.

Separability for g(·) is defined likewise. To keep the consistent notation for the
machine learning applications discussed later, we introduce matrix A and let
K = 1

nA. Then we partition matrix A into n column blocks Ai ∈ Rd×qi , i =
1, . . . , n, and Ky = 1

n

∑n
i=1 Aiyi, resulting in a problem of the form

min
x∈Rd

max
y∈Rq

{
L(x,y) = g(x) +

1
n

n∑
i=1

(〈x,Aiyi〉 − φ∗i (yi))

}
(2)
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for φ∗(·) separable. We call any problem of the form (1) where g(·) or φ∗(·)
has separable structure, a Separable Convex Concave Saddle Point (Sep-CCSP)
problem. Eq. (2) gives the explicit form for when φ∗(·) is separable.

In this work, we further assume that each φ∗i (yi) is γ-strongly convex, and
g(x) is λ-strongly convex, i.e.,

φ∗i (y
′
i) ≥ φ∗i (yi) +∇φ∗(yi)T (y′i − yi) +

γ

2
‖y′i − yi‖22, ∀yi,y′i ∈ Rqi

g(x′) ≥ g(x) +∇g(x)T (x′ − x) +
λ

2
‖x′i − xi‖22, ∀x,x′ ∈ Rd,

where we use ∇ to denote both the gradient for smooth function and subgradient
for non-smooth function. When the strong convexity cannot be satisfied, a small
strongly convex perturbation can be added to make the problem satisfy the
assumption [15].

One important instantiation of the Sep-CCSP problem in machine learning
is the regularized empirical risk minimization (ERM, [3]) of linear predictors,

min
x∈Rd

{
J(x) =

1
n

n∑
i=1

φi(aTi x) + g(x)

}
, (3)

where a1, . . . ,an ∈ Rd are the feature vectors of n data samples, φi(·) corre-
sponds the convex loss function w.r.t. the linear predictor aTi x, and g(x) is a
convex regularization term. Many practical classification and regression mod-
els fall into this regularized ERM formulation, such as linear support vector
machine (SVM), regularized logistic regression and ridge regression, see [3] for
more details.

Reformulating the above regularized ERM by employing conjugate dual of
the function φi(·), i.e.

φ∗i (a
T
i x) = max

yi∈R
〈x, yiai〉 − φ∗i (yi), (4)

leads directly to the following Sep-CCSP problem

min
x∈Rd

max
y∈Rn

g(x) +
1
n

n∑
i=1

(〈x, yiai〉 − φ∗i (yi)) . (5)

Comparing with the general form, we note that the matrix Ai in (2) is now a
vector ai. For solving the general saddle point problem (1), many primal-dual
algorithms can be applied, such as [16, 2, 1, 4, 5]. In addition, the saddle point
problem we consider can also be formulated as a composite function minimiza-
tion problem and then solved by Alternating Direction Method of Multipliers
(ADMM) methods [9].

To handle the Sep-CCSP problem particularly for regularized ERM problem
(5), Zhang and Xiao [15] proposed a stochastic primal-dual coordinate descent
(SPDC) method. SPDC applies stochastic coordinate descent method [8, 11, 10]
into the primal-dual framework, where in each iteration a random subset of dual
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coordinates are updated. This method inherits the efficiency of stochastic coor-
dinate descent for solving large-scale problems. However, they use a conservative
constant stepsize during the primal-dual updates, which leads to an unsatisfying
convergence rate especially for unnormalized data.

In this work, we propose an adaptive stochastic primal-dual coordinate de-
scent (AdaSPDC ) method for solving the Sep-CCSP problem (2), which is a
non-trivial extension of SPDC. By carefully exploiting the structure of individ-
ual subproblem, we propose an adaptive stepsize rule for both primal and dual
updates according to the chosen subset of coordinate blocks in each iteration.
Both theoretically and empirically, we show that AdaSPDC could yield a signif-
icantly better convergence performance than SPDC and other state-of-the-art
methods.

The remaining structure of the paper is as follows. Section 2 summarizes the
general primal-dual framework our method and SPDC are based on. Then we
elaborate our method AdaSPDC in Section 3, where both the theoretical result
and its comparison with SPDC are provided. In Section 4, we apply our method
into regularized ERM tasks, and experiment with both synthetic and real-world
datasets, and we show the superiority of AdaSPDC over other competitive meth-
ods empirically. Finally, Section 5 concludes the work.

2 Primal-dual Framework for Convex-Concave Saddle
Point Problems

Chambolle and Pock [1] proposed a first-order primal-dual method for the CCSP
problem (1). We refer this algorithm as PDCP. The update of PDCP in the
(t+ 1)th iteration is as follows:

yt+1 = argminyφ
∗(y)− 〈xt,Ky〉+

1
2σ
‖y − yt‖22 (6)

xt+1 = argminxg(x) + 〈x,Kyt+1〉+
1
2τ
‖x− xt‖22 (7)

xt+1 = xt+1 + θ(xt+1 − xt). (8)

When the parameter configuration satisfies τσ ≤ 1/‖K‖2 and θ = 1, PDCP
could achieve O(1/T ) convergence rate for general convex function φ∗(·) and g(·),
where T is total number of iterations. When φ∗(·) and g(·) are both strongly
convex, a linear convergence rate can be achieved by using a more scheduled
stepsize. PDCP is a batch method and non-stochastic, i.e., it has to update
all the dual coordinates in each iteration for Sep-CCSP problem, which will be
computationally intensive for large-scale (high-dimensional) problems.

SPDC [15] can be viewed as a stochastic variant of the batch method PDCP
for handling Sep-CCSP problem. However, SPDC uses a conservative constant
stepsize for primal and dual updates. Both PDCP and SPDC do not consider
the structure of matrix K and only apply constant stepsize for all coordinates
of primal and dual variables. This might limit their convergence performance in
reality.
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Based on this observation, we exploit the structure of matrix K (i.e., 1
nA)

and propose an adaptive stepsize rule for efficiently solving Sep-CCSP problem.
A better linear convergence rate could be yielded when φ∗i (·) and g(·) are strongly
convex. Our algorithm will be elaborated in the following section.

3 Adaptive Stochastic Primal-Dual Coordinate Descent

As a non-trivial extension of SPDC [15], our method AdaSPDC solves the Sep-
CCSP problem (2) by using an adaptive parameter configuration. Concretely,
we optimize L(x,y) by alternatively updating the dual and primal variables in
a principled way. Thanks to the separable structure of φ(y), in each iteration we
can randomly select m blocks of dual variables whose indices are denoted as St,
and then we only update these selected blocks in the following way,

yt+1
i = argminyi

[
φi(yi)−

〈
xt,Aiyi

〉
+

1
2σi
‖yi − yti‖22

]
, if i ∈ St. (9)

For those coordinates in blocks not selected, i /∈ St, we just keep yt+1
i = yti . By

exploiting the structure of individual Ai, we configure the stepsize parameter of
the proximal term σi adaptively

σi =
1

2Ri

√
nλ

mγ
, (10)

where Ri = ‖Ai‖2 =
√
µmax

(
AT
i Ai

)
, with ‖·‖2 is the spectral norm of a matrix

and µmax(·) to denote the maximum singular value of a matrix.
Our step size is different from the one used in SPDC [15], where R is a

constant R = max{‖ai‖2 : i = 1, . . . , n} (since SPDC only considers ERM
problem, the matrix Ai is a feature vector ai).

Remark. Intuitively, Ri in AdaSPDC can be understood as the coupling
strength between the i-th dual variable block and primal variable, measured
by the spectral norm of matrix Ai. Smaller coupling strength allows us to use
larger stepsize for the current dual variable block without caring too much about
its influence on primal variable, and vice versa. Compared with SPDC, our pro-
posal of an adaptive coupling strength for the chosen coordinate block directly
results in larger step size, and thus helps to improve convergence speed.

In the stochastic dual update, we also use an intermediate variable xt as in
PDCP algorithm, and we will describe its update later.

Since we assume g(x) is not separable, we update the primal variable as a
whole,

xt+1 = argminx

g(x) +

〈
x, rt +

1
m

∑
j∈St

Aj(yt+1
j − ytj)

〉
+

1
2τ t
‖x− xt‖22

 .
(11)
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Algorithm 1 AdaSPDC for Separable Convex-Concave Saddle Point Problems
1: Input: number of blocks picked in each iteration m and number of iterations T .
2: Initialize: x0, y0, x0 = x0, r0 = 1

n

Pn
i=1 Aiy

0
i

3: for t = 0, 1, . . . , T − 1 do
4: Randomly pick m dual coordinate blocks from {1, . . . , n} as indices set St, with

the probability of each block being selected equal to m/n.
5: According to the selected subset St, compute the adaptive parameter configura-

tion of σi, τ
t and θt using Eq. (10), (12) and (15), respectively.

6: for each selected block in parallel do
7: Update the dual variable block using Eq.(9).
8: end for
9: Update primal variable using Eq.(11).

10: Extrapolate primal variable block using Eq.(14).
11: Update the auxiliary variable r using Eq.(13).
12: end for

The proximal parameter τ t is also configured adaptively,

τ t =
1

2Rtmax

√
mγ

nλ
, (12)

where Rtmax = max {Ri|i ∈ St}, compared with constant R used in SPDC. To
account for the incremental change after the latest dual update, an auxiliary
variable rt = 1

n

∑n
i=1 Aiyti is used and updated as follows

rt+1 = rt +
1
n

∑
j∈St

Aj

(
yt+1
j − ytj

)
. (13)

Finally, we update the intermediate variable x, which implements an extrapola-
tion step over the current xt+1 and can help to provide faster convergence rate
[7, 1].

xt+1 = xt+1 + θt(xt+1 − xt), (14)

where θt is configured adaptively as

θt = 1− 1
n/m+Rtmax

√
(n/m)/(λγ)

, (15)

which is contrary to the constant θ used in SPDC.
The whole procedure for solving Sep-CCSP problem (2) using AdaSPDC

is summarized in Algorithm 1. There are several notable characteristics of our
algorithms.

– Compared with SPDC, our method uses adaptive step size to obtain faster
convergence (will be shown in Theorem 1), while the whole algorithm does
not bring any other extra computational complexity. As demonstrated in the
experiment Section 4, in many cases, AdaSPDC provides significantly better
performance than SPDC.
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– Since, in each iteration, a number of block coordinates can be chosen and
updated independently (with independent evaluation of individual step size),
this directly enables parallel processing, and hence use on modern computing
clusters. The ability to select an arbitrary number of blocks can help to make
use of all the computation structure available as effectively as possible.

3.1 Convergence Analysis

We characterise the convergence performance of our method in the following
theorem.

Theorem 1. Assume that each φ∗i (·) is γ-strongly convex, and g(·) is λ-strongly
convex, and given the parameter configuration in Eq. (10), (12) and (15), then
after T iterations in Algorithm 1, the algorithm achieves the following conver-
gence performance(

1
2τT

+ λ

)
E
[
‖xT − x?‖22

]
+ E

[
‖yT − y?‖2ν

]
≤

(
T∏
t=1

θt

)((
1

2τT
+ λ

)
‖x0 − x?‖22 + ‖y0 − y?‖2ν′

)
, (16)

where (x?,y?) is the optimal saddle point, νi = 1/(4σi)+γ
m , ν′i = 1/(2σi)+γ

m , and
‖yT − y?‖2ν =

∑n
i=1 νi‖yTi − y?i ‖22.

Since the proof of the above is technical, we provide it in the full version of this
paper [17].

In our proof, given the proposed parameter θt, the critical point for obtaining
a sharper linear convergence rate than SPDC is that we configure τ t and σi as
Eq. (12) and (10) to guarantee the positive definiteness of the following matrix
in the t-th iteration,

P =
[ m

2τt I −ASt

−AT
St

1
2diag(σSt )

]
, (17)

where ASt = [. . . ,Ai, . . . ] ∈ Rd×mqi and diag(σSt) = diag(. . . , σiIqi , . . . ) for i ∈
St. However, we found that the parameter configuration to guarantee the positive
definiteness of P is not unique, and there exist other valid parameter configura-
tions besides the proposed one in this work. We leave the further investigation
on other potential parameter configurations as future work.

3.2 More Comparison with SDPC

Compared with SPDC [15], AdaSPDC follows the similar primal-dual frame-
work. The crucial difference between them is that AdaSPDC proposes a larger
stepsize for both dual and primal updates, see Eq. (10) and (12) compared with
SPDC’s parameter configuration given in Eq.(10) in [15], where SPDC applies
a large constant R = max{‖ai‖2 : i = 1, . . . , n} while AdaSPDC uses a more
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adaptive value of Ri and Rtmax for t-th iteration to account for the different cou-
pling strength between the selected dual coordinate block and primal variable.
This difference directly means that AdaSPDC can potentially obtain a signif-
icantly sharper linear convergence rate than SPDC, since the decay factor θt

of AdaSPDC is smaller than θ in SPDC (Eq.(10) in [15]) , see Theorem 1 for
AdaSPDC compared with SPDC (Theorem 1 in [15]). The empirical performance
of the two algorithms will be demonstrated in the experimental Section 4.

To mitigate the problem that SPDC uses a large R, the authors of SPDC
proposes to non-uniformly sample the the dual coordinate to update in each iter-
ation according to the norm of the each ai. However, as we show later in the em-
pirical experiments, this non-uniform sampling does not work very well for some
datasets. By configuring the adaptive stepsize explicitly, our method AdaSPDC
provides a better solution for unnormalized data compared with SPDC, see Sec-
tion 4 for more empirical evidence.

Another difference is that SPDC only considers the regularized ERM task,
i.e., only handling the case that each Ai is a feature vector ai, while AdaSPDC
extends that Ai can be a matrix so that AdaSPDC can cover a wider range of
applications than SPDC, i.e. in each iteration, a number of block coordinates
could be selected while for SPDC only a number of coordinates are allowed.

(a) λ = 10−3 (b) λ = 10−4

(c) λ = 10−5 (d) λ = 10−6

Fig. 1. Ridge regression with synthetic data: comparison of convergence performance
w.r.t. the number of passes. Problem size: d = 1000, n = 1000. We evaluate the con-
vergence performance using objective suboptimality, J(xt)− J(x?).

4 Empirical Results

In this section, we appy AdaSPDC to several regularized empirical risk min-
imization problems. The experiments are conducted to compare our method
AdaSPDC with other competitive stochastic optimization methods, including
SDCA [13], SAG [12], SPDC with uniform sampling and non-uniform sampling
[15]. In order to provide a fair comparison with these methods, in each itera-
tion only one dual coordinate (or data instance) is chosen, i.e., we run all the
methods sequentially. To obtain results that are independent of the practical im-
plementation of the algorithm, we measure the algorithm performance in term
of objective suboptimality w.r.t. the effective passes to the entire data set.

Each experiment is run 10 times and the average results are reported to show
statistical consistency. We present all the experimental results we have done for
each application.
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4.1 Ridge Regression

We firstly apply our method AdaSPDC into a simple ridge regression problem
with synthetic data. The data is generated in the same way as Zhang and Xiao
[15]; n = 1000 i.i.d. training points {ai, bi}ni=1 are generated in the following
manner,

b = aTx� + ε, a ∼ N (0,Σ), ε ∼ N (0, 1),

where a ∈ Rd and d = 1000, and the elements of the vector x� are all ones. The
covariance matrix Σ is set to be diagonal with Σjj = j−2, for j = 1, . . . , d. Then
the ridge regression tries to solve the following optimization problem,

min
x∈Rd

{
J(x) =

1
n

n∑
i=1

1
2

(aTi x− bi)2 +
λ

2
‖x‖22

}
. (18)

The optimal solution of the above ridge regression can be found as

x? =
(
AAT + nλId

)−1
Ab.

By employing the conjugate dual of quadratic loss (crossref, Eq. (4)), we can
reformulate the ridge regression as the following Sep-CCSP problem,

min
x∈Rd

max
y∈Rn

λ

2
‖x‖22 +

1
n

n∑
i=1

(
〈x, yiai〉 −

(
1
2
y2
i + biyi

))
. (19)

It is easy to figure out that g(x) = λ/2‖x‖22 is λ-strongly convex, and φ∗i (yi) =
1
2y

2
i + biyi is 1-strongly convex.
Thus, for ridge regression, the dual update in Eq. (9) and primal update in

Eq. (11) of AdaSPDC have closed form solutions as below,

yt+1
i =

1
1 + 1/σi

(〈
xt,ai

〉
+ bi +

1
σi
yi

)
, if i ∈ St

xt+1 =
1

λ+ 1/τ t

 1
τ t

xt −

rt +
1
m

∑
j∈St

aj(yt+1
j − ytj)


The algorithm performance is evaluated in term of objective suboptimal-

ity (measured by J(xt) − J(x?)) w.r.t. number of effective passes to the en-
tire datasets. Varying values of regularization parameter λ are experimented
to demonstrate algorithm performance with different degree of ill-conditioning,
λ = {10−3, 10−4, 10−5, 10−6}.

Fig. 1 shows algorithm performance with different degrees of regularization.
It is easy to observe that AdaSPDC converges substantially faster than other
compared methods, particularly for ill-conditioned problems. Compared with
SPDC and its variant with non-uniform sampling, the usage of adaptive stepsize
in AdaSPDC significantly improves convergence speed. For instance, in the case
with λ = 10−6, AdaSPDC achieves 100 times better suboptimality than both
SPDC and its variant SPDC with non-uniform sampling after 300 passes.
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Table 1. Benchmark datasets used in our experiments for binary classification.

Datasets Number of samples Number of features Sparsity

w8a 49,749 300 3.9%

covertype 20,242 47,236 0.16%

url 2,396,130 3,231,961 0.0018%

quantum 50,000 78 43.44%

protein 145,751 74 99.21%

Dataset λ = 10−5 λ = 10−6 λ = 10−7

w8a
covtype

url
quantum
protein

Fig. 2. Comparison of algorithm performance with smooth Hinge loss.
Dataset λ = 10−5 λ = 10−6 λ = 10−7

w8a
covertype

url
quantum
protein

Fig. 3. Comparison of algorithm performance with Logistic loss.

4.2 Binary Classification on Real-world Datasets

We now compare the performance of our method AdaSPDC with other com-
petitive methods on several real-world data sets. Our experiments focus on the
freely-available benchmark data sets for binary classification, whose detailed in-
formation are listed in Table 1. The w8a, covertype and url data are obtained
from the LIBSVM collection1. The quantum and protein data sets are obtained
from KDD Cup 20042. For all the datasets, each sample takes the form (ai, bi)
with ai is the feature vector and bi is the binary label −1 or 1. We add a bias term
to the feature vector for all the datasets. We aim to minimize the regularized
empirical risk with following form

J(x) =
1
n

n∑
i=1

φi(aTi x) +
λ

2
‖x‖22 (20)

To provide a more comprehensive comparison between these methods, we exper-
iment with two different loss function φi(·), smooth Hinge loss [13] and logistic
loss, described in the following.

Smooth Hinge loss (with smoothing parameter γ = 1.)

φi(z) =


0 if biz ≥ 1,
1− γ

2 − biz if biz ≤ 1− γ
1
2γ (1− biz)2 otherwise.

1 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
2 http://osmot.cs.cornell.edu/kddcup/datasets.html
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And its conjugate dual is

φ∗i (yi) = biyi +
1
2
y2
i , with biyi ∈ [−1, 0].

We can observe that φ∗i (yi) is γ-strongly convex with γ = 1. The dual update of
AdaSPDC for smooth Hinge loss is nearly the same with ridge regression except
the necessity of projection into the interval biyi ∈ [−1, 0].

Logistic loss
φi(z) = log (1 + exp(−biz)) ,

whose conjugate dual has the form

φ∗i (yi) = −biyi log(−biyi) + (1 + biyi) log(1 + biyi) with biyi ∈ [−1, 0].

It is also easy to obtain that φ∗i (yi) is γ-strongly convex with γ = 4. Note that
for logistic loss, the dual update in Eq. (9) does not have a closed form solution,
and we can start from some initial solution and further apply several steps of
Newton’s update to obtain a more accurate solution.

During the experiments, we observe that the performance of SAG is very
sensitive to the stepsize choice. To obtain best results of SAG, we try different
choices of stepsize in the interval [1/16L, 1/L] and report the best result for
each dataset, where L is Lipschitz constant of φi(aTi x), 1/16L is the theoretical
stepsize choice for SAG and 1/L is the suggested empirical choice [12]. For
smooth Hinge loss, L = maxi{‖ai‖2, i = 1, . . . , n}, and for logistic loss, L =
1
4 maxi{‖ai‖2, i = 1, . . . , n}.

Fig. 2 and Fig. 3 depict the algorithm performance on the different methods
with smooth Hinge loss and logistics loss, respectively. We compare all these
methods with different values of λ = {10−5, 10−6, 10−7}. Generally, our method
AdaSPDC performs consistently better or at least comparably with other meth-
ods, and performs especially well for the tasks with small regularized parameter
λ. For some datasets, such as covertype and quantum, SPDC with non-uniform
sampling decreases the objective faster than other methods in early epochs,
however, cannot achieve comparable results with other methods in later epochs,
which might be caused by its conservative stepsize.

5 Conclusion & Future Work

In this work, we propose Adaptive Stochastic Primal-Dual Coordinate Descent
(AdaSPDC) for separable saddle point problems. As a non-trivial extension of
a recent work SPDC [15], AdaSPDC uses an adaptive step size choices for both
primal and dual updates in each iteration. The design of the step size for our
method AdaSPDC explicitly and adaptively models the coupling strength be-
tween chosen block coordinates and primal variable through the spectral norm
of each Ai. We theoretically characterise that AdaSPDC holds a sharper linear
convergence rate than SDPC. Additionally, we demonstrate the superiority of the
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proposed AdaSPDC method on ERM problems through extensive experiments
on both synthetic and real-world data sets.

An immediate further research direction is to investigate other valid param-
eter configurations for the extrapolation parameter θ, and the primal and dual
step sizes τ and σ both theoretically and empirically. In addition, discovering
the potential theoretical connections with other stochastic optimization methods
will also be enlightening.

Acknowledgments. Z. Zhu is supported by China Scholarship Council/University
of Edinburgh Joint Scholarship. The authors would like to thank Jinli Hu for
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