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Abstract Machine Learning is widely used for mining collections, such as im-
ages, sounds, or texts, by classifying their elements into categories. Automatic
classification based on supervised learning requires groundtruth datasets for
modeling the elements to classify, and for testing the quality of the classi-
fication. Because collecting groundtruth is tedious, a method for estimating
the potential errors in large datasets based on limited groundtruth is needed.
We propose a method that improves classification quality by using limited
groundtruth data to extrapolate the potential errors in larger datasets. It
significantly improves the counting of elements per class. We further propose
visualization designs for understanding and evaluating the classification uncer-
tainty. They support end-users in considering the impact of potential misclas-
sifications for interpreting the classification output. This work was developed
to address the needs of ecologists studying fish population abundance using
computer vision, but generalizes to a larger range of applications. Our method
is largely applicable for a variety of Machine Learning technologies, and our
visualizations further support their transfer to end-users.

Keywords Supervised Machine Learning, Uncertainty Visualization, Logistic
Regression

1 Introduction

We introduce a method to improve counting of elements in classes based on
the scores given by machine learning. It addresses user needs for evaluating
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interclass confusions and their potential biases (e.g., a large class overwhelms
a smaller class with False Positives). For instance, video monitoring of fish
populations can compare species abundance, or cell recognition can evaluate
concentrations of blood cells. In these cases, users need accurate counts of
elements per class, with limited interclass confusions (e.g., systematically clas-
sifying elements in the same wrong class). Our method addresses this need
beyond the usual methods determining optimal selection thresholds in the
parameter settings. Thresholds are usually set on a single parameter, e.g., a
similarity score, representing the similarity (e.g. a distance or likelihood ratio)
between a candidate element and a class model. The threshold is chosen to bal-
ance type I and II errors (i.e., False Positive FP, False Negative FN) depending
on use cases. Our method does not discard elements below a threshold. It uses
all elements and similarity scores to estimate interclass confusions, and ob-
tain probabilities of class membership. These probabilities can provide more
accurate counts of elements per class, by weighting elements given their sim-
ilarity scores. Our method is particularly robust to unbalanced groundtruth
that under- or over-represents some classes. We do not claim to classify indi-
viduals more accurately. Rather, we claim that the use of similarity scores of
groundtruth samples, when applied to modeling the probability of class mem-
bership, allows more accurate estimate of the true counts of individuals per
class.

Furthermore, we address uncertainty issues with data visualization. Ma-
chine Learning errors are usually visualized with graphs such as ROC and
Precision/Recall curves, or measures such as F1 score (Fig. 2-3). These do
not differentiate noise from potential biases due to interclass confusion. They
typically support the choice of parameter thresholds, which is not relevant for
our method. Finally, they are tedious to understand for non-expert users who
need to evaluate the classification uncertainty. Hence we developed visualiza-
tion designs addressing user needs for evaluating interclass confusions, and
supporting non-experts in understanding uncertainty. Our contributions are
two-fold:

Estimation of classification biases: We specify a method applying lo-
gistic regression on similarity scores (i.e., similarity of elements with class
models). It is applicable for both two-class and multi-class problems. It esti-
mates the probability of confusing classes, and the biases due to the similarity
of classes’ elements (i.e., given their similarity scores). The biases estimation
is used to significantly improve the task of counting elements in each class.

Visualization of biases due to interclass confusions: We specify user
requirements for estimating and visualizing classification uncertainty. We de-
sign original visualizations supporting both the understanding of the clas-
sification method, and the evaluation of interclass confusions. They provide
non-expert users with accessible descriptions of the biases due to systematic
misclassifications.
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2 Related Work

Counting individuals, and classifying them into categories, is a basic task for a
variety of studies. For instance, ecologists largely study population abundance
for different organisms, which is based on classifying the species of individu-
als [10]. Machine Learning algorithms can automate classification, and is cost-
and time-effective. However, classification uncertainty is a major issue for the
uptake of such technologies. Likewise the visualization community identifies
uncertainty as a major challenge [8,9,16]. Uncertainty needs to be considered
along with the data transformation steps, and the Machine Learning compo-
nents are typically concerned. As an example, computer vision was applied
for marine ecology, and its reliability compared to other techniques [4,12,15,
28–30]. In the ecology domain, the main approach to deal with uncertainty
consists of repeating measurements and applying statistical techniques (e.g.,
ANOVA) [24,25]. Only [4,12] used evaluation methods specific to the applied
computer vision techniques. This gap between ecology and computer vision
practices highlights the need for handling, explaining and visualizing potential
misclassifications.

Several methods have been developed to automatically estimate counts
of objects, mostly from image data. In this case, approaches can be divided
according to [20] into feature-, score- and decision-level algorithms. In [11] and
[17], the estimation of automatic land cover categories is improved based on
the confusion matrix, where these papers use a confusion matrix (decision-
level) determined from groundtruth to correct the under and overestimates.
In computer vision, counting cells [19] and crowds [7] is often performed using
regression on the image features, which achieve very accurate counts (feature
level). By performing the count on features, in the case of cells, a single cell is
not identified with these kind of methods, but by looking at the higher level
features like color, edges, etc these methods give a direct estimate of the count.
In the case of crowds [7], this has privacy advantages because their method does
not directly recognise a single individual, which will give us privacy sensitive
information. Often machine learning methods for finding or identifying a single
individual object are available, but the feature level approach in this case does
not use this information. Finally, there are only a few papers that tackle the
problem of biased estimation of a classifier. In [26], bias correction is based on
the estimated decisions of the classifier. While in [23], authors estimate the a
priori distribution of a new dataset based on the features. The main difference
with previous approaches is that we use the similarity scores from automatic
classification methods to determine the counts, while previous methods work
either directly at the decision level (having less information) or at the feature
level (can not use classifier output).

Common metrics evaluating misclassifications are based on confusion ma-
trices (Fig. 1). Uncertainty visualizations commonly use pairs of metrics (e.g.,
Precision/Recall, ROC curves with TP and FP rates), computed for different
similarity score thresholds. They are typically complicated for non-experts,
and likely to be overwhelming or misleading [3]. Non-experts may not identify
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the aspects of uncertainty revealed, or concealed, by expert visualizations. [5]
provides a first attempt to simplify the visualization of confusion matrices and
address the needs novices (Fig. 3). Other approaches such as [1] address expert
usages and parameter setting tasks, without addressing end-user interpretation
of classifiers’ end-results.

Classification from Ground-Truth
Class A Class B Class C Class D Class E

Classification Class A 85 1 19 3 12

from Class B 11 78 2 7 2
Machine Class C 1 2 276 6 6

Learning Class D 5 7 4 77 1

Software Class E 2 7 42 2 81

Basic Metrics
TP FN FP TN
85 19 35 600

78 17 22 622

276 67 15 381

77 18 17 627

81 21 53 584

Fig. 1: Example of confusion matrix, and counts of True Positive TP, False
Negative FN, False Positive FP, True Negative TN.

Precision
TP

TP +FP

Recall / TP Rate
TP

TP +FN

FP Rate
FP

FP +T N

Accuracy
TP +T N

TP +T N +FP +FN

F1Score
2TP

2TP +FP +FN

0.71 0.82 0.06 0.93 0.76

0.78 0.82 0.03 0.95 0.80

0.95 0.80 0.04 0.89 0.87

0.82 0.81 0.03 0.95 0.81

0.60 0.79 0.08 0.90 0.69

Classification Class A

from Class B

Machine Class C

Learning Class D

Software Class E

Fig. 2: Metrics giving proportional measures of errors.
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Fig. 3: Expert-oriented (Precision/Recall, ROC curves) and simplified visual-
izations of confusion matrix.

3 Biases-Aware Classification Method

We introduce a method for estimating the probabilities of classification errors,
and use these probabilities to correct biases in counting tasks. Counting typ-
ically consists in estimating the numbers of elements belonging to each class.
In tasks such as population monitoring, users particularly require estimates
of interclass confusions. They need to know which species are often confused
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with one another [2], because they ultimately need to evaluate the potential
biases in counts of individuals in each class. By computing the probabilities,
we do not improve the recognition performance but obtain a statistical es-
timate of bias given a large dataset. Compared to common methods based
on thresholding, this method is able to estimate and correct biases due to
interclass confusions. Here, we introduce a method providing accurate biases
estimations, improving the counting of elements in each class, and addressing
end-user needs for uncertainty evaluation.

3.1 Comparison with Methods based on Thresholding

Classification methods use groundtruth sets (i.e., collections of manually clas-
sified elements) for i) training models of classes’ elements, using features mea-
sured amongst examples (e.g., shape, color, size of objects); ii) validations, to
refine models’ parameters and iii) testing the quality of the classification re-
sults. The latter two (e.g., the validation and test sets) are used in a innovative
approach to provide the counts. Elements of the validation and test set are
compared to class models using descriptive features, such as shape or color in
computer vision. The closeness of their feature values is usually synthesized
in a single metric by a classifier. Such metric is referred here as a similar-
ity score si,c, for an item i, a candidate class c, yielding a class membership
yi,c = {0, 1}. The higher a score, the more likely elements belong to a class.
But the likelihood of class membership is not itself evaluated. Boolean class
membership is usually decided by setting thresholds on similarity scores (i.e.,
yi,c = 1 if si,c > tc). Our counting method introduces an original use of all
similarity scores without requiring a threshold setting.

The choice of threshold depends on the machine learning method, where
t = 0 is a natural choice for Adaboost and log-likelihood ratios. Thresholds
are usually optimized using ROC or Precision/Recall curves to balance type
I and II errors. For instance, ROC curves can be use to limit FP rate against
FN rate, if appropriate. A threshold’s effect on counting tasks is ambiguous:
e.g., thresholds optimal for a training set may bias the classification of the test
set. In the multiclass case, thresholds are not necessary for cases where items
are classified in the class for which they have the highest similarity score.

3.2 Original Counting Method based on Logistic Regression

Logistic Regression is able to compute the probability of correct and incorrect
classification of items given their similarity scores, by estimating the error
distribution over the scores (observed in the validation set) for a potentially
unbalanced groundtruth. This technique is very similar to Platt scaling [22]
except that we assume similarity scores as input instead of adding a normal-
isation function to the classifier to compute the probability. We explain this
new method first for the two class problem and afterwards for the multiclass
problems.
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3.2.1 Two class problem

Logistic Regression computes the probability P (yi|si) that item i belongs to
a given label yi = {0, 1}. This depends on the similarity score si from the
classifier which indicates how item i is similar to the positive class. Logistic
Regression is able to translate the similarity scores si, which can be in any
range, to a probability. This is achieved by the following calculation:

P (yi|si) =
1

1 + e−(β0+β1si)
(1)

The unknown parameters β0, β1 in equation (1) need to be computed based
on a validation set. This validation set should be randomly sampled from the
test set for which we would like to obtain the final count. However, the val-
idation set should have groundtruth labels, which are unknown on the final
test set. The parameters β0, β1 allow to describe a function that extrapolate
the counts learned on the validation set to the test set. These parameters can
be calculated by most statistical software packages, by using the maximum
likelihood estimation that finds the parameters for which the probability on
the validation data is best. In [21], the maximum likelihood estimation is per-
formed using an iterative weighted least-squares method, because there is no
close-form solution to compute the parameters β. The iterative weighted least-
squares method proposed in [21] is equivalent to the Newton-Raphson method
for finding the optimal value of the likelihood function. In our explanation of
Logistic Regression we used the “logit” kernel, however our experiments gave
very similar results for both the logit kernel and the probit kernel [6]. Based on
the input score and labels, this function searches for the optimal parameters β
that fit the labels. The estimated final count of positive items, for all N items
i in the test set, is given by Ey =

∑N
i=1 P (yi|si).

3.2.2 Multiclass problem

The multiclass problem can be seen as very similar to the two class problem,
where each multiclass problem can be converted into a two class problem. In-
stead of having a label that can have multiple outcomes yi = {0, 1, 2, 3, ...,M},
we use a binary label yi,c = {0, 1} indicating whether item i belongs to class c
(i.e., yi,c = 1) or does not belong to that class (i.e., yi,c = 0). For the multiclass
problem, instead of having a single score, we have for each class a score si,c.
It might be counterintuitive that we do not have two scores for the two class
problem. But the scores indicate the similarity towards a certain class with
respect to another class. For the two class problem one score suffices. But for
an M class problem, for every class, we need a score indicating whether items
do not belong to all other classes, which results in M scores. Given a set of
groundtruth labels yi,c = {0, 1} and scores si,c, for improving item counts for
one class, we could use only the scores indicating similarity to that class (e.g.,
si,c1 for class 1). In this case, equation (1) is sufficient. However, the scores
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for all other classes provide additional information, and better results can be
obtained with the following equation:

P (yi,c|si,ζ) =
1

1 + e−(β0,c+β1,csi,c1+...βM,csi,cM )
(2)

This equation estimates the probability that item i belongs to a class c
given the similarity scores for all classes ζ = {c1, ..., cM}. We calculate for
each class a different parameter vector β using Logistic Regression. For each
item i we obtain M probabilities of class membership, i.e., one for each of the
M classes. The M probabilities are computed using the same set of scores si,ζ ,
but different parameter vectors β. A problem with this approach is that we can
not guarantee that the M probabilities for a single item will sum to one. This
is possible if we use multinomial logistic regression. The large amount of data
made multinomial logistic regression not usable for our problem where the
estimation of the parameters β for the multinomial case could not be found in
a reasonable time frame (under a day). The approach described here already
provides accurate count, especially because of the large amount of data used
for the estimation, where normalizing the probabilities based on a single item
did not work. The final count for a certain class c is obtain by the sum of the
probabilities for each item Ey,c =

∑N
i=1 P (yi,c|si,c).

3.3 Sampling strategy

To estimate the counts over a given dataset, the sampling strategy for collect-
ing groundtruth sets is of vital importance. This work assumes the following
sampling strategy: Given the entire dataset, we select two subsets, one for
training and one for validation, to estimate item’s counts for the remaining
data (considered as the test set). For training and validation sets, we obtain
groundtruth information by manual annotation. The training set allows to
train a classifier (using any Machine Learning method). This set does not
have to be a representative subset of the entire dataset. It might be even bet-
ter to balance the classes for better recognition performance. The validation
set is used to verify the performance of the classifier on untrained examples.
It is of vital importance that this set is representative of the test set, i.e., the
distribution of items amongst classes and similarity scores need to be similar
to that of the test set. This can be achieved by random sampling. Based on
the scores for the correct (TP, TN) and erroneous (FP, FN) classifications
performed on the validation set, our method estimates the counts in the test
set.

4 Evaluation of the Counting Method

We evaluate the performance of our counting method for 3 counting tasks, with
binary and multiclass problems. We evaluate the accuracy of counts based on
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logistic regression, compared to the results of thresholding methods. Finally,
we evaluate the estimated values (FP, FN, etc) from logistic regression to
compute the visualizations.

Fig. 4: The datasets used for evaluation: images of cells, traffic signs and fish.

4.1 Experimental Datasets

Real-world groundtruth sets are often unbalanced, which significantly impacts
on machine learning performances. The datasets are chosen to demonstrate
our approach, and its robustness to good and bad classification results and
balanced and unbalanced datasets. Fig. 4 gives examples of the datasets’ ele-
ments.

Cell images (binary classification): The task is to count cells in each im-
age. The experimental dataset is produced with a simulation program [18]. It
is very unbalanced due to scarce positive examples. The groundtruth consists
of 16 images for training and validation and 16 for testing. Two simple classi-
fiers based on circular features (i.e. Linear Discriminative Analysis (LDA) and
Adaboost) are trained on this dataset.

Traffic signs (multiclass problem): The task is to count traffic signs (Fig-
ure 4, [13]). 43 classes of traffic signs need to be recognized. The Machine
Learning algorithm extracts color dense SIFT features on which k-mean clus-
tering is applied. The feature vectors are processed with both Adaboost and
SVM techniques. The original training set is randomly split into training and
validation sets, the obtained results are over 20 random runs where we use the
original 22,011 item testset.

Fish images (multi-class problem): The task is to count fish from 12
species in the collection described in [14]. A hierarchical SVM classifier was
specifically designed for this problem. In the experiment, the data is 20 times
randomly divided into a validation and test set. This data was not used to
create the fish model.
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Fig. 5: Average errors over 20 cross-validations estimating: overall counts
(TP+FP), total counts of FP and FN, counts of FP and FN for the two
most similar classes only, average counts of FP and FN for all other classes
(i.e., for all classes cj in ζ = {c1, ..., cM}, 1

M

∑M
j=1 FPζ→cj/(TPcj + FPζ→cj )

and 1
M

∑M
j=1 FNcj→ζ/(TPcj + FNcj→ζ) are used for (a),(c) and (e)).

4.2 Impact on Counting Tasks

The goal of this research is not to improve the recognition results of classifiers,
although better classifiers can be used for some of the problems. The goal
of this research is however to exploit the large amount of data to estimate
the underlining statistics like the counts per class, even in case of “error-
prone” classifiers. Section 3.1 shows that the decision depends on a threshold
t, where for the classifiers Adaboost and LDA (which uses a log-likelihood
ratio) t = 0 is a natural choice. Due to the large imbalance in the cell dataset,
with images of 256×256 containing only around the 150 cells, it is difficult for a
classifier to perform well. Logistic regression does not improve the performance
after running it on the similarity score. However it gives probabilities that are
representative for the expected performance. Given these probabilities, the
expected count can be estimated accurately as is shown in Table 1, even for
bad classifiers.

For the multiclass problems, we experimented with two strategies to set
the thresholds. The first strategy is similar to the cell example where in the
case of Adaboost the threshold is set to t = 0. The second strategy is to
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Dataset Machine Learning Error in Counts
Normal Corrected

Cell Adaboost 2075.7 (±444.7) 11.86 (±1.26)
65536 examples LDA 1910.2 (±997.0) 11.13 (±2.66)

(average 180 positives)
Traffic Signs Adaboost (threshold) 3146.3 (±155.91) 23.38 (±1.92)

12630 examples Adaboost (max score) 521.50 (±19.35) 23.38 (±1.92)
SVM (max score) 31.92 (±1.92) 25.40 (±2.00)

Fish Hierarchical SVM 693.74 (±5.96) 13.05 (±3.44)
10939 examples

Table 1: Error in counts for the different datasets, showing that our approach
is able to correct errors based on the similarity scores from other machine
learning methods and works significantly better in all cases. The standard
deviation is estimated over 20 cross-validation folds.

use the class with the maximum score for a given element, which is done for
both Adaboost and SVM. Although the second strategy seems to perform
better when estimating the counts, as can be observed from Table 1, it might
depend very much on the automatic classifier used. The performance of SVM
in Table 1 shows that this classifier already works very well , although it was
biased towards a couple of classes, which is the reason why our estimate of the
counts are better still.

For the fish species recognition dataset, the outputs of a classifier specif-
ically designed for this problem are used on a new dataset. The set of fish
species is unbalanced, e.g., obtaining enough examples of rare species was a
challenge. By running the fish recognition on new videos, we discovered that
although the recognition methods have good recognition rates, the classifier is
biased toward certain classes and underestimates the amounts of false positives
from the detection stage. The correction based on logistic regression is able to
correct this where the final errors in estimated counts are much smaller (see
Table 1).

4.3 Uncertainty of the Counting Method

To create the visualization especially in the multi-class cases, not only is it
important that the final count is correctly estimated, but also the other infor-
mation in the graphs should be correct. More specifically, it is also important
to know how well the estimations for the False Positives and False Negative
are on three levels, namely: overall estimation given the rest of the classes,
estimation for the two most similar classes which thus bring most uncertainty,
and finally the estimation for all the classes. Figure 5 shows the error of our
estimates with respect to these three levels, in both absolute numbers and in
percentages given the true counts for each class. This figure shows that the es-
timates by our logistic regression are not perfect, which can be expected given
that they are statistical estimates, but that the errors are in an acceptable
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range allowing the user to get a feeling of what kind of errors to expect from
the machine learning methods. The errors for the two most similar classes
(the classes with which a particular class is most confused) are around 5-10%,
while the error for all the classes is around 1%. For classes that are easy to
separate, the method is able to predict more accurately that these classes do
not belong to a certain class. In Figure 5, we can also observe that the results
over different datasets and classifiers are similar, showing the stability of the
methodology.

5 Visualization of Classification Biases

User understanding of classification errors is crucial for trusting classification
systems, and for successful technology transfer. Hence we developed visualiza-
tions addressing the needs of non-expert users for estimating interclass con-
fusions. We provide both explanations of the classification method, a basic
requirement for understanding uncertainty, and evaluations of potential biases
in end-results.

5.1 Explaining the Classification Method

Developing user acceptance of complex Machine Learning solutions is a diffi-
cult task for technology suppliers. For end-users, their solutions often appear
as opaque components which underlying technology is hardly verifiable (i.e.,
a black box ). User-friendly explanations can help to develop a dialogue with
potential users, to build informed trust from uninformed skepticism. Hence we
designed explanatory visualizations of the step-by-step procedure of our logis-
tic regression method. They describe the underlying principles of the Machine
Learning processes, and empower users with accessible system knowledge.

We designed 2 explanatory visualizations. The first explains logistic re-
gression for binary classification (Fig. 6). The second extends its application
to multiclass problems (Fig. 7). Their narrative comic strip-like approach,
with user-friendly fonts and simple phrasing, aims at rendering the technical
content more welcoming and accessible. We collected informal feedback from
potential users of our system. The comic-strip style was welcomed. The expla-
nations were found engaging and encouraged users to explore the complexity
of machine learning uncertainty.

The main issue concerned the tradeoff between introducing technical terms,
and vulgarizing logistic regression theory. Technical terms that can be avoided
are replaced with common vocabulary, to make explanations more accessible.
But for a user who was familiar with logistic regression, common vocabulary
was confusing, and technical terms were preferred. Further, semantic gaps can
occur between the terms most commonly used by either technology or do-
main experts. It can lead to confusions and misunderstandings. For instance,
biologists commonly refer to calibration and validation sets of groundtruth,
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which are usually called validation and test sets in computer vision, respec-
tively. Hence, to develop the dialogue between users and technology suppliers,
unfamiliar users should learn the appropriate technical terminology, and con-
versely, technology suppliers should learn the terms used in the application
domain. Thus we recommend that explanatory visualizations are customized
for the application domain so as to introduce both terminologies and their
correspondences.

Finally, we observed the need for an additional tutorial explaining the pro-
cess of groundtruth evaluation, prior to describing logistic regression. Users
required more information regarding: the groundtruth collection procedure
(e.g., annotator profiles, levels of agreement), the construction of class mod-
els (e.g., features used to train algorithms), and the initial errors observed
before logistic regression (e.g., groundtruth evaluation using similarity score
thresholds).

5.2 Visualizing Interclass Confusions

Uncertainty due to misclassification is measured using groundtruth evalua-
tions. Error measurements are encoded in confusion matrices (Fig. 1). All
possible interclass confusions are encoded in terms of misclassifications be-
tween pairs of classes. Confusion matrices indicate how many FN were missed
for one class and erroneously attributed to another class as FP. The counts of
misclassifications are given for all pairs of classes. The information on misclas-
sification errors is complete, however it is complex to visualize.

We simplified the visualization of interclass confusion as shown in Fig. 9.
We use three simple visual concepts: Missed items (FN) in red below the zero
line, Correct items (TP) in blue above the zero line, and Added items in grey
and stacked on top of TP. The design intends to be more tangible than ROC
or Precision/Recall curves. The multiple interclass confusions are synthesized
with a limited level of detail. For each class, the main sources of confusion are
indicated. We select the 2 classes yielding the most FP and FN, and display
the magnitude of errors they imply. Errors remaining for other classes are
displayed together in one block. Details of the errors impacting one class are
provided when users select a class of interest (Fig. 9, bottom).

Our design addresses 5 issues with confusion matrices: 1) Error interde-
pendence, as FN for one class are FP for another; 2) Multiplicity of pairwise
confusions, i.e., with n classes, a total of n(n-1) interclass confusions are mea-
sured; 3) Relative error magnitude in unbalanced groundtruth (i.e., scarcity
or excess of groundtruth for some classes), or in end-results (i.e., containing
larger and smaller classes); 4) Considering Type I and II errors in accordance
to application requirements; 5) Complexity of uncertainty metrics, which is
potentially misleading.

Error interdependence - Users need to identify which classes are likely
to be confused with another, as FN for one class are FP for another. For
instance, in Fig. 1 the cell with a black contour indicates both 11 FN missed
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for Class A, and 11 FP added to Class B. Hence confusion matrices need to be
read both column- and row-wise. This demands a high cognitive load (e.g., to
memorize all cell values and their semantics), which is error prone (e.g., users
may read only columns or rows, or forget cell values and semantics). The
number of cells to read is usually reduced by cumulating misclassifications for
each class. Fig. 1 illustrates the synthesis of FN (column with red background)
and FP (row with grey background). However, with this synthesis users can no
longer identify which classes are likely to be confused with another, and this
information is required for estimating potential biases in end-results. E.g., a
large increase of one class implies an increase of its FN, and can thus induce a
deceptive increase of other classes. To address this issue, we recommend not to
synthesize all errors in accumulated numbers of FP and FN, so as to preserve
the necessary information originally encoded in confusion matrices.

Multiple pairwise confusions - Numerous confusions between 2 classes
need to be visualized. This can easily clutter visualizations and overwhelm
users. Hence, we recommend to select the most important pairwise confusions,
and to synthesize the remaining errors. For each class, we select the 2 classes
receiving the most FN, and the 2 classes from which most FP are originated.
The remaining errors are accumulated.

Unbalanced datasets - The proportions of items per class can greatly
vary within groundtruth sets, and within sets of end-results. In this case, basic
(TP, FN, FP, TN) and advanced metrics can be misleading. The magnitude
of FP is dependent on the magnitude of their original classes, i.e., the larger a
class the more FP it yields for other classes. A small class can be overwhelmed
by FP from a larger class, whereas few FN are missed. Inversely, a large class
in the groundtruth set can be underwhelmed by errors from a smaller class,
whereas in end-results the smaller class can be the largest. Hence, comparing
raw numbers of errors (e.g., FP and TP), or rates such as Precision can be
misleading. Ideally, groundtruth sets need to be representative of the distribu-
tion of items in end-results (e.g., by randomly sampling groundtruth items).
However, it may not be feasible, or end-results’ distributions may inherently
vary.

To address this issue, we first recommend to discard TN, which inherently
outnumber TP, FN and FP in multiclass classification. Further, TN are not
contained in the end-results and are not interesting for end-users. We also
recommend that magnitudes of errors are displayed with both: i) numbers of
groundtruth items, showing possible groundtruth scarcity for some classes; and
ii) proportions of errors, calculated proportionally to the original true classes
of FN, using equation (3). We chose to use numbers of TP as denominators
because i) it is close to what is contained in end-results (FN are assigned
to other classes, while FP are excluded for depending on the magnitude of
their original classes); and ii) it is easy to visualize unambiguously. As shown
in Fig. 9-b, all blue bars representing TP have the same height, hence TP
obviously appear as the reference for normalizing errors. When displaying error
ratios, we indicate the 2 most important ratios of FN and FP, and sum error
ratios for the remaining classes.
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Pairwise Error Ratio A→ B =
FNa→b
TPa

(3)

Equation (3): Pairwise Error Ratio A → B is the error ratio of FN items
belonging to class A and erroneously attributed to class B (FNa→b). It is
also the ratio of FP items attributed to class B but actually belonging to
class A (e.g., grey bars in Fig. 9). FNa→b is the number of groundtruth
items attributed to class B while truly belonging to class A. TPa is the to-
tal number of TP for class A. Note that FNa→b is different from FNb→a, and
Pairwise Error Ratio A→ B is different from Pairwise Error Ratio B → A.

Considering Type I and II errors - The sensitivity to either error type
depends on application domains. For some domains type I are the most criti-
cal, while type II are more tolerated: e.g., fraud detection involving automatic
suspension of services (bank, mail, social media), biometric identification, rec-
ommendation, optical sorting (Case A). For other domains type II are the
most critical, while type I are more tolerated: e.g., medical diagnosis, threat
detection (Case B). Finally, some domains are sensitive to both error types:
e.g., character recognition, monitoring of population dynamics (e.g., ecology
research) (Case C ). To address this issue, we use distinguishable color coding
for type I and II errors (i.e., FN in red, FP in grey).

Complexity of uncertainty metrics - Uncertainty is usually described
using advanced metrics, e.g., rates of correct and incorrect classifications over
total numbers of items to detect or discard. Fig. 2 shows widely used metrics
and their formulas. These are complicated for non-experts. They may not
know which metrics suit their use case, or misinterpret them. Precision does
not convey the errors critical for Case A, nor Recall and FP Rate for Case B,
nor Accuracy and F1 score convey the errors critical for neither Case A and B.
For Case C, using only one metric amongst Precision, Recall and FP Rate does
not convey sufficient information. Further, high TN may conceal critical errors
by yielding low FP Rate and high Accuracy. Usual visualization of ROC and
Precision/Recall curves, using pairs of advanced metrics, increases the risk of
overwhelming and confusing users. To help end-users manage this complexity,
we recommend to provide a limited set of metrics, that are appropriate to
the domain requirements, and with a reminder of their formula. Although not
addressing the full scope of expert usages targeted by the specialized metrics
in Fig. 2, our metric in equation (3) and visualization in Fig. 9 address the
above-mentioned issues: high TN can be misleading; and all types of domain
requirements are addressed (Cases A-C ), as both type I and II errors are
highlighted.

5.3 User Feedback

We collected informal feedback from potential users in 3 domains: Ecology
(1 professor, in a semi-structured interview), Machine Learning (2 professors
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and 2 students, in informal discussions) and Visualization (1 professor and 1
practitioner, in informal discussions). The simplicity of our design, compared
to traditional ROC and Precision/Recall curves (Fig. 3), was unanimously
approved. Machine Learning students found our visualization easier to learn.
Novices quickly understood the three concepts of TP, FN and FP. On the
contrary, they were generally overwhelmed by explanations of confusion matrix
tables, and repelled by the formulas of uncertainty metrics (Fig. 2)

Machine Learning experts acknowledged that our approach minimizes the
risk of using misleading metrics (e.g., Accuracy and FP Rates can show low
uncertainty due to high numbers of TN and conceal large amounts of FN or
FP). They also welcomed that we restored two pieces of missing information:
1) the number of groundtruth items; and 2) the origin of misclassifications,
i.e., the true classes of FP. However, they questioned the relevance of hiding
the numbers of TN in the case of binary classification. In some cases, the
uncertainty of Positive and Negative classes are equally important. In that
situation, we recommend to represent the binary classification as a multiclass
problem with two classes.

Visualization experts suggested other types of graph, such as force network
or hive plots. However these have three disadvantages. First, with large num-
bers of classes, the number of links between nodes of the network graph would
clutter the display. Second, visualizing the magnitude of interclass confusions
is highly approximate: the available visual encoding (e.g., width, transparency
of links between nodes) are difficult to compare. The human visual perceptions
are not as precise with these visual encodings (e.g., exact numbers of FN would
be difficult to perceive), compared to the use of bar length in histograms [27].
Third, these graphs are not as common as the bar chart, hence they are likely
to add an extra cognitive load whereas the complexity of Machine Learning
and logistic regression is already overwhelming. Hence, we consider that the
lack of novelty of bar charts is a crucial advantage.

The use of bar width to encode the number of groundtruth items was also
suggested. It can allow to merge the two visualizations Fig. 9 top and middle
into a single one. However, with large number of classes, the horizontal space
is limited. Further, bar charts with varying width are not as common as simple
bar charts with fixed width. As simplicity is our main requirement, we decided
to keep the two visualizations separate.

Finally, 2 potential users requested the visualization of errors over simi-
larity scores, prior to applying logistic regression. We thus devised the visual-
ization in Fig. 10 where users can select a class to investigate, and visualize
error distributions over i) the similarity scores of the class of interest, ii) the
similarity scores of the most confused classes, and iii) compare these with the
overall distribution for other classes. Such visualizations can support users
in acquiring a better understanding of the uncertainty and of the underlying
computational processes. It can also help technology providers improve their
algorithm (e.g., modifying the computation of similarity scores by weighting
the underlying features used to recognize objects), or detect the need for col-
lecting additional groundtruth items (e.g., classes implying high numbers of
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errors for high similarity scores, which may indicate that the groundtruth sets
are not discriminative enough). Other use cases or user groups may require dif-
ferent designs visualizing other types of distribution (e.g., over low-level item
features).

Future work will investigate visualizations for exploring error distribution
over similarity scores or other features. Future work will also empirically eval-
uate our design. We will compare user behaviour with our visualization, the
usual ROC and Precision/Recall curves, or with confusion matrix enhanced
with overlaid heatmap (coloring the cells according to error magnitudes). We
will investigate user effectiveness and efficiency in understanding potential bi-
ases in end-results, as well as user trust in the Machine Learning system.
Experiments will include both Machine Learning experts and non-experts.

6 Conclusion

We specified and evaluated a novel method for estimating the biases of su-
pervised machine learning classification. It significantly improves counting re-
sults by fitting logistic regression functions on similarity scores1. We provide
templates for user-friendly visualization of the end-results’ uncertainty, and
explanations of the counting method. Our work addresses user needs for vi-
sualizing biases due to interclass confusions. It is robust to end-usage issues
with groundtruth test sets under- or over-representing relative classes’ abun-
dance, and distribution of similarity scores amongst actual items to classify.
It is widely applicable to automatic counting tasks, and provides an accessible
uncertainty evaluation.

References

1. Alsallakh, B., Hanbury, A., Hauser, H., Miksch, S., Rauber, A.: Visual methods for
analyzing probabilistic classification data (2014)

2. Beauxis-Aussalet, E., Hardman, L., van Ossenbruggen, J.: Deliverable D2.1
of the Fish4Knowledge Project - User Information Needs. Tech. rep.,
http://groups.inf.ed.ac.uk/f4k/DELIVERABLES/Del21.pdf

3. Beauxis-Aussalet, E., Arslanova, E., Hardman, L., van Ossenbruggen, J.: A case study of
trust issues in scientific video collections. In: Proceedings of the 2nd ACM international
workshop on Multimedia analysis for ecological data. ACM (2013)

4. Beauxis-Aussalet, E., Arslanova, E., Hardman, L., van Ossenbruggen, J.: A video pro-
cessing and data retrieval framework for fish population monitoring. In: Proceedings of
the 2nd ACM international workshop on Multimedia analysis for ecological data. ACM
(2013)

5. Beauxis-Aussalet, E., Hardman, L.: Visualization of confusion matrix for non-expert
users. Poster at the IEEE Conference on Visualization - IEEE VIS (2014)

6. Bliss, C.: The method of probits. Science 79(2037), 38–39 (1934)
7. Chan, A.B., Liang, Z.S., Vasconcelos, N.: Privacy preserving crowd monitoring: Count-

ing people without people models or tracking. In: Conference on Computer Vision and
Pattern Recognition - CVPR. pp. 1–7. IEEE (2008)

1 A measure of features’ similarity comparing an item to classify and a class model (Sec-
tion 3.1).



Uncertainty-Aware Estimation of Population Abundance using Machine Learning 17

8. Chen, C.: Top 10 unsolved information visualization problems. Computer Graphics and
Applications, IEEE 25(4), 12–16 (2005)

9. Correa, C.D., Chan, Y.H., Ma, K.L.: A framework for uncertainty-aware visual analytics.
In: IEEE Symposium on Visual Analytics Science and Technology - VAST. pp. 51–58
(2009)

10. Gibson, R., Barnes, M., Atkinson, R.: Practical measures of marine biodiversity based on
relatedness of species. Oceanography and Marine Biology, An Annual Review, Volume
39: An Annual Review 39, 207–231 (2001)

11. Hay, A.: The derivation of global estimates from a confusion matrix. International Jour-
nal of Remote Sensing 9(8), 1395–1398 (1988)

12. Hetrick, N.J., Simms, K.M., Plumb, M.P., Larson, J.P.: Feasibility of using video tech-
nology to estimate salmon escapement in the Ongivinuk River, a clear-water tributary
of the Togiak River. US Fish and Wildlife Service, King Salmon Fish and Wildlife Field
Office (2004)

13. Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., Igel, C.: Detection of traffic signs
in real-world imagvucetices: The German Traffic Sign Detection Benchmark. In: Inter-
national Joint Conference on Neural Networks. No. 1288 (2013)

14. Huang, P.X., Boom, B.J., Fisher, R.B.: GMM improves the reject option in hierarchi-
cal classification for fish recognition. In: IEEE Winter Conference on Applications of
Computer Vision - WACV. pp. 371–376 (2014)

15. Irvine, J., Ward, B., Teti, P., Cousens, N.: Evaluation of a method to count and measure
live salmonids in the field with a video camera and computer. North American Journal
of Fisheries Management 11(1), 20–26 (1991)

16. Johnson, C.: Top scientific visualization research problems. Computer graphics and
applications, IEEE 24(4), 13–17 (2004)

17. Jupp, D.L.B.: The stability of global estimates from confusion matrices. International
Journal of Remote Sensing 10(9), 1563–1569 (1989)

18. Lehmussola, A., Ruusuvuori, P., Selinummi, J., Huttunen, H., Yli-Harja, O.: Computa-
tional framework for simulating fluorescence microscope images with cell populations.
Medical Imaging, IEEE Transactions on 26(7), 1010–1016 (2007)

19. Lempitsky, V.S., Zisserman, A.: Learning to count objects in images. In: NIPS. vol. 1,
p. 2 (2010)

20. Lip, C., Ramli, D.: Comparative study on feature, score and decision level fusion schemes
for robust multibiometric systems. In: Sambath, S., Zhu, E. (eds.) Frontiers in Computer
Education, Advances in Intelligent and Soft Computing, vol. 133, pp. 941–948. Springer
Berlin Heidelberg (2012)

21. McCullagh, P., Nelder, J.A.: Generalized linear models, vol. 2. Chapman and Hall Lon-
don (1989)

22. Platt, J.C.: Probabilistic outputs for support vector machines and comparisons to reg-
ularized likelihood methods. In: Advances in large margin classifiers. Citeseer (1999)

23. Saerens, M., Latinne, P., Decaestecker, C.: Adjusting the outputs of a classifier to new
a priori probabilities: a simple procedure. Neural Computation 14(1), 21–41 (2002)

24. Tulp, I., Bolle, L.J., Rijnsdorp, A.D.: Signals from the shallows: in search of common
patterns in long-term trends in dutch estuarine and coastal fish. Journal of Sea Research
60(1), 54–73 (2008)

25. Visser, H.: Estimation and detection of flexible trends. Atmospheric Environment
38(25), 4135–4145 (2004)

26. Vucetic, S., Obradovic, Z.: Classification on data with biased class distribution. In: Pro-
ceedings of the 12th European Conference on Machine Learning. pp. 527–538. Springer-
Verlag (2001)

27. Ware, C.: Information visualization: perception for design. Elsevier (2013)
28. Watson, D.L., Harvey, E.S., Anderson, M.J., Kendrick, G.A.: A comparison of temper-

ate reef fish assemblages recorded by three underwater stereo-video techniques. Marine
Biology 148(2), 415–425 (2005)

29. Willis, T.J., Babcock, R.C.: A baited underwater video system for the determination of
relative density of carnivorous reef fish. Marine and Freshwater Research 51(8), 755–763
(2000)

30. Yoshida, T., Akagi, K., Toda, T., Kushairi, M., Kee, A., Othman, B.: Evaluation of fish
behaviour and aggregation by underwater videography in an artificial reef in tioman
island, malaysia. Sains Malaysiana 39(3), 395–403 (2010)



18 Bastiaan J. Boom et al.

Fish Images

Non-Fish Images

Step 1:  Collect examples of fish and non-fish
(the Ground-Truth)

Fish Model

Step 3:  Use images for modeling to construct 
a model of fish appearance

Images for Modeling

FishFishFishFish

Non-Fish
Non-Fish

Non-Fish
Non-Fish

Images for Calibration

Fish Model

Step 4:  Evaluate the similarity between the fish model 
and the Images for Calibration

9.578%

69% 51%

9.57.8

6.9 5.1
Similarity with 

the model 
(max=10)

Step 2:  Split the Ground-Truth in 2 groups

Images for Modeling

FishFish
FishFish

Non-Fish
Non-Fish Non-Fish

Non-Fish
FishFish

Images for Calibration

FishFish

Non-Fish
Non-Fish

Non-Fish
Non-Fish

How to Improve
Automatic Fish Count

with Logistic Regression?

Step 5:  Plot the distribution of fish & non-fish
over their similarity with the model

Similarity with 
the fish model

0

100%

>9[6-7][3-4]<1

Pr
op

or
tio

ns
 of

Fis
h &

 N
on

-F
ish

Non-Fish
Non-Fish

FishFish

Step 7: Use the curve to evaluate the probability 
of new images being fish

0.2

0.6

1.0

100

Pr
ob

ab
ilit

y o
f 

Im
ag

es
 be

ing
 a 

Fis
h

8.1
Similarity Score: 8.1

New Images

5.6 8.1

5.6
Similarity Score: 5.6

Probability of Fish: 0.6

Probability of Fish: 0.850

100%

>9[6-7][3-4]<1

Step 6:  Fit a curve describing the fish/non-fish proportions
(the “Logistic Regression” function)

Similarity with 
the fish model

Pr
op

or
tio

ns
 of

Fis
h &

 N
on

-F
ishY

X

Y =
1 + e- (a + bX )

1

Similarity with 
the fish model

Step 9: Derive the probability of new images being fish
(e.g., Similarity Score = 4 -> Probability = 0.25)

100

300

500

100

Nu
mb

er
 of

 Im
ag

es

Similarity with the fish model

Nu
mb

er
 of

 Im
ag

es

100

300

500

1.00
Probability of being a fish

Similarity

Pr
ob

ab
ilit

y

0

1.0

100%0%

Step 8: Evaluate the similarity of new 
images with the fish model

New Images

100

300

500

Nu
mb

er
 of

 Im
ag

es

Similarity with 
the fish model

100

Step 10: Derive the probable number of fish 
(e.g., 100 Images with 0.25 Probability -> 25 Fish and 75 Non-Fish)

Pr
ob

ab
le 

nu
mb

er
 

of
 F

ish
 Im

ag
es

0

100

200

300

400

1.0

Probability of being a fish
200

-100

00

Non-Fish
Non-Fish

FishFish

0.85

Nu
mb

er
 of

 Im
ag

es

0

100

200

300

400

500

Probability of being a fish
1.00

FishFish
Non-Fish
Non-Fish

Fig. 6: User-friendly explanations of logistic regression for binary classification.
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Fig. 9: Visualization of interclass confusions using proportions of FP and FN
relatively to TP, i.e., equation (3).
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Fig. 10: Visualization of error distributions over similarity scores.


