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Asymptotically log Fano varieties

Ivan A. Cheltsov and Yanir A. Rubinstein

Abstract

Motivated by the study of Fano type varieties we define a new class of log pairs that we
call asymptotically log Fano varieties and strongly asymptotically log Fano varieties. We
study their properties in dimension two under an additional assumption of log smoothness,
and give a complete classification of two dimensional strongly asymptotically log smooth
log Fano varieties. Based on this classification we formulate an asymptotic logarithmic
version of Calabi’s conjecture for del Pezzo surfaces for the existence of Kähler–Einstein edge
metrics in this regime. We make some initial progress towards its proof by demonstrating
some existence and non-existence results, among them a generalization of Matsushima’s
result on the reductivity of the automorphism group of the pair, and results on log canonical
thresholds of pairs. One by-product of this study is a new conjectural picture for the small
angle regime and limit which reveals a rich structure in the asymptotic regime, of which a
folklore conjecture concerning the case of a Fano manifold with an anticanonical divisor is
a special case.

Contents

1 Introduction 2

1.1 Asymptotically log Fano varieties . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Classification results in dimension two . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 An asymptotic logarithmic version of Calabi’s conjecture . . . . . . . . . . . . . 5
1.4 Existence and non-existence results in the asymptotic regime . . . . . . . . . . 7
1.5 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Asymptotically log del Pezzo surfaces with smooth connected boundary 11

2.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.1 Non-rational boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Rational boundary and curves of negative self-intersection . . . . . . . . 13
2.1.3 Minimal pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.4 The inductive step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.5 Classification of minimal pairs . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.6 Dealing with non-uniqueness . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Strongly asymptotically log del Pezzo surfaces 17

3.1 Basic properties of asymptotically log del Pezzo pairs . . . . . . . . . . . . . . . 19
3.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Boundary with arithmetic genus one . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Boundary with arithmetic genus zero . . . . . . . . . . . . . . . . . . . . 22

1

http://arxiv.org/abs/1308.2503v1


4 Positivity properties of the logarithmic anticanonical bundle 25

4.1 Positivity classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Verification of the list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Nef and non-big adjoint anticanonucal bundle . . . . . . . . . . . . . . . . . . . 28

5 Reductivity of the automorphism group of a pair 31

6 Tian invariants of asymptotic pairs 33

6.1 A general bound on global log canonical thresholds of pairs . . . . . . . . . . . 33
6.2 Limiting behavior of α-invariants . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2.1 Class (ג) and (k) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2.2 Class (i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2.3 Class (ℵ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7 Existence and non-existence of KEE metrics 41

7.1 Automorphism groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2 Existence of KEE metrics on some pairs of class i . . . . . . . . . . . . . . . . 42

7.2.1 Symmetry considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2.2 P1 × P1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2.3 F1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2.4 Cubic surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1 Introduction

This article draws its motivation from classification theory of Fano type varieties in algebraic
geometry on the one hand, and the uniformization problem of Kähler edge manifolds in complex
differential geometry on the other hand. Our results here contribute to both of these problems,
and also draw some connections between the two. In addition, we relate both of these to the
theory of non-compact Calabi–Yau fibrations and the Minimal Model Program.

1.1 Asymptotically log Fano varieties

A projective variety X is said to be of Fano type if there exists an effective Q-divisor

∆ =
r

∑

i=1

ai∆i

on X such that the divisor −KX − ∆ is ample and the pair (X,∆) has at most Kawamata
log terminal singularities [39, Lemma–Definition 2.6]. Fano type varieties possess very nice
properties: they are rationally connected [47], they are Mori dream spaces [2], and their Cox
rings have mild singularities [3], [17]. Moreover, Fano type varieties play an important role in
birational geometry: they are building blocks of rationally connected varieties [30], they appears
as exceptional divisors of extremal contractions and they behave well under contractions [39,
Lemma 2.8].

Can we classify Fano type varieties? Probably not. This problem seems to be beyond
current reach even in dimension two. One can expect that the problem is much easier if we
restrict ourself to the log smooth case, i.e., when X is smooth and the support of ∆ is a simple
normal crossing divisor. However, this does not seem to be the case, and the later problem
seems equally hard and is also very far from being solved even in dimension two.
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One of the early attempts at classifying pairs with such properties is Maeda’s work. Maeda
coined the term “log Fano varieties” for log smooth pairs (X,D) such that −KX −D is ample
and gave a complete classification in dimensions two and three [33]. A special family of two-
dimensional Fano type varieties whose boundaries have standard coefficients, i.e., all ai are of
the form m−1

m for m ∈ N, appeared naturally in the work of Kollár who used them to construct
5-dimensional real manifolds that carry an Einstein metric with positive constant [28, 29]. In a
different setting, work of Tsuji, Tian, and Donaldson, suggests to consider pairs (X,D) where
X is itself Fano, and D is an anticanonical divisor whose boundaries have real coefficients close
to 1 [46, 44, 14]. Then the numbers 2π(1−ai) have a natural concrete geometrical interpretation
by considering Kähler metrics with positive curvature that have edge singularities along ∆, in
other words metrics modelled on a one-dimensional cone of angle 2π(1−ai) along each ‘complex
edge’ ∆i. Such metrics were introduced by Tian as a natural generalization of conical Riemann
surfaces. A general existence theorem for Kähler–Einstein edge (KEE) metrics with a smooth
divisor has been obtained by Jeffres–Mazzeo–Rubinstein [24] and we come back to this circle
of ideas in §1.3–1.4.

The present work draws its motivation from all three of these geometric settings: the asymp-
totic classes we introduce next contain as special cases these previously studied geometries.

Definition 1.1. We say that a pair (X,D) consisting of a projective variety X with −KX Q-
Cartier and a divisor D =

∑r
i=1Di (where the Di are distinct Q-Cartier prime Weyl divisors)

on X is (strongly) asymptotically log Fano if the log pair (X, (1 − βi)Di) has Kawamata log
terminal singularities, and the divisor −KX − ∑r

i=1(1 − βi)Di is ample for (all) sufficiently
small (β1, . . . , βr) ∈ (0, 1]r.

In the two dimensional case, we also refer to such pairs as (strongly) asymptotically log del
Pezzo. Note that both definitions (asymptotically log Fano and strongly asymptotically log
Fano) coincide if D consists of a single component. This is not the case when D is reducible.

For the rest of this article we restrict without further mention to the (already challenging)
log smooth case, i.e., when X is smooth and D has simple normal crossings.

1.2 Classification results in dimension two

In this article we classify all strongly asymptotically log del Pezzo surfaces, i.e., we explicitly
describe all pairs (S,C) consisting of a smooth surface S and a simple normal crossing curve C
on S such that (S,C) is strongly asymptotically log del Pezzo. We believe many of the results
and techniques presented should also be useful for classifying all asymptotically log del Pezzo
surfaces in the future. Our main classification result is as follows.

Theorem 1.2. Let S be a smooth complex surface. Let C = C1 + . . . Cr be a simple normal
crossing divisor on S, with each of the Ci smooth. Then (S,C) is a strongly asymptotically
log del Pezzo surface if and only if it is one of the pairs listed in Theorem 2.1 (when r =1) or
Theorem 3.1 (r ≥ 2).

This generalizes the classical result of Castelnuovo, Enriques and del Pezzo for the case
with no boundary [9, 21], as well as its generalization to the logarithmic setting by Maeda [33]
who classified all pairs (S,C) with −KS − C ample.

The classification part (‘only if’) of the proof occupies Sections 2 (r = 1) and 3 (r ≥ 2).
The first several steps are to obtain useful topological and cohomological restrictions on the
boundary curve. For instance, C has genus at most one, and when it is elliptic it must be
anticanonical, r must be 1, and S must be del Pezzo (Lemmas 2.2 and 3.2). Thus, we may
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assume that C 6∼ −KS and that the Ci are rational. Then C
2 ≤ −2, i.e., C ‘traps’ the negative

curvature portion of −KS (Lemma 2.6). In the same token, no other rational curve may have
self-intersection less than −1 (Lemma 2.5), reflecting the fact that the curvature should morally
be positive outside of C. But −1-curves are indeed allowed away from C and an important
task is to understand their geometry and configuration relative to C. Lemma 2.7 shows that
such curves come in two types: disjoint from C or intersecting it transversally at exactly one
point. Motivated by this observation we say a pair is minimal if it contains no −1-curves
of the second type. Lemmas 2.11 and 3.13 show that minimality implies the Picard group is
‘small’, namely, of rank at most 2. The case r ≥ 2 relies on some general results (proved in
§3.1) on the combinatorial and cohomological structure of the boundary that hold also in the
asymptotic (and not necessarilly strongly asymptotic) regime. Thus, we perform an induction
on rk(Pic(S)) by successively contracting −1-curves; the observation that makes this possible
is that when −1-curves of the first type are contracted the resulting pair is still log smooth and
strongly asymptotically del Pezzo (Lemmas 2.10, 3.4, and 3.12). An additional complication
in the case r ≥ 2 is that the blown-down −1-curve could be a component of the boundary.
According to Lemma 3.6 such a curve must be at the ‘tail’: it cannot intersect two boundary
components. Then Lemma 3.13 guarantees the inductive step can still be carried out. Once
this induction has been carried out all that remains is to classify all pairs with rk(Pic(S)) ≤ 2
(Lemmas 2.9 and 3.11).

The second part of the proof of Theorem 1.2 consists of the verification that each pair
appearing in the lists of Theorems 2.1 and 3.1 is strongly asymptotically log del Pezzo (§4.2).
Instead of checking each case separately, we approach this straightforward task slightly more
systematically by first reformulating those two lists in a unified list (Theorem 1.4) according
to the positivity of the logarithmic anticanonical bundle −KS − C—this is discussed in detail
in the next paragraph. When this bundle is trivial or ample the verification is then immediate.
In the remaining two cases (big but not ample, and nef but not big) we verify case by case.

The classification theorem has a number of corollaries, but we state here only the most
obvious one.

Corollary 1.3. Let (S,C) be a log smooth strongly asymptotically log del Pezzo pair. Then C
contains at most four components.

It would be interesting to find a similar bound in all dimensions. In the simpler log Fano
setting of Maeda, a pair (X,D) induces by restriction a log Fano pair of one dimension lower,
and so by induction the number of components is bounded by dimX [33, Lemma 2.4].

The classification of strongly asymptotically log del Pezzo surfaces according to the positiv-
ity of the logarithmic anticanonical bundle just mentioned plays a crucial role also in other parts
of this article and so we now state it precisely. We distinguish between four mutually exclusive
classes. Class (ℵ): S is del Pezzo and C ∼ −KS; class (i): C 6∼ −KS and (KS + C)2 = 0;
class :(ג) −KS − C is big but not ample; class (k): −KS − C is ample.

Theorem 1.4. Strongly asymptotically log del Pezzo pairs, whose list appears in Theorems 2.1
and 3.1, are classified according to the positivity properties (ℵ), (i), ,(ג) and (k) as follows:

(ℵ) (S,
∑r

i=1Ci) is one of (I.1A), (I.4A), (I.5.m), (II.1A), (II.4), (II.5A.m), (II.8.m), (III.1),
(III.2), (III.4.m) or (IV),

(i) (S,
∑r

i=1Ci) is one of (I.3A), (I.4B), (I.9B.m), (II.2A.n), (II.2B.n), (II.3), (II.6A.n.m),
(II.6B.n.m), (II.7.m), (III.3.n) or (III.5.n.m),
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(ג) (S,
∑r

i=1Ci) is one of (I.6B.m), (I.6C.m), (I.7.n.m), (I.8B.m), (I.9C.m), (II.5B.m) or
(II.6C.n.m),

(k) (S,
∑r

i=1Ci) is one of (I.1B), (I.1C), (I.3B), (I.2.n), (I.4C), (II.1B) or (II.2C.n).

The verification of this list is an elementary corollary of Theorems 2.1 and 3.1 and appears
in §4.1. It can be seen as a generalization of two previously known classes. Class (k) is Maeda’s
classical classification of what he coined as ‘log del Pezzo surfaces’ [33]. On the other hand, the
class (ℵ) is simply the classical class of del Pezzo surfaces together with the information of a
simple normal crossing anticanonical curve but its explicit (and very elementary) classification
seems to appear here for the first time. The classes (i) and (ג) are new.

1.3 An asymptotic logarithmic version of Calabi’s conjecture

In 1990, in what became known as the resolution of Calabi’s conjecture for del Pezzo surfaces,
Tian gave a complete classification of those complex surfaces that admit a smooth KE metric
of positive curvature [43]. In light of Theorem 1.2 it is therefore very natural and tempting
to hope for a counterpart for strongly asymptotically log del Pezzo surfaces. One of the main
goals of this article is to formulate such a conjecture as well as prove key parts of it. As might
be expected, the situation in the singular setting is quite a bit more complex and we intend to
pursue other aspects of this conjecture in future work.

As we now explain in detail, a surprisingly accurate guide to this uniformization problem
is the positivity classification of Theorem 1.4.

Pairs of class (ℵ) are the best understood, since according to a result of Berman the Tian
invariant of the pair is then bigger than n

n+1 , which subsequently implies by the work of Jeffres–
Mazzeo–Rubinstein (Theorem 1.14 below, cf. [36, Corollary 1.5]) that the pair admits KEE
metrics for all small angles. We generalize Berman’s result in several ways by obtaining a
general bound on the global log canonical threshold in a possibly singular and/or degenerate
setting (Proposition 6.5). This gives an algebraic proof of the aforementioned estimate due to
Berman for the class (ℵ) with explicit (but far from optimal) lower bounds on the largest angle
possible in dimensions two and three (Proposition 6.10).

The uniformization problem is thus reduced to understanding the existence problem for
pairs of classes (i), ,(ג) and (k).

As a first guide, we investigate the asymptotic behavior in the small-angle limit of Tian’s
invariant α(X, (1 − β)D), also refereed to as the global log canonical threshold of the pair
(X,D) (see §6.1 for definitions).

Theorem 1.5. Assume (S,C) is asymptotically log del Pezzo with C smooth and irreducible.
Then

lim
β→0+

α(S, (1 − β)C) =











1 class (ℵ),
1/2 class (i),

0 class (ג) or (k)

This gives an indication that the existence theory might, in fact, depend on the positivity
classification. In fact, we conjecture that the positivity classification completely determines
the existence problem.

Conjecture 1.6. Suppose that (S,C) is strongly asymptotically log del Pezzo with C smooth
and irreducible. Then S admits Kähler–Einstein edge metrics with angle β along C for all
sufficiently small β if and only if (KS + C)2 = 0, i.e., (S,C) is of class (ℵ) or (i).
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To put this conjecture in appropriate context and give perhaps more striking motivation
for its validity we begin by noting that 0, 1/2 and 1 are the Tian invariants of Pn, n → ∞,P1,
and P0, respectively. It is then tempting to think of 1/2 as the Tian invariant of certain
generic rational fiber. Motivated by this we prove the following structure theorem for surfaces
of class (i).

Proposition 1.7. If (KS +
∑r

i=1Ci)
2 = 0, then the linear system | − (KS +

∑r
i=1 Ci)| is free

from base points and gives a morphism S → P1 whose general fiber is P1, and every reducible
fiber consists of exactly two components, each a P1.

Thus, surfaces of class (i) are conic bundles, and the boundary C intersects each generic
fiber at two points. This gives strong motivation for the ‘if’ part of Conjecture 1.6 because it
suggests what the small-angle limit of the purported KEE metrics on pairs of class (i) could
be:

Conjecture 1.8. Let (S,C, ωβ) be KEE pairs of class (ℵ) or (i). Then (S,C, ωβ) converges
in an appropriate sense to a a generalized KE metric ω∞ on S \ C as β tends to zero. In
particular, ω∞ is a Calabi–Yau metric in case (ℵ), and a cylinder along each generic fiber in
case (i).

The generalized KE metrics alluded to in the conjecture are related to metrics studied
by Song–Tian on elliptic fibrations [41], however there are some important differences. We
postpone an in-depth discussion of this to a sequel.

This conjecture can be generalized to any dimension, and is perhaps better understood in
such a more general context. To that end we first note that Proposition 1.7 is a very special
and explicit case of a much more general result that is a direct corollary of deep results of
Kawamata and Shokurov.

Theorem 1.9. Suppose (X,D) is asymptotically log Fano and −KX − D is not big. Then
| − n(KX +D)| is base point free for n ≫ 1 and gives a morphism φ : X → Z whose general
fiber F is a Fano type variety. Moreover, D|F ∼Q −KF and (F,D|F ) is asymptotically log
Fano. Furthermore, if (X,D) is strongly asymptotically log Fano, then F is a Fano variety
with Kawamata log terminal singularities, and (F,D|F ) is strongly asymptotically log Fano.

Proof. By Kawamata–Shokurov’s Basepoint-free Theorem [30, Theorem 3.3] the linear system
|−n(KX+D)| is base point free for n≫ 1. Let φ : X → Z be a morphism given by it, and let F
be its general fiber. If (X,

∑r
i=1(1−βi)Di) is Kawamata log terminal and −KX−∑r

i=1(1−βi)Di

is ample, then (F,
∑r

i=1(1− βi)Di|F ) has at most Kawamata log terminal singularities and

−
(

KF +

r
∑

i=1

(1− βi)Di|F
)

∼R −
(

KX +

r
∑

i=1

(1− βi)D
)
∣

∣

∣

F

is ample. Thus, (F,D|F ) is asymptotically log Fano. Note that by using adjunction D|F ∼Q

−KF , because F is a fiber of φ and φ is given by | − n(KX +D)|.
If (X,D) is strongly asymptotically log Fano the same argument shows that so is (F,D|F ).

Moreover, then

−KF ∼ −KX |F ∼Q D|F ∼R
1

β
βD|F ∼R

1

β
(−KX −D − βD)|F = −(KX +

r
∑

i=1

(1− β)D)|F

for small β ∈ (0, 1], which implies that −KF is ample, i.e., F is a Fano variety.
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Corollary 1.10. Let X be a smooth variety, let D be smooth and irreducible Weil divisor on
X. Suppose (X,D) is asymptotically log Fano and −KX −D is not big. Then | − n(KX +D)|
is base point free for n≫ 1 and gives a morphism φ : X → Z whose general fiber F is a smooth
Fano variety with D|F ∈ | −KF |.

Therefore, we conjecture:

Conjecture 1.11. Suppose that (X,D) is strongly asymptotically log Fano manifold with D
smooth and irreducible. Let κ := inf{N ∋ k ≤ dimX : (KX +D)k = 0}.
(i) There exist no KEE metric with small β if κ = ∞.
(ii) Suppose that (KX +D)dimX = 0. Then there exist KEE metrics ωβ, β ∈ (0, ǫ) on (X,D)
for some ǫ > 0.
(iii) As β tends to zero (X,D,ωβ) converges in an appropriate sense to a generalized KE metric
ω∞ on X \D that is Calabi–Yau along its generic (dimX + 1− κ)-dimensional fibers.
(iv) Furthermore,

lim
β→0+

α(X, (1 − β)D) =











1 if KX +D ∼ 0,

min{1, α(X, [−KX −D]), α(D)} if 0 6∼ −KX −D is not big,

0 if −KX −D is big.
(1.1)

Conjecture 1.11 (iii) is itself a generalization of a folklore conjecture in Kähler geometry
for the case κ = 1 mentioned, e.g., by Donaldson [14, p. 76], saying that X \D equipped with
the Tian–Yau metric [45] should be a limit of KEE metrics on (X,D) when X is Fano and
D ∈ | −KX |. As mentioned earlier, Conjecture 1.11 (ii) holds when κ = 1. In Propostion 6.10
we further give explicit bounds on ǫ when dimX ∈ {2, 3} and κ = 1.

Since the work of Hitchin, Kobayashi, and many others, a standard condition for the ex-
istence of canonical metrics that can be described as zeros of an infinite-dimensional moment
map is some sort of ‘stability’ condition. How, then, does Conjecture 1.11 fit into this scheme?
The condition (KX +D)dimX = 0 hardly looks at first like a stability condition. Perhaps one
way to motivate it is to conceive the non-compact Calabi–Yau fibration of Conjecture 1.11 (ii)
as a KEE metric itself, only with β = 0. In case (i) such a smooth (and hence non-compact)
limit does not exist since too much ‘positivity’ is still remaining, and so the small angle regime,
which would otherwise be a metric ‘perturbation’ of that limit, should not exist either. Thus,
the existence of the Calabi–Yau degeneration provides the necessary ‘stability’ in this situation,
at least conjecturally. An obvious advantage of the existence criterion of Conjecture 1.11 is
that it is very explicit as opposed to logarithmic K-stability which in general seems hard to
check.

We prove Conjecture 1.11 (iv) except for the middle case which we only prove in dimension
two (Propositions 6.8, 6.9, and 6.10). We refer to §6.2 for one technical issue relevant to the
definition of the invariants appearing in (1.1).

Finally, we make some progress towards Conjecture 1.11 (i) and (ii) in dimension two, i.e.,
Conjecture 1.6, that we describe next.

1.4 Existence and non-existence results in the asymptotic regime

Matsushima’s theorem [34] implies that the Kähler–Einstein metric is the most aesthetically
pleasing one since it exhibits the maximal symmetry possible: every one-parameter subgroup
of automorphisms of the complex structure Aut(X) can be realized as the complexification of
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a one-parameter subgroup of isometries of the KE metric. This has a natural generalization to
the edge setting by considering the automorphism group of the pair Aut(X,D), i.e., elements
of Aut(X) that map D to itself.

Theorem 1.12. Let (X,D, g) be a KEE manifold. Then Aut0(X,D) = Isom0(X, g)
C. In

particular, Aut0(X,D) is reductive.

Here Isom0(X, g)
C denotes the complexification of the identity component of the isometry

group of (X, g), while Aut0(X,D) denotes the identity component of Aut(X,D). Theorem 1.12
is proved in Section 5, using the asymptotic structure of solutions to linear elliptic equations
with edge degeneracies in the sense of Mazzeo [35] as developed in the complex codimension
one setting in [24].

In the smooth world, Matsushima’s criterion is often considered as a rather coarse obstruc-
tion to existence. Nevertheless, in the asymptotic regime with its much richer variety of cases,
such a tool proves to be quite useful.

Theorem 1.13. The following strongly asymptotically log del Pezzo pairs listed in Theorem
2.1 do not admit KEE metrics for sufficiently small β: (I.1C), (I.2.n) with any n ≥ 0, (I.6C.m)
with any m ≥ 1, (I.7.n.m) with any n ≥ 0 and m ≥ 1, (I.6B.1), (I.8B.1) and (I.9C.1).

This proves part of the ‘only if’ direction of Conjecture 1.6. It is proven in Section 7.1 by
computing the automorphisms groups of pairs of classes (ג) and (k). We also supply further
evidence for the converse direction of the conjecture by showing that all pairs of class (i) have
reductive automorphism groups (Theorem 7.2).

Next, we turn to the existence part of Conjecture 1.6. Our main tool here is the follow-
ing existence theorem that is a special case of [24, Theorem 2, Lemma 6.13]. The invariant
αG(S, (1− β)C) is the G-invariant Tian invariant of the pair (S, (1− β)C) with respect to the
Kähler class [−KS − (1− β)C] (see Definition 7.3).

Theorem 1.14. Let (S,C) be a strongly asymptotically log del Pezzo surface with C smooth
and irreducible. Suppose that G ⊂ Aut(S) is a finite group and that αG(S, (1 − β)C) > 2/3.
Then there exists a Kähler–Einstein edge metric with positive Ricci curvature and with angle
2πβ along C.

We apply this to prove the following existence theorem for pairs of class (i) giving the first
construction of KEE metrics of positive curvature and of small angle outside of the classical
class (ℵ).

Theorem 1.15. There exist strongly asymptotically log del Pezzo pairs of type (I.3A), (I.4B),
and (I.9B.5) (listed in Theorem 2.1) that admit KEE metrics for all sufficiently small β.

This result is proven using computations of the Tian invariant of these pairs (Subsection
7.2). In the cases (I.3A), (I.4B) the pair possesses certain discrete symmetry that allows using
representation theoretic arguments coupled with Shokurov’s connectedness principle for log
canonical loci to conclude that in fact Tian’s invariant equals 1 for all β ∈ (0, 1]. The case
(I.9B.5) is somewhat more delicate since then S varies in a moduli space. We choose the
Clebsch cubic surface in that space and again are able to show that the Tian invariant equals
1 for all β ∈ (0, 1]. We also compute the Tian invariant of more general cubic surfaces with
an Eckardt point and show that without symmetry one cannot apply the existence result of
Theorem 1.14. This last computation (Proposition 7.6) generalizes a result from the smooth
setting [5, Theorem 1.7].
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Using log slope stability Li–Sun proved that the pairs (I.1B) and (I.3B) admit no KEE
metrics for small β [32, §3]. It is possible to apply arguments similar to theirs to prove non-
existence results for other pairs of class (ג) and (k) but for the sake of brevity we postpone
this discussion, along with further existence results for class (i), to a separate article.

1.5 Conventions

Let us describe notation and basic results that will be used throughout the article.
By a curve in an algebraic variety X we mean an irreducible reduced subvariety of dimen-

sion one. Occasionally, we allow curves to be reducible (but we always assume that they are
reduced). For a curve C on a smooth surface S, we define its arithmetic genus pa(C) by

pa = h1(OC). (1.2)

Then 2pa(C)− 2 = KS ·C+C2 by [18]. When C is smooth pa(C) equals the genus of C, g(C).
If C is an irreducible curve on a smooth surface S, then by applying adjunction one verifies
that

C ∼= P1 if and only if pa(C) = 0 (1.3)

This can be quite handy.
By ∼ we assume rational equivalence of Weil divisors or Cartier divisors (or their classes

in Cl(X) and Pic(X), respectively) except in Section 5 where ∼ stands for equality in the
sense of complete asymptotic expansions as in [24]. By ∼Q we assume Q-rational equivalence
of Q-divisors, i.e., D1 ∼Q D2 if and only if nD1 ∼ nD2 for some non-zero integer n such that
nD1 and nD2 are integral divisors. By Q-Cartier and R-Cartier divisors we mean elements
in Pic(X) ⊗ Q and Pic(X) ⊗ R, respectively. By ∼R we assume Q-rational equivalence of R-
divisors, i.e., D1−D2 is a sum with real coefficients of Q-Cartier divisors that are Q-rationally
equivalent to zero.

For two divisors D1 and D2, we write D1 ≡ D2 (and say that D1 and D2 are numerically
equivalent) iff D1 −D2 is R-Cartier divisor such that (D1 −D2).C = 0 for every curve C ⊂ X.
Vice versa, we say that two curves C1 and C2 on X are numerically equivalent iff D.C1 = D.C2

for every R-Cartier divisor D on X. Similarly, we define numerical equivalence of 1-cycles
(with real or rational coefficients) on X. We denote the real vector space of 1-cycles modulo
numerical equivalence by N1(X). By the cone of curves or the Mori cone of X we assume the
cone in N1(X) generated by curves in X. We denote the Mori cone of X by NE(X). By NE(X)
we denote its closure.

Recall that a Q-Cartier Q-divisor D is called ample if there exists positive integer n such
that nD is a very ample Cartier divisor. By Kleiman’s criterion, D is ample if and only if
D is positive on NE(X) (and this in turn is equivalent to the differential geometric notion
of positivity of a class). The latter can be used as a definition of ampleness for R–Cartier
R-divisors. Note that in the case of surfaces, the ampleness of a Q-Cartier Q-divisor D is
equivalent to

D2 > 0 and D.C > 0 (1.4)

for every curve C ⊂ X. So we can use the latter condition as another definition of ampleness
for R–Cartier R-divisors on surfaces. This criterion-definition is very handy for surfaces: if D
is an ample R-Cartier divisor on a smooth surface S, then

π⋆(D) is an ample R-Cartier divisor (1.5)

for every birational morphism π : S → s such that s is a smooth surface.
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Recall that a Q-divisor D is called big if h0(OX(nD)) grows as O(ndim(X)) for n≫ 1 such
that nD is an integral divisor. One can show that D is big if and only if it is a sum of an
effective divisor and an ample divisor. For R-divisors this can be used as a definition of bigness.

Recall that a divisor D is effective if D is a finite linear combination of prime Weil divisors
with non-negative coefficients, and that h0(OX(−D)) = 0 for every non-zero effective Weil
divisor D. An R-Cartier R-divisor D is called nef (a shortcut for numerically effective) if
D.C ≥ 0 for every curve C ⊂ X. Thus,

if D is effective and −D is nef, then D is a zero divisor. (1.6)

For each n ≥ 0, denote by
Fn (1.7)

the unique rational ruled surface whose Picard group has rank two and contains a unique (if
n > 0) smooth rational curve of self-intersection −n. We denote this curve by Zn, and by F we
denote an irreducible smooth rational curve such that F 2 = 0 and F.Zn = 1. If n = 0 when we
refer to Z0 and F we intend that each is a fiber of a different projection to P1. Such a surface
can be constructed, e.g., as a toric variety or as a ruled surface and [20, Chapter 5, §2] and
applying adjunction yields

−KS ∼ 2Zn + (n+ 2)F (1.8)

Recall that every smooth irreducible curve in |Zn + nF | (a ‘zero section’) intersects each fiber
transversally at a single point and does not intersect the ‘infinity section’ Zn. Any curve C on
Fn satisfies C ∼ aZn + bF with a, b ∈ N ∪ {0}. This, combined with (1.4), implies

C is ample if and only if a > 0 and b > na, (1.9)

and furthermore,

C is an irreducible curve if and only if C = Zn or b ≥ na ≥ 0. (1.10)

The classification of rational surfaces [18, p. 520] implies that

every rational surface with rk(Pic) > 2 contains a −1-curve, (1.11)

and that
a rational surface with rk(Pic) ≤ 2 is either P2 or Fn, n ≥ 0. (1.12)

We denote by Ga the additive group (C, +), by Gm the multiplicative group (C⋆, · ), and
by µn the finite group of order n.

Finally, if G is a graph with vertex set V and edges E, the dual graph of G refers to the
graph whose vertex set is E and whose edge set is V , namely if v ∈ V, e1, e2 ∈ E and v ∈ e1∩e2
then e1 and e2 are connected in the dual graph by v. A graph is a cycle if for some N ∋ k ≥ 2
E = {e1, . . . , ek}, V = {v1, . . . , vk}, and ei ∩ ei+1 = vi with ek+1 := e1. A tree is a graph that
contains no cycles. A chain is a connected tree with no three edges intersecting.
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2 Asymptotically log del Pezzo surfaces with smooth connected

boundary

The following theorem gives complete classification in the case of a single boundary component.

Theorem 2.1. Let S be a smooth surface (the surface), and let C be an irreducible smooth
curve on S (the boundary curve). Then −KS − (1 − β)C is ample for all sufficiently small
β > 0 if and only if S and C can be described as follows:

(I.1A) S ∼= P2, and C is a smooth cubic elliptic curve,

(I.1B) S ∼= P2, and C is a smooth conic,

(I.1C) S ∼= P2, and C is a line,

(I.2.n) S ∼= Fn for any n ≥ 0, and C = Zn,

(I.3A) S ∼= F1, and C ∈ |2(Z1 + F )|,

(I.3B) S ∼= F1, and C ∈ |Z1 + F |,

(I.4A) S ∼= P1 × P1, and C is a smooth elliptic curve of bi-degree (2, 2),

(I.4B) S ∼= P1 × P1, and C is a smooth rational curve of bi-degree (2, 1),

(I.4C) S ∼= P1 × P1, and C is a smooth rational curve of bi-degree (1, 1),

(I.5.m) S is a blow-up of the surface in (I.1A) at m ≤ 8 distinct points on the boundary curve
such that −KS is ample, i.e., S is a del Pezzo surface, and C is the proper transform of
the boundary curve in (I.1A), i.e., C ∈ | −KS |,

(I.6B.m) S is a blow-up of the surface in (I.1B) at m ≥ 1 distinct points on the boundary curve,
and C is the proper transform of the boundary curve in (I.1B),

(I.6C.m) S is a blow-up of the surface in (I.1C) at m ≥ 1 distinct points on the boundary curve,
and C is the proper transform of the boundary curve in (I.1C),

(I.7.n.m) S is a blow-up of the surface in (I.2.n) at m ≥ 1 distinct points on the boundary curve,
and C is the proper transform of the boundary curve in (I.2),

(I.8B.m) S is a blow-up of the surface in (I.3B) at m ≥ 1 distinct points on the boundary curve,
and C is the proper transform of the boundary curve in (I.3B),

(I.9B.m) S is a blow-up of the surface in (I.4B) at m ≥ 1 distinct points on the boundary curve
with no two of them on a single curve of bi-degree (0, 1), and C is the proper transform
of the boundary curve in (I.4B),

(I.9C.m) S is a blow-up of the surface in (I.4C) at m ≥ 1 distinct points on the boundary curve,
and C is the proper transform of the boundary curve in (I.4C).

The rest of the section is devoted to the proof of this theorem.
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2.1 Classification

Throughout this subsection we assume without further mention that

−KS − (1− β)C is ample for sufficiently small β ∈ (0, 1], (2.1)

i.e., (S,C) is asymptotically log del Pezzo. Then −KS − C is nef. Moreover, the surface S is
projective, since −KS− (1−β)C is an ample Q-divisor for sufficiently small rational β ∈ (0, 1].
Furthermore, the divisor −KS is big, since it is a sum of an ample class and an effective class,
to wit,

−KS = −(KS + (1− β)C) + (1− β)C.

Since −KS is big, we have h0(OS(KS)) = h0(OS(2KS)) = 0. Moreover, it follows from the
Kawamata–Viehweg Vanishing Theorem [31, Vol. II, §9.1.C] that h1(OS) = h2(OS) = 0. Thus,
the surface S is rational by Castelnuovo’s rationality criterion [18, p. 536]. We remark that all
of these considerations apply equally when C has several components, but for the rest of this
subsection we implicitly assume r = 1 unless explicitly stated.

In the rest of this subsection we prove that (S,C) is one of the pairs listed in Theorem 2.1.
Our proof is divided into several steps, each contained in a separate paragraph.

2.1.1 Non-rational boundary

Let g(C) denote the genus of the (smooth) curve C.

Lemma 2.2. Suppose that g(C) 6= 0. Then −KS is ample, i.e., S is a del Pezzo surface, and
C is a smooth elliptic curve in | −KS |.

Proof. Since −KS − C is nef, it follows from the adjunction theorem that

0 ≤ 2g − 2 = (KS +C).C ≤ 0, (2.2)

thus g = 1.
Next, by Kodaira–Serre duality, h2(OS(KS + C)) = h0(OS(−C)) = 0. Also, since S is

rational χ(OS) = 1. Recalling that (KS + C).C = 0 by (2.2), and using the Riemann-Roch
Theorem thus gives

1 = χ(OS) +
(KS + C).(KS + C −KS)

2
= χ(OS(KS + C))

= h0(OS(KS + C))− h1(OS(KS +C)) + h2(OS(KS + C))

≤ h0(OS(KS + C)).

(2.3)

Therefore, there exists an effective divisor R such that R ∼ KS + C. Thus by (1.6) R = 0,
from which C ∈ | −KS |, and

− βKS ∼ −KS − (1− β)C > 0, (2.4)

for sufficiently small rational β ∈ (0, 1], i.e., S is del Pezzo.

Recall that a smooth projective surface S not equal to P1 × P1 is del Pezzo precisely when
there is a smooth anticanonical curve C ⊂ S which is the proper transform of a smooth cubic
curve in P2 blown-up at 8 points in general position on the cubic [21, Proposition 3.2]. Thus,
we have:
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Corollary 2.3. Suppose C is not rational, then (S,C) is one of (I.1A), (I.4A), or (I.5.m).

Thus, for the remainder of §2.1, we assume

C is a smooth rational curve. (2.5)

Remark 2.4. In the notation and assumption of Theorem 1.2, suppose additionally that S is a
del Pezzo surface. Then the divisor −KS−

∑r
i=1(1−βi)Ci is ample for any (β1, . . . , βr) ∈ (0, 1]r .

2.1.2 Rational boundary and curves of negative self-intersection

The goal is now to show that (S,C) is one of the cases not covered by Corollary 2.3 . In this
paragraph we derive some basic intersection properties of the boundary and other curves of
negative self-intersection.

Lemma 2.5. Let Z be an irreducible curve on S such that Z 6= C and Z2 < 0. Then Z is a
smooth rational curve and Z2 = −1.

Proof. Since Z 6= C,

−KS .Z = −
(

KS + (1− β)C
)

.Z + (1− β)C.Z ≥ −
(

KS + (1− β)C
)

.Z > 0, (2.6)

for sufficiently small β ∈ (0, 1]. Hence, by (1.2) it follows that

0 > Z2 > KS .Z + Z2 = 2h1(OZ)− 2, (2.7)

or h1(OZ) = 0. Now it follows from (1.3) that Z is a smooth rational curve. Going back to
(2.7) then Z2 = −1.

Lemma 2.6. Suppose that S is not a del Pezzo surface. Then C2 ≤ −2.

Proof. Suppose that C2 ≥ −1. Then −KS.C > 0 by the adjunction formula, since by Lemma
2.5 C is a smooth rational curve. Also, by (2.6) KS .Z < 0 for every irreducible curve Z 6= C
on the surface S. Moreover, K2

S > 0, since −KS is big. Therefore, the divisor −KS is ample
by the Nakai–Moishezon criterion, which contradicts our assumption.

The next lemma is crucial for the proof of the main result. It shows that any −1-curve
intersects the boundary transversally at most at one point.

Lemma 2.7. Suppose that there exists a smooth irreducible rational curve E on the surface S
such that E2 = −1 and E 6= C. Then either E ∩ C = ∅ or E.C = 1.

Proof. Choose β such that βC.E < 1 (and, as always, also satisfying (2.1)). By adjunction,
−KS.E = 1. Then

0 < −(KS + (1− β)C).E = 1− C.E + βC.E < 2−C.E,

thus C.E < 2. Hence, either C.E = 0 (and, thus E ∩ C = ∅ since E 6= C) or C.E = 1.
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2.1.3 Minimal pairs

Suppose that there exists a smooth irreducible rational curve E on the surface S such that
E2 = −1 and E 6= C. By Castelnuovo’s contractibility criterion there exists a birational
morphism π : S → s that contracts the curve E to a smooth point of the surface s [18, p.
476]. Since by Lemma 2.7 E and C intersect transversally at most at one point then π(C) is
a smooth curve. Moreover, by (1.5), we see that the divisor −(Ks + (1 − β)π(C)) is ample
provided that −(KS + (1 − β)C) is ample. Thus, we see that (s, π(C)) is asymptotically log
del Pezzo as well.

Thus, it seems possible to use Lemma 2.7 to give an inductive proof (in the rank of the
Picard group, Pic(S)) of one direction of Theorem 2.1. To do this in a consistent way we make
the following definition.

Definition 2.8. The pair (S,C) is minimal if there exist no smooth irreducible rational curve
E on the surface S such that E2 = −1, E 6= C and E ∩ C 6= ∅.

The base of our induction is given by the next lemma. Recall that throughout we are
assuming C is a smooth rational curve (2.5).

Lemma 2.9. Suppose that rk(Pic(S)) ≤ 2 and C 6∼ −KS. Then when (S,C) is minimal it is
one of (I.1B), (I.1C), (I.2.n), (I.3A), (I.3B), (I.4B), or (I.4C), and otherwise it is (I.6B.1) or
(I.6C.1).

Proof. First note that all the cases listed in the statement are indeed asymptotically log del
Pezzo by §4.2. By (1.12) the assumption rk(Pic(S)) ≤ 2 implies that either S ∼= P2 or S ∼=
Fn, n ≥ 0. In the former case, (S,C) is either (I.1B) or (I.1C), as C is rational. Let us consider
the latter cases. If n = 0, then one sees that (S,C) is either (I.20), (I.4B), or (I.4C) (again,
as C is rational). Let n > 0 and suppose C ∈ |aZn + bF | with a, b ∈ N ∪ {0}. Then by
(1.8)–(1.9), −KS − (1− β)C = (2− (1− β)a)Zn + (n + 2− (1− β)b)F is ample if and only if
a ∈ [0, 2], b ∈ [0, na+ 2−n

1−β ).
Suppose first that b = 0. Then either (a, b) = (1, 0), i.e., C = Zn and we are in the case

(I.2.n), or else (a, b) = (2, 0), i.e., C ∈ |2Zn|, but since Zn is unique for n > 0 by (1.7) this
means C is not reduced, so this case is excluded.

Thus it remains to consider the case b > 0. If a = 0 then necessarily b = n = 1. This is
excluded by minimality since then C.Z1 = 1 and Z2

1 = −1. If a = 1 then b ∈ [1, 2]. The case
(a, b) = (1, 1) implies C.Zn = 1 − n ≥ 0 since C 6= Zn. Thus n = 1 and we obtain case (I.3B).
Similarly the case (a, b) = (1, 2) implies n ≤ 2. But n = 1 is excluded by minimality since then
C.Z1 = 1, Z2

1 = −1 and C 6= Z1, while n = 2 is excluded by Lemma 2.5 as C 6= Z2. Finally, if
a = 2 then b ∈ [1, n + 2]. Then C.Zn = −2n+ b ≥ 0 as C 6= Zn. Thus either n = 2 and b = 4,
or else n = 1 and b = 2 or b = 3. The former is again excluded by Lemma 2.5, while the latter
gives only the case (I.3A) since if (a, b) = (2, 3) then C ∈ | −KS | is not rational.

2.1.4 The inductive step

The next lemma provides the inductive step for our classification. Note that, by definition,
part (ii) refers to the case the −1-curve E is disjoint from the boundary.

Lemma 2.10. (i) Suppose that there exists a smooth irreducible rational curve E on the surface
S such that E2 = −1 and E 6= C. Then there exists a birational morphism π : S → s such that s
is a smooth surface, π(E) is a point, the morphism π induces an isomorphism S \E ∼= s\π(E),
the curve π(C) is a smooth rational curve, and (s, π(C)) is asymptotically log del Pezzo.
(ii) Suppose in addition that (S,C) is minimal. Then (s, π(C)) is minimal.
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Proof. (i) By the discussion at the beginning of §2.1.3 there exists a birational morphism
π : S → s that contracts E to a smooth point of the surface s, the curve π(C) is a smooth
rational curve, and the divisor −(Ks + (1 − β)π(C)) is ample for sufficiently small β ∈ (0, 1],
i.e., the pair (s, π(C)) asymptotically del Pezzo.

(ii) It remains to show that (s, π(C)) is minimal. Suppose, on the contrary, that there
exists a smooth irreducible rational curve z on the surface s such that z2 = −1, z 6= π(C), and
z ∩ π(C) 6= ∅. Let Z be the proper transform of the curve z on the surface S. Then either
π(E) ∈ z and Z2 = −2, contradicting Lemma 2.5, or else π(E) 6∈ z and Z2 = −1, but then
Z ∩ C 6= ∅, contradicting minimality of (S,C).

2.1.5 Classification of minimal pairs

The next lemma uses a geometric argument to apply the inductive step to reduce the classifi-
cation of minimal pairs to Lemma 2.9.

Lemma 2.11. Suppose that (S,C) is minimal. Then rk(Pic(S)) ≤ 2.

Proof. If C ∼ −KS then by Corollary 2.3 the pair must be (I.1A) or (I.4A), hence rk(Pic(S)) ≤
2. So we assume that C 6∼ −KS.

Let (S,C) be a pair and suppose that rk(Pic(S)) ≥ 3. We would like to show that the pair
is not minimal.

If S a del Pezzo surface, there exists a smooth irreducible rational −1-curve E on the surface
S such that E 6= C. Indeed, in this case it follows from the classification of smooth del Pezzo
surfaces referred to before Corollary 2.3 that there are at least three distinct −1-curves in S
at most one of which can be the boundary. On the other hand, if S is not del Pezzo, then the
existence of such curve E follows from Lemma 2.6, and (1.11). To complete the proof it thus
suffices to show that E ∩C 6= ∅ (recall Definition 2.8).

Suppose, on the contrary, that every such −1-curve E in S satisfies E ∩ C = ∅, i.e., that
(S,C) is minimal. By Lemma 2.10 there exists a birational morphism π : S → s such that s is
a smooth surface, π(E) is a point, the morphism π induces an isomorphism S \E ∼= s \ π(E),
the curve π(C) is smooth, and the pair (s, π(C)) is asymptotically log del Pezzo and minimal.
Since

rk(Pic(s)) = rk(Pic(S)) − 1 ≥ 2,

we may as well assume that rk(Pic(S)) = 3 and rk(Pic(s)) = 2.
Since rk(Pic(s)) = 2, one has s ∼= Fn for some n ≥ 0. Put

c := π(C).

Then π(E) 6∈ c, since E∩C = ∅. Since rk(Pic(s)) = 2 and (s, c) is minimal, Lemma 2.9 implies
that (s, c) is one of (I.2.n), (I.3A), (I.3B), (I.4B), or (I.4C).

Let ξ : s → P1 be a natural projection (unique when n > 0, and one of two choices when
n = 0, see (1.7)), let f be the fiber of the morphism ξ that passes through the point π(E), and
let F be its proper transform on S. Here we are following the conventions of (1.7). Then F is
a smooth irreducible rational curve such that F 2 = −1 (since f2 = 0 downstairs). Moreover,
we have F ∩ C = ∅, since (S,C) is minimal. Since E ∩ C = ∅, we see that f ∩ c = ∅, which
implies that c is also a fiber of the morphism ξ, i.e.,

c ∈ |f |, (2.8)

and in particular also c2 = 0. In the case (I.2.n) c2 = −n, while in the cases (I.3A), (I.3B),
(I.4B), (I.4C), we have c2 6= 0. Thus, (s, c) is neither (I.2.n), n > 0, nor one of (I.3A), (I.3B),
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(I.4B), or (I.4C). The only remaining possibility is that (s, c) is (I.2.0). Then s ∼= P1 × P1

and ξ = p1 is a projection to one of the factors. Let p2 denote the projection onto the second
factor, and let g denote the fiber of p2 passing through π(E). Then g intersects c at one point,
g2 = 0, and hence the proper transform of g, denoted G, satisfies G2 = −1 and G ∩ C = 1,
which once again contradicts minimality of (S,C). This completes the proof of the lemma.

2.1.6 Dealing with non-uniqueness

Now we are ready to finish the proof of the classification part of Theorem 2.1. If rk(Pic(S)) ≤ 2,
then it follows from Lemma 2.9 that (S,C) is one of (I.1B), (I.1C), (I.2.n), (I.3A), (I.3B), (I.4A),
(I.4B), (I.4C), (I.6B.1), or (I.6C.1). Thus, we may assume that rk(Pic(S)) ≥ 3. In particular,
the pair (S,C) is not minimal by Lemma 2.11. To prove Theorem 2.1, we must show that
(S,C) is one of the cases: (I.6B.m), (I.6C.m) for some N ∋ m ≥ 2, (I.7.n.m) for some positive
integers n and m, or, finally, (I.8B.m), (I.9B.m), or (I.9C.m) for some positive integer m.

Since (S,C) is not minimal, there exists a curve E and a birational morphism π : S → s as
in Lemma 2.10. The next lemma follows directly from Lemma 2.5.

Lemma 2.12. Let g be a smooth irreducible rational curve on the surface s such that g 6= π(C)
and g2 = −1. Then π(E) 6∈ g.

Now we may replace the pair (S,C) by the pair (s, c) and iterate this process. As a result,
we obtain a birational morphism, that by abuse, we still denote by π : S → s such that s is
a smooth surface, π is a a blow-up of m distinct points P1, P2, . . . , Pm on the smooth curve
Ĉ ⊂ Ŝ such that c := π(C), and, finally, (s, c) is a minimal asymptotically log del Pezzo pair.
By Lemma 2.11, one has rk(Pic(s)) ≤ 2. By Lemma 2.9, (s, c) is (I.1B), (I.1C), (I.2.n), (I.3A),
(I.3B), (I.4B), or (I.4C).

Corollary 2.13. If (s, c) is (I.1B), (I.1C), (I.2.n), or (I.4C), then (s, c) can also be obtained
as described in one of the cases (I.6B.m), (I.6C.m), (I.7.n.m), (I.8C.m), respectively.

Thus, to complete the proof of Theorem 2.1, we must do the following two things:

• if s ∼= P1 ×P1 and c is a smooth rational curve of bi-degree (2, 1), we must check that no
two points among P1, P2, . . . , Pm lie on a one curve in s of bi-degree (0, 1),

• if (s, c) is (I.3A) we must show the pair (S,C) can also be described by a birational
morphism that is listed in Theorem 2.1.

The first point is simple. Suppose that there exist two points among P1, P2, . . . , Pm that lie
on a one curve in s of bi-degree (0, 1). Let us denote this curve by z. Denote by Z its proper
transform on the surface S. Then Z2 ≤ −2, contradicting Lemma 2.5, because z 6= c.

The second point is dealt with using the next lemma.

Lemma 2.14. Suppose that (s, c) is (I.3A). Then (S,C) can also be described as (I.9B.m).

Proof. We have s ∼= F1. Let ξ : S → P1 be the natural projection, let z be the section of ξ such
that z2 = −1, and let f be a fiber of ξ that passes through the point P1. Then the curve c is
a smooth rational in |2z + 2f |.
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There exists a commutative diagram

S

π
''❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

υ
// BlP1

F1

ψ

yytt
t
tt
t
tt
t

φ

&&◆
◆◆

◆◆
◆◆

◆◆
◆

s = F1

ξ
��

σ = P1 × P1

ξ′

��

P1 P1,

where ψ is a blow-up of the point P1, φ is a contraction of the proper transform of the fiber f ,
υ is a birational morphism, and ξ′ is a natural projection. Put π′ = φ ◦ υ. Let us show that
π′ : S → σ is the desired replacement of the birational morphism π : S → s. These birational
transformations did not change the generic fiber of the projection ξ. Thus, σ comes equipped
with a fibration ξ′ : σ → P1 In particular, the curve ζ in σ corresponding to z ⊂ s is a fiber of
ξ′ and it has zero self-intersection. Thus, σ ∼= P1 × P1. Becuase φ contracts a −1-curve (f̃ , the
proper transform of f) that intersects both z and the exceptional curve A of ψ, it follows that
φ(A) has zero self-intersection and intersects ζ at one point. At the same time φ(A) intersects
the transformed boundary of s (which equals π′(C) at two points. Thus π′(C) is a curve of
bi-degree (2, 1). Thus, (S,C) is the blow-up of (P1 × P1, π′(C)) at m ≥ 1 points. Further, as
already checked earlier, no two of these points may lie on a single fiber of ξ′. Thus, (S,C) is
(I.9B.m).

3 Strongly asymptotically log del Pezzo surfaces

The following theorem gives complete classification in the case of a reducible boundary curve.
We assume without further mention that in each case listed below the curves composing the
boundary intersect simply and normally. A point in the smooth locus of such a boundary
means a point that is not an intersection point of any two components of the boundary.

Theorem 3.1. Let S be a smooth surface, let C1, . . . , Cr be irreducible smooth curves on S such
that

∑r
i=1 Ci is a divisor with simple normal crossings. Suppose that r ≥ 2. Then (S,

∑r
i=1Ci)

is a strongly asymptotically log del Pezzo surface if and only if it is one of the following pairs:

(II.1A) |C1 ∩ C2| = 2, S ∼= P2, and C1 is a smooth conic, and C2 is a line,

(II.1B) |C1 ∩ C2| = 1, S ∼= P2, and C1 and C2 are two distinct lines,

(II.2A.n) C1 ∩ C2 = ∅, S ∼= Fn for any n ≥ 0, C1 = Zn and C2 ∈ |Zn + nF |,

(II.2B.n) |C1 ∩ C2| = 1, S ∼= Fn for any n ≥ 0, C1 = Zn and C2 ∈ |Zn + (n+ 1)F |,

(II.2C.n) |C1 ∩ C2| = 1, S ∼= Fn for any n ≥ 0, C1 = Zn and C2 = F ,

(II.3) |C1 ∩ C2| = 1, S ∼= F1, C1, C2 ∈ |Z1 + F |,

(II.4A) |C1 ∩ C2| = 2, S ∼= P1 × P1, C1, C2 are distinct bi-degree (1, 1) curves,

(II.4B) |C1 ∩ C2| = 2, S ∼= P1 × P1, the curve C1 is a smooth rational curve of bi-degree (2, 1),
and C2 is a smooth rational curve of bi-degree (0, 1),
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(II.5A.m) |C1 ∩ C2| = 2, (S,C) is a blow-up of (II.1A) at 1 ≤ m ≤ 5 points in the smooth locus of
the boundary curve such that the surface S is a del Pezzo surface and C2

1 , C
2
2 ≥ 0, i.e.,

C1 +C2 ∼ −KS, and there exists a birational morphism π : S → P2 such that π(C1) is a
smooth conic, and π(C2) is a line such that |π(C1) ∩ π(C2)| = 2, and π is a blow-up of
1 ≤ m ≤ 5 distinct points on π(C1) and π(C2) but away from π(C1)∩ π(C2) with no two
of them on π(C1), and no five of them on π(C2),

(II.5B.m) |C1 ∩ C2| = 1, (S,C) is a blow-up of (II.1B) at m ≥ 1 points in the smooth locus of the
boundary curve, i.e., there exists a birational morphism π : S → P2 such that π(C1) and
π(C2) are distinct lines, and π is a blow-up of m ≥ 1 distinct points on π(C1) and π(C2)
but away from π(C1) ∩ π(C2),

(II.6A.n.m) C1∩C2 = ∅, (S,C) is a blow-up of (II.2A.n) at m ≥ 1 points on the boundary curve such
that there exists a birational morphism π : S → Fn for some n ≥ 0 such that π(C1) = Zn,
π(C2) ∈ |Zn + nF |, and π is a blow-up of m distinct points on π(C1) and π(C2) with at
most one point on a single curve in the linear system |F |,

(II.6B.n.m) |C1 ∩C2| = 1, (S,C) is a blow-up of (II.2B.n) at m ≥ 1 points in the smooth locus of the
boundary curve such that there exists a birational morphism π : S → Fn for some n ≥ 0
such that π(C1) = Zn, π(C2) ∈ |Zn + (n + 1)F |, and π is a blow-up of m ≥ 1 distinct
points on π(C1) and π(C2) with at most one point on a single curve in the linear system
|F |, and no point being π(C1) ∩ π(C2)

(II.6C.n.m) |C1 ∩C2| = 1, (S,C) is a blow-up of (II.2C.n) at m ≥ 1 points in the smooth locus of the
boundary curve, i.e., there exists a birational morphism π : S → Fn for some n ≥ 0 such
that π(C1) = Zn, π(C2) = F , and π is a blow-up of m ≥ 1 distinct points on π(C1) and
π(C2) but away from π(C1) ∩ π(C2),

(II.7.m) |C1 ∩ C2| = 1, (S,C) is a blow-up of (II.3) at m ≥ 1 points in the smooth locus of
the boundary curve such that there exists a birational morphism π : S → F1 such that
π(C1), π(C2) ∈ |Z1+F |, and π is a blow-up of m ≥ 1 distinct points on π(C1) and π(C2)
with at most one point on a single curve in the linear system |F |, and no point being
π(C1) ∩ π(C2)

(II.8.m) |C1∩C2| = 2, (S,C) is a blow-up of (II.4B) at 1 ≤ m ≤ 4 points in the smooth locus of the
boundary curve such that S is a del Pezzo surface and C2

1 , C
2
2 ≥ 0, i.e., C1 +C2 ∼ −KS,

and there exists a birational morphism π : S → P1 × P1 such that π(C1) is a smooth
rational curve of bi-degree (2, 1), π(C2) is a smooth rational curve of bi-degree (0, 1), and
π is a blow-up of 1 ≤ m ≤ 4 distinct points on π(C1) with no point being π(C1) ∩ π(C2),

(III.1) S ∼= P2, the curves C1, C2, C3 are lines,

(III.2) S ∼= P1 × P1, C1, C2, C3 are of bi-degree (1, 1), (0, 1), and (1, 0), respectively,

(III.3.n) S ∼= Fn for any n ≥ 0, C1 = Zn, C2 = F, and C3 ∈ |Zn + nF |,

(III.4.m) (S,C) is a blow-up of (III.1) at 1 ≤ m ≤ 3 points in the smooth locus of the boundary
curve such that S is a del Pezzo surface, C2

1 , C
2
2 , C

2
3 ≥ 0, i.e., C1 +C2 +C3 ∼ −KS, and

there exists a birational morphism π : S → P2 such that the curves π(C1), π(C2), π(C3)
are lines that have no common intersection, and π is a blow-up of 1 ≤ m ≤ 3 distinct
points on these lines with at most one point on each line and no point on an intersection
of two lines,
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(III.5.n.m) (S,C) is a blow-up of (III.3.n) at m ≥ 1 points in the smooth locus of the boundary
curve such that there exists a birational morphism π : S → Fn for some n ≥ 0 such that
π(C1) = Zn, π(C2) = F , and π(C3) ∈ |Zn + nF |, and π is a blow-up of m distinct points
on π(C1) and π(C3) with at most one point on a single curve in the linear system |F |,
and no point being π(C1) ∩ π(C2) or π(C2) ∩ π(C3),

(IV) S ∼= P1 × P1, the curves C1 and C2 are distinct curves of bi-degree (1, 0), the curves C3

and C4 are distinct curves of bi-degree (0, 1).

The rest of the section is devoted to the proof of Theorem 3.1.

3.1 Basic properties of asymptotically log del Pezzo pairs

In this subsection, before embarking on the proof of Theorem 2.1, we collect several properties
of asymptotically log del Pezzo pairs that are not necessarily strongly asymptotically log del
Pezzo. These properties are later used in the proof of that theorem, but they should also be
useful in a future classification of the former class of pairs.

Thus in the rest of this subsection we assume (S,C), β ∈ (0, 1]r , and r ≥ 2 are as in
Definition 1.1.

Lemma 3.2. All curves C1, . . . , Cr are smooth rational curves.

Proof. Suppose that there exists a non-rational curve among the curves C1, . . . , Cr. Without
loss of generality, we may assume that this curve is C1. Since −(KS+

∑r
i=1Ci) is nef, it follows

from the adjunction theorem that

2g(C1)− 2 +
r

∑

i=2

C1.Ci = (KS +
r

∑

i=1

Ci).C1 ≤ 0,

which implies that g(C1) = 1 and C1 ∩ Ci = ∅ for every i 6= 1. Hence, we see that C1 is
an elliptic curve. Arguing as in the proof of Lemma 2.2, we see that there exists an effective
divisor R ∼ C1+KS . Thus, −R−C1−

∑r
i=2 Ci ∼ −KS −C is nef, implying R ∼ 0 and r = 1,

which contradicts our assumption that r ≥ 2.

Lemma 3.3. Suppose that there exists a smooth irreducible rational curve E on the surface
S such that E2 = −1 and E 6= Ci for every i. Then either E is disjoint from

∑r
i=1Ci, or

it intersects exactly one irreducible component of
∑r

i=1 Ci. Moreover, in the latter case E
intersects that irreducible component transversally at exactly one point.

Proof. Since −KS .E = 1 by adjunction then

0 < −(KS +

r
∑

i=1

(1− βi)Ci).E = 1−
r

∑

i=1

Ci.E +

r
∑

i=1

βiCi.E < 2−
r

∑

i=1

Ci.E,

for small |β|. This implies that
∑r

i=1Ci.E < 2. Hence, either
∑r

i=1 Ci.E = 0 or
∑r

i=1Ci.E = 1,
because E 6= Ci for every i. In the former case E ∩Ci = ∅ for every i. In the latter case there
is an i such that E.Ci = 1 and E ∩ Cj = ∅ for every j 6= i.

Similarly to Definition 2.8, let us call the pair (S,
∑r

i=1Ci) minimal if there exist no smooth
irreducible rational curve on the surface S such that E2 = −1, E 6= Ci for every i, and there
is a j such that and E ∩ Cj 6= ∅. Then we have the following generalization of Lemma 2.10.
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Lemma 3.4. Suppose that there exists a smooth irreducible rational curve E on the surface S
such that E2 = −1 and E 6= Ci for every i. Then there exists a birational morphism π : S → s
such that s is a smooth surface, π(E) is a point, the morphism π induces an isomorphism
S \ E ∼= s \ π(E), the divisor

∑r
i=1 π(Ci) is a divisor with simple normal crossings, and

π(C1), . . . , π(Cr) are smooth rational curves whose dual graph is the same as the dual graph
of the curves C1, . . . , Cr. Moreover, the pair (s,

∑r
i=1 π(Ci)) is asymptotically log del Pezzo

and strongly asymptotically log del Pezzo if (S,C) is. Furthermore, if the pair (S,
∑r

i=1 Ci) is
minimal, then the pair (s,

∑r
i=1 π(Ci)) is minimal.

Proof. By the Castelnuovo’s contractibility criterion, there exists a birational morphism π : S →
s such that s is a smooth surface, π(E) is a point, the morphism π induces an isomorphism
S \E ∼= s \ π(E). Moreover, the divisor

∑r
i=1 π(Ci) is a divisor with a simple normal crossing,

the curves π(C1), . . . , π(Cr) are smooth rational curves whose dual graph is the same as the
dual graph of the curves C1, . . . , Cr. Indeed, the latter is obvious if the curve E is disjoint
from

∑r
i=1Ci. If E is not disjoint from

∑r
i=1Ci, then it intersects exactly one irreducible

component of
∑r

i=1 Ci (and intersects this component transversally and at exactly one point)
by Lemma 3.3. The latter implies that the divisor

∑r
i=1 π(Ci) is a divisor with a simple normal

crossing, the curves π(C1), . . . , π(Cr) are smooth rational curves whose dual graph is the same
as the dual graph of the curves C1, . . . , Cr. Now we can complete the proof arguing as in the
proof of Lemma 2.10 (ii).

The next lemma describes the combinatorial structure of C.

Lemma 3.5. (i) Either |Ci ∩Cj| ≤ 1 for i 6= j, or r = 2, |C1 ∩C2| = 2 and C1 +C2 ∼ −KS.
(ii) If r ≥ 3, then either the dual graph of the curves C1, . . . , Cr forms a tree, or

∑r
i=1 Ci ∼ −KS

and the dual graph of the curves C1, . . . , Cr forms a cycle.
(iii) If the dual graph of the curves C1, . . . , Cr forms a tree, then it is a disjoint union of chains.

Proof. (i) Suppose that |C1∩C2| ≥ 2. We claim that r = 2, C1+C2 ∼ −KS , and |C1∩C2| = 2.
By Serre duality,

h2(OS(KS + C1 + C2)) = h0(OS(−C1 −C2)) = 0.

Put k = |C1 ∩ C2|. Then

(KS + C1 + C2).(C1 + C2) = (C1 + C2)
2 +KS .C1 +KS .C2

= C2
1 + C2

2 + 2C1.C2 + 2g(C1)− 2−C2
1 + 2g(C2)− 2− C2

2 = 2k − 4,

since C1 and C2 are rational curves by Lemma 3.2. Since S is rational, it follows from the
Riemann–Roch theorem that h0(OS

(

KS + C1 + C2

)

) ≥ 1 + (2k − 4)/2 = k − 1 ≥ 1. The rest
of the proof is now identical to that of Lemma 3.2.

(ii) By (i), |Ci ∩ Cj| ≤ 1 for every i 6= j. Suppose that for some k ≤ r the dual graph of
the curves C1, C2, . . . , Ck forms a cycle such that Ck.C1 = C1.C2 = . . . = Ck−1.Ck = 1, and
Ci.Cj = 0 in all other cases when 1 ≤ i 6= j ≤ k. We claim that r = k. Indeed, as before

h2(OS(KS +
∑k

i=1 Ci)) = h0(OS(−
∑k

i=1 Ci)) = 0. Since

(KS +

k
∑

i=1

Ci).(

k
∑

i=1

Ci) = 2
∑

1≤i<j≤k
Ci.Cj +

k
∑

i=1

KS .Cj +

k
∑

i=1

C2
i

= 2
∑

1≤i<j≤k

Ci.Cj +
k

∑

i=1

(2g(Ci)− 2) = 2k − 2k = 0.
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Thus, as in (i), h0(OS(KS +
∑k

i=1 Ci)) 6= 0 by the Riemann–Roch theorem and there exists

an effective divisor R such that R ∼ KS +
∑k

i=1 Ci, hence the divisor −KS − ∑r
i=1 Ci ∼

−R−∑r
i=k Ci is nef, so R = 0 and r = k.

(iii) Suppose that the dual graph of the curves C1, . . . , Cr forms a tree that is not a disjoint
union of chains. Then r ≥ 4, and there exists a curve among C1, . . . , Cr that intersects at least
three other different curves among C1, . . . , Cr, say C1.C2 = 1, C1.C3 = 1, and C1.C4 = 1. Then

0 > (KS +
r

∑

i=1

(1− βi)Ci).C1 = KS .C1 + (1− β1)C
2
1 +

4
∑

i=2

(1− βi)Ci.C1 +
r

∑

i=5

(1− βi)Ci.C1

≥ KS .C1 + (1− β1)C
2
1 +

4
∑

i=2

(1− βi)Ci.C1

= −2 + C2
1 + (1− β1)C

2
1 +

4
∑

i=2

(1− βi)Ci.C1 = 1− β1C
2
1 − β2 − β3 − β4 > 0,

for |β| ≪ 1, a contradiction.

The next lemma shows that only curves Ci that are at the ‘tail’ of a chain can have negative
self-intersection.

Lemma 3.6. Suppose that (S,
∑r

i=1 Ci) is strongly asymptotically log del Pezzo. Then C2
i ≥ 0

for every Ci such that Ci intersects at least two curves among C1, . . . , Cr different from itself.
Similarly, C2

i ≥ 0 if there exists a curve among C1, . . . , Cr different from Ci that intersects Ci
by more than one point.

Proof. Suppose that C1, say, intersects at least two curves among C2, . . . , Cr, say C1.C2 =
C1.C3 = 1. Suppose that C2

1 < 0. Then it follows from adjunction that

(KS +
r

∑

i=1

(1− βi)Ci).C1 ≥ KS .C1 + (1− β1)C
2
1 + (1− β2)C2.C1 + (1− β3)C3.C1

= −β1C2
1 − β2 − β3

thus β1 < β2 + β3. The latter contradicts our assumption that the divisor −(KS +
∑r

i=1(1 −
βi)Ci) is ample for every (β1, . . . , βr) ∈ (0, 1]r with |(β1, . . . , βr)| < ǫ.

To complete the proof, we may assume that C1 intersects some curve among C2, . . . , Cr by
more than 2 points. Then r = 2 and C1.C2 = 2 by Lemma 3.5. If C2

1 < 0, then

0 > (KS +

r
∑

i=1

(1− βi)Ci).C1 = KS .C1 + (1− β1)C
2
1 + (1− β2)C2.C1 = −β1C2

1 − 2β2

which once again does not hold for all small β.

Remark 3.7. We mention that the number of connected components of the curve
∑r

i=1 Ci is at
most 2 [40, Theorem 6.9] (see also [15, Proposition 2.1] for a generalization in all dimensions).
We will not use this result in the proof of Theorem 3.1. In fact, if (S,

∑r
i=1 Ci) is strongly

asymptotically log del Pezzo, this also follows from Theorem 3.1.

The next example shows that the previous lemma does not hold in the non-strongly asymp-
totically log del Pezzo regime (nor in the “diagonal regime”, i.e., where β = β1(1, . . . , 1)), where
‘interior’ boundary components could have negative self-intersection.
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Example 3.8. Let S ∼= Fn for some n > 0. Let C1 and C2 be two distinct fibers of the
natural projection Fn → P1, and let C3 = Zn. Then the pair (S,

∑3
i=1Ci) is asymptotically log

Fano, but it is not strongly asymptotically log Fano. Indeed, by (1.9) we see that the divisor
−KS −∑3

i=1(1− βi)Ci) is ample if and only if β1 + β2 > nβ3.

3.2 Classification

Note that in §3.1 we only assumed that (S,
∑r

i=1Ci) is asymptotically log del Pezzo. In this
subsection, we assume that (S,

∑r
i=1 Ci) is strongly asymptotically log del Pezzo (Definition

1.1). Namely, there exists a positive ǫ ∈ (0, 1] such that the divisor

−KS −
r

∑

i=1

(1− βi)Ci (3.1)

is ample for every β = (β1, . . . , βr) ∈ (0, 1]r with |β| ≤ ǫ.

3.2.1 Boundary with arithmetic genus one

Lemma 3.9. Suppose that
∑r

i=1Ci ∼ −KS. Then −KS is ample, Ci ∼= P1 ∀i, and C2
i ≥ 0 ∀i.

Furthermore, if r = 2, then |C1 ∩C2| = 2. If r ≥ 3, then |Ci ∩Cj | ≤ 1 for every i 6= j, and the
dual graph of the curves C1, . . . , Cr forms a cycle.

Proof. The ampleness of −KS is obvious, because (S,
∑r

i=1Ci) is asymptotically log del Pezzo

−(KS +
r

∑

i=1

(1− β)Ci) ∼R −βKS

for every real β ∈ (0, 1]. By Lemmas 3.2, Ci ∼= P1 ∀i. By Lemma 3.6, C2
i ≥ 0 ∀i. If r = 2,

then |C1 ∩ C2| = 2 by Lemma 3.5. Similarly, if r ≥ 3, then it follows from Lemma 3.5 that
|Ci ∩ Cj| ≤ 1 for every i 6= j, and the dual graph of the curves C1, . . . , Cr forms a cycle.

In analogy with Corollary 2.3, we get:

Corollary 3.10. Suppose
∑r

i=1Ci ∼ −KS. Then (S,
∑r

i=1Ci) is one of (II.1A), (II.4A),
(II.5A.m), (II.8.m), (III.1), (III.2), (III.3.m), or (IV).

3.2.2 Boundary with arithmetic genus zero

To complete the proof of the classification part of Theorem 3.1, we may assume that
∑r

i=1 Ci 6∼
−KS. By Lemma 3.5 |Ci∩Cj| ≤ 1 for every i 6= j, and the dual graph of the curves C1, . . . , Cr
is a union of disjoint chains. By Lemma 3.6, C2

k ≥ 0 for every curve Ck among C1, . . . , Cr that
intersects at least 2 other different curves among the curves C1, . . . , Cr. The next lemma gives
a complete classification in this situation under the further assumption that the Picard group
is small.

Lemma 3.11. Suppose that rk(Pic(S)) ≤ 2 and C 6∼ −KS. Then when (S,C) is minimal it is
one of (II.1B), (II.2A.n), (II.2B.n), (II.2C.n), (II.3), or (III.3.n), and otherwise it is (II.5B.1).

Proof. Since rk(Pic(S)) ≤ 2, either S ∼= P2 or S ∼= Fn for some n ≥ 0. If the latter case (S,C)
must be (II.1B), as C 6∼ −KS . Assume from now on that S = Fn.
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Recall that |Ci ∩ Cj| ≤ 1 for every i 6= j, and C1, . . . , Cr are smooth rational curves whose
dual graph is a union of disjoint chains. If n = 0 this determines (S,C), i.e., the boundary
C must be either two disjoint fibers (II.2A.0), two intersecting fibers (II.2C.0), a fiber and a
bi-degree (1,1) curve (II.2B.0), or three non-disjoint fibers (III.3.0).

To complete the proof let us first consider the case n ≥ 2. First,

0 ≤ −
(

KS +
r

∑

i=1

(1− βi)Ci

)

.Zn = 2− n−
r

∑

i=1

(1− βi)Ci.Zn, (3.2)

so one of the curves, say C1, equals Zn. If every curve C2, . . . , Cr lies in |F |, then

0 < −
(

KS +

r
∑

i=1

(1− βi)Ci

)

.Zn = −nβ1 + 2−
r

∑

i=2

(1− βi),

thus r = 2 and (S,C) is (II.2C.n). Assume that C2 6∼ F and write Ci ∼ aiZn + biF . Then
since [F ] is nef

0 < −
(

KS +

r
∑

i=1

(1− βi)Ci

)

.F = 1 + β1 − a2(1− β2)−
r

∑

i=3

(1− βi)Ci.F ≥ 1 + β1 − a2(1− β2),

and since a2 > 0 this implies that a2 = 1. Then

0 < −
(

KS +
r

∑

i=1

(1− βi)Ci

)

.F = β1 + β2 −
r

∑

i=3

(1− βi)Ci.F,

i.e., Ci.F = 0 for every i ≥ 3. Therefore, we see that Ci ∈ |F | for every i ≥ 3. Then

−
(

KS +

r
∑

i=1

(1− βi)Ci

)

∼ (β1 + β2)Zn + (n+ 2− b2 −
r

∑

i=3

(1− βi))F,

where b2 ≥ n by (1.10). Then by (1.9)

n+ 2− b2 −
r

∑

i=3

(1− βi) > n(β1 + β2).

If r = 2 this implies that b2 ≤ n+1 so b2 ∈ {n, n+1}, i.e., (S,C) is (II.2A.n) or (II.2B.n) and
if r = 3 then b2 ≤ n so b2 = n so (S,C) is (III.3.n).

Finally, assume n = 1. Then (3.2) implies that either C1 = Z1 or C1 ∼ Z1 + F . In
the former case the same arguments of the previous paragraph apply to yield (S,C) is either
(II.2C.1), (II.2A.1), (II.2B.1), or (III.3.1). In the latter case, if C2 ∼ F then r = 2 and (S,C)
is (II.5B.1) and is not minimal since Z1 intersects C2 transversally at one point. Due to (3.2)
the only other remaining possibility is C2 ∼ Z1 +F and then (S,C) is (II.3). The proof is now
complete since all the cases listed in the statement are indeed strongly asymptotically log del
Pezzo by §4.2.

The following is an analogue of Lemma 3.4 for the case when a −1-curve contained in the
boundary is contracted. We omit the proof as it is analogous to the proof of that lemma.

Recall that |Ci ∩ Cj| ≤ 1 for every i 6= j, and the dual graph of the curves C1, . . . , Cr is a
union of disjoint chains.

23



Lemma 3.12. Suppose that C2
1 = −1. Then there exists a birational morphism π : S → s such

that s is a smooth surface, π(C1) is a point, the morphism π induces an isomorphism S \Ck ∼=
s\π(C1), the divisor

∑r
i=2 π(Ci) is a divisor with simple normal crossings, |π(Ci)∩π(Cj)| ≤ 1

for every i 6= j, and π(C2), . . . , π(Cr) are smooth rational curves whose dual graph is a union
of disjoint chains. Moreover, the pair (s,

∑r
i=2 π(Ci)) is strongly asymptotically log del Pezzo.

Furthermore, if the pair (S,
∑r

i=1 Ci) is minimal, then the pair (s,
∑r

i=2 π(Ci)) is minimal as
well.

Proof. Recall that |Ci ∩ Cj| ≤ 1 for every i 6= j, and C1, . . . , Cr are smooth rational curves
whose dual graph is a union of disjoint chains. Moreover, it follows from Lemma 3.6 that
C2
1 ≥ 0 if C1 intersects at least 2 curves among the curves C2, . . . , Cr. Arguing as in the proof

of Lemma 3.4, we obtain all required assertions.

Now we are ready to prove an analogue of Lemma 2.11 that plays a crucial role in the proof
of Theorem 3.1.

Lemma 3.13. Suppose that (S,
∑r

i=1 Ci) is minimal. Then rk(Pic(S)) ≤ 2.

Proof. If C ∼ −KS then (S,C) is one of the pairs listed in Corollary 3.10. Of those, (II.1A),
(II.4A), (III.1), (III.2), and (IV) are minimal and they all satisfy rk(Pic(S)) ≤ 2. So we assume
from now on that C 6∼ −KS .

Suppose that rk(Pic(S)) ≥ 3. Let us derive a contradiction. By (1.11) there exists a smooth
rational curve E on the surface such that E2 = −1. Either E 6= Ci for every i, or there is k
such that E = Ck. By Lemmas 3.4 and 3.12 and induction on rk(Pic(S)) we can assume that
rk(Pic(S)) = 3.

If E 6= Ci for every i, then we can proceed exactly as in the proof of Lemma 2.11 to obtain
a contradiction. Thus, assume that E = C1. By Lemma 3.6, C1 intersects at most one curve
among the curves C1, . . . , Cr. Suppose that C1 ∩ Ci = ∅ for every i ≥ 3 (if any).

Since the pair (S,C) is minimal and strongly asymptotically log del Pezzo, there exists
a birational morphism π : S → s as in Lemma 3.12. Then (s,

∑r
i=2 π(Ci)) is minimal and

rk(Pic(s)) = 2, and, in particular, s ∼= Fn for some n ≥ 0.
Put ci = π(Ci) for every i ≥ 2. Let ξ : S → P1 be the natural projection (it is uniquely

determined if n 6= 0). Then either

π(C1) 6∈
r
⋃

i=2

ci,

(if C1 ∩ C2 = ∅) or π(C1) ∈ c2 and π(C1) 6∈ ci for every i ≥ 3 (if any) (if C1 ∩ C2 6= ∅).
We can apply Lemmas 2.9 and 3.11 to get an explicit description of the pair (s,

∑r
i=2 ci).

The cases (I.1B), (I.1C), (I.6B.1), (I.6C.1), (II.1B), and (II.5B.1) are excluded because either
the rank of their Picard group is one or else they are not minimal. Thus, if r ≥ 2, (s,

∑r
i=2 ci)

is one of (II.2A.n), (II.2B.n), (II.2C.n), (II.3), or (III.2.n). Similarly, if r = 1, (s,
∑r

i=2 ci) is
one of (I.2.n), (I.3A), (I.3B), (I.4B), or (I.4C). In particular, r is at most four.

Let f be a fiber of the morphism ξ that passes through the point π(C1), and let F be its
proper transform on S. Then F is a smooth irreducible rational curve such that F 2 = −1.
Moreover, we have F ∩ C1 6= ∅ by construction. Since (S,

∑r
i=1Ci) is minimal, the curve F

must be one of the curves C2, . . . , Cr. Then F = C2, C1 ∩ C2 6= ∅, π(C1) ∈ c2, and π(C1) 6∈ ci
for every i ≥ 3 (if any). Moreover, it follows from Lemma 3.6 that C2 does not intersect any
curve among C3, . . . , Cr (if any), since F 2 = −1. Thus, c2 does not intersect any curve among
c3, . . . , cr (if any).
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Suppose that r = 2. Then (s, c2) is one of (I.2.n), (I.3A), (I.3B), (I.4B), or (I.4C). The
latter is possible only in the case (I.2.0) since c2 ∈ |f | is a fiber of the the morphism ξ. Then
s ∼= P1 × P1. The latter implies that (S,C1 + C2) is not minimal. Indeed, the surface S is a
del Pezzo surface with K2

S = 7. It contains three (−1)-curves. Two of them are the curves C1

and C2. The third one intersects C2, contradicting minimality.
Suppose that r = 3. As noted earlier then (s, c2+c3) is one of (II.2A.n), (II.2B.n), (II.2C.n),

or (II.3). Since c2 ∩ c3 = ∅ it must be (II.2A.n). Since c2 is a fiber of the morphism ξ and
c2 ∩ c3 = ∅ it follows that c3 is also a fiber of ξ. Thus, n = 0, i.e., s ∼= P1 × P1. The latter
implies that (S,C1+C2) is not asymptotically log del Pezzo. Indeed, the surface S is del Pezzo
surface with K2

S = 7. It contains three (−1)-curves. Two of them are the curves C1 and C2.
The third one intersects C2 and C3, contradicting Lemma 3.3.

Suppose that r = 4. Then (s, c2 + c3 + c4) must be (III.2.n). But this is precluded by the
fact that c2 does not intersect c3 or c4.

In conclusion then rk(Pic(S)) ≤ 2.

We now complete the proof of the classification part of Theorem 3.1. If rk(Pic(S)) ≤ 2,
then (S,C) is listed in Corollary 3.10 if C ∼ −KS and by Lemma 3.11 if C 6∼ −KS . On the
other hand, if rk(Pic(S)) > 2, the pair (S,

∑r
i=1Ci) is not minimal by Lemma 3.13. But then,

Lemmas 3.4 and 3.12 imply (S,C) is a blow-up along the boundary of one of the minimal pairs
that we already listed. It remains to check the genericity conditions on the location of the
blow-up points as stated in Theorem 3.1. This is carried out in §4.2 where we simultaneously
also verify that all pairs listed in the theorem are indeed strongly asymptotically del Pezzo.

Remark 3.14. The results of this section already give some hints as to the difficulties in clas-
sifying all asymptotically log del Pezzo surfaces. In particular, r can then be infinite, and
−1-curves can appear as ‘interior’ curves of the boundary (see Example 3.8) even though the
number of connected components of the support of C is still two by Remark 3.7. However, the
classification of the ‘diagonal’ regime (where −KS −∑

(1 − βi)Ci is ample for all sufficiently
small β of the form β = β1(1, . . . , 1)) should be more tractable. In a related vein, results of di
Cerbo–di Cerbo [11] give bounds on the largest possible value β1 may take for pairs of class (k)
in this last regime depending only on (KS+C)2. We further note that di Cerbo [12] considered
the ‘diagonal’ regime in the setting of negative curvature, and obtained necessary and sufficient
intersection-theoretic restrictions on the pair for KS + (1 − β)

∑

Ci to be ample. Of course,
in the negative setting a complete classification is lacking even in the smooth setting with no
boundary.

4 Positivity properties of the logarithmic anticanonical bundle

Let S be a smooth surface, let C1, . . . , Cr be smooth irreducible curves on the surface S such
that

∑r
i=1Ci is a divisor with simple normal crossings, and let β = (β1, β2, . . . , βr) ∈ (0, 1]r ,

where r ≥ 1. Suppose that (S,
∑r

i=1Ci) is strongly asymptotically log del Pezzo. Then we
have the following mutually excluding possibilities:

(ℵ) −(KS +
∑r

i=1Ci) ∼ 0, S is del Pezzo surface, and
∑r

i=1Ci ∼ −KS , and C
2
i ≥ 0 ∀i,

(i) (−KS − ∑r
i=1Ci)

2 = 0, all curves C1, . . . , Cr are rational, and the dual graph of the
curves C1, . . . , Cr is a disjoint union of chains,
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(ג) the divisor −(KS +
∑r

i=1Ci) is big and nef, the divisor −(KS +
∑r

i=1 Ci) is not ample,
all curves C1, . . . , Cr are rational and the dual graph of the curves C1, . . . , Cr is a disjoint
union of chains,

(k) C ∼= P1, the divisor −(KS +
∑r

i=1Ci) is ample, all curves C1, . . . , Cr are rational and the
dual graph of the curves C1, . . . , Cr is a disjoint union of chains.

This follows from Lemmas 2.12, 2.2, 3.6 and 3.5. Note that the classification in Theorems 2.1
and 3.1 generalizes Maeda’s classical result [33] that corresponds to class (k). Maeda further
provided a full classification in class (k). In §4.1 we generalize this by giving a complete
classification in each of the remaining classs. In §4.3 we go further in the class (i) by proving
that the linear system | −KS −∑r

i=1Ci| gives a morphism S → P1 whose general fiber is P1.

Remark 4.1. There is perhaps no real need to distinguish between classes (ג) and (k), but
we do that mainly for a historical reason. Indeed, class (k) is not new. These pairs were
completely classified in Maeda’s work who coined the term ‘log del Pezzo surface’ for this class
of pairs [33]. In higher dimensions it might prove more natural to identify only dimX + 1
classes according to the Kodaira dimension of −KX −D.

4.1 Positivity classification

We now prove Theorem 1.4, relying on Theorems 2.1 and 3.1.
Class (ℵ) follows from Corollaries 2.3 (and the remark preceeding it) and 3.10. Class (k)

follows from (1.9).
Next, if (S,

∑r
i=1 Ci) is not minimal (see Definition 2.8), then it follows from the proof of

Theorems 2.1 and 3.1 that there exists a non-biregular birational map π : S → s such that the
pair (s,

∑r
i=1 π(Ci)) is minimal and

−KS +
r

∑

i=1

Ci ∼ π∗(−Ks −
r

∑

i=1

π(Ci)).

Indeed, by our construction, each −1-curve that is contracted intersects the boundary transver-
sally exactly at one point. This also shows that −KS−

∑r
i=1Ci can not be ample if (S,

∑r
i=1Ci)

is not minimal, because −KS −
∑r

i=1Ci intersects all π-exceptional curves trivially. In sum, if
(S,C) is of class (ℵ), respectively (i), then so is (s, c), and if (S,C) is of class (ג) or (k) (s, c)
is of class .(ג) This completes the verification of class (ג) since each of these pairs are blow-ups
of a pair of class (k), while the pairs (I.3A), (I.4B), (II.2A.n), (II.2B.n), (II.3), and (III.3.n)
all satisfy (KS +C)2 = 0. Class (i) then contains, by exclusion, all the remaining pairs listed
in Theorems 2.1 and 3.1.

4.2 Verification of the list

Using the positivity classification of the original lists of Theorems 2.1 and 3.1, we now verify
that indeed each of the pairs listed there is strongly asymptotically log del Pezzo. This is the
last step remaining to complete the proof of the main classification result, Theorem 1.2.

The Maeda case (k) is immediate by convexity as then −KS − C itself is ample, and so is
the case (ℵ). So suppose (S,C) is a pair of class (i) or (ג) listed in Theorem 1.4. Then there
exists a blow-down map π : S → s such that the pair (s, c) is minimal where c = π(C). Then

−KS − (1− β)C ≡ π∗
(

−
(

Ks + (1− β)c
)

)

−
m
∑

i=1

βEi. (4.1)
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Here Ei = π−1(Pi), with P1, . . . , Pm denoting the blow-up points. The slight subtlety is that
while the second term on the right is ‘small’ in terms of its contribution to intersection numbers
and the first term is ample, the latter also depends on β and so a priori it is not clear which
term will dominate. In fact, the following example illustrates a situation where such a problem
arises.

Example 4.2. Consider the surface Fn and let R be some smooth curve in |Zn + nF |. Then
(Fn, Zn + F + R) is strongly asymptotically log Fano. Let π : S → Fn be a blow-up of m
distinct points in the smooth locus of Zn + F + R such that no two of the points lie on one
curve in the linear system |F |. Let C1, C2, C3 be the proper transforms of the curves Zn,
F , R, respectively. Then (S,C1 + C2 + C3) is asymptotically log Fano. On the other hand,
(S,C1 +C2 +C3) is strongly asymptotically log Fano if and only if none of the blow-up points
lies in F (cf. (III.5.n.m) in Theorem 3.1).

We now go through the lists of classes i and ג and verify the pairs are strongly asymp-
totically log del Pezzo. We assume without mention that β is taken in each equation to be
sufficiently small, depending only on (S,C).

By the Nakai–Moishezon criterion (1.4), we have to check that (KS + (1 − β)C)2 > 0 and
−(KS + (1− β)C).Z > 0 for every irreducible curve Z ⊂ S, with β independent of Z (and we
use, e.g., the notation On,m(β1) to denote a quantity bounded by Cβ1 with C depending only
on n,m, and (S,C)).

To do this, let us fix some irreducible curve Z on the surface S. We may assume that Z
is not π-exceptional since by (4.1) and the fact that all the blow-up points are distinct (so
none of the exceptional divisors intersect) −(KS + (1− β)C)Z > 0 if Z is π-exceptional. Put
z := π(Z), and suppose that multP1

(z) ≤ · · · ≤ multPm(z).

Class .(ג) Suppose that we are either in case (I.6B.m) or (I.6C.m). Then S ∼= P2, and c is
a conic in the case (I.6B.m) or a line in the case (I.6C.m). Let δ be the degree of the curve
c in S ∼= P2, i.e., either δ = 2 in the case (I.6B.m) or δ = 1 in the case (I.6C.m). Let l be
a line in S. Then −(KS + (1 − β)C) ≡ π∗((3 − (1 − β)δ)l) − ∑m

i=1 βEi, which implies that
(KS+(1−β)C)2 = (3−δ+δβ)2−mβ2 > 0 since δ ∈ {1, 2}. Let d be the degree of the curve z in
S ∼= P2. Then −(KS+(1−β)C).Z = (3−(1−β)δ)d−∑m

i=1 βmultPi
(z) ≥ d−mβmultPm(z) > 0,

concluding these cases.
Now consider the case (I.7.n.m). Then s ∼= Fn, and c = Zn. Let f be a fiber of the natural

projection s → P1, i.e., f is a smooth irreducible rational curve such that f.c = 1 and f2 = 0.
Then −Ks ∼ 2c + (2 + n)f , so −(KS + (1 − β)C) ≡ π∗((1 + β)c + (2 + n)f)−∑m

i=1 βEi and
(KS + (1 − β)C)2 = 4 + n + 4β − nβ2 − mβ2 > 0. Note that z ∼ a1c + a2f for some non-
negative integers a1, a2 such that either (a1, a2) = (1, 0) (if n ≥ 1, then Z = C in this case), or
(a1, a2) = (0, 1) (this means that z is a fiber of the projection s → P1), or a2 ≥ na1 (see [20,
Corollary 2.18]). Then −(KS + (1− β)C).Z = a2 + 2a1 + β(a2 − na1)−

∑m
i=1 βmultPi

(z) > 0.
Indeed, since the divisor c+(n+1)f is very ample [20, Theorem 2.17], we get a uniform bound
on the multiplicity:

multPm(z) ≤ (c+ (n+ 1)f)z = a2 + a1.

This concludes this case.
The case (I.8B.m) is treated similarly.
Suppose now (S,C) is (I.9C.m). Then s ∼= P1 × P1. Let f1, f2 be fibers of the two natural

projections s → P1. Then c ∼ f1 + f2 and −Ks ∼ 2f1 + 2f2, and z ∼ a1f1 + a2f2 for some
non-negative integers a1 and a2 such that (a1, a2) 6= (0, 0). Then −KS − (1 − β)C = π∗((1 +
β)f1+(1+β)f2)−

∑m
i=1 βEi, and (KS+(1−β)C)2 = 2(1+β)2−mβ2 > 0. Since f1+f2 is very
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ample multPm(z) ≤ a1+a2. Thus, −(KS+(1−β)C).Z = (a1+a2)(1+β)−
∑m

i=1 βmultPi
(z) ≥

(a1 + a2)(1 + β)−mβmultPm(z) > 0.
Finally, one readily checks that the case (II.5B.m) reduces to (II.1B) which in turns is

essentially identical to (I.1B). Similarly, (II.6C.n.m) reduces to (II.2C.n) which is in the class
(k).

Class (i). The cases (I.3A) and (I.4B) are immediate. Suppose we are in the case (I.9B.m).
Then−KS−(1−β)C ≡ π∗(2βf1+(1+β)f2)−

∑m
i=1 βEi, so (KS+(1−β)C)2 = 4β(1+β)−mβ2 >

0, and

− (KS + (1− β)C).Z = 2βa2 + (1 + β)a1 −
m
∑

i=1

βmultPi
(z) > 0 (4.2)

since if z ∈ |f2| (i.e., (a1, a2) = (0, 1)) then z passes through at most one of the blow-up points
and in this case z (a fiber) is also necessarily smooth, so multPi

(z) ∈ {0, 1}.
Among (II.2A.n) and (II.2B.n) it suffices to check the latter. In fact, since (II.6A.n.m) and

(II.6B.n.m) are their blow-ups we only need to consider (II.6B.n.m) (allowing m to possibly
equal 0). In this case, −KS − (1− β)C = π∗

(

(β1 + β2)Zn + (1 + (n+ 1)β2)F
)

−∑k
i=1 β1Ei −

∑m
i=k+1 β2Ei, assuming that exactly the first k points are blown-up along π(C1) = Zn. The

square of this class is then 2β1+2β2+On,m(β1β2+β
2
1+β

2
2) > 0, and its intersection with Z (such

that z ∼ a1Zn+a2F ) equals −na1(β1+β2)+a1(1+(n+1)β2)+a2(β1+β2)−β1
∑k

i=1multPi
(z)−

β2
∑m

i=k+1multPi
(z) = a1(1+b2−nβ1)+a2(β1+β2)−β1

∑k
i=1multPi

(z)−β2
∑m

i=k+1multPi
(z).

This is positive if a1 > 0 since, as before, the multiplicities are uniformly bounded independently
of z. If a1 = 0 then a2 > 0, so a2 = 1 as z is irreducible, thus a fiber. Then the intersection
number is positive (bounded below by min{β1, β2}) provided the fiber does not intersect more
than one of the Pi.

The case (II.7.m) (that implies the case (II.3)) is proven using very similar computations.
Finally we consider (III.5.n.m) (that takes care of the case (III.3.n)). Then−KS−(1−β)C =

π∗
(

(β1+β3)Zn+(1+β2+nβ3)F
)

−∑k
i=1 β1Ei−

∑m
i=k+1 β3Ei This squares to −n(β1+β3)2+

2(β1 + β3)(1 + β2 + nβ3) − kβ21 − (m − k − 1)β23 > 0 (here we see why blow-ups along π(C2)
are prohibited). The verification of the intersection with Z is as in the previous case.

The proof of Theorem 1.2 is now complete.

4.3 Nef and non-big adjoint anticanonucal bundle

In the case (i), the linear system | − (KS +
∑r

i=1 Ci)| gives a morphism S → P1 whose
general fiber is P1. This can be shown by using our classification in Theorems 2.1 and 3.1 or
alternatively (and in any dimension) from Kawamata–Shokurov’s results as demonstrated in
Theorem 1.9. But we prefer to give a self-contained classification-free proof of Proposition 1.7
that does not rely on these deep works.

In the remaining part of this subsection we prove Proposition 1.7. Suppose that (KS +
∑r

i=1Ci)
2 = 0. By Lemma 3.5, the dual graph of the curves C1, . . . , Cr is a disjoint union of

chains. Let l be the number of connected components of the curve
∑r

i=1Ci (by Remark 3.7
one has l ≤ 2 but we will not use it here).

Lemma 4.3. One has h0(OS(−(KS +
∑r

i=1 Ci))) = 1 + l.

Proof. Since the dual graph of the curves C1, . . . , Cr is a disjoint union of chains, one can easily
check that

(KS +
r

∑

i=1

Ci).(
r

∑

i=1

Ci) = −2l.
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This allows us to compute h0(OS(−(KS +
∑r

i=1 Ci))). Indeed, we have

h2(OS(−(KS +

r
∑

i=1

Ci))) = h1(OS(−(KS +

r
∑

i=1

Ci))) = 0

by (3.1) and the Kawamata–Viehweg Vanishing Theorem. Therefore, it follows from the
Riemann–Roch Theorem that

h0
(

OS

(

− (KS +

r
∑

i=1

Ci)
)

)

= 1 +
(KS +

∑r
i=1 Ci).(2KS +

∑r
i=1 Ci)

2

= 1− (KS +

r
∑

i=1

Ci).(

r
∑

i=1

Ci) = 1 + l,

because (−KS −∑r
i=1 Ci)

2 = 0 by assumption.

Thus, we see that | − (KS + C)| is at least a pencil. Moreover, if l = 1, then it is a pencil,
since S is rational. Note that we can use [40, Theorem 6.9] to show that l ≤ 2. But we
do not need this. In fact, one can show that l ≤ 2 using Lemma 4.3 (cf. the proof of [40,
Theorem 6.9]).

Lemma 4.4. The linear system | −KS −∑r
i=1Ci| is a base point free.

Proof. Let us first show that |−(KS+C)| is free from fixed components (see [19, Theorem III.1]).
Suppose this is not the case. Let B be the fixed part of the linear system |− (KS+C)|, and let
M be its mobile part. Then M is nef. In particular, we have h1(OS(M)) = h2(OS(M)) = 0 by
the Kawamata-Viehweg vanishing theorem. Then it follows from the Riemann–Roch theorem
that

2l = h0(OS(M +B) = h0(OS(M) = 1 +
M.(M −KS)

2
,

which implies that M2 −M.KS = 4l − 2. On the other hand, we have

0 = (KS +
r

∑

i=1

Ci)
2 = (B +M)2 = B2 + 2B.M +M2 =

= B.(B +M) +B.M +M2 = −(KS +

r
∑

i=1

Ci).B +B.M +M2 ≥ 0,

since both −(KS +
∑r

i=1 Ci) and M are nef. Hence, we have M2 = 0 and B.M = 0, which
implies that B2 = 0, since (B +M)2 = 0.

We claim that B is nef. Indeed, put B =
∑k

i=1 aiBi, where Bi is an irreducible curve, and
ai is a positive integers. Then

0 = (B +M).
(

k
∑

i=1

aiBi

)

≥
k

∑

i=1

ai(B +M).Bi,

which implies that (B +M).Bi = 0 for every possible i. Similarly, we see that M.Bi = 0 for
every possible i, which implies that B.Bi = 0 for every possible i. Hence, the divisor B is nef.
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Since B is nef, we have h1(OS(B)) = h2(OS(B)) = 0 by the KawamataViehweg vanishing
theorem. Applying the Riemann–Roch theorem to the divisor B, we see that

h0(OS(B)) = 1 +
B.(B −KS)

2
= 1− B.KS)

2
≥ 0,

since −KS ∼ ∑r
i=1Ci +B +M and B is nef. But h0(OS(B) = 1, because B is the fixed part

of the linear system | − (KS +
∑r

i=1Ci)|. The latter implies that −KS .B = 0. Since B 6= 0 by
assumption, the Riemann–Roch theorem implies that

h2(OS(−B)) = h0(OS(−B)) + h2(OS(−B)) =

= 1 + h1(OS(−B)) +
B.(B −KS)

2
= 1 + h1(OS(−B)) ≥ 1,

which implies that h2(OS(−B)) 6= 0. By Serre duality, we have h2(OS(−B)) = h0(OS(B +
KS)). But

B +KS ∼ −
r

∑

i=1

Ci −M,

which implies that h0(OS(B + KS)) = 0, which is a contradiction. Thus, the linear system
| − (KS +

∑r
i=1 Ci)| is free from fixed curves.

Since | − (KS +
∑r

i=1 Ci)| is free from fixed curves and (−KS −∑r
i=1Ci)

2 = 0, the linear
system | − (KS +

∑r
i=1Ci)| does not have base points at all.

Since (−KS − ∑r
i=1 Ci)

2 = 0, the linear system | − (KS +
∑r

i=1Ci)| is composed from a
base point free pencil. By Bertini theorem, there exists a smooth irreducible curve F such that
F 2 = 0, the linear system |F | is a base point free pencil, and

−KS −
r

∑

i=1

Ci ∼ kF

for some positive integer k. Since −KS is big, we have −KS .F > 0. Hence, we have −KS .F = 2
and F ∼= P1 by adjunction formula. Then it follows from the Riemann–Roch theorem that
h0(OS(kF )) = k + 1, which implies that k = l.

We may assume that F is a general curve in |F |. The pencil |F | gives a morphism ξ : S → P1

whose general fiber is F ∼= P1, i.e., the morphism ξ is a conic bundle. Since −KS .F = 2 and
−(KS +

∑r
i=1Ci).F = 0, we have F.(

∑r
i=1 Ci) = 2.

For every irreducible curve Z on the surface that is contained in the fibers of ξ, we have

0 < −(KS +

r
∑

i=1

(1− βi)Ci).Z ∼R F.Z +

r
∑

i=1

βiCi.Z =

r
∑

i=1

βiCi.Z,

for all 0 < |β| ≪ 1, because (S,
∑r

i=1Ci) is strongly asymptotically log del Pezzo (note that
this step does not work if (S,

∑r
i=1Ci) just asymptotically log del Pezzo). This implies that

∑r
i=1Ci.Z > 0. Keeping in mind that

∑r
i=1 Ci.F = 2, we see that either

∑r
i=1 Ci.Z = 1 or

∑r
i=1Ci.Z = 2. In the latter case, we must have Z ∼ F . This implies that ξ is so-called

standard conic bundle, i.e., every singular fiber of ξ consists of a union of two smooth rational
curves that intersect each other transversally at one point.
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5 Reductivity of the automorphism group of a pair

Denote by aut(X) the Lie algebra of holomorphic vector fields on (X,J), i.e., all vector fields
V ∈ Γ(X,TX) satisfying LV J = 0. We emphasize that these are real vector fields. The
projection of V onto T 1,0X, denoted V 1,0 = (V −

√
−1JV )/2 will be referred to as a holomorphic

(1,0)-vector field, and it is sometimes convenient to work with aut(X) recast in this complex
notation. Let aut(X,D) ⊂ aut(X) denote the subspace of fields tangent to D. It is a Lie
subalgebra.

Proposition 5.1. Let (X,D,ω) be a KEE manifold. Then aut(X,D) is the complexification
of the Lie algebra of (Hamiltonian) Killing vector fields of (X,ω).

Proof. Suppose V = ∇u ∈ aut(X,D) is a gradient holomorphic vector field (here u is a real-
valued function). We claim that JV is a Killing field with respect to g (the metric associated to
ω). Indeed, this is equivalent to Z 7→ ∇Z(JV ) = J∇ZV being a skew-symmetric endomorphism
of TX [38, Proposition 27]. But ∇(J∇u) = ∇(

√
−1∇1,0u −

√
−1∇0,1u) =

√
−1(∇0,1∇1,0u −

∇1,0∇0,1u) = −
√
−1∂∂̄u, since ∇1,0V 1,0 = ∇1,0∇1,0u = 0.

Next, we claim that any element X of aut(X,D) is necessarily a linear combination of a gra-
dient vector field and J applied to such a field. In fact, consider the (0, 1)-form g(V 1,0, . ) given
in local coordinates by gij̄V

idzj . Since ∇1,0V = 0, this form is closed. Thus, by Lemma 5.3 be-
low, it equals a ∂̄-exact form, say ∂̄u/2 with u complex-valued. It follows that V 1,0 = ∇1,0u/2,
and V 0,1 = ∇0,1ū/2, so

V = ∇Re u+ J∇Imu. (5.1)

The same argument also shows that any Killing field V is necessarily a Hamiltonian vector
field. In fact, an isometry homotopic to the identity preserves any ω-harmonic form by Hodge
theory [18, p. 82] since it preserves its class. Thus, LV ω = 0, or ιV ω = 0. Since b1(V ) = 0
then ιV ω = du and V = −J∇u. Further, since LV g = 0, LV ω = 0, and ω( . , . ) = g(J . , . ),
then also LV J = 0. Next, note that any automorphism of (X,ω) must preserve its singular
set, i.e., D. Thus, combining all the above, aut(X,D) must contain the Lie algebra of Killing
fields of (X,ω).

Thus, we would be done if we knew that each summand in the decomposition (5.1) of a
holomorphic vector field V were itself a holomorphic vector field (then V would be equal to a
Killing field and J times such a field, by the previous paragraphs). To show that, recall that
as shown in [24, §6], if ω is a KEE metric of positive Ricci curvature µ, and φ is a complex-
valued eigenfunction of −∆ω with eigenvalue µ then ∇1,0φ is a holomorphic (1,0)-vector field
tangent to D. We claim that the converse is true as well. Assuming this claim, there is
an isomorphism between Λµ(−∆ω) (the aforementioned eigenspace) and aut(X,D) given by
u +

√
−1v 7→ ∇u + J∇v, where u, v ∈ C∞(X) are real-valued functions. By the remark at

the beginning of this paragraph then, the proposition follows: indeed, for a complex-valued
function in Λµ(−∆ω) it is immediate that both its real and imaginary parts are contained in
Λµ(−∆ω) since −∆ω is a linear operator.

Thus suppose that u ∈ C∞(X \ D) ∩ C0(X) is such that ∇u ∈ aut(X,D), so that
∇1,0∇1,0u = 0 (the gradients here and below are with respect to the edge metric ω and the
underlying complex structure). Thus, using the Weitzenböck formula [24, §6] and the KEE
assumption,

∆ω|∇1,0u|2ω = 2Ric (∇1,0u,∇0,1u) + 2|∇1,0∇1,0u|2 + 2(∆ωu)
2 + 4ω(∇1,0u,∇0,1∆ωu)

= 2µ|∇1,0u|2ω + 2(∆ωu)
2 + 4ω(∇1,0u,∇0,1∆ωu).

(5.2)
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To conclude then, it would suffice to integrate (5.2) and prove that
∫

X
∆ω|∇1,0u|2ωωn = 0,

∫

X
|∇1,0u|2ωωn = −

∫

X
u∆ωuω

n, (5.3)

and

−
∫

X
ω(∇1,0u,∇0,1∆ωu)ω

n =

∫

X
(∆ωu)

2ωn. (5.4)

Indeed, these identities then imply

µ

∫

X
|∇1,0u|2ωωn =

∫

X
(∆ωu)

2. (5.5)

They also imply that
∫

X
|∇1,0u|2ωωn = −

∫

X
u∆ωuω

n ≤ ||u||L2(X,ωn)||∆ωu||L2(X,ωn)

≤ µ−1/2||∆ωu||L2(X,ωn)||∇1,0u||L2(X,ωn)

where we used the fact that since ω is KEE, the first positive eigenvalue of −∆ω equals µ
[24, Lemma 6.1]. Therefore, µ

∫

X |∇1,0u|2ωωn ≤
∫

X(∆ωu)
2, with equality if and only if u is

an eigenfunction of −∆ω with eigenvalue λ1 = µ. Thus, by (5.5), u is such an eigenfunction,
concluding the proof of the proposition.

We now turn to proving (5.3)–(5.4). First, we claim that u in fact has a polyhomogeneous
expansion of the form

u ∼ a0(y) + (a10(y) cos θ + a11(y) sin θ)r
1

β + a2(y)r
2 +O(r2+η), (5.6)

for some η > 0. Here y is a local coordinate on D and re
√
−1θ = zβ1 with D = {z1 = 0} locally.

For the proof, observe that since ∇1,0∇1,0u = 0, u lies in the kernel of the self-adjoint fourth-
order Lichnerowicz operator Dω := L⋆ω ◦ Lω : C∞(X \ D) ∩ C0(X) → C∞(X \ D) ∩ C0(X);
here Lω : u 7→ ∇1,0∇1,0u and L⋆ω is the formal L2 adjoint computed with respect to ω. Second,
Dω is a linear degenerate elliptic operator of edge type, in the sense of Mazzeo [35], whose
principal symbol is ∆2

ω; more precisely [4, (2.1)],

Dω = ∆2
ω + (Ricω,

√
−1∂∂̄( . ))ω + (∂sω, ∂u)ω = ∆2

ω + µ∆ω, (5.7)

by the KEE assumption. The expansion (5.6) then follows from the polyhomogeneous expan-
sion for the KEE metric ω [24, Theorem 1] and the polyhomogeneous structure of inverses
of elliptic edge operators associated to polyhomogeneous Kähler edge metrics [35, Theorem
6.1],[24, Proposition 3.8], and the fact that u is bounded (if u were not bounded then its
expansion would contain a log r term, but then the corresponding vector field would not be
bounded).

Finally, given (5.6), the verification of (5.3)–(5.4) follows in the same way as in the proof
of [24, Lemma 6.1].

Remark 5.2. A shorter proof would be to avoid the Weitzenböck formula and and use (5.7)
directly. It then follows that v = ∆ωu+µu is in the kernel of ∆ω. By the asymptotic expansion
for bounded solutions of Dωu = 0 we see that v is bounded (indeed, the term of order O(r1/β)
in (5.6) is in the kernel of ∆ω), and hence a constant. Then it follows that by changing u by
a constant it must be a eigenvalue of ∆ω with eigenvalue −µ. We preferred the current proof
since the Weitzenböck formula was used in [24] to obtain one direction of the isomorphism
proved here, and it seemed natural to emphasize what is needed to make that proof work in
the other direction.
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Lemma 5.3. Let (X,D,ω) be a Kähler edge manifold, and suppose that c1(X) − ∑

i(1 −
βi)[Di] = µ[ω] with µ > 0. Then b1(X) = 0.

Proof. This is a direct corollary of the Kawamata–Viehweg Vanishing Theorem which states
that H i(X,OX (KX + N)) = 0 for all i > 0 whenever N is numerically equivalent to a sum
B +∆ of a big and nef Q-divisor B, and a Q-divisor with snc support ∆ [31, Vol. II, §9.1.C].
Thus, we may choose β ∈ QN ∩ (0, 1)N such that B := −KX −∑

i(1− βi)Di is ample, and set
N =

∑

i(1 − βi)Di. Finally, by Hodge theory b1(X) = 2h1,0(X) = 2dimH1(X,OX ) = 0 [18,
p. 105].

Remark 5.4. In fact, it follows from [47, Corollary 1] that X is simply connected in a much
more general setting. This generalizes the classical result of Kobayashi in the Fano case [25].

Let Aut0(X) denote the connected Lie group associated to aut(X). Similarly, denote by
Aut0(X,D) ⊂ Aut0(X) the Lie subgroup associated to aut(X,D). This is the identity compo-
nent of the automorphism group of the pair. Putting the above results together we obtain a
version of Matsushima’s Theorem [34] for pairs.

Proof of Theorem 1.12. Suppose that c1(X)− (1−β)[D] = µ[ω] with µ ∈ R. In case µ > 0 the
statement is a corollary of Propostion 5.1 since as noted in its proof every Killing vector field
of (X, g) is Hamiltonian.

Suppose now that µ ≤ 0. Let ψ ∈ Aut0(X,D). Since ψ ∈ Aut(X), ψ⋆c1(X) = c1(X). Since
ψ fixes D, ψ⋆[D] = [D]. Thus, ψ⋆[ω] = [ω]. Therefore, if ω is KEE then ψ⋆ω is a cohomologous
KEE form. But, when µ ≤ 0 the KEE form is unique in its cohomology class [24, Theorem 2].
Thus ψ is the identity map, and Aut0(X,D) = {id}.

Remark 5.5. Using the arguments above one can prove a corresponding generalization to the
edge setting of Calabi’s theorem on the structure of the automorphism group of an extremal
metric [4]. For brevity, we do not go into the details here.

6 Tian invariants of asymptotic pairs

Throughout the article we use the standard language of the singularities of pairs [27, 6]. By
strictly log canonical (lc) singularities we mean log canonical singularities that are not Kawa-
mata log terminal [27, Definition 3.5]. We also distinguish between an α-invariant as in Defini-
tion 6.3 below, by which we refer to a global log canonical threshold, and a Tian invariant, by
which we refer to the analogous invariant defined analytically in terms of metrics [42]. These
two invariants coincide under certain regularity assumptions [6, 1]. The algebraic definition
makes sense in more general (singular and/or degenerate) settings, while the analytic definition
is useful for proving existence of KEE metrics by Theorem 1.14.

6.1 A general bound on global log canonical thresholds of pairs

Given a proper birational morphism π : Y → X, we define the exceptional set of π to be the
smallest subset exc(π) ⊂ Y , such that π : Y \ exc(π) → X \ π(exc(π)) is an isomorphism.

A log resolution of (X,∆) is a proper birational morphism π : Y → X such that π−1(∆) ∪
{exc(π)} is divisor with snc support. Log resolutions exist for all the pairs we will consider in
this article, by Hironaka’s theorem.

Assume that KX +∆ is a Q-Cartier divisor. Given a log resolution of (X,∆), write

π⋆(KX +∆) = KY + ∆̃ +
∑

eiEi,
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where ∆̃ denotes the proper transform of ∆, and where exc(π) = ∪Ei, and Ei are irreducible
codimension one subvarieties. Also, assume ∆ =

∑

δi∆i, with ∆i irreducible codimension one
subvarieties, so ∆̃ =

∑

δi∆̃i. Singularities of pairs can be measured as follows.

Definition 6.1. Let Z ⊂ X be a subvariety. A pair (X,∆) has at most log canonical (lc)
singularities along Z if ei, δj ≤ 1 for every i such that Ei ∩ Z 6= ∅ and every j such that
∆j ∩ Z 6= ∅.

Definition 6.2. Let Z ⊂ X be a subvariety. The log canonical threshold of the pair (X,∆)
along Z is

lctZ(X,∆) := sup{λ : (X,λ∆) is log-canonical along Z}.
Set lct(X,∆) := lctX(X,∆).

Let X be a variety, let B and D be effective Cartier Q-divisors on the variety X such that
the singularities of the log pair (X,B) are log terminal, and KX +B +D is a Q-Cartier divisor.
Recall that the log canonical threshold of the boundary D is the number

lct
(

X,B;D
)

= sup
{

λ ∈ Q : the pair
(

X,B + λD
)

is log canonical
}

.

Let H be an ample Q-divisor on X, and let [H] be the class of the divisor H in Pic(X) ⊗Q.

Definition 6.3. The global log canonical threshold of the log pair (X,B) with respect to [H] is
the number

α(X,B, [H]) := inf
{

lct
(

X,B;D
)

: D is effective Q-divisor such that D ∼Q H
}

.

For simplicity, we put α(X, [H]) = α(X,B, [H]) if there is no boundary, i.e., B = 0.
Similarly, we put α(X,B) = α(X,B, [H]) if H ∼Q −(KX +B).

Finally, we put α(X) = α(X, [H]) if B = 0 and H = −KX . Note that it follows from
Definition 6.3 that

α
(

X,B, [H]
)

= sup

{

c

∣

∣

∣

∣

∣

for every Q-divisor D such that D ∼Q H

the log pair (X,B + cD) is log canonical

}

, (6.1)

and α(X,B, [µH]) = α(X,B, [H])/µ for every positive rational number µ.
By a result of Demailly [6, Appendix] (with complements by Berman [1] in the log setting)

α(X,
∑

(1 − βi)Di, [H]) coincides with Tian’s invariant for the Kähler class [H] [42] when X
is smooth,

∑

Di has simple normal crossings and when the background measure has edge
singularities of angle 2πβi along Di. In other words

α(X,
∑

(1− βi)Di, [H]) = sup
{

a : sup
ϕ∈PSH(X,ω0)

∫

X
e−a(ϕ−supϕ)ωn <∞

}

, (6.2)

where ω is a Kähler edge metric with angle 2πβi along Di and ω0 is a smooth Kähler metric
with [ω0] = [ω] = [H]. In the notation of [24, §6.3] µ = 1, so in this normalization the criterion
for existence of KEE is precisely the one stated in Theorem 1.14.

The next lemma gives an explicit bound for α-invariants on curves. We will make use of it
in Proposition 6.10 to obtain explicit bounds for α-invariants on log del Pezzo surfaces. It also
serves to illustrate the definitions above.
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Lemma 6.4. Let C be a smooth curve, Pi ∈ C distinct points, and ai ≥ 0. Suppose that
(C,

∑k
i=1 aiPi) is log terminal, i.e., ai < 1 for all i. Let H be an ample R-divisor on C, and

let d ∈ R>0 be its degree. Then

α
(

C,
k

∑

i=1

aiPi, [H]
)

≥ 1−max{a1, . . . , ak}
d

.

Furthermore, equality holds when C = P1.

Proof. If D ∼Q H then D =
∑

biQi with bi ≥ 0 and
∑

bi = d. Then (C,
∑n

i=1 aiPi + λD)
is log canonical precisely when ai + λbi ≤ 1, i.e., λ ≤ (1 − ai)/bi for all such admissible bi
(here we are assuming that Pi = Qi otherwise the bounds are even weaker). In particular,
if λ ≤ (1 − maxi ai)/d then the pair is always log canonical. This proves the inequality.
The result follows since we may choose a divisor D = dPj with j such that maxi ai = aj ;
on P1 Q-rational equivalence is determined solely by degree so D ∼Q H, thus in this case

α
(

C,
∑k

i=1 aiPi, [H]
)

≤ (1−maxi ai)/d.

The following gives a general bound on global log canonical thresholds of pairs.

Proposition 6.5. Suppose that B = (1 − β)S, where β ∈ (0, 1) and S is an irreducible nef
Cartier divisor on X. Let H be an ample Q-divisor on X. Put

γ = sup
{

c ∈ Q
∣

∣ H − cS is pseudoeffective
}

.

Then α(X, (1 − β)S, [H]) ≥ min(β/γ, α(X, [H]), α(S, [H]|S )).

Proof. Put λ = min(β/γ, α(X, [H]), α(S, [H]|S )). We may assume that λ > 0. Suppose that
lct(X, (1 − β)S, [H]) < λ. Then there exists an effective Q-divisor ∆ on X such that ∆ ∼Q H
and the log pair (X, (1−β)S +µ∆) is not log canonical at some point P ∈ X for some positive
rational number µ < λ.

If P 6∈ S, then the log pair (X,µ∆) is not log canonical at the point P ∈ X, contradicting
µ < λ ≤ α(X, [H]) and ∆ ∼Q H. Thus, P ∈ S.

Put (1−β)S+µ∆ = aS+R for some positive rational number a ≥ 1−β and some effective
Q-divisor R such that S 6⊂ Supp(R). Since

H ∼Q ∆ =
a− 1 + β

µ
S +

1

µ
R,

we see that (a − 1 + β)/µ ≤ γ. Because µ < λ ≤ β/γ then a ≤ 1. Since a ≤ 1, the log pair
(X,S +R) is not log canonical at the point P ∈ S. Thus, it follows from adjunction theorem
[30, Theorem 5.50] that the log pair (S,R|S) is not log canonical as well.

Note that R ∼Q µH − (a− 1 + β)S. Thus, if S|S is Q-linearly equivalent to some effective
divisor TS on S, then

R|S + (a− 1 + β)TS ∼Q µH

while (S,R|S + (a − 1 + β)TS) is not log canonical, which contradicts µ < α(S, [H]|S)). Un-
fortunately, we do not know that S|S is Q-linearly equivalent to some effective divisor on S,
because we only know that S|S is nef. Nevertheless, we still can obtain a contradiction in a
similar way by adding to S|S a small piece of an ample divisor H|S . Note that

R ∼Q µH − (a− 1 + β)S = λH −
(

(λ− µ)H + (a− 1 + β)S
)

,
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where (λ − µ)H + (a − 1 + β)S is an ample Q-divisor, since S is nef and H is ample. Thus,
there exists an effective Q-divisor G on the variety X such that G ∼Q (λ−µ)H + (a− 1+β)S
and S 6⊂ Supp(G). Then (R + G)|S ∼Q [λH]|S and the log pair (S, (R + G)|S) is not log
canonical, since (S,R|S) is not log canonical and G|S is an effective Q-divisor on S. On the
other hand, the log pair (S, (R + G)|S) must be log canonical, because λ ≤ α(S, [H]|S)) and
λ−1(R+G)|S ∼Q [H]|S .

The previous result specializes to a result of Berman [1] when X is further assumed to be
smooth, when the boundary S is assumed to be smooth and ample, and further when S and H
are proportional in the sense that S ∼Q cH, (i.e., in his setting S is a section of H and γ = c).
Upon completion of this article we learned that Odaka–Sun also gave an algebraic proof of
Berman’s result in the special case [H] = [S] = −KX [37, Corollary 5.5]. We decided to keep
Proposition 6.5 due to its general form and possible application to polarizations different from
−KX . Thus, we obtain as a corollary the following result originally proved by Berman using
analytic methods.

Corollary 6.6. Suppose that X is smooth, B = (1 − β)S, where β ∈ (0, 1] and S is an
irreducible smooth ample Cartier divisor on X. Then

α
(

X, (1 − β)S, [βS]
)

≥ min

{

1,
α(X, [S])

β
,
α(S, [S]|S)

β

}

.

6.2 Limiting behavior of α-invariants

In this subsection we prove Theorem 1.5. The proof is divided into Propositions 6.8, 6.9, and
6.10.

More generally, we conjectured in (1.1) that in higher dimensions

lim
β→0+

α(X, (1 − β)D) =











1 if KX +D ∼ 0,

min{1, α(X, [−KX −D]), α(D)} if 0 6∼ −KX −D is not big,

0 if −KX −D is big.

provided that D is irreducible and smooth. Note that the divisors −KX − D and −KS =
(−KX − D)|D may not be ample. This violates our definitions of α(X, [−KX − D]) and
α(D) = α(D, [(−KX −D)|D]). However, it follows from [30, Theorem 3.3] that −KX −D and
−KD are semiample, so we can define α(X, [−KX −D]) and α(D) in the same way as in the
case when −KX −D and −KD are ample (and it could happen that α = ∞, for instance). We
prove this conjecture in the cases whenKX+D ∼ 0 or −KX−D is big. While Proposition 6.9 is
two-dimensional, we believe its proof should find a suitable generalization to higher dimensions.

Remark 6.7. The situation in the simple normal crossings case is more complicated and there
is in general no unique limit for Tian’s invariant as |β| tends to zero. To illustrate this we
consider the following toric example. Let L1, L2, L3 be distinct lines on P2. Then

α(P2,

3
∑

i=1

(1− βi)Li) =
max(β1, β2, β3)

β1 + β2 + β3

for any (β1, β2, β3) ∈ (0, 1]3. Furthermore, let G be a finite group in Aut(P2) such that L1 +
L2 + L3 is G-invariant and G does not fix any point in P2 (there are infinitely many such
groups). Then αG(P

2, (1 − β)
∑3

i=1 Li) = 1 for any β ∈ (0, 1]. The proof, modelled on the
arguments in [6, Lemma 5.1.], is left to the reader.
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6.2.1 Class (ג) and (k)

The next result holds for asymptotically log Fano varieties in any dimension and for C with
any r ≥ 1.

Proposition 6.8. Suppose that −KS − C is big. Then limβ→0+ α(S, (1 − β)C) = 0.

Proof. Since −KS − C is big, there exists positive integer N such that

−N(KS + C) ∼ C +∆

for some effective divisor ∆ (this follows from the characterization of bigness [31, Corollary
2.2.7] since given an ample class H and an effective class C one may find an integer M such
thatMH ∼ C+E for some effective divisor E). Put ǫ = 1

N . Then −KS−C ∼Q ǫC+ǫ∆. Take
any sufficiently small real β > 0 such that −(KS+(1−β)C) is ample. Put D = (β+ ǫ)C+ ǫ∆.
Then

D ∼R (β + ǫ)C + ǫ∆ ∼R −(KS + (1− β)C).

On the other side, we have lct(S, (1−β)C;D) ≤ β
ǫ+β , which implies that α(S, (1−β)C) ≤ β

ǫ+β .
This shows that

lim
β→0+

α(S, (1 − β)C) = 0,

since ǫ depends only on the pair (S,C) and not on β.

6.2.2 Class (i)

In this subsection we prove Theorem 1.5 in the case when (S,C) is of class (i).
Before embarking on the proof let us say few words about the idea of the proof. If −KS−C

is not big, then by Proposition 1.7 C ∼= P1 and | −KS − C| is free from base points and gives
a morphism S → P1 whose general fiber is P1 (a conic bundle). Moreover, the general curve in
| −KS − C| is a fiber of this conic bundle. On the other hand, when β is small, the class

−KS − (1− β)C ∼R −(KS + C) + βC

is close to −KS − C. Thus, when looking for divisors

∆ ∼R −(KS + (1− β)C)

having small lct(S, (1− β)C;∆) with 0 < β ≪ 1, there are not many options. Namely, we can
take ∆ to be βC + F where F is a fiber of the conic bundle. All other choices of ∆ gives us
either better or similar singularities. The reason is a continuity of α(S, (1 − β)C) in β. When
β is very small, we have

α(S, (1 − β)C) ≈ α(S,C).

Note that α(S,C) is not well defined according to our definition of the α-invariant, because
−KS−C is not ample. Nevertheless, we can still define α(S,C) in a similar way, since−(KS+C)
is semi-ample. On the other hand, if β = 0, we have no freedom in choosing ∆ at all! Indeed,
if β = 0, then

∆ ∼R −KS − C,

which implies that every irreducible component of ∆ must be a fiber of the conic bundle
S → P1. In this case, the worst ∆ (the one with smallest lct(S,C;∆)) must be a fiber of
the conic bundle. Furthermore, among these fibers there are exactly two that are worse than
others, i.e., the two fibers that do not intersect C transversally. So in a sense we have a choice
choice of exactly two divisors for ∆, which both gives us lct(S,C;∆) ≈ 1

2 .
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Proposition 6.9. Suppose that −KS − C is not big. Then limβ→0+ α(S, (1 − β)C) = 1
2 .

Proof. By Lemma 2.2, we have C ∼= P1. By Proposition 1.7 the linear system |−KS−
∑r

i=1Ci|
is free from base points and gives a morphism ξ : S → P1 such that its general fiber is P1, and
every reducible fiber consists of exactly two components.

Let F be a general fiber of ξ. Then −KS − C ∼ F , since | −KS −∑r
i=1 Ci| is a pencil by

Lemmas 4.3 and 4.4. Then F.C = 2, since −KS − C2 = 0.
The morphism ξ induces a double cover C → P1. Since C is a smooth rational curve, this

double cover has exactly two ramification points. Let O be one of these two ramification points,
and let FO be a fiber of ξ that passes through it. Recall that

−(KS + (1− β)C) ∼R FO + βC

by construction. On the other hand, we have

lct(S, (1− β)C;FO + βC) =















1 + β

2 + β
if FO is singular,

1 + 2β

2 + 2β
if FO is smooth.

To see this it suffices to blow-up once when FO is singular and twice when it is smooth. Hence,
α(S, (1 − β)C) ≤ (1 + β)/(2 + β). To complete the proof it is thus enough to show that for
every positive real ǫ > 0 there exists real δ = δ(ǫ, C) > 0 such that both (2.1) and

α(S, (1 − β)C) ≥ 1

2
− ǫ (6.3)

for every real β ∈ (0, δ). In fact, we claim that δ = min{1/2, ǫ/|C2|, βmax} will do, where (2.1)
holds for β ∈ (0, βmax).

To that end we work with the definition (6.2) of the global log canonical threshold of the
pair (S, (1 − β)C). We use repeatedly the following application of adjunction: if K ⊂ S is a
smooth irreducible curve and M an effective R-divisor on S and if (S,K +M) is not lc at a
point Q on K then (K,M |K) is not lc at Q, or equivalently multQK.M > 1 [7, Excercise 6.31].

Throughout the proof we let D be an effective R-divisor satisfying

D ∼R F + βC

If the pair (S, (1 − β)C + λD) is not lc at some point P ∈ C and C 6⊂ Supp(D) then

2 + βC2 = C.
(

F + βC
)

= C.D ≥ multP
(

C.D
)

> λ−1,

thus λ > 1
2+βC2 . If (S, (1 − β)C + λD) is not lc at some point P ∈ C and C ⊂ Supp(D) then

write D = µC + Ω, where µ is a positive rational number, and Ω is an effective R-divisor on
the surface S whose support does not contain the curve C. Then

2β = (F + βC).F = D.F = (µC +Ω).F = 2µ+Ω.F ≥ 2µ,

so µ ≤ β. On the other hand, (S, (1 − β + λµ)C + λΩ) is not lc at P . Since 1 − β + λµ ≤ 1,
also (S,C + λΩ) is not lc at P . Thus,

2 + (β − µ)C2 = C.
(

F + (β − µ)C
)

= C.Ω ≥ multP
(

C.Ω
)

> λ−1,

so again λ > 1
2+βC2 .
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Next, suppose that (S, (1− β)C + λD) is not lc at some point P 6∈ C. Then (S, λD) is not
lc at P . Let FP be the fiber of ξ that passes through P . Then we must consider three cases:
FP is smooth, FP is singular and P 6= Sing(FP ), FP is singular and P = Sing(FP ).

First, suppose FP is smooth and put D = τFP +∆, where 0 < τ ∈ Q, and ∆ is an effective
R-divisor with FP 6⊂ Supp(∆). Then

4β + β2C2 = D2 = (FP + βC).D = (τFP +∆).D = 2βτ +∆.D ≥ 2βτ,

so τ ≤ 2+ β
2C

2. If λτ > 1 then λ > 1
2+βC2/2

. Suppose that λτ ≤ 1. Thus, the pair (S,FP +λ∆)

is not lc at P . Then

2β = FP .
(

FP + βC − τFP
)

= FP .∆ ≥ multP
(

FP .∆
)

> λ−1,

so λ > 1
2β .

Next, suppose FP is singular. Then FP = F1 + F2, where F1 and F2 are smooth rational
curves on S such that F1.F2 = F1.C = 1 = F2.C = 1, and F 2

1 = F 2
2 = −1. Put D =

τ1F1 + τ2F2 +Θ, where 0 < τ1, τ2 ∈ Q, and Θ is an effective R-divisor with F1, F2 6⊂ Supp(Θ).
Then

β = (F + βC).F1 = (τ1F1 + τ2F2 +Θ).F1 = −τ1 + τ2 +Θ.F1 ≥ −τ1 + τ2, (6.4)

and similarly τ1 − τ2 ≤ β. On the other hand, using that D is ample we have

4β + β2C2 = (F + βC).D = (τ1F1 + τ2F2 +Θ).D = β(τ1 + τ2) + Θ.D ≥ β(τ1 + τ2),

so τ1 + τ2 ≤ 4 + βC2, and combined with (6.4) then τ2 ≤ 2 + β
2C

2 + β
2 and similarly for τ1.

If λτi > 1 for some i then λ > 1
2+βC2/2+β/2

. Suppose that λτ1, λτ2 ≤ 1. There are two cases

to consider: P = F1 ∩ F2 and P 6= F1 ∩ F2. Suppose first that P = F1 ∩ F2. Then the pairs
(S,F1 + λτ2F2 + λ∆) and (S, λτ1F1 + F2 + λΘ) are not lc at P . Then

β + τ1 = F1.(F + βC − τ1F1) = F1.(τ2F2 +Θ) > τ2 + λ−1

so λ > 1
β+τ1−τ2 and similarly λ > 1

β+τ2−τ1 , so using (6.4) λ > 1
2β . Next, suppose P 6= F1 ∩ F2,

say P 6∈ F1, P ∈ F2. Hence, the log pair (S, λτ2F2 + λΘ) is not lc at P . Then

β + τ2 − τ1 = F2.
(

F + βC − τ1F1 − τ2F2

)

= F2.Θ > λ−1,

so λ > 1
β+τ2−τ1 , so again using (6.4) λ > 1

2β

In conclusion, we see that if (S, (1 − β)C + λD) is not lc then λ > 1
2 − ǫ whenever β <

min{1/2, ǫ/|C2|, βmax}. Thus, (6.3) follows from (6.2), concluding the proof.

6.2.3 Class (ℵ)
By Corollary 6.6, α(X, (1 − β)S) ≥ min{1, β−1α(X), β−1α(S, [S]|S)} when (S,C) is of class
(ℵ). Moreover, from the definition and the fact that D ∼ −KX this invariant is bounded above
by 1. Combining this, Lemma 6.4, and Theorem 1.14 yields:

Proposition 6.10. Let (X,D) be an asymptotically log Fano pair with D ∈ | −KX | a smooth
irreducible divisor and X Fano. Then limβ→0+ α(S, (1 − β)C) = 1. Moreover,
(i) if dimX = 2, then α(X, (1 − β)D) ∈ [min

{

1, 1
9β

}

, 1], and (X,D) admits KEE metrics for
all β ∈ (0, 1/6).
(ii) if dimX = 3, then α(X, (1− β)D) ∈ [min

{

1, 1
64β

}

, 1], and (X,D) admits KEE metrics for
all β ∈ (0, 1/48).
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Proof. As noted above, it suffices to estimate min{α(X), α(D, [D]|D)}.
(i) First, by using Lemma 6.4 and the fact that K2

X ≤ 9 for every smooth del Pezzo surface
(by their classification) one has α(D, [D]|D) ≥ 1/9.

It remains to show that α(X) ≥ 1/9. This follows from the complete list of lcts of del Pezzo
surfaces [5, Theorem 1.7] but we now explain a direct derivation that can also be adapted to
prove (ii). Let ∆ be an effective Q-divisor on X such that ∆ ∼Q −KX and the log pair (X,λ∆)
is not log canonical at some point P ∈ X for some positive rational λ.

If −KX is very ample, let HP be a general curve in | − KX | that passes through P . By
the very ampleness we may assume that HP is not contained in the support of the divisor D.
Thus, as in the proof of Proposition 6.9,

K2
X = ∆.HP ≥ multP (∆)multP (HP ) ≥ multP (∆) > λ−1,

so λ > 1/9.
If −KX is not very ample but still base-point free |−KX | gives a surjective finite morphism

X → V , where V is a surface, which implies that we can still proceed as in the very ample
case. If −KX is not base-point free by the classification of del Pezzo surfaces K2

X = 1 and the
linear system |−2KX | is base-point free and gives a surjective finite morphism X → V ′, where
V ′ is a surface. Let H ′

P denote a general curve in | − 2KX | that passes though P . Then

2K2
X = ∆.HP ≥ multP (∆)multP (HP ) ≥ multP (∆) > λ−1,

so λ > 1/2K2
X = 1/2. The result now follows from (6.1).

(ii) Let ∆ be as in (i). Suppose first that | − KX | is base-point free. We claim that
multP (∆) ≤ 64 for every point P ∈ X and for every divisor ∆ on X such that ∆ ∼Q −KX .
Indeed, since | − KX | is base-point free, the linear system | − KX | gives a finite surjective
morphism X → U , where U is a threefold. Thus, there exists SP and S′

P in | −KX | such that
P ∈ Supp(SP .S

′
P ) and no component of the 1-cycle SP .S

′
P is contained in the support of D.

Then
−K3

X = ∆.SP .S
′
P ≥ multP (∆)multP (SP )multP (S

′
P ) ≥ multP (∆) > λ−1.

Thus, λ > −1/K3
X = 1/64 [23, Corollary 7.1.2], implying α(X) ≥ 1/64. Similarly, we can

prove that multP (Ω) ≤ 64 for every point P ∈ D and for every divisor Ω on D such that
Ω ∼Q −KX |D. Thus, α(D, [D]|D) ≥ 1/64.

Next, suppose that | − KX | has base-points. This is a very special situation. Indeed,
it follows from [23, Theorem 2.4.5] that either −K3

X = 4 and X is a blow up of a smooth
hypersurface in P(1, 1, 1, 2, 3) of degree 6 along a smooth elliptic curve that is a complete
intersection of two surfaces in | − 1

2KX |, or −K3
X = 6 and X ∼= P1 × S1, where S1 is a smooth

del Pezzo surface with K2
S1

= 1. In both cases | − 2KX | is base-point free. Thus, the same
arguments as in the base-point free case show that multP (∆) < −4K3

X for every point P ∈ X
and for every divisor ∆ on X such that ∆ ∼Q −KX , and that multP (Ω) < −4K3

X for every
point P ∈ D and for every divisor Ω on D such that Ω ∼Q −KX |D. Keeping in mind that
−K3

X ≤ 6, we see that α(X) ≥ 1/24 and α(D, [D]|D) ≥ 1/24.

Note that the lower bounds in Proposition 6.10 can be improved by a case-by-case analysis
using results from [5, 6]. When dimX = 2 it is also possible to say more about the existence of
KEE metrics. In fact, in the cases (I.1A) and (I.5A.m) with m ≥ 3 a KEE metric exists for all
β ∈ (0, 1] since it exists for β = 1 [1, 32, 24, 43]. In the remaining two cases (I.5A.m),m ∈ {1, 2},
it is possible to compute α(S, (1 − β)C) to find all β ∈ (0, 1] such that α(S, (1 − β)C) >
2
3 . Moreover, in the latter cases the value of the α-invariant depends on the choice of the
anticanonical boundary curve itself.
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Remark 6.11. Let X be a smooth Fano variety of dimension n, and let D be a smooth divisor
in | −KX |. Put M = 3n(2n − 1)n(n+ 1)n(n+2)(2n−1) and N = 2(n+ 1)(n + 2)!. Then

α(X, (1 − β)D) ≥ min{1, β−1Nn−1M},

for every β ∈ (0, 1]. Indeed, (−KX)
n ≤ 3n(2n − 1)n(n + 1)n(n+2)(2n−1) (see, e.g., [8, Theorem

5.18]). On the other hand, |−NKX | is base-point free by [26, Theorem 1]. Note that −12nnKX

is very ample by [10, Corollary 12.11]. Thus we can proceed as in the proof of Proposition 6.10.

7 Existence and non-existence of KEE metrics

Our goal in this section is to make several first steps towards the uniformization of asymptoti-
cally log del Pezzo surfaces as stated in Conjecture 1.6.

7.1 Automorphism groups

Theorem 1.13 is a direct consequence of Theorem 1.12 and the following result.

Proposition 7.1. The automorphisms groups of the following pairs of class (ג) or (k) are
not reductive: (I.1C), (I.2.n) with any n ≥ 0, (I.6C.m) with any m ≥ 1, (I.7.n.m) with any
n ≥ 0 and m ≥ 1, (I.6B.1), (I.8B.1) and (I.9C.1). On the other hand, Aut(S,C) is reductive
when (S,C) is one of the following: (I.1A), (I.4A), (I.3B), (I.4C), (I.5.m) with m ≥ 1, (I.1B),
(I.6B.m), (I.8B.m), or (I.9C.m) with m ≥ 2.

Proof. If (S,C) is (I.1A), (I.4A), or (I.5.m), then Aut(S,C) is finite, since C is a Aut(S,C)-
invariant elliptic curve that is an anticanonical ample divisor. If (S,C) is (I.1B) then
Aut(S,C) ∼= PGL2(C). If (S,C) is (I.3B) then Aut(S,C) ∼= GL2(C). If (S,C) is (I.4C)
then Aut0(S,C) ∼= PGL2(C).

For the case (I.1C), or, in fact, in any dimension, the pair (Pn,H) with H a hyperplane in
Pn, satisfies

Aut(Pn,H) ∼= Aut(Pn, p) ∼= Aut(BlpP
n) ∼= Gn

a ⋊GLn(C),

for a point p ∈ Pn, where BlpP
n denotes the blow-up of Pn at p. The latter group is not

reductive. Note that this generalizes Troyanov’s obstruction to the existence of a constant
curvature metric on the teardrop (S2 with one cone point).

In the case (I.2.0), we have

Aut(Fn, Zn) ∼= PGL2(C)×Aut(C1) ∼= PGL2(C)× (Ga ⋊Gm),

which is not reductive. In the case (I.2.n) with n ≥ 1, we have Aut(Fn, Zn) ∼= Aut(Fn), because
the curve Zn must be fixed by any automorphism of Fn (since n > 0). On the other hand, it
follows from [13, Theorem 4.10] that if n > 0, then

Aut(Fn) ∼= Gn+1
a ⋊ (GL2(C)/µn),

where GL2(C)/µn acts on Gn+1
a by means of its natural linear representation in the space of

binary forms of degree n. The latter group is not reductive.
If (S,C) is in (I.6C.1), then Aut(S,C) ∼= G2

a ⋊ (Ga ⋊ G2
m). If (S,C) is in (I.6C.2), then

Aut0(S,C) ∼= G2
a ⋊G2

m. If (S,C) is in (I.6C.m) with m ≥ 3, then Aut0(S,C) ∼= G2
a ⋊Gm. All

these groups are not reductive.
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Now let us consider the case (I.7.n.m) for m > 0. If (S,C) is in (I.7.0.1), then Aut(S,C) ∼=
(Ga ⋊ Gm) × (Ga ⋊ Gm). If (S,C) is in (I.7.0.2), then Aut0(S,C) ∼= Gm × (Ga ⋊ Gm). If
(S,C) is in (I.7.0.m) with m ≥ 3, then Aut0(S,C) ∼= Ga ⋊ Gm. If (S,C) is in (I.7.1.1), then
Aut(S,C) ∼= G2

a ⋊ (Ga ⋊ G2
m). If (S,C) is in (I.7.1.2), then Aut0(S,C) ∼= G2

a ⋊ G2
m. If (S,C)

is in (I.7.1.m) with m ≥ 3, then Aut0(S,C) ∼= G2
a ⋊Gm.

If (S,C) is in (I.7.n.1) with n ≥ 2, then

Aut(S,C) ∼= Gn+1
a ⋊ ((Ga ⋊G2

m)/µn),

where ((Ga⋊G2
m)/µn ⊂ GL2(C)/µn acts on Gn+1

a by means of its natural linear representation
in the space of binary forms of degree n. Similarly, if (S,C) is in (I.7.n.2) with n ≥ 2, then
Aut0(S,C) ∼= Gn+1

a ⋊ G2
m/µn. Finally, if (S,C) is in (I.7.n.m) with n ≥ 2 and m ≥ 3, then

Aut0(S,C) ∼= Gn+1
a ⋊Gm/µn. All these groups are not reductive.

Now let us consider the case (I.6B.m) with m ≥ 1. If (S,C) is in (I.6B.1), then Aut(S,C) ∼=
Ga ⋊ G2

m, which is not reductive group. If m = 2, then Aut0(S,C) ∼= Gm, which is reductive.
If m ≥ 3, then Aut(S,C) is finite.

Now let us consider the case (I.8B.m) with m ≥ 1. If m = 1, then Aut(S,C) ∼= Ga ⋊ G2
m,

which is not reductive group. If m = 2, then Aut0(S,C) ∼= G2
m, which is reductive. If m ≥ 3,

then Aut0(S,C) ∼= Gm, which is reductive.
Finally let us consider the case (I.9C.m) with m ≥ 1. If (S,C) is in (I.9C.1), then

Aut0(S,C) ∼= Ga ⋊ Gm, which is not reductive group. If m = 2, then Aut0(S,C) ∼= Gm,
which is reductive. If m ≥ 3, then Aut(S,C) is finite.

The following result shows that all pairs of class (i) have reductive automorphism groups.
This gives further evidence for Conjecture 1.6.

Theorem 7.2. Let (S,C) be a pair of class (i) with C smooth and irreducible. Then Aut(S)
is reductive.

Proof. If (S,C) is (I.3A), then Aut0(S,C) ∼= Gm (this is easy). If (S,C) is (I.4B), then
Aut0(S,C) is a subgroup in PGL2(C) that fixes two points (the ramification points of the
double cover projection C → P1), which implies that Aut0(S,C) is either trivial or Gm. Thus,
if (S,C) is (I.3A) or (I.4B) then Aut(S) is reductive. Note that this also follows from Theorem
1.12 combined with Theorem 1.15.

Suppose (S,C) is (I.9B.m) with m ≥ 1. Then Aut0(S,C) preserves the conic bundle given
by | −KS −C| (see Proposition 1.7). This implies that Aut0(S,C) is a subgroup of the group
Aut0(S

′, C ′) where (S′, C ′) is a minimal model (see the proof of Theorem 2.1) of (S,C) (it is
either (I.3A) or (I.4B)). Thus, we see that Aut0(S,C) is a subgroup of Gm, which is either
trivial of Gm. In particular, we see that Aut0(S,C) is reductive.

7.2 Existence of KEE metrics on some pairs of class i

The goal of this subsection is to prove Theorem 1.15 as a first step towards confirming Con-
jecture 1.6. This gives the first examples of pairs with KEE metrics of positive Ricci curvature
which are not of class (ℵ). In §7.2.1 we define the G-invariant Tian invariant, with G a finite
group of automorphisms. In the remainder of this subsection we then compute the Tian in-
variants of three pairs of class i. For the first two (I.3A), (I.4B) the surface is fixed (F1 or
P1 × P1), while for the third (I.9B.5) we specialize to the Clebsch cubic surface. The proofs
use the results of Section 6 and Shokurov’s connectedness principle. Note that Proposition 7.6
generalizes to the logarithmic setting the result that α(S) = 2/3 when S is a cubic surface in
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P3 with an Eckardt point [5]. This result also serves to show (Example 7.7) that the bound of
Proposition 6.5 cannot hold without the nefness assumption.

7.2.1 Symmetry considerations

Suppose that X is acted by a finite group G of automorphisms, the divisor B is G-invariant,
and the class [H] is G-invariant. Then one can consider a G-invariant analogue of the global
lct of the pair (X,B) with respect to [H].

Definition 7.3. Let G ⊂ Aut(X). The G-invariant global lct of the pair (X,B) with respect
to [H] is the number

αG(X,B, [H]) := inf
{

lct
(

X,B;D
)

: D is effective G-invariant Q-divisor such that D ∼Q H
}

,

For simplicity, we put αG(X, [H]) = αG(X,B, [H]) if B = 0. Similarly, we put αG(X,BX ) =
αG(X,B, [H]) if H = −(KX + B). Finally, we put αG(X) = αG(X, [H]) if B = 0 and
H = −KX .

7.2.2 P1 × P1

LetG be a subgroup in Aut(P1) that is isomorphic to D10 (the dihedral group of order 10). Then
the action of G is given by an irreducible unimodular two-dimensional representation of the
binary dihedral group 2.G (a central extension of G by Z2). Let us denote this representation
by V2 (we can identify it with H0(OP1(1))).

Note that the group 2.G has eight distinct irreducible representations: the trivial one
(which we denote by I), the two-dimensional representation V2, three more two-dimensional
representations (which we denote by V′

2, V
′′
2 and V′′′

2 , and three non-trivial one-dimensional
representations (which we denote by V1, V

′
1 and V′′

1). Then Sym3(V2) ∼= V2 ⊕ V′′
2. Moreover,

one has
Sym6(V2) ∼= V1 ⊕ V′

2 ⊕ V′
2 ⊕ V′′′

2 ,

and Sym2(Sym3(V2)) ∼= Sym6(V2) ⊕ V1 ⊕ V′′′
2 . This follows from elementary representation

theory.
Let φ : P1 → P3 be an embedding given by the linear system |OP1(3)|. Then φ is G-

equivariant. Put C = φ(P1). Then C is a smooth rational cubic curve in P3. Since C is
projectively normal, we have an exact sequence of 2.G-representations

0 → H0(OP3(2)⊗ IC) → H0(OP3(2)) → H0(OC ⊗OP3(2)) → 0,

where H0(OP3(2)) ∼= Sym6(V2) and H
0(OC ⊗OP3(2)) ∼= Sym6(V2). This gives

H0(OP3(2)⊗ IC) ∼= V1 ⊕ V′′′
2 ,

which implies, in particular, that there exists unique G-invariant quadric surface in P3 that
contains the curve C. Let us denote this quadric surface by S.

Since C is not contained in a hyperplane in P3, the surface S is reduced and irreducible,
Moreover, the surface S is smooth, since Sym3(V2) does not contain one-dimensional subrep-
resentations of the group 2.G. Then S ∼= P1 × P1 and C is a curve of bi-degree (2, 1) on S so
(S,C) is (I.4B).

Proposition 7.4. One has αG(S, (1 − β)C) = 1 for every β ∈ (0, 1].
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Proof. Note that |−KS−C| is a free pencil on S that gives a projection S → P1 (cf. Lemma 4.4).
Let Z1 be a curve in |−KS−C|, and let Z2, . . . , Zr be all curves in |−KS−C| that are images
of Z1 via G. Then

1

r

r
∑

i=1

Zi + βC ∼Q −(KS + (1− β)C),

and Z1 + Z2 + · · ·+ Zr is G-invariant. On the other hand, we have

lct
(

S, (1 − β)C; r−1∑r
i=1 Zi + βC

)

≤ 1,

so α(S, (1 − β)C) ≤ 1.
Suppose that αG(S, (1 − β)L) < 1. Then there exists an effective G-invariant Q-divisor ∆

such that
∆ ∼R −(KS + (1− β)C)

and the pair (S, (1−β)C +µ∆) is not lc at some point O ∈ S for some positive rational µ < 1.
We claim that (S, (1 − β)C + µ∆) is lc outside of the point O. Indeed, suppose that this is
not the case. Then (S, (1 − β)C + µ∆) is not lc along a curve. The latter follows from the
connectedness principle [40, Lemma 5.7] since the divisor −KS − (1 − β)C − µ∆) is ample,
because µ < 1. Thus, we see that there exists a G-invariant (possibly reducible) curve Z ⊂ S
such that

∆ = ǫZ +Ω

for some effective R-divisors Ω whose support does not contain the curve Z and some positive
rational ǫ such that either Z = C and µǫ > β or Z 6= C and µǫ > 1. This is, of course,
impossible, because ∆ ∼R −KS−C+βC. Indeed, if Z = C, then (µǫ−β)C+Ω ∼R −KS−C,
which implies that

0 < 2(µǫ− β) = (µǫ− β)C.(−KS − C) ≤
(

(µǫ− β)C +Ω
)

.(−KS − C) = (−KS − C)2 = 0,

which is absurd. Thus, we have Z 6= C. Then

Z.(−KS−C) ≤ µǫZ.(−KS −C) ≤ (µǫZ+Ω).(−KS−C) = (−KS−C+βC).(−KS−C) = 2β,

which implies that Z.(−KS − C) = 0. Then Z ∈ |n(−KS − C)| for some n ∈ N. On the other
hand, the pencil | − KS − C| does not contain G-invariant curves (if | − KS − C| contains a
G-invariant curve, then | −KS | contains a G-invariant curve, which is impossible, since there
exists unique G-invariant quadric surface in P3 that contains the curve C. Therefore, we see
that n ≥ 2. Then (nµǫ− 1)(−KS − C) + Ω ∼R βC, which implies that

2 < (2nµǫ−1) ≤ (2nµǫ−1)+Ω.(−KS) = ((nµǫ−1)(−KS−C)+Ω).(−KS) = βC.(−KS) = 6β

which is impossible for small β. The obtained contradiction shows that (S, (1 − β)C + µ∆) is
lc outside of the point O.

Since (1 − β)C + µ∆ is G-invariant and the pair (S, (1 − β)C + µ∆) is lc outside of the
point O, the point O must be G-invariant. The latter is impossible, since Sym3(V ) does not
contain one-dimensional sub-representations. Thus αG(S, (1 − β)C) = 1.
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7.2.3 F1

Let G be a subgroup in Aut(P1) that is isomorphic to D2n (the dihedral group of order 2n)
for n ≥ 2 (if n = 2, then we assume that G ∼= Z2 × Z2). Then the action of G is given by an
irreducible unimodular two-dimensional representation of the group 2.G (a central extension
of G by Z2). Let us denote this representation by V . Them Sym2(V ) is a representation of the
group G. Moreover, it splits as a union of an irreducible two-dimensional representation of G
and a one-dimensional subrepresentation.

Let φ : P1 → P2 be an embedding given by the linear system |OP1(2)|. Then φ is G-
equivariant. Put C̄ = φ(P1). Then C̄ is a smooth conic in P2. Moreover, there exists G-
invariant point P ∈ P2. Since V is irreducible representation of the group 2.G, we see P 6∈ C̄.

Let π : S → P2 be the blow up of the point P . Then the action of G lifts to S and S ∼= F1.
Denote by C the proper transform of the curve C̄ on the surface S. Thus, (S,C) is (I.3A).
The proof of the following result is almost identical to the proof of Proposition 7.4.

Proposition 7.5. One has αG(S, (1 − β)C) = 1 for every β ∈ (0, 1].

7.2.4 Cubic surfaces

The Tian invariant of a smooth cubic surface with an Eckardt point is 2/3 [5, Theorem 1.7].
The following is a natural generalization.

Proposition 7.6. Let S be a smooth cubic surface in P3, and let C be a line on S. Then
the divisor −(KS + (1 − β)C) is ample for every real β ∈ (0, 1]. Suppose that C contains an
Eckardt point. Then

α(S, (1 − β)C) =
1 + β

2 + β

for every real β ∈ (0, 1].

Proof. Let P be an Eckardt point on C, let L1 and L2 be two lines in S such that L1∩L2∩C = P .
Then

lct
(

S, (1 − β)C;L1 + L2 + βC
)

=
1 + β

2 + β

and L1 +L2 + βC ∼Q −(KS +(1− β)C), which implies that α(S, (1− β)C) ≤ (1+ β)/(2+ β).
Suppose that α(S, (1− β)C) < (1 + β)/(2 + β). Then there exists an effective Q-divisor ∆

on the surface S such that ∆ ∼Q −(KS + (1− β)C) and the pair (S, (1− β)C + µ∆) is not lc
at some point O ∈ S for some positive rational number µ < (1 + β)/(2 + β). Let us derive a
contradiction (compare the proofs of [5, Lemmas 3.4 and 3.6]).

Since (1−β)C+∆ ∼Q −KS , it follows from [7, Lemma 5.36] that the pair (S, (1−β)C+∆)
is lc outside of finitely many points in C. Hence, the pair (S, (1−β)C+µ∆) is lc outside of the
a finitely many points in S, since µ ≤ 1. In fact, this implies that the log pair (S, (1−β)C+µ∆)
is log canonical outside of the point O by the connectedness principle [40, Lemma 5.7], because
the divisor −(KS + 1− β)C + µ∆) is ample.

If O 6∈ C, then the pair (S, µ∆) is not log canonical at the point O ∈ S, which is impossible,
since α(S) = 2/3 [5, Theorem 1.7] and 1+β

2+β < 2/3. Thus, O ∈ C.

There exists a birational morphism π : S → P2 such that π is an isomorphism in a neigh-
borhood of the point O, and π(C) is a line in P2. Put c = π(C) and ∆̄ = π(∆). Then the pair
(P2, (1−β)c+µ∆̄) is not log canonical at the point π(O). Moreover, the pair (P2, (1−β)c+µ∆̄)
is lc outside of finitely many points in P2. Then (P2, (1 − β)c + µ∆̄) is lc outside of the point
π(O) by the connectedness principle, because the divisor −(KP2 + (1− β)c+ µ∆̄) is ample.
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Let L be a general line in P2. Then the pair (P2, (1− β)c+ µ∆̄ + ǫL) is not lc along L for
every rational number ǫ > 1. Choose ǫ > 1 such that ǫ < 1 + 3β. Then

3− (1− β)− µ
(

2 + β
)

− ǫ > 3− 2(1− β)− 1 + β

2 + β

(

2 + β
)

− ǫ = 1 + 3β − ǫ > 0,

which implies that the divisor −(KP2 + (1 − β)c + µ∆̄ + ǫL) is ample. This contradicts the
connectedness principle, because the pair (P2, (1 − β)c + µ∆̄ + ǫL) is not lc at every point of
the non-connected set π(O) 6∈ L, and it is lc outside of this set.

Proposition 7.6 shows that the nefness conditions in Theorem 6.5 can not be omitted as
the following example demonstrates.

Example 7.7. Let S be a smooth cubic surface in P3, and let C be a line on X such that
there exists an Eckardt point on C. Put H = −(KS + (1− β)C) for any β ∈ (0, 1). Then H is
ample. Put

γ = sup
{

c ∈ Q
∣

∣ H − cC is pseudoeffective
}

.

Then γ = β. Moreover, it follows from Definition 6.3 that α(S, [H]) ≥ α(S, [H + (1− β)C]) =
α(S) = 2/3. But it follows from Lemma 6.4 that

α(C, [H]|C )) =
1

H.C
=

1

2− β
.

On the other hand, it follows from Proposition 7.6 that α(S, (1−β)C) = 1+β
2+β for any β ∈ (0, 1).

Thus, we see that

α(S, (1 − β)C, [H]) = α(S, (1 − β)C) =
1 + β

2 + β
6≥ 1

2− β
= min{β/γ, α(S, [H]), α(C, [H]|C )}

for sufficiently small β > 0. Note that C is not nef, since C2 = −1 on the surface S.

Next, we show that for the Clebsch diagonal cubic surface Tian’s invariant is in fact equal
to 1 for any β ∈ (0, 1]. Recall that the Clebsch diagonal cubic surface is a smooth cubic surface
with Aut(S) = S5 (see [22, § 4]). Such surface exists and it is unique (this follows from basic
representation and invariant theory of the group S5).

Proposition 7.8. Let S be the Clebsch diagonal cubic surface, i.e., the unique smooth cubic
surface in P3 such that Aut(S) ∼= S5. Let G ∼= D10 be a subgroup in Aut(S) consisting of even
permutations. Then there exists a G-invariant line C ⊂ S and αG(S, (1 − β)C) = 1 for every
β ∈ (0, 1].

Proof. The surface S can be obtained as A5-equivariant blow up of P2 at the unique A5-orbit
of length 6 (see [22, § 4] for details). Then the stabilizer in A5 of any exceptional curve of this
blow up is a finite group isomorphic to G. Keeping in mind that all finite subgroups in A5 that
are isomorphic to G are conjugate, we see that there exists a G-invariant line C ⊂ S.

By Proposition 1.7 the linear system | − KS − C| is a free pencil of conics on S. By our
assumptions this pencil is G-invariant. Let Z1 be any curve in | −KS −C|, and let Z2, . . . , Zr
be all curves in | −KS − C| that are images of Z1 via G. Then the divisor Z1 + Z2 + · · ·+ Zr
is G-invariant and

1

r

r
∑

i=1

Zi + βC ∼Q −KS − (1− β)C.
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On the other hand,
lct

(

S, (1 − β)C; r−1∑r
i=1 Zi + βC

)

≤ 1,

so α(S, (1 − β)C) ≤ 1.
Suppose that αG(S, (1 − β)C) < 1. Then there exists an effective G-invariant Q-divisor ∆

such that
∆ ∼Q −KS − (1− β)C

and the pair (S, (1−β)C +µ∆) is not lc at some point O ∈ S for some positive rational µ < 1.
Since (1−β)C+∆ ∼Q −KS , it follows from [7, Lemma 5.36] that the pair (S, (1−β)C+∆) is
lc outside of finitely many points in S. Since µ < 1, the divisor −KS−(1−β)C−µ∆) is ample,
and thus the connectedness principle [40, Lemma 5.7] implies that the pair (S, (1−β)C +µ∆)
is lc outside of the point O ∈ S. In particular, this point O must be G-invariant.

On the other hand, the vector space H0(OS(−KS)) is a four-dimensional (χS(−KS) =
h0(S,OS(−KS)) = 1+K2

S = 4 [18, p. 471] since S is a six-point blow-up of P2) representation
of the group G that splits as a sum of two irreducible two-dimensional representations. Hence,
there exists no G-invariant point in S, since otherwise H0(OS(−KS)) would contain a one-
dimensional sub-representation of G. Thus αG(S, (1 − β)C) = 1.
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