THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Removing endogenous tau does not prevent tau propagation yet reduces its neurotoxicity

Citation for published version:
Spires-Jones, T, Wegmann, SK, Maury, EA, Kirk, M, Saqran, L, Roe, AD \& DeVos, S 2015, 'Removing endogenous tau does not prevent tau propagation yet reduces its neurotoxicity' EMBO Journal, vol. 34, no. 24, pp. 3028-3041. DOI: 10.15252/embj. 201592748

Digital Object Identifier (DOI):
10.15252/embj. 201592748

Link:

Link to publication record in Edinburgh Research Explorer

Document Version:

Peer reviewed version

Published In:

EMBO Journal

Publisher Rights Statement:
can put up 6 months after PUBLICATION DATE

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Figure 1

Figure 2

A AAV mediated human P301Ltau expression AAV injected into left EC: "ITR-CBA- eGFP $\frac{29}{80}$ P301 Lau - WPRE-polyA-ITR" Expressed proteins:

Detection of tau propagation by huTau immunostaining:

B AAV eGFP-2a-P301Ltau expression in mouse cortical primary neurons (7days expression)

8 8 weeks \downarrow
horizontal sections, immunostaining

D

Injected ipsilateral hemisphere

E
Non-injected contralateral hemisphere

Figure 3

Figure 4

A Tau in CTX of 9 month-old rTg4510(-Mapto/)

B Whole brain weight

E CA1 volume

$\square W T$ ■rTg4510 $\square \mathrm{rTg} 4510-$ Mapt $^{\omega 0} \square$ Mapt ${ }^{\omega 0}$

Gliosis in CTX of rTg4510(-Maptor)

Figure 5

Figure 6
A Deteregent extraction of $\mathrm{rTg} 4510\left(-\right.$ Mapt $\left.^{2 / 0}\right)$ cortices

B Native PAGE of oligomeric tau in rTg4510(-Mapt ${ }^{2 / 0}$) TBS brain extracts

C HEK293 CFP/YFP-tau seeding assay of rTg4510(-Mapt/0) TBS brain extracts

no lipofectamine

rTg4510Maptor

+ lipofectamine

HEK293 CFP/YFP-tau treated with rTg4510-(Mapt ${ }^{\circ / 0}$) brain extract, no lipofectamine

Figure EV1

Genotype verification through qPCR

primers targeting 5^{\prime}-CCC AAT CAC TGC CTA TAC CC-3' primers targeting 5^{\prime}-CACCAAAATCCGGAGAAGGA-3' human tansgene product 5^{\prime}-CCA CGA GAA TGC GAA GGA-3' mouse tau exon 7 5'-CTTTGCTCAGGTCCACCGGC-3'
primers targeting 5 '-TGG TGA AGC AGG CAT CTG AG-3' GAPDH 5^{\prime}-TGC TGT TGA AGT CGC AGG AG-3'

Figure Ev2

A Immuno-FISH of huTau mRNA and protein in ECrTgTau mice

Figure EV3
A Propagation of human full-length tau: $N \square C$
N -terminus (Tau13, monoclonal) C-terminal half (DAKO, polyclonal)

B GABA-ergic neurons and glia in the dentate gyrus of ECrTgTau-Mapt ${ }^{2 / 0}$ mice
ECrTgTau-Mapt ${ }^{010}$

C GABA-ergic neurons and glia in the dentate gyrus of ECrTgTau mice
ECrTgTau

Figure EV4

A DAPI count in EC layer II/III

B Synapsin-1 in EC

Figure EV5

Figure EV6

Ubiquitin
CHOP

Figure EV7
A Tangles vs. neuron loss
B Tangles vs. CTX thinning

- Tg4510 OrTg4510-Mapt ${ }^{\circ}$ - Tg4510 OrTg4510-Mappo

C Immuno-FISH of huTau mRNA and protein in rTg4510(-Mapt ${ }^{0 / 0}$) - 9 month
rTg4510

