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Abstract—Along with the channel capacity, the error exponent is one of the most important
information-theoretic measures of reliability, because it sets ultimate bounds on the perfor-
mance of communication systems employing codes of finite complexity. In this paper, we derive
closed-form expressions for the Gallager random coding and expurgated error exponents for
multi-keyhole multiple-input multiple-output (MIMO) channels, which provide insights into a
fundamental tradeoff between the communication reliability and information rate. We inves-
tigate the effect of keyholes on the error exponents and cutoff rate. Moreover, without an
extensive Monte-Carlo simulation we can easily compute the codeword length necessary to
achieve a predefined error probability at a given rate, which quantifies the effects of the number
of antennas, channel coherence time, and the number of keyholes. In addition, we derive exact
closed-form expressions for the ergodic capacity and cutoff rate based on the easily computable
Meijer G-function. Finally, we extend our study to Rayleigh-product MIMO channels and
keyhole MIMO channels.

DOI: 10.1134/S0032946015010019

1. INTRODUCTION

One of the critical information-theoretic measures of wireless communication systems is the
channel capacity, which, however, only provides the knowledge of the maximum error-free trans-
mission rate achieved with an infinitely long code. However, in practice, we are more interested in
scenarios where finite length codes are used; hence, a natural question arises of how to understand
the fundamental relationship between the reliability and information rate. In fact, such a rela-
tionship can be characterized by the error exponent, which is a function of the code length L and
information rate R. In general, it is very difficult to obtain the exact error exponent of a particular
channel. Nevertheless, a tight lower bound of the error exponent, also refereed to as the random
coding error exponent (RCEE), was proposed by Gallager [1].

Being a function of both the transmission rate and the code length, the RCEE provides an
alternative measure to study the fundamental tradeoff between the communication reliability and
information rate of communication systems. Therefore, it has gained enormous attentions from

1 Supported in part by the UK Engineering and Physical Sciences Research Council (EPSRC), grant
no. EP/I037156/2, funded by the UK government.

2 Supported in part by the National High-Tech. R&D Program of China under grant 2014AA01A705, the Na-
tional Natural Science Foundation of China (61201229), the Zhejiang Science and Technology Department
Public Project (2014C31051), the Fundamental Research Funds for Central Universities (2014QNA5019),
and the open research fund of National Mobile Communications Research Laboratory, Southeast Univer-
sity (no. 2013D06).
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the research community, and a number of works have investigated the RCEE in various practical
channels. Specifically, the work [2] studied the RCEE with average and peak transmit power
constraints for single-input single-output (SISO) channels, while the authors in [3] extended the
analysis to single-input multiple-output (SIMO) channels. More interesting multiple-input single-
output (MISO) channels were later addressed in [4]. For the most general multiple-input multiple-
output (MIMO) channels, exact closed-form expressions for the RCEE and cutoff rate have been
derived in [5–7]. In the low signal-to-noise ratio (SNR) regime, [8] investigated the impact of the
number of transmit and receive antennas on the error exponent of MIMO channels.

While the aforementioned works have significantly improved our understandings on the behavior
of the RCEE in MIMO channels, a common limitation of these works is that they all assume an
ideal rich scattering propagation environment, and hence flat fading MIMO Rayleigh channels. In
practice, MIMO channels may exhibit reduced-rank behavior due to the lack of scatterers around the
transmitter and receiver terminals. For this reason, a more general channel model accounting for the
rank deficiency behavior as well as the antenna correlation effect of wireless channels was proposed
in [9], and it is generally referred to as double-scattering MIMO channels. The authors extended the
single-keyhole channel model by introducing multi-keyhole channels and derived asymptotic results
in [10]. Because of its generality and practical significance, a good deal of works have investigated
its performance in different settings [11–17]. However, to the best of the authors’ knowledge, the
behavior of the error exponent in double-scattering MIMO channels has not been reported in the
literature.

Motivated by this, in this paper we make an attempt to study the error exponents for multi-
keyhole MIMO channels.3 The main contributions of the paper include new closed-form expressions
for negative moments of the determinant of the random matrices of interest. Based on this, exact
analytical expressions for the RCEE of multi-keyhole MIMO channels are derived. In addition,
general expressions for the ergodic capacity and cutoff rate are also obtained from the error exponent
analysis. Based on this, the impact of the number of scatters and correlation on the performance
of a system is investigated.

The rest of the paper is organized as follows: The system model and some mathematical pre-
liminaries are presented in Section 2. Section 3 gives a comprehensive account of the RCEE,
expurgated error exponent, cutoff rate, and ergodic capacity of multi-keyhole MIMO channels.
Section 4 analyzes the required codeword length. Finally, Section 5 concludes the paper.

Throughout the paper, we adopt the following notation. Matrices and vectors are denoted by
bold uppercase and bold lowercase letters, respectively. By In we denote the n×n identity matrix;
(·)† denotes the conjugate transpose of a matrix or vector, Cn×m denotes the set of n×m complex
matrices, and CN (μ, σ2) is the circularly symmetric complex Gaussian distribution with mean μ
and variance σ2. By tr(·) and det(·) we denote the trace and determinant of a matrix; {A}i,j is
the (i, j)th element of a matrix A; | · | denotes the absolute value; E[·] and ln(·) are the expectation
operation and natural logarithm, respectively.

2. SYSTEM MODEL AND PRELIMINARIES

We consider a MIMO communication system with nt transmit antennas and nr receive antennas.
We assume that there are nk keyholes between the transmitter and receiver for multi-keyhole MIMO
channels. The channel remains constant for Tc symbol periods and changes independently to a new
value for each coherence time. We consider the channel coding over Nb independent coherence
intervals. Therefore, for an observation interval of NbTc symbol periods, received signals are given

3 Mathematically, multi-keyhole MIMO channels is a special case of the general double-scattering MIMO
channels with only correlation among the scatters.
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ERROR EXPONENTS FOR MULTI-KEYHOLE MIMO CHANNELS 3

by

Y i =

√
P

nt
H iXi +W i, i = 1, 2, . . . , Nb. (1)

where Y i ∈ C
nr×Tc and X i ∈ C

nt×Tc are the received and transmitted signal matrices, respec-
tively. We assume that the total available transmit power for every Tc symbol period is P , i.e.,
E
[
tr(X†

iXi)
]
≤ P ; W i ∼ CN nr ,Tc(0, N0Inr ⊗ ITc) are the additive white Gaussian noise matrices,

and H i ∈ C
nr×nt denote the channel matrices. Since the channel is memoryless with identical

channel statistics for each coherence time interval, we drop the index i in the following.

For multi-keyhole MIMO channels, the channel matrix is given by H = HrAH†
t , where

Hr ∈ C
nr×nk and H t ∈ C

nt×nk are mutually independent matrices with elements following
the distribution CN (0,1). Let A = diag(a1, . . . , ank

) ∈ C
nk×nk , where ak is the complex gain

for the kth keyhole. Without loss of generality, we assume that the diagonal elements of ma-
trix A are ordered according to their magnitude, i.e., |a1| ≤ |a2| ≤ . . . ≤ |ank

|. We define

F � H†H = H tA
†H†

rHrAH†
t , Q � A†H†

rHrA, B � AA†, and assume that the channels
are normalized, which means that EHr ,Ht [tr(F )] = ntnr and tr(B) = 1.

When there is no correlation among the keyholes, multi-keyhole MIMO channels reduce to the

so-called Rayleigh-product MIMO channels, i.e., H =
1

√
nk

HrH
†
t .

2.1. Preliminaries

In this subsection, we present some key mathematical results which will be invoked in the sub-
sequent analysis of information-theoretic measures such as the RCEE, expurgated error exponent,
ergodic capacity, and cutoff rate.

Theorem 1. The expectation of the determinant of the matrix
(
Inr +

γ

�
F
)−τ

is given by

EHr,Ht

[
det
(
Inr +

γ

�
F
)−τ

]
=

det(Δ)

Γ(τ)
nk∏
i=1

Γ(nt − i+ 1)Γ(nr − i+ 1)
nk∏
i<j

(bj − bi)
, (2)

where Δ is an nk × nk matrix with entries

[Δ]i,j =

⎧⎪⎪⎨
⎪⎪⎩
bj−1
i , j ≤ nk − p;

bj−1
i G1,3

3,1

[
γbi
�

∣∣∣∣ nk − nr − j + 1, 1 − nt + nk − j, 1 − τ

0

]
, j > nk − p,

where Gm,n
p,q

[
x
∣∣∣ a1, . . . , ap
b1, . . . , bq

]
is the Meijer G-function [18]; γ, �, and τ are constants; and b1 ≤ b2 ≤

. . . ≤ bnk
are the diagonal elements of B.

Proof. Let us define α � max(nr, nt), � � min(nr, nt), q � max(�, nk), p � min(�, nk), d �
max(α, nk), s � min(α, nk), and ϑ � min(nr, nk). We have

EHr,Ht

[
det
(
Inr +

γ

�
H tA

†H†
rHrAH†

t

)−τ
]
= EQ

[
EHt |Q

[
det
(
Inr +

γ

�
H tQH†

t

)−τ
]]
. (3)

Define Ψ = H tQH†
t . Then the conditional p.d.f. of joint eigenvalues of Ψ is given by [19, equa-

tions (86) and (87)]

f(λ1, . . . , λnk
|Q) =

det(Δ1)
nk∏
i<j

(λj − λi)

nk

nk∏
i=1

Γ(nt − i+ 1)
nk∏
i<j

(qj − qi)
, (4)

PROBLEMS OF INFORMATION TRANSMISSION Vol. 51 No. 1 2015



4 XUE et al.

where q1, . . . , qϑ are the ϑ nonzero eigenvalues of Q, λ1, . . . , λnk
are the ordered eigenvalues of Ψ,

and Δ1 is ϑ× ϑ matrix with entries

Δ1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 q1 . . . qϑ−nt−1
1 qϑ−nt−1

1 e
−λ1

q1 . . . qϑ−nt−1
1 e

−λnk
q1

1 q2 . . . qϑ−nt−1
2 qϑ−nt−1

2 e
−λ1

q2 . . . qϑ−nt−1
2 e

−
λnk
q2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 qϑ . . . qϑ−nt−1
ϑ qϑ−nt−1

ϑ e
−λ1

qϑ . . . qϑ−nt−1
ϑ e

−λnk
qϑ

⎞
⎟⎟⎟⎟⎟⎟⎠
. (5)

Therefore, using the probability density function (p.d.f.) of (4) and assuming that nk ≥ p, we
have

E

[
det
(
Inr +

γ

�
H tQH†

t

)−τ ∣∣Q]

=

∫
Dord

det
(
e−xj/qi

) nk∏
i=1

(
1 +

γ

�
xi
)−τ

xnt−nk
i det

(
xj−1
i

)
dx1 . . . dxnk

nk∏
i=1

q1+nt−nk
i Γ(nt − i+ 1)

nk∏
i<j

(qj − qi)
.

Defining the integration region as Dord = {∞ ≥ x1 ≥ . . . ≥ xnk
≥ 0} and using the method of [20]

and [18, equation (7.813.1)], we have

E

[
det
(
Inr +

γ

�
HtQH†

t

)−τ ∣∣Q] = det(Δ2)

Γ(τ)
nk∏
i=1

Γ(nt − i+ 1)
nk∏
i<j

(qj − qi)
,

where Δ2 is a ϑ× ϑ matrix with entries

{Δ2}i,j = qj−1
i G1,2

2,1

[
γqi
�

∣∣∣∣ 1− nt + nk − j, 1− τ
0

]
.

When nr ≥ nk, the joint p.d.f. of the nk ordered eigenvalues of Q is given in [21, equation (42)].
Therefore, from [18, equation (7.813.1)], the expectation over Q is given by

EHr ,Ht

[
det
(
Inr +

γ

�
H tA

†H†
rHrAH†

t

)−τ
]
= C1 det(Δ3),

where

C1 =
1

Γ(τ)
nk∏
i=1

Γ(nt − i+ 1)
nk∏
i=1

Γ(nr − i+ 1) det(B)nr−nk+1
nk∏
i<j

(bj − bi)

and

{Δ3}i,j = bnr−nk+j
i G1,3

3,1

[
γbi
�

∣∣∣∣ nk − nr − j + 1, 1 − nt + nk − j, 1 − τ
0

]
.

Following similar mathematical manipulations as in [22, Appendix D] and according to the definition
of det(B)nr−nk+1, we have

EHr ,Ht

[
det
(
Inr +

γ

�
H tA

†H†
rHrAH†

t

)−τ
]
= C2 det(Δ4), (6)

where C2 =
1

Γ(τ)
nk∏
i=1

Γ(nt − i+ 1)Γ(nr − i+ 1)
nk∏
i<j

(bj − bi)
and

{Δ4}i,j = bj−1
i G1,3

3,1

[
γbi
�

∣∣∣∣ nk − nr − j + 1, 1− nt + nk − j, 1− τ
0

]
.

PROBLEMS OF INFORMATION TRANSMISSION Vol. 51 No. 1 2015



ERROR EXPONENTS FOR MULTI-KEYHOLE MIMO CHANNELS 5

When nr < nk, the joint p.d.f. of the nr ordered eigenvalues of Q is given in [23]. Therefore,
following the similar procedure as was described in the case of nr ≥ nk and using the identity
[18, equation (7.813.1)], we derive Theorem 1 as is shown above. 	

Corollary. The expectation of the determinant of the matrix
(
Inr +

γ

�
F
)−τ

for independent

and identically distributed single keyhole Rayleigh fading MIMO channels is given by

EHr ,Ht

[
det
(
Inr +

γ

�
F
)−τ

]
=

1

Γ(τ)Γ(nt)Γ(nr)
G1,3

3,1

[
γ

�

∣∣∣∣ 1− nr, 1− nt, 1− τ
0

]
. (7)

Proof. This result can be derived straightforwardly from Theorem 1 when nk = 1 and b = 1. 	
It is worth noting that a similar result has already been presented in [24], which studied the

error exponent of i.i.d. single keyhole Nakagami-m fading MIMO channels.

Theorem 1 essentially presents a closed-form expression for the Laplacian transformation of
the mutual information for multi-keyhole MIMO channels, which is valid for arbitrary keyhole
structures. Hence, the corresponding expression for the special case where there is no correlation

among the keyholes, i.e., bi =
1

nk
, could be extracted from the general result presented in Theorem 1.

Indeed, this can be achieved by introducing a small perturbation into bi: let bj − bi
lim−−→ 0 for all

i, j ∈ (1, . . . , nk), and then successive application of the L’Hôpital law leads to the final result.
Although such an approach is feasible, it is nevertheless computationally expensive. Hence, in the
following, we directly derive the corresponding analytical expression for Rayleigh-product MIMO
channels using some results of random matrix theory.

Theorem 2. The expectation of the determinant of the matrix
(
Inr +

γ

�
HH†

)−τ
for Rayleigh-

product MIMO channels is given by

EH

[
det
(
Inr +

γ

�
HH†

)−τ
]
= M1 det(Ψ), (8)

where u = min(nr, nk), v = max(nr, nk), m = min(u, nt), n = max(u, nt),

M1 =
(−1)(u−n)(u+m−1)/2nuv

k
u∏

i=1
(u− i)! (v − i)!

m∏
j=1

(nt − j)!
,

and Ψ is a u× u matrix with entries

ψi,j =

{
bi,j, i = 1, . . . , u, j = 1, . . . ,m,

ci,j, i = 1, . . . , u, j = m+ 1, . . . , u,
(9)

where

bi,j =
1

Γ(τ)
n−v+nt−i−j−n+u+1
k

×G1,3
3,1

[
γ

�nk

∣∣∣∣ −v + nt − i− j − n+ u+ 2,−j − n+ u+ 1, 1− τ
0

]

and
ci,j = (−1)u−j(v −m− n+ i+ j − 2)!n

−(v−m−n+i+j−1)
k .

Proof. For the Rayleigh-product MIMO channels, the p.d.f. of the ordered eigenvalues of HH†

is given by [25]

pλ(x) = M1|Φ(x)||Ξ(x)|
m∏
i=1

xn−u
i , (10)

where |x| = det(x), ∞ > x1 ≥ . . . ≥ xm ≥ 0, λ = (λ1, . . . , λm), x = (x1, . . . , xm).

PROBLEMS OF INFORMATION TRANSMISSION Vol. 51 No. 1 2015



6 XUE et al.

The matrices Φ(x) and Ξ(x) are given by

{Φ(x)}i=1,...,u,j =

⎧⎪⎨
⎪⎩
2
( xj

nk

)(v−nt+i−1)/2
Kv−nt+i−1

(
2
√
nkxj

)
if j = 1, . . . ,m,

(−1)u−j(v −m− n+ i+ j − 2)!n
−(v−m−n+i+j−1)
k if j = m+ 1, . . . , u,

and {Ξ(x)}i,j = xj−1
i , i = 1, . . . ,m, j = 1, . . . ,m, where Kυ(·) is the modified Bessel function of

the second kind [18].

Then we have

EH

[
det
(
Inr +

γ

�
HH†

)−τ
]
=

∫
D1

m∏
i=1

(
1 +

γλi

�

)−τ

pλi
(λi) dλ1 . . . dλm (11)

with the integration region D1 = {0 < λ1 < . . . < λm < ∞}, where (λ1, . . . , λm) are the ordered
eigenvalues of HH†. Using the identity [26]

(1− x)−α =
1

Γ(α)
G1,1

1,1

[
−x

∣∣∣∣ 1− α
0

]
, (12)

and the p.d.f. of (10), we have

EH

[
det
(
Inr +

γ

�
HH†

)−τ
]

=

∫
D1

m∏
i=1

M1|Φ(λ)||Ξ(λ)|
Γ(τ)

G1,1
1,1

[
γλi

�

∣∣∣∣ 1− τ
0

] m∏
i=1

λn−u
i dλ1 . . . dλm. (13)

Using the property of matrix determinant and applying the technique proposed in [20, 27], the
multiple integral can be solved as

EH

[
det
(
Inr +

γ

�
HH†

)−τ
]
= M1 det

(
Ψ̃
)
,

where Ψ̃ is the matrix with entries

ψ̃i,j =

{
b̃i,j, i = 1, . . . , u, j = 1, . . . ,m,

ci,j , i = 1, . . . , u, j = m+ 1, . . . , u,

where

b̃i,j =
1

Γ(τ)

∞∫
0

{Φ(x)}i,j{Ξ(x)}i,jG1,1
1,1

[
γx

�

∣∣∣∣ 1− τ
0

]
xn−u dx,

ci,j = (−1)u−j(v −m− n+ i+ j − 2)!n
−(v−m−n+i+j−1)
k .

Noticing that the integral of b̃i,j can be solved with the help of the identity [18, equation (7.821.3)]
and that ordered eigenvalues are used in this paper, Theorem 2 can be obtained with some basic
algebraic manipulations. 	

3. ERROR EXPONENT ANALYSIS

In this section, we study the error exponents of multi-keyhole MIMO channels and derive closed-
form expressions for the RCEE, expurgated error exponent, cutoff rate, and ergodic capacity.

PROBLEMS OF INFORMATION TRANSMISSION Vol. 51 No. 1 2015
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3.1. RCEE

For a communication system, the error exponent is defined by [28]

E(R) := lim sup
L→∞

− lnP opt
e (R,L)

L
,

where P opt
e (R,L) is the average error probability of a communication system employing an optimal

code with length L and rate R [5–7]. Due to the presence of the supremum function, it is in general
quite difficult to find the exact error exponent. However, a tight lower bound, which can easily be
computed, can be expressed as [1]

P r
e ≤

(
2erδ

ξ

)2
e−NbTcEr(pX(X),R,Tc),

where r ≥ 0, δ ≥ 0, ξ ≈ δ√
2πNbσ2

ξ

, and σ2
ξ =

∫
X
[tr(XX†)− TcP ]2pX(X) dX . The RCEE, denoted

by Er(pX(X), R, Tc), is given by

Er(pX(X), R, Tc) = max
0≤ρ≤1

{
max
r≥0

E0(pX(X), ρ, r, Tc)− ρR
}
, (14)

where

E0(pX(X), ρ, r, Tc)

= − 1

Tc
ln

{∫
H

pH(H)

∫
Y

(∫
X

pX(X)er[tr(XX†)−TcP ]p(Y |X ,H)
1

(1+ρ) dX

)1+ρ

dY dH

}
, (15)

where PX (X), pH(H), and p(Y |X ,H) denote the distributions of the input signal, channel, and
received signal [5, 6], respectively. Since the Gaussian signaling is capacity achieving, we have

pX(X) = π−ntTc det(Q)−Tc etr
(
−Q−1XX†) (16)

with power constraint tr(Q) ≤ P . Assuming no channel state information at the transmitter, the

equal power allocation scheme is adopted, i.e., Q =
P

nt
Int .

In this case, E0(pX(X), ρ, r, Tc) and Er(pX(X), R, Tc) are denoted by Ẽ0(ρ, β, Tc) and Er(R,Tc),
respectively. Therefore, for Rayleigh fading MIMO channels, Ẽ0(ρ, β, Tc) is given by

Ẽ0(ρ, β, Tc) � E0

(P
nt

Int , ρ, r, Tc

)∣∣∣
β=nt−rP

= K(ρ, β) − 1

Tc
ln

{
E

[
det

(
Inr +

γHH†

β(1 + ρ)

)−Tcρ ]}
, (17)

where γ denotes the SNR, β = nt − rP , and K(ρ, β) = (1 + ρ)(nt − β) + nt(1 + ρ) ln
( β

nt

)
.

Proposition 1. A closed-form expression for the RCEE of multi-keyhole MIMO channels is
given by

Er(R,Tc)
multi-keyhole = max

0≤ρ≤1

{
max

0≤β≤nt

{
K(ρ, β) − 1

Tc
ln{C3 det(Δ5)} − ρR

}}
, (18)

PROBLEMS OF INFORMATION TRANSMISSION Vol. 51 No. 1 2015
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where C3 =
1

Γ(Tcρ)
nk∏
i=1

Γ(nt − i+ 1)Γ(nr − i+ 1)
nk∏
i<j

(bj − bi)
and

{Δ5}i,j =

⎧⎪⎪⎨
⎪⎪⎩
bj−1
i , j ≤ nk − p,

bj−1
i G1,3

3,1

[
γbi

β(1 + ρ)

∣∣∣∣ nk − nr − j + 1, 1 − nt + nk − j, 1 − Tcρ

0

]
, j > nk − p.

(19)

Proof. From (17), Ẽ0(ρ, β, Tc) of Rayleigh fading multi-keyhole MIMO channels is given by

Ẽ0(ρ, β, Tc) = K(ρ, β) − 1

Tc
ln

{
E

[
det

(
Inr +

γF

β(1 + ρ)

)−Tcρ ]}
. (20)

Substituting (2) into (20) and utilizing the result presented in Theorem 1, we obtain the desired
result. 	

Similarly, for Rayleigh-product MIMO channels, we have the following key results.

Proposition 2. The RCEE for Rayleigh-product MIMO channels, Er(R,Tc), is given by

Er(R,Tc) = max
0≤ρ≤1

{
max

0≤β≤nt

{
K(ρ, β) − 1

Tc
ln{M1 det(Ψ

r)} − ρR
}}

, (21)

where Ψr is the u× u matrix with entries

ψr
i,j =

{
bri,j, i = 1, . . . , u, j = 1, . . . ,m,

ci,j, i = 1, . . . , u, j = m+ 1, . . . , u,
(22)

where

bri,j =
1

Γ(ρTc)
n−v+nt−i−j−n+u+1
k

×G1,3
3,1

[
γ

β(1 + ρ)nk

∣∣∣∣∣ −v + nt − i− j − n+ u+ 2,−j − n+ u+ 1, 1− ρTc

0

]
.

Proof. The desired result can easily be obtained by invoking Theorem 2 with parameters
τ = Tcρ and � = β(1 + ρ). 	

An important case of the general multi-keyhole MIMO channels is the keyhole channel, which
represents the extreme case where only a single path exists between the multiple antennas trans-
mitter and receiver. For this particular channel, the RCEE can be deduced as

Er(R,Tc)keyhole = max
0≤ρ≤1

{
max

0≤β≤nt

Ẽkeyhole
0 (ρ, β, Tc)− ρR

}

= max
0≤ρ≤1

{
max

0≤β≤nt

{
K(ρ, β) − 1

Tc
ln

{
ψ1,1

(nr − 1)! (nt − 1)!

}
− ρR

}}
, (23)

where

ψ1,1 =
1

Γ(ρTc)
G1,3

3,1

[
γ

β(1 + ρ)

∣∣∣∣ −nr + 1,−nt + 1, 1− ρTc

0

]
.
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3.2. Expurgated Error Exponent

In this section, we look at an enhanced version of the RCEE, which is in general referred to as
the expurgated error exponent. The key idea behind the expurgated error exponent is to distinguish
good and bad codewords, and expurgate the bad codewords from the code ensemble. The improved
error probability bound can be expressed as [1]

P ex
e ≤ e−NbTcEex(pX(X),R,Tc)+o(1),

where o(1) → 0 when Nb → ∞. The expurgated error exponent Eex(pX(X), R, Tc) is defined as

Eex(pX(X), R, Tc) = max
ρ≥1

{
max
r≥0

Ex(pX(X), ρ, r, Tc)− ρR
}
, (24)

with

Ex(pX(X), ρ, r, Tc) = − 1

Tc
ln

{∫
H

pH(H)

{∫
X ′

∫
X

pX(X)pX(X ′)er[tr(XX ′) tr(X ′X
′†)−2TcP ]

×
{∫
Y

√
p(Y |X,H)

√
p(Y |X ′,H) dY

} 1
ρ

dX dX ′
}ρ

dH

}
, (25)

where X ′ denotes the input signal of the good codewords and has the same distribution as X.

With the above definition, we now present the following key result.

Proposition 3. The expurgated error exponent of multi-keyhole MIMO channels is given by

Eex(R,Tc) = max
ρ≥1

{
max

0≤β≤nt

K′(ρ, β) − 1

Tc
ln{C3 det(Δ6)} − ρR

}
, (26)

where

{Δ6}i,j =

⎧⎪⎪⎨
⎪⎪⎩
bj−1
i , j ≤ nk − p,

bj−1
i G1,3

3,1

[
γbi
2βρ

∣∣∣∣ nk − nr − j + 1, 1 − nt + nk − j, 1 − Tcρ

0

]
, j > nk − p.

(27)

Proof. Similarly to (17), we have

Ẽx(ρ, β, Tc) � Ex

(P
nt

Int , ρ, r, Tc

)∣∣∣
β=nt−rP

= K′(ρ, β)− 1

Tc
ln

{
E

[
det

(
Inr +

γHH†

2ρβ

)−ρTc]}
, (28)

where K′(ρ, β) = 2ρ(nt − β) + 2ρnt ln
( β

nt

)
.

From (28), Ẽx(ρ, β, Tc) for multi-keyhole MIMO channels is given by

Ẽx(ρ, β, Tc) = K′(ρ, β)− 1

Tc
ln

{
E

[
det

(
Inr +

γF

2ρβ

)−ρTc]}
. (29)

Substituting (2) into (29) yields the desired result. 	
Similarly, a closed-form expression for the expurgated error exponent of Rayleigh-product MIMO

channels can be obtained as follows.
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Proposition 4. The expurgated error exponent Eex(R,Tc) for Rayleigh-product MIMO chan-
nels is given by

Eex(R,Tc) = max
ρ≥1

{
max

0≤β≤nt

{
K′(ρ, β)− 1

Tc
ln{M1 det(Ψ

′)}
}
− ρR

}
, (30)

where Ψ′ is the u× u matrix with entries

ψ′
i,j =

{
b′i,j, i = 1, . . . , u, j = 1, . . . ,m,

ci,j, i = 1, . . . , u, j = m+ 1, . . . , u,
(31)

where

b′i,j =
1

Γ(ρTc)
n−v+nt−i−j−n+u+1
k

×G1,3
3,1

[
γ

2βρnk

∣∣∣∣ −v + nt − i− j − n+ u+ 2,−j − n+ u+ 1, 1− ρTc

0

]
.

Proof. From (24), the expurgated error exponent Eex(R,Tc) for Rayleigh-product MIMO chan-
nels is given by

Eex(R,Tc) = max
ρ≥1

{
max

0≤β≤nt

Ẽx(ρ, β, Tc)− ρR
}
, (32)

where Ẽx(ρ, β, Tc) is given by

Ẽx(ρ, β, Tc) = K′(ρ, β)− 1

Tc
ln

{
E

[
det

(
Inr +

γHH†

2βρ

)−Tcρ ]}
. (33)

Then the desired result follows by invoking Proposition 2 with τ = Tcρ and � = 2βρ. 	
With nk = 1, the expurgated error exponent of keyhole MIMO channels is given by

Eex(R,Tc)keyhole = max
ρ≥1

{
max

0≤β≤nt

Ẽkeyhole
x (ρ, β, Tc)− ρR

}

= max
ρ≥1

{
max

0≤β≤nt

{
K′(ρ, β) − 1

Tc
ln

{
ψ′
1,1

(nr − 1)! (nt − 1)!

}
− ρR

}}
, (34)

where ψ′
1,1 =

1

Γ(ρTc)
G1,3

3,1

[ γ

2βρ

∣∣∣ −nr + 1,−nt + 1, 1− ρTc

0

]
.

Figure 1 shows4 the effect of the correlation between keyholes on the RCEE, Er(R,Tc), and
expurgated error exponent, Eex(R,Tc), for multi-keyhole MIMO channels as a function of rate R.
We see that for a fixed antenna configuration, both the error exponents Er(R,Tc) and Eex(R,Tc)
decrease with R, as one expects. Also, the error exponents increase when the correlation between
the keyholes is reduced, i.e., bj − bi goes to 0, ∀i = j. The values are bounded by the two
special cases which are product MIMO channels (upper bound) and keyhole MIMO channels (lower
bound). Moreover, with nk → ∞ and no correlation between the keyholes, the error exponents
of multi-keyhole MIMO channels respectively denote the error exponent of the general MIMO
channels. Therefore, with a particular antenna configuration at the transmitter and receiver, the
error exponent of MIMO channels (with nk = 500) is greater than that of keyhole MIMO channels.
On the other hand, Fig. 2 shows the effect of the number of keyholes on the Er(R,Tc) and Eex(R,Tc)

4 Note that in all simulations, unless otherwise specified, the number of keyholes and the corresponding
power distributions are as follows: for nk = 2, {b1, b2} = {0.4, 0.6} and for nk = 4, {b1, b2, b3, b4} =
{0.1, 0.2, 0.3, 0.4}.
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Fig. 1. RCEE and the expurgated error exponent for multi-keyhole MIMO channels with Tc = 5 and
γ = 15dB.

for multi-keyhole MIMO channels. It is observed that both the Er(R,Tc) and Eex(R,Tc) increase
with the number of keyholes.

Figure 3 shows the upper bounds of the error probability [1]

Pe(Er) =
8πe2(nt − β)2Nb

ntTc
e−NbTc Er(R,Tc), (35)

Pe(Eex) =
8πe2(nt − β)2Nb

ntTc
e−NbTc Eex(R,Tc) (36)

for Rayleigh-product MIMO channels as a function of R. It shows Pe(Er) and Pe(Eex) for selected
values of Tc. We see that the error probability increases with Tc (in Fig. 3), which in turn causes
a reduction and improvement in the error exponents.

3.3. Cutoff Rate

The cutoff rate Ro can be seen as a lower bound to the channel capacity. This important
parameter determines the zero-rate error exponent magnitude and the rate regime in which an
arbitrarily high level of reliability can be reached by increasing the codeword length. The value of
Ẽo(ρ, β, Tc) at ρ = 1 and β = nt is the cutoff rate [5] of the channel. Therefore, the cutoff rate can
be expressed as

R0 = Ẽ0(ρ, β, Tc)|ρ=1, β=nt
. (37)

From (37), the cutoff rate for multi-keyhole MIMO channels is given by

R0 = − 1

Tc
lnE

[
det

(
Inr +

γF

2nt

)−Tc]
. (38)
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Fig. 2. Random coding and expurgated error exponents for multi-keyhole MIMO channels with Tc = 5
and γ = 15dB for selected values of nk, nt, and nr.

When τ = Tc and � = 2nt, a closed-form expression for the cutoff rate of Rayleigh fading multi-
keyhole MIMO channels is given by

Rmulti-keyhole
0 = − 1

Tc
ln

(
det(Δ7)

Γ(Tc)
nk∏
i=1

Γ(nt − i+ 1)Γ(nr − i+ 1)
nk∏
i<j

(bj − bi)

)
, (39)

where

{Δ7}i,j =

⎧⎪⎪⎨
⎪⎪⎩
bj−1
i , j ≤ nk − p,

bj−1
i G1,3

3,1

[
γbi
2nt

∣∣∣∣ nk − nr − j + 1, 1 − nt + nk − j, 1 − Tc

0

]
, j > nk − p.

(40)

For Rayleigh-product MIMO channels, the cutoff rate is given by

R0 = − 1

Tc
lnE

[
det

(
Inr +

γHH†

2nt

)−Tc]
. (41)
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Fig. 3. Upper bound of the error probabilities Pe(Er) and Pe(Eex) for Rayleigh-product MIMO
channels with nr = nt = 2, Nb = 5, and γ = 15dB for selected values of Tc.

Based on the p.d.f. of (10), we have

R0 = − 1

Tc
ln

∫
λ

∏
λ

(
1 +

γλ

2nt

)−Tc

pλ(λ) dλ

= − 1

Tc
ln

{∫
λ1

. . .

∫
λm

m∏
i=1

1

Γ(Tc)
G1,1

1,1

[
γλi

2nt

∣∣∣∣ 1− Tc

0

]
M1|Φ(λ)||Ξ(λ)|

m∏
i=1

λn−u
i dλ1 . . . dλm

}
. (42)

Following the process in the proof of Theorem 2, a closed-form expression for the cutoff rate of
Rayleigh-product MIMO channels is given by

R0 = − 1

Tc
ln

{
M1 det

(
bR0
i,j , i = 1, . . . , u, j = 1, . . . ,m

ci,j, i = 1, . . . , u, j = m+ 1, . . . , u

)}
, (43)

where

bR0
i,j =

1

Γ(Tc)
n−v+nt−i−j−n+u+1
k

×G1,3
3,1

[
γ

2ntnk

∣∣∣∣ −v + nt − i− j − n+ u+ 2,−j − n+ u+ 1, 1 − Tc

0

]
. (44)

Substituting nk = 1 into (43), the cutoff rate for keyhole MIMO channels is given by

Rkeyhole
0 = − 1

Tc
ln

{
1

(nr − 1)! (nt − 1)! Γ(Tc)
G1,3

3,1

[
γ

2nt

∣∣∣∣ −nr + 1,−nt + 1, 1 − Tc

0

]}
. (45)
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Fig. 4. Cutoff rate R0 for multi-keyhole MIMO channels with Tc = 5.

Figures 4 and 5 show the cutoff rates for multi-keyhole MIMO channels as a function of the
SNR (dB). In Fig. 4, we show the cutoff rate with different correlations between the keyholes.
As can readily be observed, the cutoff rate improves when the keyholes are less correlated. We can
observe that the cutoff rate increases when either nt, nr, or nk increases.

3.4. Ergodic Capacity

We can reach the maximum value of the exponent in (14) by defining the information rate R as

R �
[
∂Ẽ0(ρ, β, Tc)

∂ρ

]∣∣∣∣
β=β∗(ρ)

, (46)

where β∗(ρ) is the solution of
[∂Ẽ0(ρ, β,Nc)

∂β
= 0

]
for all 0 ≤ ρ ≤ 1 and is always in the range

0 < β ≤ nt. We should mention that the value of R is the critical rate when ρ = 1. The value of R
at ρ = 0 (i.e., β∗(0) = nt) is the ergodic capacity of the channel and is given by

〈C〉 �
[
∂Ẽ0(ρ, β, Tc)

∂ρ

]∣∣∣∣
ρ=0, β=nt

. (47)

From (17), the ergodic capacity of Rayleigh fading MIMO channels is given by

〈C〉 =
[
∂Ẽ0(ρ, β,Nc,m)

∂ρ

]∣∣∣∣
ρ=0, β=nT

= E
[
ln det

(
Inr +

γ

nt
F
)]

= mEλ

[
ln
(
1 +

γ

nt
λ
)]
. (48)

Note that we derive expression (48) from the error exponent, and it is independent of Tc.
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Fig. 5. Cutoff rate R0 for multi-keyhole MIMO channels with Tc = 5 for selected values of nk, nt, and nr.

From (48), the ergodic capacity can be evaluated by

〈C〉 = m

∞∫
0

ln(1 +
γ

nt
λ)gλ(λ) dλ. (49)

The marginal p.d.f. of an unordered eigenvalue of F , denoted by gλ(λ), is given in [22]. Therefore,
substituting the value of gλ(λ) into (49) and using the identity of (54) and [18, equation (7.821.3)],
a closed-form expression for the ergodic capacity of multi-keyhole MIMO channels with equal-power
allocation is given by

〈C〉multi-keyhole =
1

nk∏
i<j

(bj − bi)

nk∑
i=1

nk∑
j=nk−p+1

G1,4
4,2

[γbi
nt

∣∣∣ nk + j − 1− α, nk + j − 1− �, 1, 1
1, 0

]
b1−j
i D−1

i,j Γ(�− nk + j)Γ(α− nk + j)
, (50)

where Di,j denotes the (i, j)th cofactor of the matrix Λ, which is defined as

[Λ]i,j = bj−1
i , 1 ≤ i, j ≤ nk. (51)

We should note that our expression of the ergodic capacity is also in agreement with the previous
result in [22], where a similar result was derived with a small constant parameter difference.
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For Rayleigh-product MIMO channels, the marginal p.d.f. of an unordered eigenvalue λ of F is
given by [19]

fλ(λ) =
2M3

m

u∑
i=1

u∑
j=u−m+1

λ(nt+2j+v+i−2u−3)/2

Γ(nt − u+ j)
Kv−nt+i−1(2

√
λ)Di,j, (52)

where M3 =
( u∏
l=1

Γ(u− l+1)Γ(v − l+1)
)−1

and Di,j is the (i, j)th cofactor of the u× u matrix Θ

with entries {Θ}m,n = Γ(v − u+m+ n− 1). Using the p.d.f. of (52), we have

〈C〉 = m

∫
λ

ln
(
1 +

γ

nt
λ
)
fλ(λ)dλ = 2M3

u∑
i=1

u∑
j=u−m+1

Di,j

Γ(nt − u+ j)

×
∫
λ

ln
(
1 +

γ

nt
λ
)
λ(nt+2j+v+i−2u−3)/2Kv−nt+i−1(2

√
λ) dλ. (53)

Using the identity of [29, equation (8.4.6.5)]

ln(1 + ax) = G1,2
2,2

[
ax

∣∣∣∣ 1, 11, 0

]
(54)

and [18, equation (7.821.3)], we obtain the ergodic capacity for Rayleigh-product MIMO channels as

〈C〉 = M3

u∑
i=1

u∑
j=u−m+1

Di,j

Γ(nt − u+ j)
G1,4

4,2

[
γ

nt

∣∣∣∣ −v − i− j + u+ 2,−j − nt + u+ 1, 1, 1
1, 0

]
. (55)

Substituting nk = 1 into (55), a closed-form expression for the ergodic capacity of keyhole MIMO
channels is given by

〈C〉keyhole =
1

Γ(nt)
G1,4

4,2

[
γ

nt

∣∣∣∣ 1− nr, 1− nt, 1, 1
1, 0

]
. (56)

4. CODEWORD LENGTH ANALYSIS

In order to investigate the effect of the channel coherence time, SNR, antenna diversity, and
the number of keyholes on the codeword length required to achieve a certain upper bound of the
decoding error probability, we estimate the required code length.

The decoding error probability is defined as [30]

Pe(Er) =

(
2erδ

ξ

)2

e−NbTc Er(R,Tc). (57)

A computable equation (35) can be derived by using ξ ≈ δ√
2πNbσ2

ξ

, β = nT − rP , and minimizing

the factor
(2erδ

ξ

)2
over δ for large Nb.

Let L = �TcNb� denote the estimated codeword lengths for Nb calculated from (35), where
�·� denotes the smallest integer larger than or equal to an enclosed quantity. The effect of the
channel coherence time on Lr is described in Table 1, to achieve the upper bound of the decoding
error probability Pe(Er) = 10−6 at the transmission rate 2.0 bits/symbol with nr = nt = 2 and
γ = 15 dB. Since error probability increases with Tc, in order to maintain a fixed SNR with a
certain power allocation and noise variance, codeword length should be increased with Tc as is
illustrated in the table. Moreover, we see that when Tc increases, there is a significant increase in
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Table 1. Effect of channel coherence time Tc on the codeword lengths Lr required to achieve the upper
bound of the decoding error probability P r

e ≤ 10−6 at a rate 2.0 bits/symbol with nr = nt = 2
and γ = 15dB

Product MIMO MIMO Keyhole MIMO Multi-keyhole MIMO
(nk = 2) (nk = 500) (nk = 1) (nk = 2)

Tc Lr γ (dB) Lr Tc Lr γ (dB) Lr Tc Lr γ (dB) Lr Tc Lr γ (dB) Lr

1 14 11 94 1 9 11 39 1 33 11 336 1 16 11 100
2 21 12 78 2 11 12 30 2 48 12 218 2 20 12 71
3 26 13 59 3 13 13 24 3 65 13 142 3 25 13 55
4 32 14 46 4 15 14 20 4 69 14 104 4 31 14 44
5 38 15 38 5 18 15 18 5 82 15 82 5 36 15 36
6 43 16 31 6 19 16 16 6 92 16 67 6 42 16 31
7 50 17 26 7 21 17 14 7 108 17 54 7 43 17 27
8 55 18 23 8 24 18 12 8 129 18 44 8 45 18 23
9 56 19 20 9 26 19 11 9 137 19 37 9 50 19 20
10 61 20 18 10 28 20 10 10 144 20 32 10 56 20 18

Table 2. Effect of the number of keyholes on the codeword lengths Lr required to achieve the upper
bound of the decoding error probability P r

e ≤ 10−6 at a rate 2.0 bits/symbol with nr = nt = 4

Multi-keyhole Multi-keyhole

Tc nk Lr γ (dB) nk Lr

1
2 6

12
2 16

4 5 4 11

3
2 9

14
2 12

4 6 4 9

5
2 13

16
2 9

4 9 4 7

coding complexity relative to the single-symbol coherence time. When Tc goes from 2 to 10, in the
case of product MIMO channels (with nk = 2), the increase in Lr ranges from 50% to 336%, while
for MIMO channels (with nk = 500), the increase in Lr ranges from 22% to 211%. In the case of
keyhole MIMO channels (with nk = 1), the increase in Lr ranges from 45% to 245%, while for multi-
keyhole MIMO channels (with nk = 2), the increase in Lr ranges from 25% to 250%. As is seen
from the table, the required codeword length decreases with nk; therefore, for the same coherence
time, keyhole MIMO channels require longer codeword length than product MIMO, multi-keyhole
MIMO, and MIMO channels to achieve a certain level of reliability. Table 1 also shows the effect of
the SNR on Lr with Tc = 5. We see that the required code length decreases with the SNR, but the
decreasing rate is not constant. For example, in the case of product MIMO channels, increasing the
SNR from 11 dB to 12 dB reduces 17% of the codeword length, but the codeword length reduces
only 10% when the SNR increases from 19 dB to 20 dB.

Table 2 shows the effect of keyholes on Lr to achieve the decoding error probability Pe(Er) =
10−6 at the transmission rate of 2.0 bits/symbol with Tc = 5 and γ = 15 dB. We see that for fixed Tc

and γ, the required codeword length decreases with the number of keyholes. However, the rate
of reduction in the codeword length increases with Tc up to a certain value and decreases with γ.
For example, (i) when Tc = 1, increasing nk from 2 to 4 reduces Lr by 17%; (ii) when Tc = 3,
increasing nk from 2 to 4 reduces Lr by 33%; and (iii) when Tc = 5, increasing nk from 2 to 4
reduces Lr by 31%. On the other hand, (i) when γ = 12 dB, increasing nk from 2 to 4 reduces Lr

by 31.6%; (ii) when γ = 14 dB, increasing nk from 2 to 4 reduces Lr by 28.6%; and (ii) when
γ = 16 dB, increasing nk from 2 to 4 reduces Lr by 27.3%.
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5. CONCLUSION

In this paper, we have studied the error exponents of multi-keyhole MIMO channels. Closed-
form expressions were presented for the key performance measures, which provide clear insights
into impact of key system parameters on the performance of a system. The effect of the channel
coherence time, SNR, and diversity on the codeword length required to achieve a certain upper
bound of the decoding error probability were also investigated. Our findings suggested that, for a
fixed symbol coherence time, the coding complexity decreases with the SNR, but the decreasing
rate is slow in the high SNR regime. In addition, the required codeword length for multi-keyhole
MIMO channels decreases with the number of keyholes.
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