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Emerging knock-down resistance 
in Anopheles arabiensis populations of Dakar, 
Senegal: first evidence of a high prevalence 
of kdr-e mutation in West African urban area
Mamadou Ousmane Ndiath1,2*, Aurélie Cailleau3, Eve Orlandi‑Pradines4, Paul Bessell5, Fréderic Pagès4, 
Jean‑François Trape2 and Christophe Rogier4,6

Abstract 

Background: Urban malaria is now considered a major emerging health problem in Africa and urban insecticide 
resistance may represent a serious threat to the ambitious programme of further scaling‑up coverage with long‑
lasting insecticide‑treated bed nets and indoor residual spray. This study evaluates the levels and mechanisms of 
insecticide resistance in Anopheles gambiae populations in 44 urban areas of Dakar in a longitudinal entomological 
surveillance study.

Methods: Adult mosquitoes sampled by night‑landing catches at 44 sites across Dakar from 2007 to 2010 were gen‑
otyped to assess the frequency and distribution of resistance alleles. In addition World Health Organization suscepti‑
bility tests to six insecticides were performed on F0 adults issuing from immature stages of An. gambiae s.l. sampled 
in August 2010, 2011 and 2012 in three sites of Dakar: Pikine, Thiaroye and Almadies and repeated in 2012 with three 
of the insecticides after PBO exposure to test for mechanisms of oxydase resistance. Species, molecular forms and the 
presence of kdr and ace‑1 mutations were assessed by polymerase chain reaction.

Results: High frequencies of the kdr‑e allele, ranging from 35 to 100 %, were found in Anopheles arabiensis at all 
44 sites. The insecticide susceptibility tests indicated sensitivity to bendiocarb in Almadies in 2010 and 2011 and in 
Yarakh between 2010 and 2012 and sensitivity to fenitrothion in Almadies in 2010. The mortality rate of EE genotype 
mosquitoes was lower and that of SS mosquitoes was higher than that of SE mosquitoes, while the mortality rate of 
the SW genotype was slightly higher than that of the SE genotype. Pyperonyl butoxide (PBO) had a significant effect 
on mortality in Pikine (OR = 1.4, 95 % CI = 1.3–1.5, with mortality of 42–55 % after exposure and 11–17 % without 
PBO) and Yarakh (OR = 1.6, 95 % CI = 1.4–1.7, with mortality of 68–81 % after exposure and 23–37 % without), but not 
in Almadies (OR = 1.0, 95 % CI = 0.9–1.1).

Conclusion: A high prevalence of kdr‑e in West Africa was demonstrated, and knock‑down resistance mechanisms 
predominate although some oxidases mechanisms (cytochrome P450 monooxygenases) also occur. In view of the 
increased use of insecticides and the proposed role of the kdr gene in the susceptibility of Anopheles to Plasmodium, 
this finding will significantly affect the success of vector control programmes.
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Background
Resistance of malaria vectors to insecticides is a major 
concern for public health authorities and especially for 
national malaria control programmes in Africa, where 
the prevention of this devastating disease relies heavily 
on the use of pesticides to control the vector mosquito 
populations [1–3]. Currently, pyrethroids are the only 
class of insecticide approved for treating bed nets, and 
they are used preferentially to treat long-lasting insecti-
cide-treated bed nets because of their effectiveness, with 
a strong excito-repellent effect on mosquitoes, and lower 
mammalian toxicity than organochlorine, carbamate and 
organophosphate compounds [4].

Various mechanisms enable Anopheles to resist the 
action of insecticides, including metabolic resistance, tar-
get-site resistance, reduced penetration and behavioural 
resistance. These mechanisms may allow mosquitoes 
to resist more than one insecticide (cross-resistance), 
and Anopheles may express more than one resistance 
mechanism (multiple resistances). Of all types of resist-
ance, perhaps the most significant in Anopheles gambiae 
populations is knockdown resistance (kdr) [5]. Two point 
mutations at amino acid position 1014 of the voltage-
gated sodium channel gene result in either a leucine–
phenylalanine (L1014F, kdr-w) [6] or a leucine–serine 
(L1014S, kdr-e) mutation [7] in An. gambiae populations 
mainly in West and East Africa, respectively. A num-
ber of studies, with limited geographical sampling, have 
shown the distribution of kdr mutations in An. gambiae, 
with screening for the L1014F allele in West Africa [8–
10] and the L1014S mutation in East Africa [7].

Increases in the prevalence of these mutations have 
been reported, which may be due to intensive use of DDT 
and pyrethroids for crop protection, particularly cotton, 
and for public health purposes. Use of pyrethroids in 
agriculture and for treating nets has been recognized as 
a factor in the selection of resistant mosquitoes in sub-
Saharan Africa [11, 12]. The presence of the two resist-
ance alleles has been studied in Nigeria [13], Benin [14], 
Cameroon [15], Equatorial Guinea [16], Gabon [17], 
Uganda [18], Kenya and the United Republic of Tanzania 
[19], Malawi and Mozambique [20], but so far not in Sen-
egal, the far west of the continent [21].

Malaria is a major public health concern in Senegal. It 
occurs throughout the year, with a peak during the rainy 
season. Since 2000, the national malaria control programme 
has elaborated 5-year action plans, which were successfully 
implemented with partners [22]. The aim of the latest plan 
(2006–2010) was to reduce mortality and morbidity from 
malaria by 50  %. Between the beginning of 2006 and the 
end of 2009, proportional morbidity due to malaria fell from 
33.6 to 3.1 % and proportional mortality from 18.2 to 4.4 % 
[2, 22]. These results were due to wide-scale treatment of 

malaria with artemisinin-based combination therapy, gener-
alized use of free rapid diagnostic tests to confirm malaria, 
massive distribution of long-lasting insecticide-treated bed 
nets for the most vulnerable people and indoor residual 
spraying with pyrethroids [23, 24].

Urbanization used to be thought to reduce malaria 
transmission [25], but this view is changing, and urban 
malaria is now considered a major emerging health prob-
lem in Africa [26]. The rapid, unplanned growth of towns 
and cities generally results in inferior housing, poor sani-
tation and increased pollution, all of which could affect 
the distribution and abundance of mosquito vectors [27, 
28]. Invasion of these ‘urban islands’ by malaria vectors, 
mainly Anopheles arabiensis, can be attributed to local 
adaptation and use of atypical breeding sites, such as pol-
luted water pools or ditches [29, 30]. Urban insecticide 
resistance might therefore represent a serious threat to 
the ambitious programme of further scaling-up coverage 
with long-lasting insecticide-treated bed nets.

No study has been conducted to assess whether urban-
ization is a threat to malaria control in Senegal. To test 
this hypothesis, a longitudinal entomological surveillance 
study was initiated, with monitoring of the level and 
mechanisms of insecticide resistance in An. arabiensis 
populations at three urban sites near Dakar.

Methods
Study area
This study is part of the Urban Malaria Project, which 
has been described in detail elsewhere [21]. Briefly, 
Dakar (14°40′20″ North, 17°25′22″ West), the capital 
city of Senegal, is located on the Cap-Vert peninsula at 
the western-most point of Africa. The population was 
estimated at 1,030,594 in 2005, representing about 20 % 
of the country’s population, with a population density of 
12,233 per km2. The altitude does not exceed 104 m. The 
study reported here was conducted in 44 different areas 
of downtown Dakar and in Pikine, Thiaroye and Gue-
diawaye, three of Dakar’s satellite cities. The urbaniza-
tion, climate and characteristics of these areas have been 
described in detail [21, 30, 31].

Mosquito collection
Adult mosquitoes were collected in the 45 areas of Dakar 
city by human landing catches once every 2 weeks in Sep-
tember–October 2007, during the extended wet season 
(July–December) in 2008 and 2009 and once every month 
during the dry season (January–June) in 2009 and 2010 by 
indoor and outdoor collections. These mosquitoes were 
identified and genotyped to assess the frequency and dis-
tribution of resistant alleles across the study area.

Immature stages of An. gambiae s.l. were collected from 
10 breeding sites in three of 44 areas: Almadies, Yarakh and 
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Pikine in August 2010, 2011 and 2012, during the rainy season. 
Larvae from each area were pooled, fed Tetramin® baby fish 
food and allowed to emerge locally. These mosquitoes were 
used for susceptibility tests, and a subset was further identified 
and genotyped to assess the mechanisms of resistance.

Susceptibility testing
Unfed 2 to 3-day-old female An. gambiae s.l. mosqui-
toes grown from larvae collected in 2010, 2011 and 2012 
were used for insecticide susceptibility tests. Bioas-
says were carried out with World Health Organization 
(WHO) test kits for adult mosquitoes [32] on six insec-
ticides of technical-grade quality: one carbamate (0.1  % 
bendiocarb), one organophosphate (1  % fenitrothion), 
three pyrethroids (0.05 % λ-cyhalothrin, 0.05 % deltame-
thrin, 0.75  % permethrin) and one organochlorine (4  % 
DDT). Papers impregnated with these insecticides were 
obtained from the WHO reference centre (Vector Con-
trol Research Unit, University Sains Malaysia, Penang, 
Malaysia).

Tests were performed with four batches of 25 mosqui-
toes exposed to each insecticide for 1 h at 25–27 °C and 
80  % relative humidity, and the number of mosquitoes 
knocked down was recorded after 10, 15, 20, 30, 40, 50 
and 60 min. After exposure, the mosquitoes were kept in 
observation tubes and supplied with a 10  % sugar solu-
tion. Mortality was recorded after 24 h. A control strain 
(An. gambiae M form, from Yaoundé, named ‘Boudin’ 
[24]), which is known to be 100  % susceptible to DDT, 
was used as a positive control, and batches exposed to 
untreated paper were used as negative controls. As the 
mortality rate in negative controls was always <5  %, no 
adjustment was performed for treated batches. Resistant 
and susceptible mosquitoes were preserved separately in 
Eppendorf tubes filled with desiccated silica gel.

Synergism bioassays
Unfed 2 to 3-day-old female An. gambiae s.l. grown from 
larvae collected in 2012 were used for synergism bioas-
says. The mosquitoes were exposed to 4  % pyperonyl 
butoxide (PBO) for 1  h to suppress oxidase resistance 
mechanisms (cytochrome P450 monooxygenases), leav-
ing only other mechanisms of resistance to be measured. 
Two batches of 25 mosquitoes were then immediately 
exposed to 0.05  % deltamethrin, 0.75  % permethrin or 
4 % DDT for another 1 h; controls were exposed to PBO 
only. Knockdown (KDT) was recorded every 10  min 
during the 1-h exposure. The mosquitoes were then 
transferred into holding tubes and supplied with a 10 % 
sugar solution. Final mortality was recorded after 24 h. 
Resistant and susceptible mosquitoes were preserved 
separately in Eppendorf tubes filled with desiccated sil-
ica gel.

DNA extraction, molecular identification and detection 
of mutations
Kdr-w (L1014F) and kdr-e (L1014S) mutations and insen-
sitive G119S (ace-1) point mutations were detected by 
polymerase chain reaction, as described previously [33, 
34], in adult mosquitoes sampled by human landing catch 
during the longitudinal study and in a subset of the sub-
sample of mosquitoes used for susceptibility testing. This 
subset was made as fellow: for each insecticide, site and 
year, 25 mosquitoes were genotyped, of which approxi-
mately half were alive and half dead after their exposure 
within the susceptibility testing. A restriction fragment-
length polymorphism assay was also performed to iden-
tify members of the An. gambiae complex and M and S 
molecular forms simultaneously [35].

Data analysis
Four datasets were analysed: (1) the identification and 
genotypes of the collected adult mosquitoes; (2) the 
results of susceptibility testing; (2b) the results for the 
subsample of these mosquitoes that were also genotyped; 
and (3) the results of the synergism bioassay.

Dataset 1 was used to determine the spatial distribu-
tion of the kdr mutation.

Dataset 2 to assess levels of resistance and their varia-
tions and dataset 2b and 3 their mechanisms.

In order to assess the level of resistance at each site and for 
each year according to WHO standards, mortality rates was 
calculated after 24 h and their confidence intervals (CIs). If 
the mortality rate was <80 %, the mosquitoes were consid-
ered resistant; if the rate was 80–98 %, the mosquitoes were 
considered increasingly tolerant; and if the rate was >98 %, 
the mosquitoes were considered to be sensitive. In addi-
tion, a probit log-time model of which only significant terms 
had been retained was adjusted on the first hour mortali-
ties (kinetics) to determine 50 and 95 % knockdown times 
(KDT50 and KDT95) for each site and each year as well.

In order to assess whether the levels of resistance var-
ied significantly over time and space, a generalized linear 
model with binomial error structure (logistic regression) 
was used, with year, site and insecticide as the explana-
tory variables and 24 h mortality as the response variable. 
The design was balanced, with 100 mosquitoes per year, 
site and insecticide (N = 5399).

Mechanisms of resistance were assessed from dataset 
2b, from the relations between genotypes at the kdr and 
ace1 loci and mortality, and from dataset 3, which indi-
cated the extent of oxidase resistance.

The sampling method for dataset 2b corresponded to a 
case–control design, and it was therefore analysed accord-
ingly. Logistic regression was performed with mortality as 
a response variable, genotype as an explanatory variable 
and year, site, insecticide and insecticide–site interaction 
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as control variables, as they were shown to affect mortal-
ity significantly in analyses of variation in levels of resist-
ance over time and space. A rare event correction [36] was 
performed (with weights calculated using dataset 2) to 
allow for interpretable estimates of mortality for the dif-
ferent genotypes despite the case control sampling design. 
The logistf R library was used to compute the: confidence 
intervals of these mortalities from the profile-penalized 
log likelihood. The SE genotype was selected as the base-
line for pairwise comparisons because it shares one allele 
with all the other genotypes (SS, SW and EE). The signifi-
cance of variables was tested with the drop1 R function.

A logistic model was used on a combined subset of dataset 
2 (bioassays) and dataset 3 (synergism assays) after DDT, per-
methrin and deltamethrin treatment in 2012. The response 
variable was mortality; the explanatory variables were insec-
ticide, site and exposure to PBO before the insecticide (Yes/
No). Type II sum of squares was used to test significance.

Results
Spatial distribution of kdr mutation
A total of 44,967 mosquitoes were captured between 
2007 and 2010 across the 44 sites of Dakar and its three 

satellite cities. 3753 An. gambiae s.l. were identified at 
species level. Anopheles arabiensis represented 93.15  % 
(n = 3496) of the anophelines and Anopheles melas rep-
resented 6.84 % (n = 257).

The kdr-e allele was observed in 35–100  % of these 
mosquitoes at all sites, showing no clear overall spatial 
pattern (Fig. 1). Of the 44 sites, 41 had a frequency of at 
least 75 % of the EE genotype; the SE genotype reached a 
level of about 15 %, particularly in west, in the region of 
the airport (Additional file 1). In 2007, there is a higher 
prevalence of ES genotype in the west compared to 2008 
and 2009, when the prevalence of EE genotypes was 
equally high throughout the region (Additional file 1).

Insecticide resistance
Sensitivity to bendiocarb was observed in Almadies in 
2010 and 2011 and in Yarakh between 2010 and 2012, 
and to fenitrothion in Almadies in 2010. Increased tol-
erance was observed to bendiocarb in Almadies in 2013 
and in Pikine in 2010, and to fenitrothion in Almadies 
in 2011 and 2012 and in Yarakh in 2010. Resistance was 
observed otherwise (i.e. to all other insecticides, year, 
site) (Fig. 2; Additional file 2). The values of KDT50 and 
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KDT95 are given for each site and each year in Table 1. 
These could not be determined for most insecticides at 
most sites, as mortalities 50 and 95 % were not reached. 
Insecticide, year and site all had a significant effect on 
mortality (p  <  2.2e−16), as did the site–insecticide 
interaction. The year–insecticide and site–year inter-
actions were not significant (Table 2; Fig. 2; Additional 
file 2).

Mechanisms of resistance
All the mosquitoes genotyped and identified are An. ara-
biensis. None of them had the ace-1 resistant allele, but 
kdr resistant alleles were found. In the analysis of the rela-
tion between insecticide-induced mortality and genotype 
at the kdr locus (dataset 2b), all the explanatory variables, 
including genotype, were significant (χ2 = 68.86, df = 3, 
p = 7.44e−15). As expected, the mortality rate of EE gen-
otype mosquitoes was lower than that of SE mosquitoes 
(OR = 0.225, 95 % CI = 0.213–0.239), while the mortal-
ity rate of SS mosquitoes was higher (OR =  1418, 95 % 

CI = 89–22,708). Note the latter OR is highly inaccurate 
because the mortality rate was close to 1. The mortality 
rate of the SW genotype was slightly higher than that of 
the SE genotype (OR = 3.192, 95 % CI = 2.631–3.872). A 
trend to decreasing mortality was seen between 2010 and 
2012 in each locality and for each kdr genotype (Addi-
tional file 3).

The model used to analyse dataset 3 showed an effect 
of insecticide and site and their interaction, consistent 
with our previous results. Moreover, PBO and the inter-
action between site and PBO exposure had significant 
effects. Interestingly, the interaction between exposure 
to PBO and insecticide was not significant (Table 3). As 
the effect of PBO varied by site, a subset logistic regres-
sion was conducted to assess the effect of PBO for each 
site separately (Table  4). PBO exposure significantly 
increased mortality among mosquitoes from Pikine 
(OR =  1.4, 95  % CI =  1.3–1.5) and Yarakh (OR =  1.6, 
95 % CI = 1.4–1.7) but not in Almadies (OR = 1.0, 95 % 
CI = 0.9–1.1).     

Fig. 2 Insecticide‑induced mortality in Almadies, Pikine and Yarakh in 2010, 2011 and 2012 per insecticide. Mortality rates expressed as percent‑
ages. Error bars represent 95 % CI
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For Pikine, mosquito mortality ranged from 42 and 
55 %, depending on the insecticide, after PBO exposure 
but from 11 to 17 % without PBO exposure. For Yarakh, 
mosquito mortality ranged from 68 to 81  % after PBO 

exposure but from 23 to 37  % without exposure. For 
Almadies, mosquito mortality was 18–35  %, indepen-
dently of PBO exposure (Fig. 3; Additional files 2, 4).

Discussion
Mosquitoes were resistant to most of the insecticides at 
most sites. Resistance to bendiocarb appeared to have 
progressed less than that to other insecticides, as no 
resistance to this insecticide was found in 2010. Mos-
quitoes in Yarakh remained sensitive until 2012, but 
those in Pikine were significantly resistant and those 
in Almadies showed increased tolerance to this insec-
ticide up to 2011. The KDT values in response to feni-
trothion and bendiocarb were similar in 2010 and 2011 
but increased markedly between 2011 and 2012, indi-
cating accelerated change. The impossibility to deter-
mine KDT50 and KDT95 for most molecules indicates 
high levels of resistances, in particular knockdown 
resistance.

Table 1 Bioassay susceptibility tests on  Anopheles arabiensis populations from  Almadies, Pikine and Yarakh: evolution 
of the KD50 and KD95 by year and by insecticides

–: As no mosquitoes were knocked down, we were unable to measure KDT50 and KDT95

Site Year Bendiocarb DDT Deltamethrin Fenitrothion λ-Cyhalothrin Permethrin

KDT50 KDT95 KDT50 KDT95 KDT50 KDT95 KDT50 KDT95 KDT50 KDT95 KDT50 KDT95

Almadies 2010 14 50 – – 5 – 47 – 37 – – –

2011 14 60 – – – – 46 – – – – –

2012 16 – – – – – 53 – – – – –

Pikine 2010 – – – – – – – – – – – –

2011 – – – – – – – – – – – –

2012 – – – – – – – – – – – –

Yarakh 2010 15 35 – – 57 – – – – – – –

2011 16 38 – – – – – – – –

2012 21 55 – – – – – – – – – –

Table 2 Bioassay susceptibility tests in  Anopheles arabi-
ensis populations from  Almadies, Pikine and  Yarakh: sig-
nificance and effect of site, year and insecticide on insecti-
cide-induced mortality

Df Deviance Residual Df Residual Dev Pr (>χ2)

Null 5398 7476.2

Site 2 305.20 5396 7171.0 <2e−16

Year 1 102.96 5395 7068.0 <2e−16

Insecticide 5 1277.32 5390 5790.7 <2e−16

Site–insecti‑
cide

10 199.02 5378 5590.1 <2e−16

Site–year 2 1.59 5388 5789.1 0.4507

Year–insecti‑
cide

5 4.61 5373 5585.5 0.4659

Site–year–
insecticide

10 10.48 5363 5575.0 0.3994

Table 3 Effect of  PBO exposure on  the susceptibility 
of Anopheles arabiensis populations from Almadies, Pikine 
and Yarakh: interaction between site, PBO and insecticide

*** p value < 0.001; ** p value (0.001–0.01); * p value (0.01–0.05)

LR χ2 Df Pr (>χ2) Significance

Insecticide 12.344 2 0.002087 **

Site 40.166 2 1.897e−09 ***

PBO 102.936 1 <2e−16 ***

Insecticide–site 11.603 4 0.020563 *

Insecticide–PBO 0.665 2 0.717253

Site–PBO 43.937 2 2.879e−10 ***

Insecticide–site–PBO 1.940 4 0.746827

Table 4 Effect of PBO exposure on susceptibility of Anoph-
eles arabiensis populations from  Almadies, Pikine and   
Yarakh

*** p value < 0.001; ** p value (0.001–0.01); * p value (0.01–0.05)

LR χ2 Df Pr (>χ2) Significance

Almadies

 Insecticide 11.5119 2 0.003164 **

 PBO exposure 0.0901 1 0.764034

Pikine

 Insecticide 2.957 2 0.2279

 PBO exposure 75.473 1 <2e−16 ***

Yarakh

 Insecticide 9.44 2 0.008915 **

 PBO exposure 100.66 1 <2.2e−16 ***
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The level of resistance to the different insecticides var-
ied geographically, as indicated by the significant effect 
of the insecticide–site interaction on insecticide-induced 
mortality. The significance of the year variable, with no 
interaction with site or insecticide, indicates a trend to 
decreasing mortality (increasing resistance) over time. 
The genotype at the kdr locus affects the mosquito’s 
insecticide-induced mortality, indicating the involvement 
of the kdr locus in the resistance of mosquitoes in Dakar. 
The trend to decreasing mortality within kdr genotypes 
between 2010 and 2012, however, suggests that a further 
resistance mechanism might have evolved between those 
dates.

This study shows for the first time the presence of a 
high rate of kdr-e mutations in Senegal and an increase 
in frequency over time. Previously, this mutation was 
observed only in East Africa [7], whereas it now appears 
to be invading West Africa [14], with the direct conse-
quence of the disappearance of the barrier between kdr-e 

and kdr-w, allowing significant gene flow among the dif-
ferent populations of anopheles and among bio-geo-
graphical regions.

The insecticide-induced mortality of SW genotypes 
was slightly higher than that of SE genotypes, which 
suggests that natural selection favours SE genotypes 
over SW genotypes and could explain the rapid increase 
in the frequency of E alleles. This study demonstrated a 
significant effect of kdr locus on mortality, SS genotypes 
being more sensitive than SE genotypes, SW geno-
types being intermediary between SS and SE genotypes 
and EE genotypes being less sensitive than the other 
genotypes.

Djegbe et  al. [14] described the presence of the kdr-
e allele in anopheles populations in West Africa for the 
first time in Benin, in 2011. Those authors found a low 
level of circulation of this allele, which was, however, suf-
ficient as an indicator of diffusion. A part from kdr-type 
resistance, our study also showed physiological resistance 

Fig. 3 Insecticide‑induced mortality of mosquitoes in Almadies, Pikine and Yarakh measured by classical bioassay (dotted line) and biochemical 
assay (plain line). Error bars represent 95 % CI
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of Anopheles to pyrethroids and DDT in all three neigh-
bourhoods of Dakar studied, which increased over the 
years. In some areas, resistance to organophosphates 
and carbamates was exacerbated; however, even if the 
presence of the kdr allele results, to a large extent, from 
the use of pesticides in the Niayes area [37], this cannot 
explain its high prevalence throughout the region, espe-
cially in coastal areas and in residential areas such as 
Almadies. Massive unplanned aerial spraying with insec-
ticide should also be taken into consideration. As the fre-
quency of kdr-e was much higher in Dakar than in Benin, 
diffusion of kdr-e to the interior of the continent in this 
part of West Africa could gather momentum. Additional 
studies are needed to test this hypothesis as well as the 
mechanisms of diffusion.

Strong resistance to insecticides is important for many 
reasons. Recent studies have shown that kdr-type resist-
ance could seriously compromise the effectiveness of 
insecticide-treated nets [23, 38], and the presence of kdr 
mutations in Anopheles may significantly increase their 
susceptibility to Plasmodium infection [39]. The Senega-
lese national malaria control programme has embarked on 
a comprehensive initiative to provide nets for every bed, 
except in the Dakar region. Our results put into question 
this action. The presence of the kdr-e allele, associated with 
high physiological and metabolic resistance to pyrethroids, 
could have a negative impact on vector control.

The finding that the mortality of mosquitoes in 
Pikine and Yarakh differed significantly with exposure 
to PBO before another insecticide indicates that these 
mosquitoes have an oxidase resistance mechanism. In 
contrast, the mortality rate of mosquitoes in Almadies 
was the same independently of their exposure to PBO, 
suggesting the absence of an oxidase resistance mecha-
nism (cytochrome P450 monooxygenases). A significant 
oxidase resistance mechanism was seen in Yarakh and 
Pikine. These observations could explain why a given 
kdr genotype results in different mortality depending 
on site, and selection of a mechanism could explain why 
mortality decreases for a given kdr genotype over time 
(Fig. 3).

Resistance to fenitrothion and tolerance to bendio-
carb have gradually begun to be seen in the Dakar region. 
Although a high frequency of ace1 was not found, further 
studies should be conducted to identify any other biochemi-
cal intermediate, such as esterases or glutathione-S-trans-
ferase. The various types of resistance observed in Anopheles 
populations [5, 40] could have disastrous consequences on 
the long road towards malaria eradication.

Conclusion
Widespread use of insecticides in indoor residual spray-
ing and long-lasting insecticide-treated bed nets has a 

mixed role in the spread of the kdr gene. If behavioural 
resistance is added, there is no doubt that the combina-
tion of these forms of resistance will slow or significantly 
alter vector control. There is room for hope, however, 
because, despite widespread resistance, the prevalence of 
malaria in Senegal has never been so low. The efforts that 
led to this result must be both sustained and maintained.
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