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Abstract. REML (restricted maximum likelihood) has become the standard method of variance component

estimation in animal breeding. Inference in Bayesian animal models is typically based upon Markov chain

Monte Carlo (MCMC) methods, which are generally flexible but time-consuming. Recently, a new Bayesian

computational method, integrated nested Laplace approximation (INLA), has been introduced for making fast

non-sampling-based Bayesian inference for hierarchical latent Gaussian models. This paper is concerned with

the comparison of estimates provided by three representative programs (ASReml, WinBUGS and the R package

AnimalINLA) of the corresponding methods (REML, MCMC and INLA), with a view to their applicability for

the typical animal breeder. Gaussian and binary as well as simulated data were used to assess the relative effi-

ciency of the methods. Analysis of 2319 records of body weight at 35 days of age from a broiler line suggested

a purely additive animal model, in which the heritability estimates ranged from 0.31 to 0.34 for the Gaussian

trait and from 0.19 to 0.36 for the binary trait, depending on the estimation method. Although in need of further

development, AnimalINLA seems a fast program for Bayesian modeling, particularly suitable for the inference

of Gaussian traits, while WinBUGS appeared to successfully accommodate a complicated structure between the

random effects. However, ASReml remains the best practical choice for the serious animal breeder.

1 Introduction

The restricted maximum likelihood (REML) method (Patter-

son and Thompson, 1971) for unbalanced mixed models has

been extensively used in animal breeding and has become the

standard method for the estimation of variance components.

The Bayesian Markov chain Monte Carlo (MCMC) methods

were introduced in quantitative genetics in the early 1990s

(Wang et al., 1993; Sorensen et al., 1994), facilitated by the

development of the Gibbs sampling procedure (Geman and

Geman, 1984; Gelfand and Smith, 1990). The Gibbs sampler

successively samples from conditional distributions of all pa-

rameters in a model in order to generate a random sample

of the marginal posterior distribution, which is the target for

Bayesian inference. MCMC methods represent the standard

inference procedure for Bayesian animal models (Sorensen

and Gianola, 2002), and through the years they have become

an attractive alternative to REML. Recently, a non-sampling-

based alternative to MCMC, the integrated nested Laplace

approximations (INLAs), has been introduced (Rue et al.,

2009). Using INLA, marginal posteriors for all parameters

and random effects can be calculated. Because INLA is based

on direct numerical integration instead of simulations, it is

much faster than MCMC (Rue et al., 2009). Furthermore,

Holand et al. (2013) have developed an R package (Anima-

lINLA) making Bayesian animal models more accessible to

animal breeders.
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Several programs are available for MCMC methods, but

very few provide a flexible environment. WinBUGS (Lunn

et al., 2000) is the most well-developed and general-purpose

Bayesian software available to date. It has an interactive en-

vironment that enables the user to specify models that need

to be compiled before starting the Gibbs sampling. Conver-

gence diagnostics, model comparisons, e.g., via DIC (de-

viance information criterion), and other useful plots and di-

agnostics are available. Several distributions can be used

for modeling the observations as well as priors, while full

conditional distributions are automatically constructed and

the appropriate MCMC algorithm for sampling is chosen

(Lunn et al., 2000). In WinBUGS and in the context of an-

imal breeding, an important issue is the importation of the

animals’ genetic relationship matrix. Methods proposed so

far (Damgaard, 2007; Waldmann, 2009) either require prior

transformation of the data using complex code or do not pro-

vide a generic procedure independent of the data structure.

A good solution here is the use of the inverse of the nu-

merator relationship matrix A−1 directly through the diag-

onal values of W−1 matrix, where A−1
= (T −1)′W−1T −1

(Henderson, 1976; Quaas, 1989), as suggested by Gorjanc

(2010). Recently, Hallander et al. (2010) have developed a

Bayesian method in WinBUGS based on the decomposition

of the multivariate normal prior distribution into products of

conditional univariate distributions, thus permitting the ge-

netic evaluation of complex pedigree structures. In addition,

more complicated covariance structures have been incorpo-

rated via Bayesian methods, allowing for the simultaneous

estimation of both additive and dominance genetic effects

(Waldmann et al., 2008; Mathew et al., 2012).

The primary goals of the present study were to apply

and investigate the relative merits of three methods (REML,

Gibbs sampling and INLA) in the context of animal breeding,

using representative programs such as ASReml 3.0 (Gilmour

et al., 2009), WinBUGS and AnimalINLA. For this purpose,

both a Gaussian and a binary trait were explored and variance

components and the genetic parameters along with breeding

values across the three methods were estimated and com-

pared.

2 Materials and methods

2.1 Data description

Data on body weight (BW) at 35 days of age from a broiler

line were made available by Aviagen Ltd. Given that, in

the Windows version of AnimalINLA 1.1, limitations in the

size of the data set exist, a small data set was randomly

selected, consisting of 2319 records. This comprised 1171

males and 1148 females in 40 hatch weeks, while the pedi-

gree included a total of 2456 animals. All sires (n= 32) and

dams (n= 105) were assumed to be non-inbred and non-

related. To make results directly comparable, all phenotypic

values were standardized to the standard normal distribution

via y =
y0−ȳ
σy0

, where y ∼N (0, 1) is the standardized BW,

y0 the original phenotypic values of BW, ȳ the mean BW

in the population and σy0
the standard deviation of BW. A

preliminary analysis of variance showed that the statistically

significant (P<0.05) fixed effects included hatch week and

sex. Hence, these fixed effects were included in all models.

In this data set, each dam was mated with two sires produc-

ing from 2–57 offspring with records (average full-sib fam-

ily size: 16), while sires were mated with two to seven dams

and produced 2–97 offspring (average half-sib family size:

56). Such a structure enabled the inclusion of maternal en-

vironmental effects (c2) through proper modeling. The latter

are modifications of the offspring phenotype caused by the

environment provided by the mother and consider any influ-

ence of a dam on its progeny, excluding the effects of directly

transmitted genes.

A binary response trait was also constructed, using the

original BW values and a threshold at the highest 20 %

phenotypic values. Thus, the new variable yB followed the

Bernoulli distribution, with values 0 and 1 denoting low and

high weight, respectively. In this data set, only the gender of

the animals was statistically significant (P<0.05) and was

thus included in analyses as the only fixed effect.

2.2 Statistical analysis

2.2.1 Gaussian trait

Three animal models were considered for BW. Model M1

was a purely additive animal model, while model M2 al-

lowed for the inclusion of maternal environmental effects and

model M3 was as model M2 but with a covariance σuc be-

tween additive genetic and maternal environmental effects.

In summary, the models in matrix notation were as follows:

y = Xb+Zu+ e(M1)

y = Xb+Zu+Zcc+ e(M2)

y = Xb+Zu+Zcc+ e, with cov(u,c)= σucI(M3),

where y = n× 1 is the vector of observations (n: number of

records, 2319), b = p× 1 is the vector of fixed effects (p:

number of fixed effects classes, 42), u= q × 1 is the vec-

tor of direct additive genetic effects (q: number of additive

effects, 2456), c = k× 1 is the vector of maternal environ-

mental effects (k: number of dams with offspring, 105) and

e = n× 1 is the vector of residuals; X, Z and Zc denote

the incidence matrices relating the observations to the cor-

responding fixed and random effects. The vector of direct

genetic effects was assumed to follow the normal distribu-

tion: u∼N
(
0n,σ

2
uA
)
, where 0n denotes a n× 1 vector of

0s, σ 2
u denotes the direct genetic variance and A denotes the

additive genetic relationship matrix. The maternal environ-

mental effects were assumed to follow a normal distribution

given by c ∼N
(
0k,σ

2
c Ik
)
, where Ik is an identity matrix of
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order k and σ 2
c is the maternal environmental variance. Fi-

nally, residuals for the two traits were assumed to be normal

as follows: e ∼N
(
0n,σ

2
e In

)
, where σ 2

e is the residual vari-

ance.

From a Bayesian perspective, the data y are assumed

to be y|b, u, σ 2
e ∼N (Xb+Zu, σ 2

e In) and y|b, u, c, σ 2
e ∼

N (Xb+Zu+Zcc, σ
2
e In) for models M1 and M2, respec-

tively. The vector of the data y for model M3 was assumed

to be y|b, u, c, r, σ 2
e ∼N (Xb+Zu+Zcc, σ

2
e In), where the

correlation was r =
cov(u,c)
σuσc

. The vector of b (p× 1) for all

three models was partitioned into two sub-vectors, denoting

hatch (h) and sex (s). It was assumed that both sub-vectors

followed univariate normal, according to h|σ 2
h ∼N (0, σ 2

h )I

and s|σ 2
s ∼N (0, σ 2

s )I.

Gelman (2006) investigated the statistical properties of

different priors on variance components and found that a uni-

form prior on the standard deviation is a reasonable choice in

a number of situations. Therefore, vague uniform priors were

utilized for the standard deviation of the additive genetic

effects σu ∼ U (0, 100) as well as for the c2 effects σc ∼

U (0, 100). The inverse gamma distribution (0.001, 0.001)

for the residual variance σ 2
e or the uniform distribution σe ∼

U (0, 100) for the residual standard deviation were utilized

in order to account for the effect of the priors on the esti-

mations. Both approaches gave indifferent results. The same

priors were used in AnimalINLA and in WinBUGS to attain

comparability. Inferences were made by REML and by esti-

mating the marginal posterior distribution using either Gibbs

sampling or INLA. Estimates of heritability (h2) as well as

c2 were calculated as ratios of the estimates of direct additive

genetic (σ 2
u ) and maternal environmental (σ 2

c ) variances, re-

spectively, to the phenotypic variance (σ 2
p). The phenotypic

variance accounts for the sum of all variance components,

according to the model.

For measuring the mixing and efficiency of the MCMC

samples, the effective sample size (ESS) was used. The ESS

of the posterior samples of each parameter corresponds to

the number of independent samples having the same estima-

tion accuracy as the dependent MCMC samples and is given

by Waagepetersen et al. (2008): ESS = K

1+2
∞∑
k=1

ρk

, where K

the total number of correlated MCMC samples and ρk is the

Markov chain lag-k autocorrelation.

2.2.2 Binary trait

Initially, a simple animal model was fitted via REML, con-

sidering yB as a normally distributed trait. Subsequently, a

generalized linear model (McCullagh and Nelder, 1994) was

used for the analysis of the binary variable. In this analysis,

the observed binary variable yB is related to an underlying

unobservable continuous variable λ, such that the observed

binary response (yB) is the result of the following relation-

ship:

yBi =

{
0 if λi ≤ τ

1 if λi > τ
,

where τ is fixed and yBi corresponds to observation i. Sev-

eral link functions (logit, probit, cloglog) can be applied to

link the binary variable to the underlying scale (Gilmour

et al., 2009). In our study, the logit function was used:

λ= log(
µ

1−µ
), where µ is the probability of success and λ

the vector of linear predictors of the unobserved variable on

the underlying scale. An animal model was assumed for λ

such that λ= Xb+Zu+ e. A uniform prior was assumed

here for the standard deviation of the additive genetic ef-

fects on the underlying scale σu ∼ U (0, 100). On the logit

scale σ 2
e =

π2

3
≈ 3.29, and heritability is thus estimated as

h2
=

σ 2
u

σ 2
u+

π2

3

(Gilmour et al., 2009).

In order to investigate the relative merits of the three ap-

proaches, data for both the Gaussian and the binomial case

were simulated and models were applied accordingly.

2.2.3 Simulation study

The initial analysis of data revealed a marginal importance

of the c2 effects and a possible covariance between u and c.

To further test the behavior of the three programs under a

scenario of two correlated random effects with a marginal

contribution by one of them, a simulation study was con-

ducted, emulating the pedigree structure and the variance

components of the real data. In total, 20 sires and 70 dams

were used in the pedigree, and 2240 progeny with records

were simulated. Each sire was assumed to mate to seven

dams, while each dam produced offspring with two different

sires. All sires and dams were assumed to be non-inbred and

non-related. Each full-sib family consisted of 16 offspring.

The direct genetic effect for founder i (1, ..., 90) was drawn

as ui ∼N
(
0,σ 2

u

)
, while the maternal environmental effect

of dam j (1, ..., 70) was cj ∼N
(
0,σ 2

c

)
, with σ 2

u = 7 and

σ 2
c = 3. Two scenarios were explored regarding the correla-

tion between the direct genetic and the c2 effects (ruc): (a)

ruc =−0.2 (low) and (b) ruc =−0.8 (high). The direct ge-

netic effects of offspring i (1,... ,2240) were calculated by

ui =
1
2

(
uj + uk

)
+ms, where uj and uk denote direct genetic

effects of dam and sire, respectively, while msi represented

the Mendelian sampling deviation drawn conditional upon

the c2 effects: msi |ci ∼N (

√
0.5σ 2

u

σc
r ci, (1− r

2) 0.5σ 2
u ). The

total phenotypic variance was estimated according to σ 2
p =

σ 2
u +σ

2
c +σ

2
e . The residuals were sampled as ei ∼N

(
0,σ 2

e

)
,

where σ 2
e = 32, thus resulting in σ 2

p = 42, h2
= 0.17 and

c2
= 0.07.

In total, 30 samples from each scenario were gener-

ated. These samples were then analyzed via models M1–M2

(ASReml and AnimalINLA) and M2–M3 (WinBUGS). The
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mean squared error (MSE) was employed to quantify the per-

formance of the predictors throughout, along with the cover-

age of interval estimates. The MSE was computed as follows:

MSE =

N∑
i=1

((θ̂i−θ )2
+var(θ̂i ))

N
, where θ stands for the true and θ̂i

for the estimated parameter, θ̂i − θ corresponds to bias, and

N = 30 is the number of samples.

2.2.4 Model evaluation criteria

According to the method applied, the model comparison was

based on four evaluation criteria: the Akaike information cri-

terion (AIC; Akaike, 1973), the Bayesian information cri-

terion (BIC; Schwarz 1978), the conditional Akaike infor-

mation criterion (cAIC; Vaida and Blanchard, 2005) and the

DIC (Spiegelhalter et al., 2002). All criteria are based upon

the computation of the deviance (D): D =−2log(p(y|θ̂ ))=

−2logL, where θ denotes the p× 1 vector of the model

parameters and p(y|θ̂ ) denotes the likelihood of the data

y evaluated at the maximum likelihood estimate θ̂ . While

likelihood ratio tests (LRTs) suggest the direct comparison

of logLs between the various nested models, AIC, BIC and

cAIC suggest penalizing the deviance by appropriate com-

plexity terms. However, the determination of the number of

the model parameters is nontrivial when random effects are

of interest and are being estimated using methods such as

BLUP. For such cases the AIC is shown to be asymptoti-

cally biased (Crainiceanu and Ruppert, 2004). An asymptot-

ically unbiased criterion is the cAIC, defined by Vaida and

Blanchard (2005) as cAIC = −2logLi + 2ρ, where ρ are

the effective degrees of freedom (Hodges and Sargent, 2001),

given by the trace of the hat matrix H that maps the vector of

observed values to the vector of the fitted values. In all crite-

ria, models with smallest values are to be preferred, denoting

a better balance between complexity and fit.

3 Results

3.1 Gaussian trait

Table 1 summarizes the estimated variance components and

genetic parameters of BW, along with likelihoods, ρ and the

model evaluation criteria. With regard to the Bayesian meth-

ods, posterior means and posterior medians were very close

for all parameters of interest. The closeness of mean, me-

dian and mode was also suggested by visual inspection of

the posterior densities, which displayed unimodality. There-

fore, only the posterior means are presented. For our data to

achieve convergence via WinBUGS, a burn-in of 10 000 it-

erations, a total number of 1 000 000 samples and a thinning

interval of 20 were necessary. The latter was concluded on

graphical inspection of the trace and autocorrelation plots,

yielding a sample of 50 000 iterations. Such runs took ap-

proximately 14 to 16 h, depending on modeling assumptions.

Heritability for BW ranged from 0.15 to 0.34, while c2 ac-

counted for 0–0.08 of the total phenotypic variance, depend-

ing on the model and the method applied. All evaluation

criteria, regardless of the method considered, concur in the

choice of a purely additive animal model without the inclu-

sion of the c2 effects. With M1, heritability estimates ranged

slightly among the methods, from 0.31 (ASReml) to 0.34

(AnimalINLA), while 95 % confidence and credible intervals

between ASReml and the Bayesian programs always coin-

cided. The ESS of all parameters estimated via model M1 and

WinBUGS exhibited the highest values (higher than 7000)

among models, indicating best MCMC mixing properties.

Under model M2, REML-based estimates were signifi-

cantly different than those obtained from the two Bayesian

approaches. In this case, REML heritability was seriously un-

derestimated (0.15) when contrasted with MCMC and INLA

methods (0.31 and 0.32, respectively). Furthermore, while

c2 was 0.07(±0.03) in REML, no detectable variance due

to c2 was identified with the Bayesian methods. As a result,

the sum of the additive and the c2 effects given as a pro-

portion of the phenotypic variance was significantly lower in

REML (0.22) when compared to Bayesian methods (0.31–

0.32). Such a paradox may arise from covariances between

the various random effects. To test for such a hypothesis, we

fitted model M3 that accounted for a covariance between the

additive genetic and the maternal environmental effects.

This could be effectively modeled only via the WinBUGS

software. Under model M3, h2 and c2 estimates were com-

parable (0.17 and 0.08, respectively) to ASReml estimates

(for model M2), while the covariance in question was not

statistically significant (Table 1). A negative additive genetic

maternal environmental correlation was detected (−0.20), al-

though with large standard error (0.30) that did not allow for

firm conclusions.

To further quantify the implications of model and method

evaluation on selection decisions, Pearson as well as rank

correlations of animals’ EBVs and the percentage of com-

mon animals selected were calculated across the models

and methods applied (results not shown). The correlations

in question were extremely high (0.97–0.99) when the fo-

cus was on the whole population and/or a proportion of the

best 20 % of animals. During this phase, an additional advan-

tage of the WinBUGS software was its ability to estimate (via

the rank tool) the uncertainty associated with the ranking of

the individuals from the posterior distributions of the EBVs.

Figure 1 presents 12 selected examples from the posterior

distribution of the EBV ranks, with four animals each from

the top, middle and low end of the spectrum. These ranks

were based upon the whole posterior density and properly

accounted for characteristics such as the variance and skew-

ness of the posterior. Both, a 95 % rank interval as well as the

median rank are provided, thus presenting an easy and flexi-

ble way of animal selection. The large uncertainty associated

with selecting among similar animals is also illustrated. Here,

rank correlations were remarkably high, ranging from 0.96

to 0.99 among all methods and models considered. Further-
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more, standard errors of the EBVs and solutions for the fixed

effects were comparable among the methods, with no statis-

tically significant differences. All models and methods sug-

gested the same animals, resulting in correlations between

the estimated breeding values that ranged from 0.96 to 0.99.

3.2 Binary trait

The estimated variance components and genetic parameters

of yB for a purely additive animal model across the three

methods are presented in Table 2. A model incorporating

c2 effects was also fitted; however, convergence was not

achieved under any method applied. In ASReml, heritabil-

ity on the observed scale (h2
o) was estimated to be as high

as 0.10, while the respective estimate on the underlying scale

was significantly higher (h2
U = 0.19). Using the classical for-

mula (Dempster and Lerner, 1950), the ratio between the two

estimates would be
h2
o

h2
U

=
[z(xp)]2

p(1−p)
, where p is the level of in-

cidence and z
(
xp
)

is the ordinate of a standard normal curve

cutting off an area equal to p. For p = 0.2 (as in here) the

ratio is (
h2
o

h2
U

≈ 0.5) in full agreement with our results. Esti-

mates from AnimalINLA were comparable to those of AS-

Reml (h2
U = 0.21). Interestingly, the WinBUGS heritability

estimate was significantly higher (up to 0.36), exceeding the

original h2. Differences were also detected on the 95 % con-

fidence or credible intervals of the point estimates of the

additive variance as well as the heritability on the underly-

ing scale. More specifically, the 95 % credible interval of h2
U

given by WinBUGS was in the region of (0.21, 0.56), that of

AnimalINLA was in (0.13, 0.30) and finally that of ASReml

was in (0.09, 0.29). The ESS of all parameters estimated via

WinBUGS were 1293 and 1436 for h2 and additive genetic

variance, respectively.

As in the case of the Gaussian trait, rank correlations

across the three methods remained high, ranging from 0.92 to

0.99 (results not shown). In addition, the proportion of com-

mon animals selected among the three methods exceeded

93 %, suggesting minor implications of method usage on se-

lection decisions.

3.3 Simulation study

Descriptive statistics of the simulated data and the estima-

tors across models and methods are given in Table 3. Av-

erage values of the simulated data were equal to the true

ones (h2
= 0.17 and c2

= 0.07). Note that during simula-

tions, c2 was statistically significant. Using model M1 un-

der either ASReml or AnimalINLA always resulted in in-

flated predictions for the true parameters. More specifically,

the estimated heritability ranged from 0.35 to 0.51, with a

tendency for inflated estimates particularly in AnimalINLA

and under the strongly negative-ruc scenario for both soft-

ware packages (ASReml and AnimalINLA). Overestimation

of the heritability was due to both higher estimates of the
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Figure 1. Distribution of ranking for 12 representative animals,

based on the EBVs estimated by WinBUGS. Four animals each

were taken from the top, middle and low end of the spectrum. u[i]

refers to the EBV of i animal; rank 1, ..., 2456.

additive genetic variance and lower estimates of the residual

variances.

Estimates under model M2 were in close proximity to the

true values only in the case of ASReml and the low-ruc sce-

nario (h2
= 0.15, c2

= 0.07). Slightly higher estimates for h2

and c2 were observed in ASReml in the high-ruc scenario

(h2
= 0.21, c2

= 0.08). Under AnimalINLA, the respective

h2 estimator was seriously inflated (h2
= 0.34) due to over-

estimation of the additive genetic effects and failure to ac-

count for the c2 effects. This trend was more evident in the

strong- vs. the low-ruc scenario. The WinBUGS estimates for

Model M2 under the high-ruc scenario were slightly better

than those obtained by AnimalINLA. Finally, model M3 was

fitted via WinBUGS for the high (ruc =−0.8) scenario. In

this case, a statistically significant ruc was detected (as high

as −0.60), but h2 and c2 were systematically overestimated.
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Table 2. Estimates of variance components and genetic parameters for the binary transformed BW.

Software σ 2
u σ 2

p h2

ASReml (obs) Mean (SE)

CI (95 %)

0.011 (0.003)

{0.006, 0.018}

0.109 (0.003)

{0.10, 0.12}

0.10 (0.02)

{0.04, 0.16}

ASReml Mean (SE)

CI (95 %)

0.769 (0.226)

{0.34, 1.21}

4.059 (0.226)

{3.63, 4.49}

0.19 (0.05)

{0.09, 0.29}

WinBUGS Mean (SE)

CI (95 %)

ESS

1.972 (0.859)

{0.87, 4.12}

1436

5.275 (0.795)

{4.14, 7.27}

1421

0.36 (0.09)

{0.21, 0.56}

1293

AnimalINLA Mean (SE)

CI (95 %)

0.866 (0.241)

{0.48, 1.41}

4.156 (0.353)

{3.77, 4.70}

0.21 (0.07)

{0.13, 0.30}

σ2
u : additive genetic variance; σ2

p : phenotypic variance; h2: heritability; obs: observed scale; “Mean” in Bayesian analysis

denotes posterior mean; ESS: effective sample size; CI: 95 % confidence or credible intervals.

Table 3. True values and descriptive statistics of the estimators under two levels of additive genetic maternal environmental correlation.

Model M1 M2 M3

Software True values ASReml AnimalINLA ASReml AnimalINLA WinBUGS

Scenario low high low high low high low high high

σ 2
u 7 (0.6) 15 (3)

[11, 23]

19 (4)

[13, 30]

18 (17)

[13, 55]

32 (17)

[13, 65]

6 (2)

[4, 11]

10 (4)

[4, 21]

14 (10)

[11, 47]

26 (14)

[14, 50]

19 (5)

[7, 30]

10 (5)

[5, 21]

σ 2
c 3 (0.5) – – – – 3 (1)

[2, 6]

3 (1)

[1, 7]

0 0 0.9 (0.8)

[0, 3]

6 (3)

[2, 11]

σ 2
e 32 (0.9) 28 (2)

[24, 30]

24 (2)

[19, 29]

28 (2)

[26, 31]

25 (2)

[19, 29]

32 (2)

[28, 35]

29 (2)

[23, 34]

29 (2)

[26, 31]

25 (2)

[19, 29]

24 (3)

[13, 30]

28 (4)

[18, 35]

σ 2
p 42 (1.4) 43 (2)

[40, 48]

43 (2)

[39, 48]

47 (17)

[42, 84]

57 (17)

[40, 94]

42 (2)

[39, 46]

42 (2)

[39, 46]

44 (10)

[39, 78]

51 (13)

[40, 78]

44 (3)

[39, 51]

40 (3)

[39, 49]

h2 0.17 (0.02) 0.35 (0.05)

[0.27, 0.47]

0.44 (0.07)

[0.31, 0.61]

0.44 (0.13)

[0.30, 0.65]

0.51 (0.14)

[0.33, 0.69]

0.15 (0.05)

[0.08, 0.26]

0.21 (0.09)

[0.09, 0.47]

0.34 (0.09)

[0.26, 0.60]

0.47 (0.13)

[0.21, 0.64]

0.43(0.11)

[0.17, 0.68]

0.24 (0.09)

[0.10, 0.44]

c2 0.07 (0.01) – – – – 0.07 (0.02)

[0.04, 0.13]

0.08 (0.03)

[0.02, 0.16]

0 0 0.02(0.02)

[0, 0.09]

0.12 (0.03)

[0.05,0.23]

σuc −3.16 (0.47) – – – – – – – – – −4.54 (4.62)

[−9.74, −1.61]

σuc/σ
2
p −0.08 (0.01) – – – – – – – – – −0.13 (0.09)

[−0.28, −0.04]

ruc −0.8 – – – – – – – – – −0.60 (0.2)

[−0.94, −0.2]

σ2
u : additive genetic variance; σ2

c : maternal environmental variance; σ2
e : residual variance; σ2

p : phenotypic variance; h2: heritability; c2: ratio of the maternal environmental

variance to the phenotypic variance; σuc : additive genetic maternal environmental covariance; ruc : additive genetic maternal environmental correlation; in parentheses:

standard deviations; in square brackets: range [min, max].

Only minor differences were observed in the mean estimates

using WinBUGS and two prior distributions for the residual

variance. In Table 3, results are derived from the uniform dis-

tribution case.

The MSEs across models and methods are presented in

Table 4. Irrespectively of the method and/or model, MSEs

were lower in the low- vs. the high-correlation scenario. Fur-

thermore, better estimates (in terms of MSEs) were attained

in ASReml using M2 model under the low correlation. Low-

est MSEs were observed under model M2 in ASReml and

highest under model M1 in AnimalINLA. Interestingly, low-

est MSEs were attained even under the strongly negative-ruc
scenario using model M2 in ASReml. The WinBUGS soft-

ware, although able to account for the specific correlation,

exhibited the highest MSE of σ 2
e when the prior distribution

chosen was inverse gamma (0.001, 0.001), with an analo-

gous effect on the estimators of h2 and c2. In contrast to the

real data, WinBUGS estimates of the simulated data exhib-

ited better performance when the prior utilized for σewas the

uniform distribution (MSE 44.75 vs. 215.21 for the inverse

gamma prior for σ 2
e ). All other parameters (σ 2

u and σ 2
c ) esti-

mated via model M3 in WinBUGS had relatively low MSE.

The coverage of interval estimates for the three models and

the respective methods of analysis are shown in Table 5. To

construct Bayesian 95 % credible intervals, the quantiles of

the relevant posterior distributions (as estimated by MCMC

and INLA) were used. ASReml’s intervals were constructed

based on asymptotic normality of the maximum likelihood

using θ̂i ± 1.96 · se(θ̂ ), where se denotes the estimated stan-

dard error of the parameter. In the case of low ruc, the best

coverages were given by ASReml and model M2, with nar-

rower intervals than the Bayesian methods. In contrast, Win-

BUGS exhibited the best coverage performance in the case

of the high ruc, at the expense of wider intervals. Anima-
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Table 4. Mean squared errors of the variance components and the genetic parameters under two levels of additive genetic maternal environ-

mental correlation.

Model M1 M2 M3

Software ASReml AnimalINLA ASReml AnimalINLA WinBUGS

Scenario low high low high low high low high high

σ 2
u 85.00 184.43 171.80 343.28 12.83 40.47 85.68 323.46 168.36 41.76

σ 2
c – – – – 2.60 4.67 NE NE 6.05 18.12

σ 2
e 22.43 65.70 17.23 65.53 5.67 19.70 15.33 65.33 72.79 44.75

σ 2
p 6.99 12.36 177.28 199.08 5.78 7.30 45.24 182.53 11.73 10.28

h2 0.04 0.08 0.09 0.18 0.01 0.02 0.04 0.14 0.12 0.04

c2 – – – – 0.01 0.01 NE NE 0.03 0.06

ruc – – – – – – – – – 1.48

σ2
u : additive genetic variance; σ2

c : maternal environmental variance; σ2
e : residual variance; σ2

p : phenotypic variance; h2: heritability; c2:

ratio of the maternal environmental variance to the phenotypic variance; ruc : additive genetic maternal environmental correlation; NE: non

estimability.

Table 5. Actual coverage of nominal 95 % intervals of estimated variance components and genetic parameters.

Low High

ASReml AnimalINLA ASReml AnimalINLA WinBUGS

M1 M2 M1 M2 M1 M2 M1 M2 M2 M3

σ 2
u 36.67 83.33 33.33 76.67 16.67 50.00 20.00 40.00 40.00 76.67

σ 2
c – 86.67 – – – 56.67 – – 63.33 93.33

σ 2
e 73.33 93.33 53.33 80.00 26.67 76.67 46.67 67.67 66.67 76.67

σ 2
p 80.00 96.67 73.33 90.00 70.00 86.67 66.67 80.00 86.67 86.67

h2 33.33 76.67 33.33 73.33 13.33 53.33 20.00 33.33 36.67 66.67

c2 – 90.00 – – – 56.67 – – 60.00 90.00

ruc – – – – – – – – – 90.00

σ2
u : additive genetic variance; σ2

c : maternal environmental variance; σ2
e : residual variance; σ2

p : phenotypic variance; h2:

direct heritability; c2: ratio of the maternal environmental variance to the phenotypic variance; ruc : additive genetic

maternal environmental correlation.

lINLA experienced difficulty in attaining nominal coverage

of interval estimates when model M1 was assumed as well

as under the strongly negative-ruc scenario. In addition, DIC

via WinBUGS favored the true model that incorporated the

ruc in 76.67 % of the samples.

4 Discussion

The theoretical aspects and advantages of REML and

MCMC methods for fitting hierarchical multilevel models,

such as the animal model, have been extensively explored

elsewhere, either with a statistical focus (Browne and Draper,

2006) or from an animal breeder’s perspective (van Tassel et

al., 1995; van Tassel and van Vleck, 1996). However, this is

the first study applying REML and MCMC methods along

with another Bayesian approach, i.e., INLA, within the con-

text of poultry breeding. Our main concerns were the practi-

cal aspects of the applicability of three available typical soft-

ware programs for the standard animal breeder. Given that

both the size and the structure of data sets may have an im-

pact on the performance of the analytical approach (Blasco,

2001), no general inference can be made based on the present

results.

In the present study, an attempt to compare coverage in-

tervals derived from Bayesian and REML approaches was

pursued. However, there are two main differences between

credible and confidence intervals. While a credible interval

incorporates information from the prior distribution into the

estimate, confidence intervals are based solely on the data,

treating the parameter as fixed and the interval itself as ran-

dom. Credible intervals are different from confidence inter-

vals essentially because credible intervals are probability in-

tervals; i.e., they say that the true value should be within the

interval with a determined probability. Confidence intervals

do not say that the true value is within the limits with a de-

termined probability. In conceptual repetitions of an experi-

ment, different confidence intervals can be obtained; 95 % of

these intervals contain the true value. Thus, we treat the in-
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terval as containing it, knowing that, in the long run, we will

be wrong 5 % of times. Although different in philosophy, the

comparison between these types of intervals may be useful

within the context of a study such as ours.

From a frequentist’s point of view, the standard method

entails the use of the REML and BLUP methods. In the

present study, ASReml (Gilmour et al., 2009) software was

employed. The software is stable and fast and can handle

many different models, data structures and thousands of data

records. In addition, the necessary files are not especially

complicated to construct, while a valuable manual, contain-

ing a lot of information and numerous examples, is available

for the animal breeder. For binary trait modeling, a variety of

link functions (logit, probit, cloglog) can be chosen.

An obvious obstacle when using commercial programs is

their limited flexibility, i.e., the inability to model complex

structures between (random) effects. A good example here

was the presence of negative correlation between u and c ef-

fects which could not be appropriately accommodated within

the context of a typical REML package. This covariance is

typically ignored (assumed to be 0), but this need not be

always the case. Although in need of a more concise bi-

ological explanation, scenarios relate the negative correla-

tion between the u and the c effects to maternally transmit-

ted immunoglobulins, antioxidants (particularly carotenoids

and vitamin E) and yolk androgens. While yolk androgens

correlate positively with offspring growth (Schwabl, 1996;

Groothuis et al., 2005; Müller et al., 2007), they suppress

the immune system (Ketterson and Nolan, 1999; Groothuis

et al., 2005) and may promote oxidative stress (von Schantz

et al., 1999) in the offspring. On the other hand, maternally

transmitted immunoglobulins (Buechler et al., 2002; Boulin-

ier and Staszewski, 2008) and carotenoids (Surai and Speake,

1998) may enhance immune function, but at the expense of

offspring growth.

Modeling the covariance in question was made possible

only via WinBUGS. This is a very valuable feature when

testing assumptions of the standard animal model with re-

gard to possible correlation structures between the various

random effects. This program allows for the application of a

large group of competing models and Bayesian model eval-

uation criteria (Sorensen and Gianola, 2002). A further im-

portant attribute of WinBUGS is the rank tool, which can

simultaneously incorporate the uncertainty associated with

ranking the individuals, thus assisting in animal selection.

In theory, REML and INLA would probably struggle if the

likelihood was very flat, whereas MCMC methods should be

able to cope (Blasco, 2001). Such scenarios could be impor-

tant for practical breeding purposes and might be properly

encountered by MCMC methods. Bayesian methods, such as

MCMC implemented in WinBUGS, can be especially useful

in complex situations at the cost of being computationally

expensive and time-consuming. For our data, approximately

14 to 16 h were needed to achieve convergence, depending

on modeling assumptions.

The AnimalINLA has proved to be a remarkably time-

efficient experience. It took less than 10 s to produce the re-

quired posterior distributions, while providing comparable

estimates with the other packages. Although computation-

ally efficient, the current version of this R package (Anima-

lINLA 1.1) could not accommodate more than 4000 records

in the animal model, probably due to compatibility prob-

lems with Windows. Although time-efficient, AnimalINLA

has displayed certain problems in terms of bias and accu-

racy, particularly for a binary trait. The latter has also been

confirmed by Holand et al. (2013) and is supported by a more

detailed investigation of simulated data. Finally, it is not as

flexible in modeling as the WinBUGS and the documentation

is still under development.

In conclusion, WinBUGS can be of great assistance to

the animal breeder because of its flexibility in modeling

complex models while unraveling existent data structures

that the usual REML-based packages neglect. Within the

animal breeding context, its applicability remains rather

limited since only small to moderate data sets or populations

can be handled in a time-efficient manner. Furthermore,

the choice of the priors should be made with caution,

particularly when the posteriors may vary with priors. The

AnimalINLA software appears to be a promising future

perspective for the animal breeder dedicated to the Bayesian

paradigm since it is remarkably fast. It seems, however, to

be a package still under development. Our own experience

on large data sets has shown that ASReml can effectively

handle analyses for up to 200 000 records and related pedi-

gree structures fast (< 1 h) and mostly independent of initial

values (Maniatis et al., 2013). Furthermore, as the simulation

results have shown, even when a large covariance between

random effects is neglected, it may provide estimates of the

parameters in question with relatively small bias and error.

Given all the above, ASReml remains the best practical

choice for the serious animal breeder among the software

packages examined.

Edited by: K. Wimmers

Reviewed by: two anonymous referees
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